JP4566146B2 - High tensile welded joint with excellent joint toughness and method for producing the same - Google Patents

High tensile welded joint with excellent joint toughness and method for producing the same Download PDF

Info

Publication number
JP4566146B2
JP4566146B2 JP2006054025A JP2006054025A JP4566146B2 JP 4566146 B2 JP4566146 B2 JP 4566146B2 JP 2006054025 A JP2006054025 A JP 2006054025A JP 2006054025 A JP2006054025 A JP 2006054025A JP 4566146 B2 JP4566146 B2 JP 4566146B2
Authority
JP
Japan
Prior art keywords
less
welded joint
layer
ave
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006054025A
Other languages
Japanese (ja)
Other versions
JP2007229759A (en
Inventor
友弥 川畑
和茂 有持
秀治 岡口
正道 佐々木
康生 一戸
正一郎 藤平
知幸 橋田
俊之 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006054025A priority Critical patent/JP4566146B2/en
Publication of JP2007229759A publication Critical patent/JP2007229759A/en
Application granted granted Critical
Publication of JP4566146B2 publication Critical patent/JP4566146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Arc Welding In General (AREA)

Description

本発明は、構造物に用いることが可能な継手靭性に優れた高張力溶接継手およびその製造方法に関する。   The present invention relates to a high-tensile welded joint excellent in joint toughness that can be used in a structure and a method for producing the same.

高張力鋼は鋼構造物の様々な分野で用いられてきており、特に780MPa級以上の高張力鋼は、従来から用いられている水圧鉄管分野に加えて、産業機械・建設機械分野、建築鉄骨分野でも徐々に用いられてきている。鋼の高強度化は薄肉化を可能にし、特に搬送・溶接施工コストを顕著に低減することが可能となるからである。   High-strength steel has been used in various fields of steel structures, especially high-strength steel of 780 MPa class or higher, in addition to the conventionally used hydraulic steel pipe field, industrial machinery / construction machinery field, architectural steel frame It is gradually being used in the field. This is because increasing the strength of steel makes it possible to reduce the thickness, and in particular, it is possible to significantly reduce the cost of carrying and welding.

しかしながら、高張力鋼からなる溶接継手を構造物に用いる際の問題点として、HAZ(熱影響部:Heat Affected Zone)の靭性の確保が困難であることが挙げられている。   However, as a problem when using a welded joint made of high-strength steel for a structure, it is mentioned that it is difficult to ensure the toughness of HAZ (Heat Affected Zone).

この問題点を解決すべく、従来から様々な検討が進められてきた。   Various studies have been made to solve this problem.

特許文献1には、780MPa級の高張力鋼の大入熱HAZ靭性を向上させる目的で焼き入れ性に関する指数を実質的に高めに調整する思想が開示されている。ここでは、高焼入れ性成分を添加することによって焼入れ性を高め、もってHAZ(熱影響部)における島状マルテンサイトの生成を回避できるとしている。しかしながら、この方法を採用するためには、合金元素の投入量を増加させる必要があり、経済性を著しく損なう結果となる。   Patent Document 1 discloses the idea of adjusting the index related to hardenability to be substantially higher for the purpose of improving the high heat input HAZ toughness of 780 MPa class high strength steel. Here, it is said that the hardenability can be improved by adding a high hardenability component, and thus the formation of island martensite in the HAZ (heat affected zone) can be avoided. However, in order to employ this method, it is necessary to increase the input amount of the alloy element, resulting in a significant loss of economic efficiency.

また、特許文献2には、高焼入れ性成分を添加するとともにC含有量を低減することによって、HAZ靭性を向上させることが開示されている。ここでは、C含有量を低減させることによって、島状マルテンサイトの絶対量を低減させ、もって破壊特性を向上させるとしている。しかしながら、この方法も、合金元素の投入量を増加させる必要があり、経済性を損なう結果となる。   Patent Document 2 discloses that HAZ toughness is improved by adding a high hardenability component and reducing the C content. Here, by reducing the C content, the absolute amount of island martensite is reduced, thereby improving the fracture characteristics. However, this method also needs to increase the input amount of the alloy element, resulting in a loss of economic efficiency.

特開2000−160281号公報JP 2000-160281 A 特開2001−335883号公報JP 2001-335883 A

このように、従来の高張力溶接継手のHAZ特性を向上させ得るためには、高価な合金元素を添加せざるを得ず、経済性に問題があった。   Thus, in order to be able to improve the HAZ characteristic of the conventional high-tensile welded joint, an expensive alloy element has to be added, and there has been a problem in economy.

本発明の目的は、高価な合金元素を添加せずに、すなわち、通常の高張力鋼を用いて、HAZ部において高い破壊安全性を有する高張力溶接継手とその製造方法を提供することを目的とする。   An object of the present invention is to provide a high-strength welded joint having high fracture safety in the HAZ portion without adding an expensive alloy element, that is, using ordinary high-strength steel, and a method for producing the same. And

なお、破壊安全性の指標としては、フュージョンライン部に切欠きを設けたVノッチシャルピー試験を0℃で3体実施した際の平均値(以下、vE0ave@FLと記す。)がある。その値が100J以上である場合に破壊安全性を満足する。なお、フュージョンラインは直線ではないため、通例に従い溶接金属とHAZを線分比で等しくなるよう切欠き位置を決定している。また、高張力鋼の定義は継手引張強度が780MPa以上であることとした。そして、継手引張特性に関しては、JIS Z 3121の1A号試験片による評価を用いた。 In addition, as an index of destruction safety, there is an average value (hereinafter referred to as vE 0 ave @ FL) when three V-notch Charpy tests with notches in the fusion line portion are performed at 0 ° C. Fracture safety is satisfied when the value is 100 J or more. Since the fusion line is not a straight line, the notch position is determined so that the weld metal and HAZ are equal in line segment ratio in accordance with the usual case. The definition of high-tensile steel is that the joint tensile strength is 780 MPa or more. And regarding the joint tensile characteristics, the evaluation by JIS Z 3121 No. 1A test piece was used.

本発明者らは、高張力鋼にGMAW(ガスメタルアーク溶接)やSAW(サブマージアーク溶接)の溶接を多数行い、HAZの破壊安全性を向上させることのできる溶接方法を種々検討した結果、次の(a)〜(d)の知見を得た。   As a result of various investigations on welding methods capable of improving HAZ fracture safety by performing many GMAW (gas metal arc welding) and SAW (submerged arc welding) weldings on high-strength steels, (A) to (d) were obtained.

(a) 母材は、高い温度でオーステナイト化され、その後冷却されることで、粗粒のオーステナイト組織が形成される。しかしながら、その後の熱処理やTMCP(Thermo Mechanical Control Process:熱加工制御)等で組織の微細化を実現することができる。   (a) The base material is austenitized at a high temperature and then cooled to form a coarse austenite structure. However, refinement of the structure can be realized by subsequent heat treatment or TMCP (Thermo Mechanical Control Process).

(b) これに対して、HAZは溶接時に溶融直前の温度まで加熱され、高い温度でオーステナイト化され、その後冷却されて、粗粒のオーステナイト組織が形成される。しかしながら、母材とは異なり、再熱が付与されないため、オーステナイト変態ままの組織が残ってしまう。高張力鋼のHAZの組織は一般的にベイナイトが主体の組織で構成されるが、多層溶接を行う場合、後続パスにより焼戻しされないので、粗粒のオーステナイト組織が形成されたままとなり、CGHAZ(Coarse Grain HAZ)と呼ばれる粗粒組織が溶融線上に散在することになる。このようなCGHAZの組織は、オーステナイト粒径が大きく、転位密度も高く、さらにベイナイトラス間に生成される島状マルテンサイト量も多い傾向にある。   (b) On the other hand, HAZ is heated to a temperature just before melting at the time of welding, austenitized at a high temperature, and then cooled to form a coarse austenite structure. However, unlike the base material, reheat is not applied, so that the structure remains in the austenite transformation state. The HAZ structure of high-strength steel is generally composed mainly of bainite. However, when multi-layer welding is performed, since it is not tempered by a subsequent pass, a coarse-grained austenite structure remains formed, and CGHAZ (Coarse A coarse grain structure called Grain HAZ) is scattered on the melting line. Such a structure of CGHAZ tends to have a large austenite grain size, a high dislocation density, and a large amount of island martensite generated between bainite laths.

これらはいずれも脆性破壊を促進する要素であるから、溶融線上に散在するCGHAZの領域を小さくすることができれば、脆性破壊抵抗を減少させることができる。   Since these are elements that promote brittle fracture, brittle fracture resistance can be reduced if the area of CGHAZ scattered on the melt line can be reduced.

ここで、図1と表1を用いて、多層溶接を行う際の溶融線(Fusion Line)部における組織の変化を説明する。   Here, with reference to FIG. 1 and Table 1, the change of the structure in the fusion line part when performing multilayer welding will be described.

図1は、母材に第一層溶接金属を1350℃で溶接し、その後に、さらに第二層溶接金属を1350℃で溶接する際に母材及び第一層溶接金属層(固相)が、A〜Fの各点において、それぞれ、図に示す温度で熱の影響を受けることを模式的に示したものである。   FIG. 1 shows that when a first layer weld metal is welded to a base material at 1350 ° C. and then a second layer weld metal is further welded at 1350 ° C., the base material and the first layer weld metal layer (solid phase) are , A to F schematically show that they are affected by heat at the temperatures shown in the figure.

そして、表1は、図中のA〜Fの各点において、第一層溶接金属の溶接(1回目)及び第二層溶接金属の溶接(2回目)でそれぞれ加熱される温度と、これらの2回の溶接によって形成される組織と得られた靱性レベルを示すものである。   Table 1 shows the temperatures at which the first layer weld metal is welded (first time) and the second layer weld metal is welded (second time) at points A to F in the figure. It shows the structure formed by two welds and the toughness level obtained.

Figure 0004566146
Figure 0004566146

まず、母材に第一層溶接金属を1350℃で溶接すると、第一層の溶接金属が形成される。このとき、母材と第一層溶接金属層の溶融線(FL I)は一様に1350℃まで加熱され、その後冷却される。高い温度でオーステナイト化され、オーステナイト変態ままの組織が残ってしまうので、A〜Fのいずれの点においても、粗粒となる。   First, when the first layer weld metal is welded to the base material at 1350 ° C., the first layer weld metal is formed. At this time, the melting line (FL I) between the base material and the first layer weld metal layer is uniformly heated to 1350 ° C. and then cooled. Since it is austenitized at a high temperature and the austenite transformed structure remains, coarse grains are formed at any point of A to F.

そして、この上に第二層溶接金属を1350℃で溶接すると、第二層の溶接金属が形成される。このとき、母材と第二層溶接金属の溶融線(以下、FL IIと記す)は一様に1350℃まで加熱され、その後冷却される。第二層溶接金属は高い温度でオーステナイト化され、オーステナイト変態ままの組織が残ってしまうので、第二層溶接金属はすべて粗粒となる。   Then, when the second layer weld metal is welded at 1350 ° C., a second layer weld metal is formed. At this time, the melting line (hereinafter referred to as FL II) of the base metal and the second layer weld metal is uniformly heated to 1350 ° C. and then cooled. Since the second layer weld metal is austenitized at a high temperature and the structure remains in the austenite transformation state, all the second layer weld metal becomes coarse.

これに対して、FL Iは第二層形成時の熱影響を受け、再加熱され組織が変化する。このとき、FL IIの近傍のA点は1350℃近くまで再加熱されてその熱影響を強く受けるが、FL IIから遠く離れたF点はほとんど熱影響を受けない。以下、図1中のA〜Fの各点について順に説明する(表1参照)。   In contrast, FL I is affected by heat during the formation of the second layer and reheats to change the structure. At this time, point A in the vicinity of FL II is reheated to near 1350 ° C. and is strongly influenced by the heat, but point F far from FL II is hardly affected by heat. Hereinafter, the points A to F in FIG. 1 will be described in order (see Table 1).

A点(粗粒域):第二層形成時に1250℃を超えて1350℃近くまで温度が上昇することから粗粒となる。すなわち、A点はCGHAZである。なお、第二層形成による熱影響を受けるが、第一層形成時と同じ程度まで温度が上昇するだけであるから、見かけ上の変化はない。粗粒域であるから靭性レベルは低い。   Point A (coarse grain region): When the second layer is formed, the temperature rises to over 1250 ° C. to near 1350 ° C., resulting in coarse grains. That is, point A is CGHAZ. In addition, although it receives the heat influence by 2nd layer formation, since temperature only rises to the same extent as the time of 1st layer formation, there is no apparent change. The toughness level is low because it is a coarse grain region.

B点(混粒域):第二層形成時、1100〜1250℃に温度が上昇することから、上記A点(粗粒域)と下記C点(細粒域)の中間の状態の粒となる。したがって、靭性レベルは中間となる。   Point B (mixed grain area): Since the temperature rises to 1100 to 1250 ° C. during the formation of the second layer, Become. Therefore, the toughness level is intermediate.

C点(細粒域):第二層形成時、900〜1100℃に温度が上昇することから、細粒となる。したがって、靭性レベルは高くなる。   Point C (fine-grained area): When the second layer is formed, the temperature rises to 900 to 1100 ° C., so that the fine grain is formed. Accordingly, the toughness level is increased.

D点(部分変態域):基本的には粗粒のままであるが、第二層形成時に温度がAc1点を超えるため、粗粒であるオーステナイト粒の粒界から微細なオーステナイト粒が発現し、混粒状態となる。したがって、靭性レベルは中間となる。 Point D (partial transformation region): Although basically coarse grains, the temperature exceeds the Ac 1 point when the second layer is formed, so that fine austenite grains develop from the grain boundaries of the coarse austenite grains. And it becomes a mixed grain state. Therefore, the toughness level is intermediate.

E点(テンパー領域):第二層形成時、400〜Ac1点に温度が上昇する。この程度の温度上昇では、粗粒のままで組織に変化はないが、焼戻しを受ける。したがって、靭性が上昇し、靭性レベルは高くなる。 Point E (tempered region): When the second layer is formed, the temperature rises to 400 to Ac 1 point. At such a temperature rise, the structure remains coarse but remains tempered. Therefore, the toughness is increased and the toughness level is increased.

F点(粗粒域):第二層形成時には、ほとんど温度上昇はせず、粗粒組織のままである。すなわち、F点はCGHAZのままであり、第一層形成時のオーステナイト変態ままの粗粒組織がそのまま維持されるから、靭性レベルは低い。   F point (coarse grain region): When the second layer is formed, the temperature hardly rises and the coarse grain structure remains. That is, the point F remains CGHAZ, and the toughness level is low because the coarse grain structure as it is in the austenite transformation during the formation of the first layer is maintained.

このように、一層目の溶接を実施したとき、溶融線近傍のHAZ組織はすべてCGHAZとなるが、このCGHAZ領域を最小化するために、2層目以降の溶接を実施したときの熱影響により、CGHAZを解消させることができればよい。そして、後続パスの溶融をCGHAZに近い位置で起こすためには、各パスにおける溶着形状を薄くすればよい。換言すれば、靭性の評価対象としている溶融線に関して、溶接接合されている板厚方向の領域の長さ(mm)に対する溶接層数の比の平均値で定義される「板厚方向平均層密度」を大きくすればよい。ここで、平均値は着目すべき溶融線に対し、数か所について板厚方向の領域の長さに対する溶接層数の比を測定し、それらの平均値を採用すればよい。具体的には、溶融線20mmごとに測定し、それらの平均値を求めれば十分である。。   As described above, when the first layer welding is performed, the HAZ structure near the melting line is all CGHAZ. However, in order to minimize the CGHAZ region, it is caused by the thermal effect when the second and subsequent layers are welded. As long as CGHAZ can be eliminated. In order to cause the subsequent pass to melt at a position close to CGHAZ, the welding shape in each pass may be made thin. In other words, the “thickness direction average layer density” defined by the average value of the ratio of the number of weld layers to the length (mm) of the welded region in the plate thickness direction with respect to the melt line to be evaluated for toughness. ”Should be increased. Here, the average value may be determined by measuring the ratio of the number of weld layers to the length of the region in the plate thickness direction at several places with respect to the melt line to be noted, and adopting the average value thereof. Specifically, it is sufficient to measure for every 20 mm of melt line and obtain the average value thereof. .

そして、CGHAZを解消させることができる「板厚方向平均層密度」の具体的な数値については、多数の実験を行った結果、0.22pass/mm以上であれば、破壊安全性を満足することが判明した。   As for the specific value of the “thickness direction average layer density” that can eliminate CGHAZ, as a result of many experiments, if it is 0.22 pass / mm or more, the fracture safety is satisfied. There was found.

図2は、実験結果に基づいて、板厚方向平均層密度とvE0ave@FLの相関関係を示す図である。ここに示すとおり、すなわち、板厚方向平均層密度が0.22pass/mm以上であれば、CGHAZを解消することができる程度に薄いビードが形成されるので、vE0ave@FLを100J以上とすることができる。 FIG. 2 is a diagram showing the correlation between the plate thickness direction average layer density and vE 0 ave @ FL based on the experimental results. As shown here, that is, when the plate thickness direction average layer density is 0.22 pass / mm or more, a bead that is thin enough to eliminate CGHAZ is formed, so vE 0 ave @ FL is set to 100 J or more. can do.

図3に、レ形開先継手のマクロ組織の解析の一例を示す。同図では板厚36mmの鋼板に板厚方向に8層の溶接がされている。   FIG. 3 shows an example of the analysis of the macro structure of the lamellar groove joint. In the figure, eight layers of welding are performed in the thickness direction on a steel plate having a thickness of 36 mm.

(c) CGHAZを解消するためには、板厚方向平均層密度を0.22pass/mmにすることに加えて、溶接ビードを大きく形成し、溶接の入熱量を大きくすることが必要であることが判った。溶接ビード自体が小さい場合には、小さな入熱量で溶接が可能であるが、この場合、入熱量不足となり、後続パスによって前パスのCGHAZを解消することはできない。   (c) In order to eliminate CGHAZ, it is necessary to increase the heat input of welding by forming a large weld bead in addition to setting the average layer density in the plate thickness direction to 0.22 pass / mm. I understood. When the weld bead itself is small, welding is possible with a small amount of heat input. In this case, however, the amount of heat input becomes insufficient, and the CGHAZ of the previous pass cannot be eliminated by the subsequent pass.

ただし、溶接ビードを大きく形成するといっても、上述のように、板厚方向平均層密度を0.22pass/mm以上に保持することの制約があるため、厚い形状をとすることはできない。よって、溶接断面からみた時、横長である形状(平べったい形状)のビードとすれば、板厚方向平均層密度も0.22pass/mm以上であることを保持しつつ、入熱量を確保することができる。   However, even if a large weld bead is formed, a thick shape cannot be obtained because there is a restriction to keep the average layer density in the plate thickness direction at 0.22 pass / mm or more as described above. Therefore, when viewed from the weld cross section, if the bead has a horizontally long shape (flat shape), the amount of heat input is secured while maintaining that the average layer density in the thickness direction is 0.22 pass / mm or more. can do.

図3の左図にみるごとく、横長である形状(平べったい形状)のビードの各層の溶け込み深さdと、各層の幅wを測定することができる。このとき、各層の溶け込み深さの平均値daveと各層の幅wの平均値waveが式(1)を満足するようにすると、入熱量を確保することができる。 As shown in the left diagram of FIG. 3, the penetration depth d and the width w of each layer of each layer of the bead having a horizontally long shape (flat shape) can be measured. At this time, if the average value d ave of the penetration depth of each layer and the average value w ave of the width w of each layer satisfy Expression (1), the heat input amount can be ensured.

ave<wave・・・・・・・・・・・・・・・・(1)式
ここで、各層の溶け込み深さと幅の平均値は、着目すべき溶接部に対し、その溶接部の任意の断面におけるビード各層の溶け込み深さdと、各層の幅wを測定し、それらの平均値を採用すればよい。溶接部の長さが短い場合には、測定位置による誤差は小さいため、1ヶ所での測定でもよいが、溶接部の長さが長い場合には、複数の位置で測定を行ない、さらにそれらの平均値を取ることが好ましい。具体的には、溶接部の溶接方向20mmごとに測定し、それらの平均値をdave、waveとすることが好ましい。。
d ave <w ave ···················································································································· What is necessary is just to measure the penetration depth d of each bead layer and the width w of each layer in an arbitrary cross section, and to adopt the average value thereof. When the length of the weld is short, the error due to the measurement position is small, so it may be measured at one location, but when the length of the weld is long, measurement is performed at multiple positions, and those It is preferable to take an average value. Specifically, it is preferable that measurement is performed every 20 mm in the welding direction of the welded portion, and average values thereof are d ave and w ave . .

(d) 溶接部の断面形状は、一般に溶接時の電流−電圧バランス、溶接材料の供給量などの溶接条件により制御が可能であるが、板厚方向平均層密度を0.22pass/mm以上かつdave<waveとするには、トーチを幅方向に振動させながら溶接するウィービング法を用いるとよい。ウィービング法については手動で行う場合とプログラミングが可能な自動溶接機で行う場合があるが、これはどちらでも良い。 (d) The cross-sectional shape of the welded part can generally be controlled by welding conditions such as current-voltage balance during welding and the supply amount of welding material, but the average layer density in the plate thickness direction is 0.22 pass / mm or more and In order to satisfy d ave <w ave , a weaving method in which welding is performed while vibrating the torch in the width direction may be used. The weaving method may be performed manually or with an automatic welding machine that can be programmed.

また、一般に母材組織は真空脱ガス装置などを用い、極めて不純物の少ない鋼として製造することが可能となってきた。実際に現在供給される鋼の清浄度は極めて高い。しかしながら、溶接金属部については、溶接時の諸条件によっては極めて多量の酸素が供給され、それらの大半が酸化物を形成し、清浄度を下げる場合がある。マトリックス中の介在物は応力集中減となり、局所的な応力・歪集中から脆性破壊・延性破壊性能を減じることとなるのは言うまでもない。今、フュージョンラインの破壊特性に特に着目しているが、溶融線が実際に直線ではないことを考慮すると、溶接金属部の清浄度を向上させる、つまり、介在物はできるだけ減少させることが重要である。溶接金属中に存在する介在物は主に周囲の環境から混入する酸素が鋼中の元素と反応し酸化物となる場合が殆どである。つまり周囲の環境から酸素を排除することが重要である。   In general, the base material structure can be manufactured as a steel with very few impurities by using a vacuum degassing apparatus or the like. In fact, the cleanliness of steel currently supplied is very high. However, a very large amount of oxygen is supplied to the weld metal part depending on various conditions at the time of welding, and most of them form oxides, which may lower the cleanliness. It goes without saying that inclusions in the matrix reduce stress concentration and reduce brittle fracture / ductile fracture performance from local stress / strain concentration. At present, we are paying particular attention to the fracture characteristics of the fusion line, but considering that the melting line is not actually a straight line, it is important to improve the cleanliness of the weld metal, that is, to reduce the inclusions as much as possible. is there. In most of the inclusions present in the weld metal, oxygen mixed mainly from the surrounding environment reacts with elements in the steel to form oxides. In other words, it is important to exclude oxygen from the surrounding environment.

例えば一般的なガスシールドア−クではシールドガスとして100%CO2を用いるが、これは溶金中に混入する酸素源となる。つまり、シールドガス中の酸素(O2)はもちろんのこと、シールドガス中の炭酸ガス(CO2)もできるだけ減らし、残りを不活性ガスなどで置換し、溶接施工性を確保する必要がある。 For example, in a general gas shield arc, 100% CO 2 is used as a shield gas, which becomes an oxygen source mixed in the molten metal. In other words, not only oxygen (O 2 ) in the shielding gas but also carbon dioxide (CO 2 ) in the shielding gas must be reduced as much as possible, and the remaining should be replaced with an inert gas to ensure welding workability.

これらの方策をもって溶接金属部の介在物量を減らすことが出来れば、破壊特性を向上させることができる。具体的には、シールドガス中の炭酸ガス及び酸素の一方又は両方の含有率を、容積%にて15%以下とすることで、vE0ave@FLが100J以上に確実に制御することが可能になる。 If these measures can reduce the amount of inclusions in the weld metal part, the fracture characteristics can be improved. Specifically, by setting the content of one or both of carbon dioxide gas and oxygen in the shield gas to 15% or less in volume%, vE 0 ave @ FL can be reliably controlled to 100 J or more. become.

本発明は、このような知見に基づいて完成したものである。本発明の要旨とするところは、次の(1)及び(2)の溶接継手及び(3)〜(5)の溶接継手の製造方法である。以下、それぞれ、本発明(1)〜本発明(5)という。なお、本発明(1)〜本発明(5)を総称して、本発明ということがある。   The present invention has been completed based on such findings. The gist of the present invention is the following (1) and (2) welded joints and (3) to (5) welded joint manufacturing methods. Hereinafter, the present invention (1) to the present invention (5), respectively. The present invention (1) to the present invention (5) may be collectively referred to as the present invention.

(1) 質量%で、C:0.03〜0.15%、Si:0.01〜1.0%、Mn:0.1〜2.0%、P:0.015%以下、S:0.01%以下及びAl:0.005〜0.1%を含有し、残部Feおよび不純物からなる鋼を母材としてアーク溶接した溶接継手であって、板厚方向平均層密度(pass/mm)が0.22以上であるとともに、溶接部を断面からみた時の各層の溶け込み深さdの平均値daveと各層の幅wの平均値waveが(1)式を満足することを特徴とする、780MPa以上の引張強さを有する高張力溶接継手。 (1) By mass%, C: 0.03-0.15%, Si: 0.01-1.0%, Mn: 0.1-2.0%, P: 0.015% or less, S: 0.01% or less and Al: 0.005 to 0.1%, a welded joint that is arc-welded using steel consisting of the balance Fe and impurities as a base material, and has an average layer density in the thickness direction (pass / mm ) Is 0.22 or more, and the average value d ave of the penetration depth d of each layer and the average value w ave of the width w of each layer when the weld is viewed from the cross section satisfy the expression (1). A high-tensile welded joint having a tensile strength of 780 MPa or more.

ave<wave・・・・・・・・・・・・・・・・(1)式
ここで、板厚方向平均層密度とは、靭性の評価対象としている溶融線に関して、溶接接合されている板厚方向の領域の長さ(mm)に対する溶接層数の比(pass/mm)の平均値をいう。
d ave <w ave (1) Equation (1) Here, the average layer density in the plate thickness direction refers to the welded joint of the fusion line that is the object of toughness evaluation. The average value of the ratio (pass / mm) of the number of weld layers to the length (mm) of the region in the plate thickness direction.

(2) Feの一部に代えて、質量%で、Cu:1.0%以下、Ni:10.0%以下、Cr:1.0%以下、Mo:1.0%以下、V:0.1%以下、Nb:0.1%以下、Ti:0.1%以下、Ca:0.005%以下、B:0.005%以下、Zr:0.05%以下及びREM:0.03%以下、から選択される1種又は2種以上を含有する鋼を母材とすることを特徴とする、上記(1)の溶接継手。   (2) Instead of a part of Fe, in mass%, Cu: 1.0% or less, Ni: 10.0% or less, Cr: 1.0% or less, Mo: 1.0% or less, V: 0 0.1% or less, Nb: 0.1% or less, Ti: 0.1% or less, Ca: 0.005% or less, B: 0.005% or less, Zr: 0.05% or less, and REM: 0.03 % Or less, wherein the base material is a steel containing one or more selected from the group consisting of two or more.

(3) 炭酸ガス及び酸素の合計量が容積%にて15%以下であり、残部が不活性ガスからなるシールドガス中でアーク溶接することを特徴とする、上記(1)又は(2)の溶接継手の製造方法。   (3) The total amount of carbon dioxide gas and oxygen is 15% or less in volume%, and arc welding is performed in a shielding gas composed of an inert gas, and the above (1) or (2) A method for manufacturing a welded joint.

(4) 溶接法としてウィービング法を用いることを特徴とする、上記(1)又は(2)の溶接継手の製造方法。   (4) The method for producing a welded joint according to (1) or (2) above, wherein a weaving method is used as the welding method.

(5) 炭酸ガス及び酸素の合計量が容積%にて15%以下であり、残部が不活性ガスからなるシールドガス中でウィービング法を用いてアーク溶接することを特徴とする、上記(1)又は(2)の溶接継手の製造方法。   (5) The total amount of carbon dioxide gas and oxygen is 15% or less in volume%, and arc welding is performed using a weaving method in a shielding gas composed of an inert gas as a balance, (1) Or the manufacturing method of the welded joint of (2).

本発明によれば、高価な合金元素を添加せずに、すなわち、通常の高張力鋼を用いて、HAZ部において高い破壊安全性を有する高張力溶接継手とその製造方法を提供することができる。   According to the present invention, it is possible to provide a high-strength welded joint having high fracture safety in the HAZ part without adding an expensive alloy element, that is, using ordinary high-strength steel, and a method for manufacturing the same. .

以下に、本発明に係る溶接継手及びその製造方法について説明する。以下、各化学成分の含有量の「%」表示は、「質量%」を意味する。   Below, the welded joint which concerns on this invention, and its manufacturing method are demonstrated. Hereinafter, “%” display of the content of each chemical component means “mass%”.

(A)母材の鋼の化学組成について
C:
Cは、靱性を確保するために上限を0.15%以下、好ましくは0.10%以下とする。一方、強度確保の観点から0.03%以上、好ましくは0.05%以上とする。
(A) About the chemical composition of the base steel C:
In order to ensure toughness, the upper limit of C is 0.15% or less, preferably 0.10% or less. On the other hand, from the viewpoint of securing strength, it is 0.03% or more, preferably 0.05% or more.

Si:
Siは、脱酸のためと強度確保の点から、0.01%以上含有させることが必要である。好ましくは0.10%以上である。一方、多すぎると溶接継手靱性などを劣化させるため、上限を1.0%とする。好ましくは0.50%以下が望ましい。
Si:
Si must be contained in an amount of 0.01% or more for deoxidation and securing strength. Preferably it is 0.10% or more. On the other hand, if the amount is too large, the weld joint toughness and the like are deteriorated, so the upper limit is made 1.0%. Preferably it is 0.50% or less.

Mn:
Mnは、強度および靱性向上のため、0.1%以上含有させる必要がある。好ましくは0.5%以上、より好ましくは0.8%以上である。しかし、多すぎると溶接性を劣化させ、また、母材および溶接継手部の特性上の不均一性を助長することにもつながるため、上限を2.0%とする。好ましくは1.5%以下である。
Mn:
Mn needs to be contained by 0.1% or more in order to improve strength and toughness. Preferably it is 0.5% or more, More preferably, it is 0.8% or more. However, if the amount is too large, the weldability is deteriorated, and also nonuniformity in characteristics of the base material and the welded joint portion is promoted. Therefore, the upper limit is set to 2.0%. Preferably it is 1.5% or less.

P:
Pは、鋼中に混入してくる不純物であり、多量に含有するとHAZにおける粒界破壊を助長するため、0.015%以下とする。
P:
P is an impurity mixed in the steel, and if contained in a large amount, it promotes grain boundary fracture in the HAZ, so it is made 0.015% or less.

S:
Sは、鋼中に混入してくる不純物であり、多量に含有するとMnS系介在物を形成し、それが、熱間圧延により進展されて割れ発生の起点となるため、0.01%を上限とする。
S:
S is an impurity mixed in the steel, and if it is contained in a large amount, it forms MnS inclusions, which are advanced by hot rolling and become the starting point of cracking, so the upper limit is 0.01%. And

Al:
Alは、脱酸元素として鋼の清浄性を確保するために0.005%以上含有させる必要がある。しかし、多すぎると粗大なAl23を生成することから0.1%以下とする。また、多すぎると溶接継手部が劣化することからも0.1%以下とする。Al含有量が低いほど継手靱性がよくなるので、Alの上限は0.05%とするのが好ましい。また、このようにAlの添加量を低く抑えることによってAlN起因の連続鋳造時のスラブ表面品質劣化を防止することができる。
Al:
Al is required to be contained in an amount of 0.005% or more as a deoxidizing element in order to ensure the cleanliness of steel. However, if it is too much, coarse Al 2 O 3 is produced, so the content is made 0.1% or less. Moreover, since it will deteriorate a welded joint part when there is too much, it shall be 0.1% or less. The lower the Al content, the better the joint toughness. Therefore, the upper limit of Al is preferably 0.05%. In addition, by suppressing the amount of Al added in this way, it is possible to prevent slab surface quality deterioration during continuous casting due to AlN.

本願発明に係る溶接継手は、必要に応じて、さらにCu、Ni、Cr、Mo、V、Nb、Ti、Ca、B、Zr及びREMから選択される1種又は2種以上を含有させることができる。以下、これらの任意含有元素について説明する。   The welded joint according to the present invention may further contain one or more selected from Cu, Ni, Cr, Mo, V, Nb, Ti, Ca, B, Zr and REM as necessary. it can. Hereinafter, these optional elements will be described.

Cu:
Cuは、添加すれば強度向上に有効であるので、必要に応じて含有させてもよい。ただし、多すぎると溶接性を損なうことから上限を1.0%とする。より好ましくは0.85%以下である。強度を確実に向上させるためには、0.2%以上含有させるのが好ましい。
Cu:
Since Cu is effective for improving the strength if added, it may be contained if necessary. However, if the amount is too large, the weldability is impaired, so the upper limit is made 1.0%. More preferably, it is 0.85% or less. In order to surely improve the strength, it is preferable to contain 0.2% or more.

Ni:
Niは、添加すれば靭性と強度を向上させることができるので、必要に応じて含有させてもよい。ただし、多量の添加はコストアップにつながるため上限を10.0%とする。好ましくは7.0%以下、より好ましくは5.0%以下である。靭性と強度を確実に向上させるためには、0.3%以上含有させるのが好ましい。
Ni:
If Ni is added, toughness and strength can be improved, so Ni may be added as necessary. However, since a large amount leads to an increase in cost, the upper limit is made 10.0%. Preferably it is 7.0% or less, More preferably, it is 5.0% or less. In order to reliably improve toughness and strength, it is preferable to contain 0.3% or more.

Cr:
Crは、強度向上に有効であるので、必要に応じて含有させてもよい。ただし、多すぎると溶接性を損なうことから上限を1.0%とする。より好ましくは0.85%以下である。強度を確実に向上させるためには、0.2%以上含有させるのが好ましい。
Cr:
Since Cr is effective for improving the strength, it may be contained as necessary. However, if the amount is too large, the weldability is impaired, so the upper limit is made 1.0%. More preferably, it is 0.85% or less. In order to surely improve the strength, it is preferable to contain 0.2% or more.

Mo:
Moは、強度向上に有効であるので、必要に応じて含有させてもよい。ただし、多すぎると溶接性を損なうことから上限を1.0%とする。より好ましくは0.85%以下である。強度を確実に向上させるためには、0.2%以上含有させるのが好ましい。
Mo:
Since Mo is effective for improving the strength, it may be contained if necessary. However, if the amount is too large, the weldability is impaired, so the upper limit is made 1.0%. More preferably, it is 0.85% or less. In order to surely improve the strength, it is preferable to contain 0.2% or more.

Nb:
Nbは、細粒化元素として作用するので、必要に応じて含有させてもよい。特に、オンライン加速冷却を活用する際には有効である。ただし、多すぎると継手靱性を劣化させることから上限を0.1%とする。細粒化元素として確実に作用させるためには、0.01%以上含有させるのが好ましい。
Nb:
Since Nb acts as a fine-graining element, it may be contained as necessary. This is particularly effective when using online accelerated cooling. However, if the amount is too large, the joint toughness deteriorates, so the upper limit is made 0.1%. In order to act reliably as a grain refining element, it is preferable to contain 0.01% or more.

V:
Vは、細粒化元素として作用するので、必要に応じて含有させてもよい。特に、オンライン加速冷却を活用する際には有効である。ただし、多すぎると継手靱性を劣化させることから上限を0.1%とする。細粒化元素として確実に作用させるためには、0.01%以上含有させるのが好ましい。
V:
V acts as a grain refining element and may be contained as necessary. This is particularly effective when using online accelerated cooling. However, if the amount is too large, the joint toughness deteriorates, so the upper limit is made 0.1%. In order to act reliably as a grain refining element, it is preferable to contain 0.01% or more.

Ti:
Tiは、細粒化元素として作用するので、必要に応じて含有させてもよい。特に、オンライン加速冷却を活用する際には有効である。ただし、多すぎると継手靱性を劣化させることから上限を0.1%とする。細粒化元素として確実に作用させるためには、0.01%以上含有させるのが好ましい。
Ti:
Ti acts as a grain refining element and may be contained as necessary. This is particularly effective when using online accelerated cooling. However, if the amount is too large, the joint toughness deteriorates, so the upper limit is made 0.1%. In order to act reliably as a grain refining element, it is preferable to contain 0.01% or more.

B:
Bは、粒界に偏析して強度向上に効果的であるので、必要に応じて含有させてもよい。ただし、過剰な添加は靭性を損ねるため、0.005%を上限とする。強度を確実向上させるには、0.0003%以上含有させるのが好ましい。
B:
B segregates at the grain boundaries and is effective in improving the strength, and therefore may be contained as necessary. However, excessive addition impairs toughness, so 0.005% is made the upper limit. In order to surely improve the strength, it is preferable to contain 0.0003% or more.

Ca:
Caは、MnSの生成を防止して母材の板厚方向特性を向上させ、さらに、シャルピー吸収エネルギーを増大させるので、必要に応じて含有させてもよい。ただし、多すぎると清浄性を損なうため0.005%以下とする。母材の板厚方向特性を確実に向上させ、そして、シャルピー吸収エネルギーを確実に増大させるには、0.001%以上含有させるのが好ましい。
Ca:
Ca prevents the generation of MnS, improves the thickness direction characteristics of the base material, and further increases the Charpy absorbed energy. Therefore, Ca may be contained as necessary. However, if too much, the cleanliness is impaired, so 0.005% or less. In order to reliably improve the thickness direction characteristics of the base material and to surely increase the Charpy absorbed energy, it is preferable to contain 0.001% or more.

Zr:
Zrは、NbやTiと同様に、細粒化元素として作用するので、必要に応じて含有させてもよい。ただし、多すぎると母材および継手の靱性を劣化させることから上限を0.05%とする。細粒化元素として確実に作用させるためには、0.005%以上含有させるのが好ましい。
Zr:
Zr, like Nb and Ti, acts as a finer element and may be contained as necessary. However, if the amount is too large, the toughness of the base material and joint is deteriorated, so the upper limit is made 0.05%. In order to act reliably as a grain refining element, it is preferable to contain 0.005% or more.

希土類元素(REM):
希土類元素(REM)は、溶接熱影響部の高靭性化の作用を有するので、必要に応じて含有させてもよい。ただし、過剰に添加すると母材および継手の靭性低下が顕著となるため、上限を0.03%とする。溶接熱影響部の高靭性化の作用を確実にするためには、0.0003%以上含有させるのが好ましい。REMを含有させる場合は、LaやCeを主成分とするミッシュメタルを用いてもよい。なお、本発明でいう希土類元素とは、Sc、Y及びランタノイドの合計17元素の総称であり、希土類元素の含有量はこれらの元素の合計含有量を指す。
Rare earth elements (REM):
Since rare earth elements (REM) have the effect of increasing the toughness of the weld heat affected zone, they may be included as necessary. However, if excessively added, the toughness of the base metal and the joint is remarkably lowered, so the upper limit is made 0.03%. In order to ensure the effect of increasing the toughness of the weld heat affected zone, it is preferable to contain 0.0003% or more. When REM is contained, a misch metal containing La or Ce as a main component may be used. In addition, the rare earth element as used in the field of this invention is a general term of the total 17 elements of Sc, Y, and a lanthanoid, and the content of rare earth elements refers to the total content of these elements.

(B)母材鋼板の製造条件について
成分調整を終えた溶鋼を一般的な条件の連続鋳造にてスラブとし、厚板工場へ搬送する。厚板工場へ到着したスラブは1120℃の加熱条件にて再加熱される。加熱炉から抽出されたスラブを熱間圧延機でリバース圧延を行いながら、所望の板厚まで圧延を実施する。圧延を終えた鋼板は、成品サイズにシャー切断された後、熱処理される。熱処理条件はまず焼き入れ温度として900℃、焼き戻し温度として600℃を設定する。
(B) About the manufacturing conditions of a base material steel plate Molten steel which finished the component adjustment is made into a slab by continuous casting under general conditions, and is conveyed to a thick plate factory. The slab that arrives at the plate factory is reheated under heating conditions of 1120 ° C. The slab extracted from the heating furnace is rolled to a desired thickness while being reverse-rolled by a hot rolling mill. The rolled steel sheet is shear-cut into product sizes and then heat treated. First, the heat treatment conditions are set to 900 ° C. as the quenching temperature and 600 ° C. as the tempering temperature.

以下、実施例により、本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail by way of examples.

表2に試験に用いた母材の組成を、そして、表3に溶着形状を示す。ここで、母材の板厚は全て36mmとした。   Table 2 shows the composition of the base material used in the test, and Table 3 shows the weld shape. Here, the thickness of the base material was 36 mm.

Figure 0004566146
Figure 0004566146

Figure 0004566146
Figure 0004566146

図5は、溶接継手の開先形状の一例である。図5に示すとおりの開先形状となるよう機械加工と裏当て材を溶接し市販の溶接材料(神戸製鋼製MGS-100J(1.2φ))を用いて、表4に示す溶接条件で溶接施工を実施した際の試験結果を表3に併せて示す。   FIG. 5 is an example of a groove shape of a welded joint. Welding is performed under the welding conditions shown in Table 4 using a commercially available welding material (Kobe Steel MGS-100J (1.2φ)) by welding the machining and backing material so that the groove shape is as shown in FIG. Table 3 also shows the test results when the test was performed.

Figure 0004566146
Figure 0004566146

なお、引張試験は、JIS Z 3121-1A号試験片を用い、JIS Z2241に従い引張試験を実施した。シャルピー衝撃試験は、JIS Z2202に記載の試験方法に準じて1/4tより試片を採取した。形状はVノッチシャルピー試験片とし、0℃における吸収エネルギーを測定し、繰返し数3で実施した際の平均値で評価した。評価基準は100Jとした。溶接は圧延方向と平行に行った。いずれの溶接継手もウィービング法を用い溶接を行った。   The tensile test was conducted according to JIS Z2241 using JIS Z 3121-1A test pieces. In the Charpy impact test, specimens were collected from 1/4 t according to the test method described in JIS Z2202. The shape was a V-notch Charpy test piece, the absorbed energy at 0 ° C. was measured, and the average value when the number of repetitions was 3 was evaluated. The evaluation standard was 100J. Welding was performed parallel to the rolling direction. All the welded joints were welded using the weaving method.

板厚方向平均層密度は、いずれも、0.22pass/mm以上であり、そして、(1)式のdave<waveを満足させることができた。このうち、本願発明で規定する母材を用いた溶接継手は、靭性の平均値(vE0ave@FL)が100J以上であったが、本願発明の規定外の母材を用いた溶接継手は、靭性の平均値が100Jを下回った。 The average layer density in the plate thickness direction was 0.22 pass / mm or more, and d ave <w ave in equation (1) could be satisfied. Among these, the welded joint using the base material specified in the present invention had an average value of toughness (vE 0 ave @ FL) of 100 J or more, but the welded joint using the base material outside the specification of the present invention is The average value of toughness was less than 100J.

表2中のmark6の材料を用い、同じ開先形状かつ同じ溶接材料を用いて、溶接施工を実施した。その際の溶接条件を表5に、そして、溶着形状実績とシャルピー試験結果を表6に、それぞれ示す。   Using the material of mark 6 in Table 2, welding was performed using the same groove shape and the same welding material. Table 5 shows the welding conditions at that time, and Table 6 shows the welding shape results and the Charpy test results.

Figure 0004566146
Figure 0004566146

Figure 0004566146
Figure 0004566146

このうち、本願発明で規定する母材を用いた溶接継手は、靭性の平均値(vE0_ave@FL)が100J以上であったが、本願発明の規定外の母材を用いた溶接継手は、靭性の平均値が100Jを下回った。   Among these, the welded joint using the base material specified in the present invention had an average value of toughness (vE0_ave @ FL) of 100 J or more, but the welded joint using the base material other than specified in the present invention was tough. The average value was less than 100J.

以上のように、本発明によれば、高張力鋼を溶接施工する際のHAZ靭性向上策を安価にそして確実に与えることが出来るものと考えられ、産業上極めて有益な効果が得られる。   As described above, according to the present invention, it is considered that a measure for improving HAZ toughness when welding high-tensile steel can be provided at low cost and an extremely beneficial effect in the industry can be obtained.

母材に第一層溶接金属を1350℃で溶接し、その後に、さらに第二層溶接金属を1350℃で溶接する際に母材及び第一層溶接金属層(固相)が、A〜Fの各点において、それぞれ、図に示す温度で熱の影響を受けることを模式的に示す。When the first layer weld metal is welded to the base material at 1350 ° C., and then the second layer weld metal is further welded at 1350 ° C., the base material and the first layer weld metal layer (solid phase) are A to F. Each of these points is schematically shown to be affected by heat at the temperature shown in the figure. 実験結果に基づいて、板厚方向平均層密度とvE0ave@FLの相関関係を示す図である。Based on the experimental results, it is a graph showing the correlation between the thickness direction average layer density and vE 0 ave @ FL. レ形開先継手のマクロ組織の解析の一例を示す。(a)はそのうちのビードの1つについて、溶け込み深さdと幅wの測定方法を示しており、そして、(b)は板厚36mmのところに板厚方向に8層の溶接が層されていることを示している。An example of the analysis of the macrostructure of a lathe groove joint is shown. (a) shows the method of measuring the penetration depth d and width w of one of the beads, and (b) shows 8 layers of welding in the plate thickness direction at a plate thickness of 36 mm. It shows that. 溶接継手の開先形状の一例である。It is an example of the groove shape of a welded joint.

Claims (5)

質量%で、C:0.03〜0.15%、Si:0.01〜1.0%、Mn:0.1〜2.0%、P:0.015%以下、S:0.01%以下及びAl:0.005〜0.1%を含有し、残部Feおよび不純物からなる鋼を母材としてアーク溶接した溶接継手であって、板厚方向平均層密度(pass/mm)が0.22以上であるとともに、溶接部を断面からみた時の各層の溶け込み深さdの平均値daveと各層の幅wの平均値waveが(1)式を満足することを特徴とする、780MPa以上の引張強さを有する高張力溶接継手。
ave<wave・・・・・・・・・・・・・・・・(1)式
ここで、板厚方向平均層密度とは、靭性の評価対象としている溶融線に関して、溶接接合されている板厚方向の領域の長さ(mm)に対する溶接層数の比(pass/mm)の平均値をいう。
In mass%, C: 0.03-0.15%, Si: 0.01-1.0%, Mn: 0.1-2.0%, P: 0.015% or less, S: 0.01 %, And Al: 0.005 to 0.1%, and a welded joint that is arc-welded using steel consisting of the balance Fe and impurities as a base material, and has an average layer thickness direction pass density (pass / mm) of 0 .22 or more, and the average value d ave of the penetration depth d of each layer and the average value w ave of the width w of each layer when the weld is viewed from the cross section satisfy the expression (1). A high-tensile welded joint having a tensile strength of 780 MPa or more.
d ave <w ave (1) Equation (1) Here, the average layer density in the plate thickness direction refers to the welded joint of the fusion line that is the object of toughness evaluation. The average value of the ratio (pass / mm) of the number of weld layers to the length (mm) of the region in the plate thickness direction.
Feの一部に代えて、質量%で、Cu:1.0%以下、Ni:10.0%以下、Cr:1.0%以下、Mo:1.0%以下、V:0.1%以下、Nb:0.1%以下、Ti:0.1%以下、Ca:0.005%以下、B:0.005%以下、Zr:0.05%以下及びREM:0.03%以下、から選択される1種又は2種以上を含有する鋼を母材とすることを特徴とする、請求項1に記載の溶接継手。   Instead of a part of Fe, by mass%, Cu: 1.0% or less, Ni: 10.0% or less, Cr: 1.0% or less, Mo: 1.0% or less, V: 0.1% Hereinafter, Nb: 0.1% or less, Ti: 0.1% or less, Ca: 0.005% or less, B: 0.005% or less, Zr: 0.05% or less, and REM: 0.03% or less, The weld joint according to claim 1, wherein the base material is steel containing one or more selected from the group consisting of: 炭酸ガス及び酸素の合計量が容積%にて15%以下であり、残部が不活性ガスからなるシールドガス中でアーク溶接することを特徴とする、請求項1又は2に記載の溶接継手の製造方法。   The total amount of carbon dioxide gas and oxygen is 15% or less in volume%, and arc welding is performed in a shielding gas composed of an inert gas, and the welded joint according to claim 1 or 2, Method. 溶接法としてウィービング法を用いることを特徴とする、請求項1又は2に記載の溶接継手の製造方法。   The method for manufacturing a welded joint according to claim 1, wherein a weaving method is used as the welding method. 炭酸ガス及び酸素の合計量が容積%にて15%以下であり、残部が不活性ガスからなるシールドガス中でウィービング法を用いてアーク溶接することを特徴とする、請求項1又は2に記載の溶接継手の製造方法。
The total amount of carbon dioxide gas and oxygen is 15% or less in volume%, and arc welding is performed using a weaving method in a shielding gas composed of an inert gas as a balance. Method for manufacturing a welded joint.
JP2006054025A 2006-02-28 2006-02-28 High tensile welded joint with excellent joint toughness and method for producing the same Active JP4566146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006054025A JP4566146B2 (en) 2006-02-28 2006-02-28 High tensile welded joint with excellent joint toughness and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006054025A JP4566146B2 (en) 2006-02-28 2006-02-28 High tensile welded joint with excellent joint toughness and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007229759A JP2007229759A (en) 2007-09-13
JP4566146B2 true JP4566146B2 (en) 2010-10-20

Family

ID=38550875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006054025A Active JP4566146B2 (en) 2006-02-28 2006-02-28 High tensile welded joint with excellent joint toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP4566146B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103381519A (en) * 2013-07-08 2013-11-06 武汉钢铁(集团)公司 Argon-rich gas shielded welding method for bridge steel with yield strength no less than 500 MPa

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101228791B1 (en) * 2010-12-28 2013-01-31 주식회사 포스코 Welding joint of steel sheet and method of the same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48103047A (en) * 1972-04-13 1973-12-24
JPH09253860A (en) * 1996-03-22 1997-09-30 Kobe Steel Ltd Tig welding method of high tensile steel and solid wire for tig welding
JPH10263817A (en) * 1997-03-25 1998-10-06 Kawasaki Steel Corp Manufacture of high strength welded joint having excellent crack resistance
JPH11267844A (en) * 1998-03-19 1999-10-05 Sumitomo Metal Ind Ltd Manufacture of welded steel structure and welded steel structure
JP2000301379A (en) * 1999-04-22 2000-10-31 Kobe Steel Ltd Welding wire for high tensile steel
JP2001001148A (en) * 1999-04-21 2001-01-09 Kawasaki Steel Corp GAS SHIELD ARC WELDING OF THICK HIGH TENSILE STRENGTH STEEL PLATE OF AT LEAST 900 MPa CLASS
JP2001246495A (en) * 1999-12-28 2001-09-11 Kawasaki Steel Corp Welding material and method for producing welded joint
JP2002115032A (en) * 2000-10-11 2002-04-19 Nippon Steel Corp Ultrahigh strength steel pipe having seam weld zone with excellent cold-crack resistance, and its manufacturing method
JP2002248569A (en) * 2001-02-22 2002-09-03 Nippon Steel Corp Manufacturing method for steel welding joint for welding structure excellent in fatigue strength
JP2003138340A (en) * 2001-10-31 2003-05-14 Nippon Steel Corp Ultrahigh strength steel pipe with excellent toughness of weld zone, and its manufacturing method
JP2005040816A (en) * 2003-07-25 2005-02-17 Nippon Steel Corp Ultrahigh strength weld joint excellent in low temperature cracking property of weld metal, ultrahigh strength welded steel pipe, and their manufacturing methods
JP2005211933A (en) * 2004-01-29 2005-08-11 Jfe Steel Kk Carbon dioxide gas shield arc welding method and weld joint
JP2005230906A (en) * 2004-02-23 2005-09-02 Jfe Steel Kk Gas shielded arc welding method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48103047A (en) * 1972-04-13 1973-12-24
JPH09253860A (en) * 1996-03-22 1997-09-30 Kobe Steel Ltd Tig welding method of high tensile steel and solid wire for tig welding
JPH10263817A (en) * 1997-03-25 1998-10-06 Kawasaki Steel Corp Manufacture of high strength welded joint having excellent crack resistance
JPH11267844A (en) * 1998-03-19 1999-10-05 Sumitomo Metal Ind Ltd Manufacture of welded steel structure and welded steel structure
JP2001001148A (en) * 1999-04-21 2001-01-09 Kawasaki Steel Corp GAS SHIELD ARC WELDING OF THICK HIGH TENSILE STRENGTH STEEL PLATE OF AT LEAST 900 MPa CLASS
JP2000301379A (en) * 1999-04-22 2000-10-31 Kobe Steel Ltd Welding wire for high tensile steel
JP2001246495A (en) * 1999-12-28 2001-09-11 Kawasaki Steel Corp Welding material and method for producing welded joint
JP2002115032A (en) * 2000-10-11 2002-04-19 Nippon Steel Corp Ultrahigh strength steel pipe having seam weld zone with excellent cold-crack resistance, and its manufacturing method
JP2002248569A (en) * 2001-02-22 2002-09-03 Nippon Steel Corp Manufacturing method for steel welding joint for welding structure excellent in fatigue strength
JP2003138340A (en) * 2001-10-31 2003-05-14 Nippon Steel Corp Ultrahigh strength steel pipe with excellent toughness of weld zone, and its manufacturing method
JP2005040816A (en) * 2003-07-25 2005-02-17 Nippon Steel Corp Ultrahigh strength weld joint excellent in low temperature cracking property of weld metal, ultrahigh strength welded steel pipe, and their manufacturing methods
JP2005211933A (en) * 2004-01-29 2005-08-11 Jfe Steel Kk Carbon dioxide gas shield arc welding method and weld joint
JP2005230906A (en) * 2004-02-23 2005-09-02 Jfe Steel Kk Gas shielded arc welding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103381519A (en) * 2013-07-08 2013-11-06 武汉钢铁(集团)公司 Argon-rich gas shielded welding method for bridge steel with yield strength no less than 500 MPa
CN103381519B (en) * 2013-07-08 2016-02-10 武汉钢铁(集团)公司 Yield strength >=500MPa level bridge steel full-argon gas shielded arc welding connects method

Also Published As

Publication number Publication date
JP2007229759A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP4811166B2 (en) Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa
JP5924058B2 (en) High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
JP5509923B2 (en) Method for producing high-tensile steel sheet having a tensile strength of 1100 MPa or more for laser welding or laser-arc hybrid welding
JP5061483B2 (en) Manufacturing method of ultra high strength welded steel pipe
JP5202862B2 (en) High-strength welded steel pipe with weld metal having excellent cold cracking resistance and method for producing the same
JPH10237583A (en) High tensile strength steel and its production
JPWO2011155620A1 (en) Ultra high strength welded joint and manufacturing method thereof
JP5137032B2 (en) Steel plate for submerged arc welding
JP2008248315A (en) Method for manufacturing ultrahigh-strength, high-deformability welded steel pipe having excellent toughness in base material and weld zone
US11505841B2 (en) High-strength steel product and method of manufacturing the same
JP2018053281A (en) Rectangular steel tube
JP2006233263A (en) Method for producing high strength welded steel tube having excellent low yield ratio and weld zone toughness
JP2007260716A (en) Method for producing ultrahigh strength welded steel pipe having excellent deformability
JP4673710B2 (en) Two-electrode single-sided one-pass large heat input submerged arc welding method with excellent weld metal toughness
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
JP4341395B2 (en) High strength steel and weld metal for high heat input welding
JP4949210B2 (en) Steel excellent in toughness of weld heat-affected zone and method for producing the same
JP2009287081A (en) High-tension steel and producing method therefor
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe
JP4566146B2 (en) High tensile welded joint with excellent joint toughness and method for producing the same
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP2004068055A (en) High strength welded steel pipe having excellent weld zone toughness and method for producing the same
JP4948710B2 (en) Welding method of high-tensile thick plate
JPH08253821A (en) Production of welded joint having excellent fatigue strength
JP5458923B2 (en) Welded joint with excellent brittle fracture resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100803

R150 Certificate of patent or registration of utility model

Ref document number: 4566146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250