JP4566150B2 - Expansion valve with integrated solenoid valve - Google Patents

Expansion valve with integrated solenoid valve Download PDF

Info

Publication number
JP4566150B2
JP4566150B2 JP2006089822A JP2006089822A JP4566150B2 JP 4566150 B2 JP4566150 B2 JP 4566150B2 JP 2006089822 A JP2006089822 A JP 2006089822A JP 2006089822 A JP2006089822 A JP 2006089822A JP 4566150 B2 JP4566150 B2 JP 4566150B2
Authority
JP
Japan
Prior art keywords
valve
refrigerant
passage
valve body
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006089822A
Other languages
Japanese (ja)
Other versions
JP2006214722A (en
Inventor
宏 林
和彦 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2006089822A priority Critical patent/JP4566150B2/en
Publication of JP2006214722A publication Critical patent/JP2006214722A/en
Application granted granted Critical
Publication of JP4566150B2 publication Critical patent/JP4566150B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube

Description

本発明は、電磁弁一体型膨張弁に関し、例えば車室内のフロント側とリア側に冷凍サイクルを設けた車両用空調装置に用いるのに好適なものである。   The present invention relates to an electromagnetic valve-integrated expansion valve, and is suitable for use in, for example, a vehicle air conditioner in which refrigeration cycles are provided on a front side and a rear side in a vehicle interior.

従来、この種電磁弁一体型膨張弁として、例えば下記特許文献1に記載されているものが知られている。この電磁弁一体型膨張弁は、高圧側冷媒を減圧膨張させる絞り流路と、この絞り流路の開度調整をする弁体と、この弁体を変位させる弁体作動機構(パワーエレメント)と、絞り流路にて減圧膨張した冷媒を蒸発器に供給する出口冷媒流路とを備え、電磁弁の弁体により出口冷媒流路を開閉するようにするとともに、電磁弁の弁体の閉弁時には、電磁弁の弁体と絞り流路との間の冷媒圧力に基づいて弁体を作動させるダイアフラム作動機構により、絞り流路の弁体を閉弁させるようにしている。
特開平11−182983号公報
Conventionally, as this kind of solenoid valve-integrated expansion valve, for example, one described in Patent Document 1 below is known. This expansion valve integrated with a solenoid valve includes a throttle channel that decompresses and expands the high-pressure side refrigerant, a valve body that adjusts the opening of the throttle channel, and a valve body operating mechanism (power element) that displaces the valve body. An outlet refrigerant flow path for supplying the refrigerant decompressed and expanded in the throttle flow path to the evaporator, the outlet refrigerant flow path is opened and closed by the valve body of the electromagnetic valve, and the valve body of the electromagnetic valve is closed In some cases, the valve body of the throttle channel is closed by a diaphragm operating mechanism that operates the valve body based on the refrigerant pressure between the valve body of the electromagnetic valve and the throttle channel.
Japanese Patent Application Laid-Open No. 11-182983

上記の特許文献に記載されたものは、電磁弁の閉弁時に、電磁弁の弁体と膨張弁の絞り通路の弁体との間が密閉空間となり、この密閉空間が液冷媒で満たされた場合には、雰囲気の温度上昇とともにこの密閉空間が異常に高圧になってしまうおそれがあり、これを回避するため電磁弁の上流側と膨張弁の上流側とを連通する微小連通路を設けたものである。しかし、この微小連通路は冷媒を微小量だけ逃がすためのものであるが故に極小径であることが要求され、その加工は困難を極めることとなる。
そこで本発明の目的は、微小連通路を加工の容易な径としたままで、要求される微量の冷媒逃がしを可能とする電磁弁一体型膨張弁を提供するものである。
In the above-mentioned patent document, when the solenoid valve is closed, the space between the valve body of the solenoid valve and the valve body of the throttle passage of the expansion valve becomes a sealed space, and this sealed space is filled with the liquid refrigerant. In this case, there is a possibility that this sealed space may become abnormally high pressure as the temperature of the atmosphere rises, and in order to avoid this, a minute communication path that connects the upstream side of the solenoid valve and the upstream side of the expansion valve is provided. Is. However, since this minute communication path is for escaping a small amount of refrigerant, it is required to have a very small diameter, and its processing becomes extremely difficult.
Accordingly, an object of the present invention is to provide an electromagnetic valve-integrated expansion valve that allows a required small amount of refrigerant to escape while maintaining a minute communication path having a diameter that can be easily processed.

本発明の電磁弁一体型膨張弁は、高圧側冷媒が導入される弁室該弁室に連通する絞り流路及び該絞り流路にて減圧膨張した冷媒を蒸発器へ供給する出口冷媒流路を有する弁本体と、前記弁室内に配置され前記絞り流路を開閉する弁体と、該弁体変位させるパワーエレメントと、前記弁室と前記出口冷媒流路との間に設けられる冷媒のバイパス通路と、該バイパス通路を開閉する電磁弁と前記弁室と前記電磁弁とを連通するように設けられ小連通路とを備えてなる電磁弁一体型膨張弁であることを前提にした上で、前記微小連通路は、前記弁室と前記電磁弁とを連通するように設けられた小径オリフィスと、該小径オリフィスよりも大径の円柱状の絞り部材を同軸状に収容する大径部とを有し、前記絞り部材は、前記大径部の内周面との間に螺旋状冷媒通路を形成するとともに、両端に前記螺旋状冷媒通路に連通する角溝を有しており、前記絞り部材の一端が前記大径部における前記小径オリフィス側の端面に当接した状態で前記大径部内に固定されていることを特徴とするものである。 The expansion valve integrated with a solenoid valve according to the present invention includes a valve chamber into which a high-pressure side refrigerant is introduced , a throttle passage communicating with the valve chamber , and an outlet refrigerant flow for supplying refrigerant decompressed and expanded in the throttle passage to the evaporator. A valve body having a passage; a valve body disposed in the valve chamber for opening and closing the throttle passage ; a power element for displacing the valve body ; and a refrigerant provided between the valve chamber and the outlet refrigerant passage a bypass passage, a solenoid valve for opening and closing the bypass passage, that the valve chamber and said solenoid valve is a solenoid valve integral expansion valve comprising a fine small communicating path provided so as to communicate Based on the premise, the micro communication path coaxially accommodates a small-diameter orifice provided so as to communicate the valve chamber and the solenoid valve, and a cylindrical throttle member having a larger diameter than the small-diameter orifice. A large-diameter portion, and the throttle member is an inner peripheral surface of the large-diameter portion. And a rectangular groove communicating with the helical refrigerant passage at both ends, and one end of the throttle member abuts on the end surface of the large diameter portion on the small diameter orifice side. In this state, it is fixed in the large diameter portion.

本発明によれば、電磁弁が閉じたときに、冷媒を弁室から電磁弁側へ微小量だけ逃がすための微小連通路を適当な小径としたままで冷媒の微小量逃がしを適切に達成できる。そのため加工が容易となり、また冷媒流動音の発生を効果的に抑制することも可能となる。   According to the present invention, when the solenoid valve is closed, it is possible to appropriately achieve the escape of the minute amount of the refrigerant while keeping the minute communication path for allowing the refrigerant to escape from the valve chamber to the solenoid valve side by an appropriate small diameter. . Therefore, processing becomes easy, and generation of refrigerant flow noise can be effectively suppressed.

図1は本発明に係る電磁弁一体型膨張弁の一実施の形態を示す断面図、図2は要部の拡大図である。
全体を符号1で示す電磁弁一体型膨張弁は、ほぼ角柱形状の弁本体10を有する。弁本体10の下部の内部には、冷凍サイクルの圧縮機側からの高圧冷媒が供給される図示しない入口冷媒通路を有し、入口冷媒通路は弁本体10内部に形成された弁室12に連通される。弁室12内にはボール状の弁体30が、支持部材32を介してスプリング34で支えられる。
FIG. 1 is a sectional view showing an embodiment of an expansion valve integrated with a solenoid valve according to the present invention, and FIG. 2 is an enlarged view of a main part.
An expansion valve integrated with an electromagnetic valve denoted as a whole by reference numeral 1 has a substantially prismatic valve body 10. The lower part of the valve body 10 has an inlet refrigerant passage (not shown) to which high-pressure refrigerant from the compressor side of the refrigeration cycle is supplied, and the inlet refrigerant passage communicates with a valve chamber 12 formed inside the valve body 10. Is done. A ball-shaped valve element 30 is supported in the valve chamber 12 by a spring 34 via a support member 32.

弁室12の開口部にはナット部材40が螺合されて、封止される。ナット部材40をねじ込むことで、スプリング34は予圧され、所定のスプリング力で支持部材32を介して弁体30を支持する。ナット部材40にシール部材を取り付けて弁室12のシールを図る。
弁室12の冷媒は、弁体30と弁座14の間の絞り流路1を通って減圧膨張され、出口冷媒流路(図示せず)に流出する。不図示の出口冷媒流路からの冷媒は、図示しない蒸発器へ送り出される。
A nut member 40 is screwed into the opening of the valve chamber 12 and sealed. By screwing the nut member 40, the spring 34 is preloaded and the valve body 30 is supported via the support member 32 with a predetermined spring force. A seal member is attached to the nut member 40 to seal the valve chamber 12.
Refrigerant valve chamber 12, the vacuum is expanded through throttle channel 1 5 between the valve element 30 and valve seat 14, it flows out to the outlet refrigerant flow path (not shown). Refrigerant from an outlet refrigerant channel (not shown) is sent to an evaporator (not shown).

蒸発器から戻される冷媒は、弁本体10の上部内に設けられた通路18を通り、図示しない圧縮機へ還流される。通路18内の冷媒温度は、感温棒70を介して弁本体10の上部に取り付けられる弁体作動機構であるパワーエレメント50に伝達される。
パワーエレメント50は、弁本体10に対してねじ部54で取り付けられるハウジング52を有する。さらに、ハウジング52に挟み込まれて溶接されているダイアフラム60を有し、ダイアフラム60により上部室62aと下部室62bが区画される。上部室62aには作動流体が封入され、栓体64封止される。
The refrigerant returned from the evaporator passes through a passage 18 provided in the upper part of the valve body 10 and is returned to a compressor (not shown). Refrigerant temperature in the passage 18 is transmitted to the power element 50 is provided that the valve member actuating Organization attached to an upper portion of the valve body 10 via a heat sensing shaft 70.
The power element 50 has a housing 52 that is attached to the valve body 10 with a screw portion 54. Furthermore, it has the diaphragm 60 inserted | pinched and welded by the housing 52, and the upper chamber 62a and the lower chamber 62b are divided by the diaphragm 60. FIG. The working fluid is sealed in the upper chamber 62a, it is sealed by plug 64.

ダイアフラム60は感温棒70で支持される。感温棒70は中心に冷媒が導入される通路72を有する。感温棒70の変位は、弁棒80を介して弁体30に伝達される。   The diaphragm 60 is supported by a temperature sensitive rod 70. The temperature sensing rod 70 has a passage 72 through which refrigerant is introduced at the center. The displacement of the temperature sensing rod 70 is transmitted to the valve body 30 via the valve rod 80.

この膨張弁1は以上のように構成してあるので、蒸発器から流出されて、通路18を通る冷媒の圧力と温度に応じて設定されるダイアフラム60の作動位置により、感温棒70が駆動され、弁体30と弁座14の間の絞り流路1の間隙が調整される。 Since the expansion valve 1 is configured as described above, the temperature sensing rod 70 is driven by the operating position of the diaphragm 60 set according to the pressure and temperature of the refrigerant that flows out of the evaporator and passes through the passage 18. the gap of the throttle channel 1 5 between the valve element 30 and valve seat 14 is adjusted.

そこで、蒸発器の熱負荷が大きいときには、弁体30と弁座14の間の間隙は大きくなり、大量の冷媒が蒸発器に供給され、反対に熱負荷が小さいときには、冷媒の流量は少なくなる。 Therefore, when the heat load of the evaporator is large, the gap between the valve body 30 and the valve seat 14 is large, and a large amount of refrigerant is supplied to the evaporator. Conversely, when the heat load is small, the flow rate of the refrigerant is small. .

弁本体10の側面部には電磁弁100が取り付けられる。
電磁弁100は、ケーシング110と、ケーシング110に連結される取付部材160を有し、取付部材160は、ねじ部を介して弁本体10に形成した有底の開口部に取り付けられる。
A solenoid valve 100 is attached to the side surface of the valve body 10.
The electromagnetic valve 100 includes a casing 110 and an attachment member 160 connected to the casing 110, and the attachment member 160 is attached to a bottomed opening formed in the valve body 10 via a screw portion.

電磁弁100は、ケーシング110内にコイル120を有し、コード122を介して給電される。ケーシング110の中心部には、シリンダ124が配設され、プランジャ140が摺動自在に挿入される。シリンダ124の外側には、吸引子130がビス132で固定される。吸引子130とプランジャ140の間に設けられるスプリング142はプランジャ140を吸引子130から離れる方向に付勢する。
プランジャ140の先端には、パイロット弁体150が摺動自在に配設される。このパイロット弁体150は中心部に弁穴152を有する。
The solenoid valve 100 has a coil 120 in a casing 110 and is supplied with power via a cord 122. A cylinder 124 is disposed at the center of the casing 110, and the plunger 140 is slidably inserted therein. A suction element 130 is fixed to the outside of the cylinder 124 with screws 132. A spring 142 provided between the suction element 130 and the plunger 140 urges the plunger 140 in a direction away from the suction element 130.
A pilot valve body 150 is slidably disposed at the tip of the plunger 140. The pilot valve body 150 has a valve hole 152 at the center.

かくの如く構成された電磁弁100においては、電磁弁100のコイル120に通電されると、コイル120の磁力により、プランジャ140が吸引子130側に引き戻される。プランジャ140の先端部144がパイロット弁体150の弁穴152から離れると、弁穴152が開口し、背圧室20の冷媒が弁穴152を通過して導管24の通路25に導入され、圧力差が減じられる。これによりパイロット弁体150は、導管24の先端から離れ、電磁弁100は開弁時となり、背圧室20内の冷媒は、不図示の出口冷媒流路側へ流れる。 In the solenoid valve 100 configured as described above, when the coil 120 of the solenoid valve 100 is energized, the plunger 140 is pulled back to the attractor 130 side by the magnetic force of the coil 120. When the distal end portion 144 of the plunger 140 moves away from the valve hole 152 of the pilot valve body 150, the valve hole 152 opens, and the refrigerant in the back pressure chamber 20 passes through the valve hole 152 and is introduced into the passage 25 of the conduit 24. Pressure difference is reduced. As a result, the pilot valve body 150 is separated from the tip of the conduit 24, the electromagnetic valve 100 is opened, and the refrigerant in the back pressure chamber 20 flows toward the outlet refrigerant flow path ( not shown) .

弁室12の冷媒は、弁体30と弁座14の間の絞り流路1を通りバイパス通路21を介して電磁弁100が取付けられる有底穴の背圧室20に充填される。 Refrigerant valve chamber 12 is filled into the back pressure chamber 2 0 bottomed hole solenoid valve 100 is attached via a throttle channel 1 5 as the bypass passage 21 between the valve body 30 and the valve seat 14.

逆に、コイル120への通電を遮断し、スプリング142のバネ力によりプランジャ140の先端部144が弁体150の弁穴152に着座して、この弁穴152を閉じる。すると、弁体30と弁座14の間の絞り流路1を通り、バイパス通路21を介して背圧室20に冷媒が導入される。そのため、プランジャ140の先端部144が弁穴152に着座して弁穴152を閉じるとともに、パイロット弁体150が導管24の端面に着座し、通路25を閉じる。これにより、電磁弁100が閉弁状態に復帰する。 On the contrary, the power supply to the coil 120 is cut off, and the distal end portion 144 of the plunger 140 is seated in the valve hole 152 of the valve body 150 by the spring force of the spring 142 and the valve hole 152 is closed. Then, through the throttle channel 1 5 between the valve element 30 and valve seat 14, the refrigerant is introduced into the back pressure chamber 2 0 through the bypass passage 21. Therefore, the distal end portion 144 of the plunger 140 is seated on the valve hole 152 to close the valve hole 152, and the pilot valve body 150 is seated on the end surface of the conduit 24 to close the passage 25. Thereby, the solenoid valve 100 returns to the closed state.

図3は、微小オリフィス23を介してバイパス通路21に通ずる微小連通路の大径部22内に配備される絞り部材の詳細を示す。
絞り部材200は、円筒状の本体を有し、外周部に連続した螺旋ねじ状の凹部202が形成される。螺旋ねじ状の凹部202は、この実施例では1条に形成してあるが、複数条(例えば、2条乃至3条)としてもよい。そして、本体の上下端面には、冷媒を凹部202に流入又は排出させるための角溝204,206が形成される。なお、凹部202は螺旋ねじ状の凸部に置換することも可能である。
絞り部材200は微小連通路の大径部22内に挿置された状態で、カシメ部Kで脱落が防止される。
FIG. 3 shows details of the throttle member provided in the large-diameter portion 22 of the minute communication passage that communicates with the bypass passage 21 via the minute orifice 23.
The aperture member 200 has a cylindrical main body and is formed with a spiral screw-shaped recess 202 continuous to the outer periphery. In this embodiment, the spiral screw-shaped recess 202 is formed in a single line, but may be formed in a plurality of lines (for example, 2 to 3). And the square grooves 204 and 206 for making a refrigerant | coolant flow in or discharge into the recessed part 202 are formed in the upper-lower-end surface of a main body. Note that the concave portion 202 can be replaced with a helical screw-shaped convex portion.
Stop member 200 is in a state of being interposed in the large diameter portion 22 of the micro communication passage, falling is prevented by the caulking portion K 1.

弁室12側の冷媒圧力が高い状態の場合、弁室12側の冷媒が、連続螺旋ねじ状の凹部202、角溝204を通りバイパス通路21を介して電磁弁100が設けられた有底穴20へ流れる。しかし、その量は凹部202によって生成される開口面積が非常に小さいために、絞り機能が効果的に発揮されて少量の冷媒しかバイパス通路21側へ流れない。
バイパス通路21側の圧力が高い状態では、逆にバイパス通路21側の冷媒は、絞りとして機能する連続螺旋ねじ状の凹部202、角溝206を介して弁室12側へ流れる。
When the refrigerant pressure on the valve chamber 12 side is high, the refrigerant on the valve chamber 12 side passes through the continuous spiral screw-shaped recess 202 and the square groove 204, and the bottomed hole in which the electromagnetic valve 100 is provided via the bypass passage 21. It flows to 20. However, since the opening area produced by the recess 202 is very small, the throttling function is effectively exhibited and only a small amount of refrigerant flows to the bypass passage 21 side.
In the state where the pressure on the bypass passage 21 side is high, on the contrary, the refrigerant on the bypass passage 21 side flows to the valve chamber 12 side through the continuous spiral screw-shaped recess 202 and the square groove 206 that function as a throttle.

本発明の電磁弁一体型膨張弁にあっては、電磁弁が作動(開弁)しているときに、弁室12側の冷媒圧力が高い状態となっても微小連通路から漏れる冷媒の量を最小限に限定し、エネルギー損失を防止することができる。   In the solenoid valve-integrated expansion valve of the present invention, when the solenoid valve is operating (opened), the amount of refrigerant leaking from the minute communication path even when the refrigerant pressure on the valve chamber 12 side is high. Can be minimized and energy loss can be prevented.

本発明の電磁弁一体型膨張弁の一実施の形態を示す断面図。Sectional drawing which shows one Embodiment of the solenoid valve integrated expansion valve of this invention. 要部の断面図。Sectional drawing of the principal part. 本発明の絞り部材の説明図。Explanatory drawing of the aperture member of this invention.

符号の説明Explanation of symbols

1 膨張弁
10 弁本体
12 弁室
14 弁座
15 絞り流路
20 背圧室
21 バイパス通路
22 大径部
23 小径オリフィス
24 導管
30 弁体
50 パワーエレメント
60 ダイアフラム
70 感温棒
80 弁棒
100 電磁弁
120 コイル
130 吸引子
140 プランジャ
150 パイロット弁体
200 絞り部材
202 螺旋ねじ状の凹部
204 角溝
206 角溝
1 Expansion Valve 10 Valve Body 12 Valve Chamber 14 Valve Seat
15 throttle passage 20 back pressure chamber 21 bypass passage 22 large diameter portion 23 small diameter orifice 24 conduit 30 valve body 50 power element 60 diaphragm 70 temperature sensing rod 80 valve rod 100 electromagnetic valve 120 coil 130 attractor 140 plunger 150 pilot valve body 200 Diaphragm member 202 Helical screw-shaped recess 204 Square groove 206 Square groove

Claims (1)

高圧側冷媒が導入される弁室該弁室に連通する絞り流路及び該絞り流路にて減圧膨張した冷媒を蒸発器へ供給する出口冷媒流路を有する弁本体と、前記弁室内に配置され前記絞り流路を開閉する弁体と、該弁体変位させるパワーエレメントと、前記弁室と前記出口冷媒流路との間に設けられる冷媒のバイパス通路と、該バイパス通路を開閉する電磁弁と前記弁室と前記電磁弁とを連通するように設けられ小連通路とを備えてなる電磁弁一体型膨張弁において、
前記微小連通路は、前記弁室と前記電磁弁とを連通するように設けられた小径オリフィスと、該小径オリフィスよりも大径の円柱状の絞り部材を同軸状に収容する大径部とを有し、前記絞り部材は、前記大径部の内周面との間に螺旋状冷媒通路を形成するとともに、両端に前記螺旋状冷媒通路に連通する角溝を有しており、前記絞り部材の一端が前記大径部における前記小径オリフィス側の端面に当接した状態で前記大径部内に固定されていることを特徴とする電磁弁一体型膨張弁。
A valve body having a valve chamber into which the high-pressure side refrigerant is introduced , a throttle channel communicating with the valve chamber , an outlet refrigerant channel for supplying the refrigerant decompressed and expanded in the throttle channel to the evaporator, and the valve chamber A valve body arranged to open and close the throttle passage ; a power element that displaces the valve body; a refrigerant bypass passage provided between the valve chamber and the outlet refrigerant passage; and opening and closing the bypass passage. a solenoid valve, in the electromagnetic valve integral expansion valve comprising a fine small communicating path provided so as to communicate with the valve chamber and the solenoid valve,
The minute communication path includes a small-diameter orifice provided so as to communicate the valve chamber and the solenoid valve, and a large-diameter portion that coaxially accommodates a cylindrical throttle member having a larger diameter than the small-diameter orifice. The throttle member has a spiral refrigerant passage formed between the inner diameter surface of the large-diameter portion and a square groove communicating with the spiral refrigerant passage at both ends. An expansion valve integrated with a solenoid valve, wherein one end of the expansion valve is fixed in the large-diameter portion with the large-diameter portion being in contact with the end surface on the small-diameter orifice side .
JP2006089822A 2006-03-29 2006-03-29 Expansion valve with integrated solenoid valve Expired - Fee Related JP4566150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006089822A JP4566150B2 (en) 2006-03-29 2006-03-29 Expansion valve with integrated solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006089822A JP4566150B2 (en) 2006-03-29 2006-03-29 Expansion valve with integrated solenoid valve

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005027929 Division 2005-02-03

Publications (2)

Publication Number Publication Date
JP2006214722A JP2006214722A (en) 2006-08-17
JP4566150B2 true JP4566150B2 (en) 2010-10-20

Family

ID=36978092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006089822A Expired - Fee Related JP4566150B2 (en) 2006-03-29 2006-03-29 Expansion valve with integrated solenoid valve

Country Status (1)

Country Link
JP (1) JP4566150B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6899584B2 (en) * 2017-09-25 2021-07-07 株式会社不二工機 Expansion valve
WO2020213420A1 (en) 2019-04-17 2020-10-22 株式会社不二工機 Electromagnetic-valve-integrated expansion valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342981U (en) * 1986-09-05 1988-03-22
JPH08296928A (en) * 1995-04-25 1996-11-12 Daikin Ind Ltd Reducing device of pressure of refrigerant in air conditioner
JPH11182983A (en) * 1997-12-22 1999-07-06 Denso Corp Expansion valve integrated with solenoid valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342981U (en) * 1986-09-05 1988-03-22
JPH08296928A (en) * 1995-04-25 1996-11-12 Daikin Ind Ltd Reducing device of pressure of refrigerant in air conditioner
JPH11182983A (en) * 1997-12-22 1999-07-06 Denso Corp Expansion valve integrated with solenoid valve

Also Published As

Publication number Publication date
JP2006214722A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
JP4153133B2 (en) Expansion valve
EP2889553B1 (en) Flow control valve, refrigerating system and method for controlling the same
JP2004340560A (en) Composite valve
JP4588656B2 (en) Expansion valve with integrated solenoid valve
JP2005140381A (en) Expansion valve having electromagnetic relief valve
EP2020507A2 (en) Control valve for variable capacity compressors
JP2008138812A (en) Differential pressure valve
KR101020808B1 (en) Expansion valve integrated with solenoid valve
JP2008164207A (en) Expansion valve with solenoid valve
JP4566150B2 (en) Expansion valve with integrated solenoid valve
JP4503471B2 (en) Expansion valve with integrated solenoid valve
JP2004270975A (en) Flow rate control valve
JP2971745B2 (en) solenoid valve
JP2003121030A (en) Expansion valve
JP5619526B2 (en) Expansion valve with integrated solenoid valve
JP4235515B2 (en) Constant differential pressure valve
JP4576076B2 (en) Expansion valve with integrated solenoid valve
JP3882573B2 (en) Expansion valve with integrated solenoid valve
JP4503472B2 (en) Expansion valve with integrated solenoid valve
JP3786518B2 (en) Expansion valve with solenoid valve
JP2006292185A (en) Expansion device and refrigerating cycle
JP6053493B2 (en) Thermal expansion valve
JP2006266543A (en) Expansion valve integrated with solenoid valve
JP2005331166A (en) Expansion valve
JP2007032863A (en) Expansion valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100803

R150 Certificate of patent or registration of utility model

Ref document number: 4566150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees