JP4567287B2 - Vertical double-shell cylindrical cryogenic storage tank - Google Patents

Vertical double-shell cylindrical cryogenic storage tank Download PDF

Info

Publication number
JP4567287B2
JP4567287B2 JP2002380543A JP2002380543A JP4567287B2 JP 4567287 B2 JP4567287 B2 JP 4567287B2 JP 2002380543 A JP2002380543 A JP 2002380543A JP 2002380543 A JP2002380543 A JP 2002380543A JP 4567287 B2 JP4567287 B2 JP 4567287B2
Authority
JP
Japan
Prior art keywords
plate
side plate
skirt
tank
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002380543A
Other languages
Japanese (ja)
Other versions
JP2004211759A (en
Inventor
宏治 石井
義之 角島
直也 橋本
正則 玉田
和司 豊田
Original Assignee
株式会社石井鐵工所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社石井鐵工所 filed Critical 株式会社石井鐵工所
Priority to JP2002380543A priority Critical patent/JP4567287B2/en
Publication of JP2004211759A publication Critical patent/JP2004211759A/en
Application granted granted Critical
Publication of JP4567287B2 publication Critical patent/JP4567287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、液体窒素、液体酸素、LNG等の低温液化ガスなどを貯蔵する縦置二重殻円筒形低温貯槽に関するものである。
【0002】
【従来の技術】
従来の縦置二重殻円筒形低温貯槽には、例えば、内外槽二重殻貯槽の外槽を貫通するサポートで内槽を地上に支持し、かつ内槽と外槽の間に断熱材を充填してなる保冷層を設けた「低温二重殻貯槽の保冷構造」特開2000−2400号公報(特許文献1参照)の発明がある。
【0003】
この特許文献1「低温二重殻貯槽の保冷構造」の発明は、内外槽二重殻貯槽の外槽3aを貫通するスカート構造のサポート7aの外槽貫通箇所に、保冷層4の断熱材5より熱伝導性の大きい保冷材6を充填するもので、粒状、或いは成形品や袋体からなる保冷材6を用いて、作業性良く、或いは熱バランス良く、サポート7aの外側及び又は内側に設けるようにしている。
【0004】
【特許文献1】
特開2000−2400号公報(第1図及び、第3頁左欄第27行〜第43行)
【0005】
【発明が解決しようとする課題】
上記紹介した「低温二重殻貯槽の保冷構造」は、断熱材5内に位置するサポート7aの長さが短いため、内槽に貯蔵する低温液体の冷熱がスカート構造のサポート7aを伝わって短直に下降し、外気温との温度差が小さくなりかつ温度や湿度が高い場合には、なお露や霜がサポート露出部に発生する恐れがあり、必ずしも十分な構造ではなかった。
さらに、外槽3a及び保冷層4の垂直荷重、及び曲げ荷重がサポート7aにかかるため、外槽3aの下部及びサポート7aを頑強な構造にしなければならなかった。
【0006】
この発明の目的は、上述のような従来技術が有する問題点に鑑みてなされたもので、内槽の冷熱の遮断状態を良くしかつスカート構造のサポート露出部近傍の吸熱量を適正にして露や霜の発生を防止し、さらにサポート及び接続部材などを軽減し、経済性に優れた縦置二重殻円筒形低温貯槽を提供するものである。
【0007】
【課題を解決するための手段】
請求項1に係る発明の縦置二重殻円筒形低温貯槽は、半球形状の上部鏡板と円筒形状の中間胴板と半球形状の下部鏡板とからなる内槽を設け、該内槽とその内槽を囲繞する外槽との間に保冷層を設け、該外槽はドーム形状の屋根板と、下端が内槽の中間胴板の下端より下方に位置する円筒形状の側板と、該側板の下端に接続する傾斜状で倒立円錐台リング形状の脇板と、上記半球形状の下部鏡板より小さな曲率で曲面がなだらかな凹面円板形状で、基礎から所定の高さを有して前記脇板の下端部に接続する底板とからなり、円筒形状のスカートは前記内槽の中間胴板下端部から垂直下方に延出して外槽の底板端部を貫通して上記内槽及び外槽を基礎上に支持して、上記保冷層内に位置するスカート部分の垂直方向の長さは、前記内槽の中間胴板の下端に連なる半球形状の下部鏡板の最下点を基準にして半楕円形状又は半球形状を除く欠球形状の下部鏡板で形成した場合の保冷層内に位置するスカート部分の垂直方向の長さに比べて長くなるように形成したものである。
【0008】
また、請求項2に係る発明の縦置二重殻円筒形低温貯槽は、上記請求項1に係る発明の外槽の脇板とスカートの接続部下部位置に隔離して複数本の脇板支持材を設け、かつ上記外槽の側板下部周縁に隔離して複数本の側板支持材を設け、さらに上記脇板支持材と側板支持材を掛け渡す位置の脇板外面に脇板梁部材を設けたものである。
【0009】
また、請求項3に係る発明の縦置二重殻円筒形低温貯槽は、上記請求項1又は2に係る発明の外槽の脇板とスカートの接続部の上部位置に、スカートから脇板へ水平に掛け渡して閉塞空間を形成する補強リングプレートを設けたものである。
【0010】
また、請求項4に係る発明の縦置二重殻円筒形低温貯槽は、上記請求項2又は3に係る発明の外槽の底板の下部に、基礎上に至る底板支持材を設けたものである。
【0011】
【発明の実施の形態】
この発明に係る縦置二重殻円筒形低温貯槽の実施の形態について、図1乃至図6を参照して説明する。
図1及び図2は、縦置二重殻円筒形低温貯槽の全体縦断面を示す。
また、図1のスカート及び外槽側板の下部を図3に、底板支持の状況を図5に拡大して示し、さらに、図2のスカート及び外槽側板の下部を図4に、底板支持の状況を図6に拡大して示す。
【0012】
図1及び図2に示すように、低温液体を貯蔵する内槽1を設け、この内槽1を囲繞するように外槽2を設け、この内槽1と外槽2との間に保冷層3を設ける。
円筒形状のスカート4は、内槽1の中間胴板7下端部から垂直下方に延出して外槽2の底板12端部を貫通し、かつ底板12が基礎5から所定の高さを有して基礎5上に上記内槽1及び外槽2を支持する。
【0013】
上記内槽1は、半球形状の上部鏡板6と、円筒形状の中間胴板7と、半球形状の下部鏡板8とで形成する。
上記外槽2は、ドーム形状の屋根板9と、円筒形状の側板10と、傾斜状で倒立円錐台リング形状の脇板11と、上記下部鏡板8よりも小さな曲率のなだらかな凹面円板形状、又は水平円板形状の底板12とで形成する。
【0014】
図1及び図2のように、内槽1の上部鏡板6及び下部鏡板8を半球形状に形成し、かつ外槽2の底板12を上記下部鏡板8の曲率よりも小さな曲率、つまり曲面がなだらかな凹面円板形状の底板12A、又は水平円板形状の底板12Bに形成する。
このような内外槽下部板の形状によって、上記円筒形状のスカート4は、下部鏡板8とスカート4の接続箇所から下方の底板12,12A,12B貫通箇所までの距離、つまり保冷層3内に位置するスカート4の部分が、従来のように全体が均一な厚さの保冷層、つまり保冷層がどの箇所も同じ幅で形成されていた構造のものに比べて長くなる。
そのため、内槽1からスカート4を伝わって下降する冷熱の熱伝導距離が大きくなるため、スカート4が外槽2底板12を貫通する箇所でのスカート4近傍外面部の温度を上げることが可能となる。
よって、スカート4と脇板11の接続部近傍での冷熱の放散量が少なくなって、スカート4と脇板11の接続部近傍外面での霜の付着や結露の発生を防止することができる。
【0015】
上記本願構造の半球形状の鏡板8は、中間胴板7の直径Dに対して、鏡板8の軸心方向の高さHが0.5Dとなる。この鏡板8の最下点を基準にして、従来構造の半楕円形状の鏡板では軸心方向の高さHは0.1D〜0.3D程度、従来構造の欠球形状の鏡板では軸心方向の高さHは0.1D〜0.2D程度である。そして、上記本願構造の鏡板と従来構造の鏡板との高さHの差、ΔHの範囲は0.2D〜0.4Dとなり、これがスカート4の長さLの差、ΔLに該当する。
この差の値ΔLは、例えば直径Dが8メートルの場合には、約1.6メートル〜約3.2メートルの範囲となり、これが前記した保冷層3内に位置するスカート4の長くなった距離に相当する。
【0016】
また、上記のように内槽1の上部鏡板6及び下部鏡板8を、半球形状に形成することによって、内圧荷重及び応力が板面に均等にかかるため、同じ厚さの薄板を採用することができ、この薄板を用いて曲率が一定の球殻形状に、プレス加工によって作業性良く製作することができる。
そして、上部鏡板6及び下部鏡板8の荷重が小さくなるため、スカート4への負担が低減され、軽量化に加えて補強構造も簡素化することができる。
なお、従来構造のように、上下鏡板を半楕円形状や欠球形状とした場合には、この上下鏡板は曲面各部の曲率が一定でなく変化しているため、プレスによる成形作業に手間を要することとなる。そして、この半楕円形状や欠球形状の上下鏡板は、局部的に大きく掛かる内圧荷重に対して高強度を得るために、板厚を増す必要が生じ、重量の増加をまねく。しかも、その荷重を支える従来の支持スカートは、頑強な構造にしなければならなかった。
【0017】
図3は、図1のスカート及び外槽側板の下部を拡大して示す実施形態例である。
脇板11は、凹面円板形状の底板12Aの延長線上に位置させ、平板を用いて傾斜状にスカート4及び側板10と溶接にて接合する。
また、脇板11とスカート4の接続部下部位置に、隔離して複数本の脇板支持材13を設け、かつ側板10下部周縁に隔離して複数本の側板支持材14を設け、さらに上記脇板支持材13と側板支持材14との間を掛け渡す位置の脇板11外面に脇板梁部材15を設ける。
なお、16は脇板支持材13の上端部に設ける当て板、17は側板支持材14の上端部に設ける当て板である。
外槽の底板12Aは、内槽の下部鏡板より小さな曲率のなだらかな凹面円板形状に形成することにより、保冷層3内に収まるスカート4の長さを更に長くでき、充分な保冷空間を保持するとともに、板の曲げ強度も確保されているため支持構造等を簡素化することができる。
【0018】
このように、脇板支持材13によってスカート4及び脇板接続部が補強されるとともに、側板支持材14及び脇板梁部材15によって脇板11と側板10及び保冷層3の垂直荷重を支えることができるため、スカート4への荷重負担を低減することができる。
【0019】
また、保冷層3内に位置する長いスカート4による吸熱効果やスカート4に接している脇板支持材13、及び脇板11に接している脇板梁部材15による放熱効果によって、脇板接続部近傍外面での結露や霜付着の防止も図られる。
【0020】
図4は、図2のスカート及び外槽側板の下部を拡大して示す実施形態例である。
脇板11は、平板を用いて傾斜状に、スカート4及び側板10と溶接にて接合する。
そして、水平底板12Bとスカート4の接合位置から水平延長線上で、上記脇板11とスカート4の接続部の上部位置に、スカート4から脇板11へ水平に掛け渡して補強リングプレート19を設け、その両端縁の一方をスカート4に溶接にて接合し、もう一方を脇板11と溶接にて接合して断面三角形状の閉塞空間18を形成する。
また、外槽2及び保冷層3の垂直荷重を支える場合には、図の二点鎖線に示すように、側板10下部周縁に隔離して複数本の側板支持材20を設ける。
なお、側板10の下部周縁で脇板11との接続部には、内圧荷重等の必要に応じて補強リング部材21を設ける。
また、外槽2の底板12Bは、平面円板形状に形成することにより、曲げ加工等が不要で手間がかからず現場での施工も容易で経済的である。
【0021】
このように、水平に掛け渡し断面三角形状に閉塞する補強リングプレート19によって、脇板11及びスカート4とその接続部が補強される。この補強リングプレート19のスカート4への取付位置は、保冷効果又は補強効果に応じて変わるが、補強効果を配慮した場合にはスカート4への底板接続部の水平延長位置が効果的である。
さらに、側板支持材20を設けた場合には、側板10及び保冷層3からの垂直荷重を支えるため、脇板11及びスカート4への荷重負担を軽減することができる。よって、スカート4及び脇板11の部材の低減を図ることが可能となる。
【0022】
また、スカート4を伝わり下降する冷熱は、上記閉塞空間18によって遮断することができ、さらに外槽2の底板12Bを水平円板形状に形成しているので、保冷層3内のスカート4の長さを更に長くすることができ、十分な保冷空間を保持することで、スカート4と脇板11との接続部近傍外面での結露や霜付着の防止を一層向上することが可能となる。
【0023】
さらに、図示はしないが、上記補強リングプレート19に孔明けをして、上記閉塞空間部18に保冷材などを充填することによって、結露や霜付着の防止性能を更に高めることもできる。
【0024】
図5は、外槽の底板の支持状況を一部欠除して示す実施形態例で、凹面円板形状の底板12Aの下部、例えば図のように中心部一箇所に、基礎5上に至る柱状の底板支持材22Aを設けた場合を示す。
この場合には、底板12Aの下部が低く距離が短くなるため、底板支持材22Aはコンクリート基礎版を立ち上げて形成するか、或いは、短い形鋼材、パイプ材などを用いて基礎5に鉛直に立設する。
【0025】
図6は、外槽の底板の支持状況を一部欠除して示す他の実施形態例で、平面円板形状の底板12Bを支える水平な底板梁部材23の下部、例えば図のように中心部一箇所に、基礎5上に至る柱状の底板支持材22Bを設けた場合を示す。
この底板支持材22Bは、形鋼材、パイプ材などを用いて、基礎5に鉛直に立設する。
【0026】
上記のように、底板12,12A,12B下部に、基礎5上に至る底板支持材22,22A,22Bを立設することによって、底板12,12A,12Bの垂直荷重、及び増加した保冷層4の重量を支えるとともに、円筒形状のスカート4へ掛かる曲げ荷重を負担するため、底板12,12A,12B及びスカート4の部材を軽減することができる。
さらに、底板12Bのように底板梁部材23を設ける場合には、底板梁部材23への強度を低減でき、部材の軽減化を図ることも可能となる。
【0027】
【発明の効果】
請求項1に係る発明の縦置二重殻円筒形低温貯槽は、半球形状の上部鏡板と円筒形状の中間胴板と半球形状の下部鏡板とからなる内槽を設け、該内槽とその内槽を囲繞する外槽との間に保冷層を設け、該外槽はドーム形状の屋根板と、下端が内槽の中間胴板の下端より下方に位置する円筒形状の側板と、該側板の下端に接続する傾斜状で倒立円錐台リング形状の脇板と、上記半球形状の下部鏡板より小さな曲率で曲面がなだらかな凹面円板形状で、基礎から所定の高さを有して前記脇板の下端部に接続する底板とからなり、円筒形状のスカートは前記内槽の中間胴板下端部から垂直下方に延出して外槽の底板端部を貫通して上記内槽及び外槽を基礎上に支持して、上記保冷層内に位置するスカート部分の垂直方向の長さは、前記内槽の中間胴板の下端に連なる半球形状の下部鏡板の最下点を基準にして半楕円形状又は半球形状を除く欠球形状の下部鏡板で形成した場合の保冷層内に位置するスカート部分の垂直方向の長さに比べて長くなるように形成したので、半球形の下部鏡板接続箇所から底板貫通箇所までのスカートの長さ、つまり保冷層内に位置するスカート部分が長くなり、スカートを伝わって下降する冷熱の伝熱距離が長くなるため、下方の保冷層外に位置するスカートと脇板の接続部近傍外面部での結露や霜付着の防止を向上することができ、さらに、底板上部の保冷層の厚さが増加し断熱材の充填量も多くなるため、保冷性能も向上する。
また、上記のように内槽の上部鏡板及び下部鏡板を、半球形状に形成することによって、内圧荷重及び応力が板面に均等にかかるため、同じ厚さの薄板を採用することができ、この薄板を用いて曲率が一定の球殻形状に、プレス加工によって作業性良く製作することができる。そして、上部鏡板及び下部鏡板の荷重が小さくなるため、スカートへの負担が低減され、軽量化及び軽減化に加えて補強構造も簡素化することができる。
【0028】
また、請求項2に係る発明の縦置二重殻円筒形低温貯槽は、上記請求項1に係る発明の外槽の脇板とスカートの接続部下部位置に隔離して複数本の脇板支持材を設け、かつ上記外槽の側板下部周縁に隔離して複数本の側板支持材を設け、さらに上記脇板支持材と側板支持材を掛け渡す位置の脇板外面に脇板梁部材を設けたので、脇板支持材によってスカート及び脇板接続部が補強されるとともに、側板支持材及び脇板梁部材によって外槽側板及び保冷層からの垂直荷重を支えることができるため、スカート及び脇板への荷重負担を低減することで部材の低減を図ることが可能となり、スカートに接している脇板支持材及び脇板に接している脇板支持材による放熱効果により、スカートと脇板の接続部近傍外面での結露や霜付着の防止を一層向上することが可能となる。
【0029】
また、請求項3に係る発明の縦置二重殻円筒形低温貯槽は、上記請求項1又は2に係る発明の外槽の脇板とスカートの接続部の上部位置に、スカートから脇板へ水平に掛け渡して閉塞空間を形成する補強リングプレートを設けたので、補強リングプレートによって脇板及びスカートとの脇板接続部が補強されるため、スカートへの曲げ荷重の負担を低減することができ、さらにスカートを伝わり下降する冷熱は上記閉塞空間によって遮断するため、スカートと脇板の接続部近傍外面での結露や霜付着の防止を一層向上することが可能となる。
さらに、上記補強リングプレートに孔明けして、上記閉塞空間部に保冷材などを充填することによって、結露や霜付着の防止性能を更に高めることもできる。
【0030】
また、請求項4に係る発明の縦置二重殻円筒形低温貯槽は、上記請求項2又は3に係る発明の外槽の底板の下部に、基礎上に至る底板支持材を設けたので、底板支持材によって底板の垂直荷重、及び増加した保冷層の重量を支えるとともに、底板からスカートに掛かる曲げ荷重を負担するため、底板及びスカートの部材を軽減することができる。
【0031】
【図面の簡単な説明】
【図1】 この発明に係る縦置二重殻円筒形低温貯槽の実施形態例を示す縦断面説明図である。
【図2】 この発明に係る縦置二重殻円筒形低温貯槽の第2の実施形態例を示す縦断面説明図である。
【図3】 図1のスカート及び外槽側板の下部を拡大して示す縦断面説明図である。
【図4】 図2のスカート及び外槽側板の下部を拡大して示す縦断面説明図である。
【図5】 底板支持の実施形態例を示す縦断面説明図である。
【図6】 底板支持の他の実施形態例を示す縦断面説明図である。
【符号の説明】
1 内槽 2 外槽
3 保冷層 4 スカート
5 基礎 6 上部鏡板
7 中間胴板 8 下部鏡板
9 屋根板 10 側板
11 脇板 12,12A,12B 底板
13 脇板支持材 14 側板支持材
15 脇板梁部材 16 当て板
17 当て板 18 閉塞空間
19 補強リングプレート 20 側板支持材
21 補強リング部材 22,22A,22B 底板支持材
23 底板支持材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vertical double-shell cylindrical low-temperature storage tank that stores low-temperature liquefied gas such as liquid nitrogen, liquid oxygen, and LNG.
[0002]
[Prior art]
In a conventional vertical double-shell cylindrical low-temperature storage tank, for example, the inner tank is supported on the ground by a support penetrating the outer tank of the inner and outer tank double-shell storage tank, and a heat insulating material is provided between the inner tank and the outer tank. There is an invention of “Cold Insulation Structure of Low Temperature Double Shell Storage Tank” Japanese Patent Laid-Open No. 2000-2400 (see Patent Document 1) provided with a cold insulation layer formed by filling.
[0003]
The invention of this Patent Document 1 “Cooling structure of low-temperature double-shell storage tank” is based on the heat insulating material 5 of the cold storage layer 4 at the outer tank penetration portion of the support 7a of the skirt structure that penetrates the outer tank 3a of the inner / outer tank double-shell storage tank. It is filled with the cold insulation material 6 having higher thermal conductivity, and is provided on the outer side and / or the inner side of the support 7a with good workability or good heat balance by using the cold insulation material 6 made of particles or molded products or bags. I am doing so.
[0004]
[Patent Document 1]
JP 2000-2400 A (FIG. 1 and page 3, left column, lines 27-43)
[0005]
[Problems to be solved by the invention]
In the above-described “cold insulation structure of the low temperature double shell storage tank”, the length of the support 7a located in the heat insulating material 5 is short, so the cold heat of the low temperature liquid stored in the inner tank is transmitted through the support 7a of the skirt structure and short. When the temperature dropped directly, the temperature difference from the outside air temperature became small, and the temperature and humidity were high, dew and frost might still be generated in the support exposed part, and the structure was not always sufficient.
Furthermore, since the vertical load and bending load of the outer tub 3a and the cold insulation layer 4 are applied to the support 7a, the lower portion of the outer tub 3a and the support 7a have to be made to have a robust structure.
[0006]
The object of the present invention has been made in view of the above-mentioned problems of the prior art, and improves the heat insulation state of the inner tub and makes the heat absorption near the support exposed portion of the skirt structure appropriate. The present invention provides a vertical double-shell cylindrical low-temperature storage tank that prevents generation of frost and frost, further reduces support and connecting members, and is excellent in economic efficiency.
[0007]
[Means for Solving the Problems]
The vertical double-shell cylindrical low-temperature storage tank of the invention according to claim 1 is provided with an inner tank composed of a hemispherical upper end plate, a cylindrical intermediate shell plate, and a hemispherical lower end plate, A cold insulation layer is provided between the outer tank surrounding the tank, and the outer tank has a dome-shaped roof plate, a cylindrical side plate whose lower end is located below the lower end of the inner shell plate of the inner tank, and the side plate Inclined inverted frustoconical ring-shaped side plate connected to the lower end, and a concave disc shape with a curved surface with a smaller curvature than the hemispherical lower end plate, and having a predetermined height from the foundation, the side plate The cylindrical skirt extends vertically downward from the lower end of the intermediate body plate of the inner tub and penetrates the bottom plate end of the outer tub to form the foundation of the inner and outer tubs. and supported by the upper, vertical length of the skirt portion located above the cold layer, an intermediate cylinder of the inner tub Vertical length of the skirt portion located cold layer in the case of forming the bottom end plate of Ketsudama shape except for a semi-elliptical shape or hemispherical shape with respect to the lowest point of the lower end plate of the hemispherical connected to the lower end It is formed so as to be longer than the above.
[0008]
Further, the vertical double-shell cylindrical low-temperature storage tank of the invention according to claim 2 is separated from the side plate of the outer tank of the invention of claim 1 and the position below the connecting portion of the skirt, and supports a plurality of side plates. A side plate beam member is provided on the outer surface of the side plate at a position where the side plate support material and the side plate support material are bridged. It is a thing.
[0009]
The vertical location double-shelled cylindrical cold storage tank of the invention according to claim 3, in the upper position of the connection portion of the side plate and the skirt of the outer tub of the invention according to the claim 1 or 2, aside plate from the skirt A reinforcing ring plate is provided that extends horizontally and forms a closed space.
[0010]
Moreover, the vertical double-shell cylindrical low-temperature storage tank of the invention according to claim 4 is provided with a bottom plate support material extending to the foundation at the lower part of the bottom plate of the outer tank of the invention according to claim 2 or 3. is there.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a vertical double-shell cylindrical cryogenic storage tank according to the present invention will be described with reference to FIGS.
FIG.1 and FIG.2 shows the whole longitudinal cross-section of a vertical-type double-shell cylindrical cryogenic storage tank.
Further, the lower part of the skirt and the outer tub side plate in FIG. 1 is shown in FIG. 3 and the bottom plate support situation is shown in FIG. 5, and the lower part of the skirt and the outer tub side plate in FIG. The situation is shown enlarged in FIG.
[0012]
As shown in FIGS. 1 and 2, an inner tank 1 for storing a cryogenic liquid is provided, an outer tank 2 is provided so as to surround the inner tank 1, and a cold insulation layer is provided between the inner tank 1 and the outer tank 2. 3 is provided.
The cylindrical skirt 4 extends vertically downward from the lower end of the intermediate body plate 7 of the inner tub 1 and penetrates the end of the bottom plate 12 of the outer tub 2, and the bottom plate 12 has a predetermined height from the foundation 5. The inner tank 1 and the outer tank 2 are supported on the base 5.
[0013]
The inner tub 1 is formed of a hemispherical upper end plate 6, a cylindrical intermediate body plate 7, and a hemispherical lower end plate 8.
The outer tub 2 includes a dome-shaped roof plate 9, a cylindrical side plate 10, an inclined inverted frustoconical ring-shaped side plate 11, and a gentle concave disk shape having a smaller curvature than the lower end plate 8. Or a horizontal disk-shaped bottom plate 12.
[0014]
As shown in FIGS. 1 and 2, the upper end plate 6 and the lower end plate 8 of the inner tub 1 are formed in a hemispherical shape, and the bottom plate 12 of the outer tub 2 has a curvature smaller than the curvature of the lower end plate 8, that is, has a gentle curved surface. It is formed on the bottom plate 12A having a concave disc shape or the bottom plate 12B having a horizontal disc shape.
Due to the shape of the lower plate of the inner and outer tanks, the cylindrical skirt 4 is positioned in the cold insulation layer 3 from the connecting position between the lower end plate 8 and the skirt 4 to the lower plate 12, 12A, 12B through portion. The portion of the skirt 4 is longer than that of a conventional cold insulation layer having a uniform thickness, that is, a structure in which the cold insulation layer is formed at the same width everywhere.
Therefore, since the heat conduction distance of the cold that descends from the inner tub 1 through the skirt 4 is increased, it is possible to increase the temperature of the outer surface near the skirt 4 at the location where the skirt 4 penetrates the outer tub 2 bottom plate 12. Become.
Therefore, the amount of cold heat dissipated in the vicinity of the connection portion between the skirt 4 and the side plate 11 is reduced, and frost adhesion and dew condensation can be prevented on the outer surface in the vicinity of the connection portion between the skirt 4 and the side plate 11.
[0015]
In the hemispherical end plate 8 having the above-described structure, the height H in the axial direction of the end plate 8 is 0.5D with respect to the diameter D of the intermediate body plate 7. With reference to the lowest point of the end plate 8, the height H in the axial direction is about 0.1D to 0.3D in the semi-elliptical end plate of the conventional structure, and the axis center in the endless end plate of the conventional structure. The height H in the direction is about 0.1D to 0.2D. And the difference of the height H and the range of (DELTA) H of the end plate of the said structure of this application and the end plate of the conventional structure become 0.2D-0.4D, and this corresponds to the difference of the length L of the skirt 4, (DELTA) L.
For example, when the diameter D is 8 meters, the difference value ΔL is in the range of about 1.6 meters to about 3.2 meters, and this is the increased distance of the skirt 4 located in the cold insulation layer 3 described above. It corresponds to.
[0016]
In addition, since the upper end plate 6 and the lower end plate 8 of the inner tub 1 are formed in a hemispherical shape as described above, the internal pressure load and stress are evenly applied to the plate surface. Using this thin plate, a spherical shell shape with a constant curvature can be manufactured with good workability by pressing.
And since the load of the upper end plate 6 and the lower end plate 8 becomes small, the burden on the skirt 4 is reduced, and the reinforcing structure can be simplified in addition to the weight reduction.
In addition, when the upper and lower end panels are semi-elliptical or non-spherical as in the conventional structure, the curvature of each part of the curved surface of the upper and lower end panels is not constant. It will be. The semi-elliptical or oval spherical upper and lower end panels need to be increased in thickness in order to obtain high strength against an internal pressure load that is greatly applied locally, resulting in an increase in weight. Moreover, the conventional support skirt that supports the load had to have a robust structure.
[0017]
FIG. 3 is an embodiment in which the lower part of the skirt and the outer tank side plate of FIG. 1 is enlarged.
The side plate 11 is positioned on an extension line of the concave disc-shaped bottom plate 12A, and is joined to the skirt 4 and the side plate 10 by welding using a flat plate.
Further, a plurality of side plate support members 13 are provided in isolation at the lower position of the connecting portion between the side plate 11 and the skirt 4, and a plurality of side plate support materials 14 are provided in isolation on the lower periphery of the side plate 10, and A side plate beam member 15 is provided on the outer surface of the side plate 11 at a position where the side plate support member 13 and the side plate support member 14 are spanned.
In addition, 16 is a contact plate provided at the upper end portion of the side plate support member 13, and 17 is a contact plate provided at the upper end portion of the side plate support member 14.
The bottom plate 12A of the outer tub is formed in a gentle concave disk shape having a smaller curvature than the lower end plate of the inner tub, so that the length of the skirt 4 that can be accommodated in the cold insulation layer 3 can be further increased, and a sufficient cold insulation space is maintained. In addition, since the bending strength of the plate is secured, the support structure and the like can be simplified.
[0018]
As described above, the side plate support member 13 reinforces the skirt 4 and the side plate connection portion, and the side plate support member 14 and the side plate beam member 15 support the vertical loads of the side plate 11, the side plate 10, and the cold insulation layer 3. Therefore, the load on the skirt 4 can be reduced.
[0019]
Further, the side plate connecting portion is formed by the heat absorption effect by the long skirt 4 located in the cold insulation layer 3 and the heat dissipation effect by the side plate support member 13 in contact with the skirt 4 and the side plate beam member 15 in contact with the side plate 11. It is also possible to prevent condensation and frost adhesion on the outer surface in the vicinity.
[0020]
FIG. 4 shows an embodiment in which the lower part of the skirt and the outer tank side plate in FIG. 2 is enlarged.
The side plate 11 is joined to the skirt 4 and the side plate 10 by welding in an inclined manner using a flat plate.
Then, a reinforcing ring plate 19 is provided horizontally across the skirt 4 from the side plate 11 at the upper position of the connecting portion between the side plate 11 and the skirt 4 on the horizontal extension line from the joining position of the horizontal bottom plate 12B and the skirt 4. One end of the both ends is joined to the skirt 4 by welding, and the other end is joined to the side plate 11 by welding to form a closed space 18 having a triangular cross section.
Moreover, when supporting the vertical load of the outer tub 2 and the cold insulation layer 3, as shown by the two-dot chain line in the figure, the side plate 10 is provided with a plurality of side plate supports 20 separated from the lower periphery.
In addition, a reinforcing ring member 21 is provided at the connection portion with the side plate 11 at the lower peripheral edge of the side plate 10 as required by an internal pressure load or the like.
Further, the bottom plate 12B of the outer tub 2 is formed into a flat disk shape, so that bending work is not required and labor is required, and construction on site is easy and economical.
[0021]
In this manner, the side plates 11 and the skirt 4 and their connecting portions are reinforced by the reinforcing ring plate 19 that is horizontally closed and closed in a triangular shape. The mounting position of the reinforcing ring plate 19 to the skirt 4 varies depending on the cold insulation effect or the reinforcing effect, but the horizontal extension position of the bottom plate connecting portion to the skirt 4 is effective when considering the reinforcing effect.
Further, when the side plate support member 20 is provided, the load on the side plate 11 and the skirt 4 can be reduced because the vertical load from the side plate 10 and the cold insulation layer 3 is supported. Therefore, it is possible to reduce the members of the skirt 4 and the side plate 11.
[0022]
Further, the cooling heat descending through the skirt 4 can be blocked by the closed space 18 and the bottom plate 12B of the outer tub 2 is formed in the shape of a horizontal disk, so that the length of the skirt 4 in the cold insulation layer 3 is long. The length can be further increased, and by maintaining a sufficient cold insulation space, it is possible to further improve the prevention of condensation and frost adhesion on the outer surface in the vicinity of the connection portion between the skirt 4 and the side plate 11.
[0023]
Furthermore, although not shown in the drawings, the reinforcing ring plate 19 is perforated, and the closed space 18 is filled with a cold insulating material or the like, so that the performance of preventing condensation and frost adhesion can be further enhanced.
[0024]
FIG. 5 shows an embodiment in which the support state of the bottom plate of the outer tub is partially omitted, and reaches the lower portion of the concave disk-shaped bottom plate 12A, for example, at one central portion as shown in the drawing, on the foundation 5. The case where the columnar bottom plate support material 22A is provided is shown.
In this case, since the lower part of the bottom plate 12A is low and the distance is short, the bottom plate support member 22A is formed by starting up a concrete foundation slab, or perpendicular to the foundation 5 using a short shape steel material, pipe material, or the like. Stand up.
[0025]
FIG. 6 shows another embodiment in which the support state of the bottom plate of the outer tub is partially omitted. The bottom of the horizontal bottom plate beam member 23 that supports the flat disc-shaped bottom plate 12B, for example, the center as shown in FIG. The case where the columnar baseplate support material 22B which reaches on the foundation 5 is provided in one part is shown.
The bottom plate support material 22B is erected vertically on the foundation 5 using a shape steel material, a pipe material, or the like.
[0026]
As described above, the vertical load of the bottom plates 12, 12A, 12B and the increased cold insulation layer 4 are provided by erecting the bottom plate supports 22, 22A, 22B reaching the foundation 5 below the bottom plates 12, 12A, 12B. In addition to supporting the weight of the skirt 4 and the bending load applied to the cylindrical skirt 4, the members of the bottom plates 12, 12 </ b> A, 12 </ b> B and the skirt 4 can be reduced.
Further, when the bottom plate beam member 23 is provided like the bottom plate 12B, the strength to the bottom plate beam member 23 can be reduced, and the member can be reduced.
[0027]
【The invention's effect】
The vertical double-shell cylindrical low-temperature storage tank of the invention according to claim 1 is provided with an inner tank composed of a hemispherical upper end plate, a cylindrical intermediate shell plate, and a hemispherical lower end plate, A cold insulation layer is provided between the outer tank surrounding the tank, and the outer tank has a dome-shaped roof plate, a cylindrical side plate whose lower end is located below the lower end of the inner shell plate of the inner tank, and the side plate Inclined inverted frustoconical ring-shaped side plate connected to the lower end, and a concave disc shape with a curved surface with a smaller curvature than the hemispherical lower end plate, and having a predetermined height from the foundation, the side plate The cylindrical skirt extends vertically downward from the lower end of the intermediate body plate of the inner tub and penetrates the bottom plate end of the outer tub to form the foundation of the inner and outer tubs. and supported by the upper, vertical length of the skirt portion located above the cold layer, an intermediate cylinder of the inner tub Vertical length of the skirt portion located cold layer in the case of forming the bottom end plate of Ketsudama shape except for a semi-elliptical shape or hemispherical shape with respect to the lowest point of the lower end plate of the hemispherical connected to the lower end The length of the skirt from the connection part of the hemispherical lower end plate to the bottom plate penetration part, that is, the skirt part located in the cold insulation layer becomes longer, and the cold heat that descends through the skirt is formed. Since the heat transfer distance becomes longer, it is possible to improve the prevention of condensation and frost adhesion on the outer surface near the connection part between the skirt and the side plate located outside the lower cold insulation layer. This increases the amount of insulation and the amount of heat insulating material, so that the cold insulation performance is also improved.
In addition, by forming the upper end plate and the lower end plate of the inner tub in a hemispherical shape as described above, the internal pressure load and stress are evenly applied to the plate surface, so a thin plate of the same thickness can be adopted. Using a thin plate, a spherical shell shape with a constant curvature can be manufactured with good workability by pressing. And since the load of an upper end plate and a lower end plate becomes small, the burden to a skirt is reduced, and in addition to weight reduction and reduction, a reinforcement structure can also be simplified.
[0028]
Further, the vertical double-shell cylindrical low-temperature storage tank of the invention according to claim 2 is separated from the side plate of the outer tank of the invention of claim 1 and the position below the connecting portion of the skirt, and supports a plurality of side plates. A side plate beam member is provided on the outer surface of the side plate at a position where the side plate support material and the side plate support material are bridged. Therefore, the skirt and the side plate connecting portion are reinforced by the side plate support material, and the vertical load from the outer tank side plate and the cold insulation layer can be supported by the side plate support material and the side plate beam member. By reducing the load on the skirt, it is possible to reduce the number of members, and the skirt and side plates can be connected by the heat dissipation effect of the side plate support material in contact with the skirt and the side plate support material in contact with the side plate. Further prevention of condensation and frost on the outer surface It is possible to become.
[0029]
The vertical location double-shelled cylindrical cold storage tank of the invention according to claim 3, in the upper position of the connection portion of the side plate and the skirt of the outer tub of the invention according to the claim 1 or 2, aside plate from the skirt Since the reinforcing ring plate that extends horizontally and forms the closed space is provided, the side plate connecting part between the side plate and the skirt is reinforced by the reinforcing ring plate, so that the burden of bending load on the skirt can be reduced. In addition, since the cooling heat descending through the skirt is blocked by the closed space, it is possible to further improve the prevention of condensation and frost adhesion on the outer surface in the vicinity of the connection portion between the skirt and the side plate.
Furthermore, the prevention performance of dew condensation and frost adhesion can be further enhanced by making holes in the reinforcing ring plate and filling the closed space with a cold insulating material or the like.
[0030]
Further, the vertical double-shell cylindrical low-temperature storage tank of the invention according to claim 4 is provided with a bottom plate support material that reaches the foundation at the bottom of the bottom plate of the outer tank of the invention according to claim 2 or 3 , The bottom plate support material supports the vertical load of the bottom plate and the increased weight of the cold insulation layer, and bears the bending load applied from the bottom plate to the skirt. Therefore, the members of the bottom plate and the skirt can be reduced.
[0031]
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional explanatory view showing an embodiment of a vertical double-shell cylindrical cryogenic storage tank according to the present invention.
FIG. 2 is a longitudinal sectional view showing a second embodiment of the vertical double-shell cylindrical cryogenic storage tank according to the present invention.
FIG. 3 is a longitudinal cross-sectional explanatory view showing an enlarged lower part of the skirt and the outer tank side plate of FIG. 1;
4 is a longitudinal cross-sectional explanatory diagram showing an enlarged view of the lower part of the skirt and the outer tank side plate of FIG. 2. FIG.
FIG. 5 is a longitudinal cross-sectional explanatory view showing an embodiment of a bottom plate support.
FIG. 6 is a longitudinal sectional explanatory view showing another embodiment of the bottom plate support.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inner tank 2 Outer tank 3 Cooling layer 4 Skirt 5 Foundation 6 Upper end plate 7 Middle trunk plate 8 Lower end plate 9 Roof plate 10 Side plate 11 Side plate 12, 12A, 12B Bottom plate 13 Side plate support material 14 Side plate support material 15 Side plate beam Member 16 Baffle plate 17 Baffle plate 18 Closed space 19 Reinforcement ring plate 20 Side plate support member 21 Reinforcement ring members 22, 22A, 22B Bottom plate support member 23 Bottom plate support member

Claims (4)

半球形状の上部鏡板と円筒形状の中間胴板と半球形状の下部鏡板とからなる内槽を設け、該内槽とその内槽を囲繞する外槽との間に保冷層を設け、該外槽はドーム形状の屋根板と、下端が内槽の中間胴板の下端より下方に位置する円筒形状の側板と、該側板の下端に接続する傾斜状で倒立円錐台リング形状の脇板と、上記半球形状の下部鏡板より小さな曲率で曲面がなだらかな凹面円板形状で、基礎から所定の高さを有して前記脇板の下端部に接続する底板とからなり、円筒形状のスカートは前記内槽の中間胴板下端部から垂直下方に延出して外槽の底板端部を貫通して上記内槽及び外槽を基礎上に支持して、上記保冷層内に位置するスカート部分の垂直方向の長さは、前記内槽の中間胴板の下端に連なる半球形状の下部鏡板の最下点を基準にして半楕円形状又は半球形状を除く欠球形状の下部鏡板で形成した場合の保冷層内に位置するスカート部分の垂直方向の長さに比べて長くなるように形成したことを特徴とする縦置二重殻円筒形低温貯槽。An inner tank comprising a hemispherical upper end plate, a cylindrical intermediate body plate, and a hemispherical lower end plate is provided, and a cold insulation layer is provided between the inner tank and the outer tank surrounding the inner tank, the outer tank Is a dome-shaped roof plate, a cylindrical side plate whose lower end is positioned below the lower end of the intermediate shell plate of the inner tub, an inclined and inverted truncated cone ring-shaped side plate connected to the lower end of the side plate, and Concave disk with a curved surface with a smaller curvature than the hemispherical lower end plate, and a bottom plate connected to the lower end of the side plate having a predetermined height from the foundation. The vertical direction of the skirt portion located in the cold insulation layer , extending vertically downward from the lower end of the intermediate shell plate of the tank, penetrating the bottom plate end of the outer tank and supporting the inner tank and the outer tank on the foundation Is based on the lowest point of the hemispherical lower end plate connected to the lower end of the intermediate shell plate of the inner tub Vertical, characterized in that it has formed to be longer than the vertical length of the skirt portion located cold layer in the case of forming the bottom end plate of Ketsudama shape except for a semi-elliptical shape or hemispherical shape by Double shell cylindrical cryogenic storage tank. 上記外槽の脇板とスカートの接続部下部位置に隔離して複数本の脇板支持材を設け、かつ上記外槽の側板下部周縁に隔離して複数本の側板支持材を設け、さらに上記脇板支持材と側板支持材を掛け渡す位置の脇板外面に脇板梁部材を設けたことを特徴とする請求項1記載の縦置二重殻円筒形低温貯槽。A plurality of side plate support members are provided separately at the lower part of the connecting portion between the side plate and the skirt of the outer tub, and a plurality of side plate support members are provided separately from the periphery of the lower side plate of the outer tub. The vertical double-shell cylindrical cryogenic storage tank according to claim 1 , wherein a side plate beam member is provided on an outer surface of the side plate at a position where the side plate support member and the side plate support member are spanned. 上記外槽の脇板とスカートの接続部の上部位置に、スカートから脇板へ水平に掛け渡して閉塞空間を形成する補強リングプレートを設けたことを特徴とする請求項1又は2記載の縦置二重殻円筒形低温貯槽。  3. The vertical ring according to claim 1, wherein a reinforcing ring plate is provided at an upper position of a connecting portion between the side plate and the skirt of the outer tub so as to horizontally extend from the skirt to the side plate to form a closed space. Double shell cylindrical cryogenic storage tank. 上記外槽の底板の下部に、基礎上に至る底板支持材を設けたことを特徴とする請求項2又は3記載の縦置二重殻円筒形低温貯槽。The vertical double-shell cylindrical low-temperature storage tank according to claim 2 or 3 , wherein a bottom plate support material extending to the foundation is provided below the bottom plate of the outer tank.
JP2002380543A 2002-12-27 2002-12-27 Vertical double-shell cylindrical cryogenic storage tank Expired - Fee Related JP4567287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002380543A JP4567287B2 (en) 2002-12-27 2002-12-27 Vertical double-shell cylindrical cryogenic storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002380543A JP4567287B2 (en) 2002-12-27 2002-12-27 Vertical double-shell cylindrical cryogenic storage tank

Publications (2)

Publication Number Publication Date
JP2004211759A JP2004211759A (en) 2004-07-29
JP4567287B2 true JP4567287B2 (en) 2010-10-20

Family

ID=32816731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002380543A Expired - Fee Related JP4567287B2 (en) 2002-12-27 2002-12-27 Vertical double-shell cylindrical cryogenic storage tank

Country Status (1)

Country Link
JP (1) JP4567287B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5013358B2 (en) * 2006-02-27 2012-08-29 株式会社石井鐵工所 Vertical double-shell cylindrical cryogenic storage tank
JP5120683B2 (en) * 2006-07-11 2013-01-16 株式会社石井鐵工所 Vertical double-shell cylindrical cryogenic storage tank
JP5333825B2 (en) * 2008-07-30 2013-11-06 株式会社石井鐵工所 Outer tank structure of vertical double-shell cylindrical cryogenic storage tank
JP5354517B2 (en) * 2008-08-29 2013-11-27 株式会社石井鐵工所 Outer tank mounting structure for vertical double-shell cylindrical cryogenic storage tank
JP5743597B2 (en) * 2011-02-22 2015-07-01 日鉄住金パイプライン&エンジニアリング株式会社 Manufacturing method of vertical cryogenic liquid storage tank
JP6920098B2 (en) * 2017-04-28 2021-08-18 川崎重工業株式会社 Cold liquid storage tank
CN108657673A (en) * 2018-05-31 2018-10-16 海安华达石油仪器有限公司 A kind of petroleum gas storage tank
CN109812699A (en) * 2019-03-15 2019-05-28 江苏深绿新能源科技有限公司 A kind of base support means and its installation method for high vacuum refrigerated storage tank
CN113998323B (en) * 2021-11-01 2022-11-25 上海锅炉厂有限公司 Outer cylinder structure, inner support mounting device thereof and manufacturing process method
WO2024062622A1 (en) * 2022-09-22 2024-03-28 川崎重工業株式会社 Multi-shell tank
WO2024062621A1 (en) * 2022-09-22 2024-03-28 川崎重工業株式会社 Multi-layer tank and marine vessel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4856790U (en) * 1971-10-30 1973-07-20
JPS5517708A (en) * 1978-07-19 1980-02-07 Ishikawajima Harima Heavy Ind Co Ltd Supporting device for heavy structure
JPS6446599U (en) * 1987-09-16 1989-03-22
JP2001153298A (en) * 1999-11-29 2001-06-08 Hiroshima Gas Kk Outer tank support structure of vertical heat insulating low temperature tank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4856790U (en) * 1971-10-30 1973-07-20
JPS5517708A (en) * 1978-07-19 1980-02-07 Ishikawajima Harima Heavy Ind Co Ltd Supporting device for heavy structure
JPS6446599U (en) * 1987-09-16 1989-03-22
JP2001153298A (en) * 1999-11-29 2001-06-08 Hiroshima Gas Kk Outer tank support structure of vertical heat insulating low temperature tank

Also Published As

Publication number Publication date
JP2004211759A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
JP4567287B2 (en) Vertical double-shell cylindrical cryogenic storage tank
CA2576027C (en) Steel-concrete hollow bodied slab or ceiling
KR101745509B1 (en) Free-standing liner unit and method for building tank
GB2466965A (en) Liquefied gas storage tank with curved sidewall
AU2003258888A1 (en) Tank for storing cryogenic fluids and method for constructing a fluid tight tank
WO2017146086A1 (en) Cryogenic liquid tank
US3583592A (en) Cryogenic storage tank
JP2012112474A (en) Support structure of vertical cryogenic liquid storage tank
US3538661A (en) Liquid storage container
US3025993A (en) Anchor system
US2531742A (en) Underground storage tank
JP5013358B2 (en) Vertical double-shell cylindrical cryogenic storage tank
JP5120683B2 (en) Vertical double-shell cylindrical cryogenic storage tank
CN111692515A (en) LNG storage tank and LNG tank deck structure
JPH07139699A (en) Cryogenic tank
JP2007162772A (en) Outer vessel bottom plate construction of vertical type thermal insulation low-temperature tank
JPS5838233Y2 (en) Liquefied gas cold storage tank
JPH0214720Y2 (en)
JP5333825B2 (en) Outer tank structure of vertical double-shell cylindrical cryogenic storage tank
JPH11236998A (en) Ground low-temperature storage tank
JPH0447520Y2 (en)
WO2023127606A1 (en) Triple-shell tank
JPH0440077Y2 (en)
JP2750515B2 (en) Cooling block structure at the bottom ring of the low-temperature tank
JPS58178100A (en) Ultra low temperature double shell spherical tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100805

R150 Certificate of patent or registration of utility model

Ref document number: 4567287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees