JP4565811B2 - Non-aqueous electrolyte secondary battery and manufacturing method thereof - Google Patents

Non-aqueous electrolyte secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP4565811B2
JP4565811B2 JP2003096581A JP2003096581A JP4565811B2 JP 4565811 B2 JP4565811 B2 JP 4565811B2 JP 2003096581 A JP2003096581 A JP 2003096581A JP 2003096581 A JP2003096581 A JP 2003096581A JP 4565811 B2 JP4565811 B2 JP 4565811B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
mixture layer
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003096581A
Other languages
Japanese (ja)
Other versions
JP2004303622A5 (en
JP2004303622A (en
Inventor
良浩 小路
雅行 寺坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003096581A priority Critical patent/JP4565811B2/en
Publication of JP2004303622A publication Critical patent/JP2004303622A/en
Publication of JP2004303622A5 publication Critical patent/JP2004303622A5/ja
Application granted granted Critical
Publication of JP4565811B2 publication Critical patent/JP4565811B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、非水系電解質二次電池及びその製造方法に関し、更に詳しくは、活物質合剤層を塗布した極板の合剤充填密度を高める圧縮処理工程において、その破断が防止されるようにした極板を用いた非水系電解質二次電池及びその製造方法に関する。
【0002】
【従来の技術】
携帯型の電子機器の急速な普及に伴い、それに使用される電池への要求仕様は、年々厳しくなり、特に小型・薄型化、高容量でサイクル特性が優れ、性能の安定したものが要求されている。そして、二次電池分野では他の電池に比べて高エネルギー密度であるリチウム非水電解質二次電池が注目され、このリチウム非水電解質二次電池の占める割合は二次電池市場において大きな伸びを示している。
【0003】
このリチウム非水電解質二次電池は、細長いシート状の銅箔等からなる負極芯体(集電体)の両面に負極用活物質合剤を被膜状に塗布した負極と、細長いシート状のアルミニウム箔等からなる正極芯体の両面に正極用活物質合剤を被膜状に塗布した正極との間に、微多孔性ポリプロピレンフィルム等からなるセパレータを配置し、負極及び正極をセパレータにより互いに絶縁した状態で円柱状又は楕円形状に巻回して巻回電極体を製造した後、角型電池の場合は更に巻回電極体を押し潰して偏平状に形成し、負極及び正極の各所定部分にそれぞれ負極タブ及び正極タブを接続して所定形状の外装内に収納した構成を有している。
【0004】
リチウム非水電解質二次電池は高容量ではあるが、現状の電池性能は市場の要求に応えるにはまだまだ不十分であり、さらなる高容量化が求められている。そのために電池外装内に充填する活物質合剤の量を増やすことが試みられ、活物質合剤塗布後の極板を加圧圧縮して活物質合剤を緻密にし、空隙を減らすことが行われている。
【0005】
このような電池の極板の製造に際しては、通常、金属製芯体箔(集電体)の両面に正極用又は負極用の活物質合剤を塗布し、次いでローラープレスで合剤層を加圧圧縮した上で必要な寸法に切り出されているが、両面の合剤層の厚みは金属製芯体箔の厚みより大きく、合剤層の空隙率は加圧圧縮後で通常10%から30%程度に制御されている。
【0006】
ところが、従来の活物質合剤塗布端部まで中央部と同じ塗布質量と厚みとされた極板を用いると、充填密度を高めるための加圧圧縮工程で極板が切断される不都合が発生しやすかった。ローラープレスにより極板を加圧圧縮すると、まず合剤層が塗布されていない金属製芯体箔の部分が圧縮され、その後合剤の塗布された部分が圧縮されるが、その際に両面の塗布端部をそろえた極板では、厚みが金属製芯体箔の厚みから、金属製芯体箔と両面の合剤層の厚みを合わせた厚みに変わるので、この部分で急峻な段差がある。すなわち金属製芯体箔にこの段差がある状態で極板を押圧成形すると、段差により金属製芯体箔に大きな応力が加わり、金属製芯体箔の破断が発生する原因になっていた。
【0007】
この合剤層の充填密度を高めるために加圧圧縮する工程で極板が切断されるのを改善するために、下記特許文献1には、図3に示したように、極板31に塗布された合剤層33の塗布端部34を金属製芯体箔(集電体)32の長手方向に表裏面でずらす設計が提案されている。しかし、昨今の高容量化志向により、活物質充填密度を高めるために極板の圧縮率が高くなっており、この提案による表裏ずらし極板でも合剤層との境界部で切断されることが多くなってきた。
【0008】
また、下記特許文献2や、特許文献3にも、表裏の合剤塗布開始部と塗布終端部の組み合わせを規定して、塗布終端部の塗布質量大の部分による過圧縮を低減させ、極板の切断を防止することが提案されているが、同様に、最近の高容量化極板では効果が薄くなってきている。
【0009】
【特許文献1】
特開平10−228930号公報([0003]〜[0004]、[0009]、図3、図4)
【特許文献2】
特開2002−134102号公報
【特許文献3】
特開2001−351610号公報
【0010】
【発明が解決しようとする課題】
リチウムイオン電池に代表される非水系電解質二次電池において、この合剤圧縮工程における合剤端部部分での段差が原因となる極板破断対策は製造上の急務である。本発明者等は上述のような問題点を解決すべく種々検討を重ねた結果、合剤塗布部分が金属製芯体箔の両面に設けられた正極又は負極の各極合剤塗布部分の端部部分において、正負各極合剤層を塗布端側に向かって薄くなるように形成することによって、極板の破断が減少し、非水系電解質二次電池の製造効率が向上することを見出し、本発明を完成するに至ったのである。
【0011】
すなわち、本発明の目的は、合剤加圧圧縮工程における合剤端部部分での段差が原因となる極板破断が解消されるようにした電極を用いた非水系電解質二次電池を提供することにある。更に、本発明の別の目的は、極板の破断を減少させるため改良された非水系電解質二次電池の製造方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明の上記目的は以下の構成により達成し得る。すなわち、本発明の第1の態様によれば、金属製芯体箔の両面にリチウムイオンを吸蔵放出可能な正極活物質を含む正極合剤層を有する正極と、金属製芯体箔の両面にリチウムイオンを吸蔵放出可能な負極活物質を含む負極合剤層を有する負極とが、セパレータを介して積層巻回された巻回電極体を有する非水電解質二次電池において、前記金属製芯体箔の正極及び/又は負極合剤層の未塗布部との境界から長手方向に0.5mm以上の所定範囲にわたる前記正極及び/又は負極合剤層の厚みがそれ以外の範囲の合剤層の厚みより薄くなるようになされている非水電解質二次電池が提供される。
【0013】
係る態様によれば、電極の厚みに従来例のような急峻な段差がないので、極板を加圧圧縮しても金属製芯体箔に大きな応力が加わることがないために金属製芯体箔が破断することが少なくなり、しかも極板を高密度に圧縮することができるようになるので、従来のものに比して高容量の非水電解質二次電池が得られる。
この場合、前記所定範囲は、0.5mm以上であれば所定の効果が得られ、5mm以上であっても金属製芯体箔破断低減の効果はあるが、活物質合剤塗布量が減るのでその分だけ電池の容量が低下するので、好ましくは0.5mm以上5mm以下の範囲である。
【0014】
係る態様においては、前記所定範囲においては、前記正極及び/又は負極合剤層の厚みは前記未塗布部分に近づくに従って順次薄くなるようになされていることが好ましい。このような構成であると、段差が滑らかに変化しているので、加圧圧縮行程における金属製芯体箔に加わる応力の変化も滑らかになり、より高密度に圧縮することができるようになるので高容量の非水電解質二次電池が得られる。
【0015】
本発明においては、前記正極合剤層の充填密度が3.7g/cm以上であることが好ましい。このような構成であれば、正極活物質として従来と同じものを使用しながらも、従来のものよりも高容量の非水電解質二次電池が得られる。
【0016】
更に、本発明においては、前記負極合剤層の充填密度が1.7g/cm以上であることが好ましい。このような構成であれば、負極活物質として従来と同じものを使用しながらも、従来のものよりも高容量の非水電解質二次電池が得られる。
【0017】
また、本発明の第2の態様によれば、金属製芯体箔の両面にリチウムイオンを吸蔵放出可能な正極活物質を含む正極合剤層を有する正極と、金属製芯体箔の両面にリチウムイオンを吸蔵放出可能な負極活物質を含む負極合剤層を有する負極とが、セパレータを介して積層巻回された巻回電極体を有する非水電解質二次電池の製造方法において、
(1)前記正極又は負極合剤のスラリ−を第1のローラーにより前記金属製芯体箔上へ塗布する工程、
(2)該第1のローラーと協働する第2のローラーにより該スラリ−の塗布質量を調整する工程、
(3)該第1のローラーと協働する第3のローラーにより前記合剤層の塗布部と未塗布部を形成する工程、
を経ることにより、前記金属製芯体箔の正極及び/又は負極合剤層の未塗布部との境界から長手方向に0.5mm以上の所定範囲にわたる前記正極及び/又は負極合剤層の厚みがそれ以外の範囲の合剤層の厚みより薄くなるように塗布し、
(4)その後に前記正極及び/又は負極合剤層を加圧圧縮する工程を有する非水系電解質二次電池の製造方法が提供される。係る方法によれば、連続的に前記第1の態様に係る非水電解質二次電池を容易に製造することができるようになる。
この場合、前記所定範囲は、0.5mm以上であれば所定の効果が得られるが、5mm以上であると金属製芯体箔切断防止の効果はあるが活物質合剤塗布量が減るのでその分だけ電池の容量が低下する。したがって、前記所定範囲は、好ましくは0.5mm以上5mm以下の範囲である。
【0018】
更に、係る態様においては、前記正極及び/又は負極合剤層の厚みは、前記未塗布部に近づくに従って連続的に薄くなるようにすることが好ましい。このような方法を採用すれば、前記正極及び/又は負極合剤層を加圧圧縮する工程では、段差が滑らかに変化するので、より金属製芯体箔に加わる応力の変化も滑らかになり、金属製芯体箔の破断も少なくなって製造効率が向上し、しかも従来のものよりも高容量の非水電解質二次電池を製造することができるようになる。
【0019】
【発明の実施の形態】
以下、必要に応じて図面を参照にして本発明の実施例及び比較例を説明する。
(実施例1〜、比較例1〜
(正極スラリーの作製)
正極活物質としての平均粒径5μmのLiCoO粉末と、導電剤としての人造黒鉛粉末を、質量比9:1で混合して、正極合剤を調製した。この正極合剤と、ポリフッ化ビニリデンをN−メチル−2−ピロリドン(NMP)に5質量%溶かした結着剤溶液とを、固形分質量比95:5で混練して、正極作製用スラリーを調製した。
【0020】
(正極の作製)
この正極作製用スラリーを、図1に示したスラリー塗布装置10を使用し、正極の金属製芯体箔(集電体)11としてのアルミ箔(箔厚:15μm)に塗布した。また、第1のローラー12によりスラリーだまり13からスラリー14を引き上げて塗布し、第1のローラー12と協働する第2のローラー15によりスラリ−の塗布質量を調整する。第2のローラー15は上下動可能で、第1のローラー12との間のギャップを調整できるようになされており、これによって、スラリー14の塗布質量を加減できる。
【0021】
更に、第1のローラー12と協働する第3のローラー16は回転可能となされていると同時に左右に移動可能となされており、この第3のローラー16により金属製芯体箔11を搬送すると共に、この金属製芯体箔上へ正極合剤スラリ−14を塗布する際に塗布部17及び未塗布部18を形成する。こうして金属製芯体箔11の合剤塗布部分の端部で正極合剤スラリ−の塗布量が低減され、金属製芯体箔11の未塗布部分との境界(塗布端)から長手方向の所定範囲にある活物質合剤の厚みがそれ以外の塗布部の活物質合剤の厚みより薄くされ、このような装置を2台直列に接続することにより、活物質合剤層17を裏表に設け、図2に示したような裏表で正極合剤の塗布位置をずらした塗布端を有する正極を得た。
【0022】
そして、図1に示した第2のローラー15を上下させてギャップを変化させて、スラリーの付着量を変化させて合剤塗布端部の塗布質量を変え、更に、第2のローラー15の移動速度を調整することにより、塗布端部の塗布質量低減部位の幅Wがそれぞれ0.0mm(比較例1、試料:X1)、0.2mm(比較例2、試料:X2)、0.5mm(実施例1、試料:A1)、3.0mm(実施例2、試料:A2)、5.0mm(実施例3、試料:A3)、7.0mm(実施例4、試料A4)の6種類の正極を作製した。この場合、塗布質量が一定となっている部位は、両面塗布部の乾燥後質量で500g/m(片面塗布250g/m、集電体除く)となされている。なお、塗布質量低減部位の幅Wが0.0mmのものは実質的にこの塗布質量低減部位がないものを示すものである。
【0023】
正極合剤を塗布した6種類の試料を乾燥させたのち、図2に示したようなローラープレス装置により圧縮し、活物質の充填密度3.7g/cmの正極を作製した。この圧縮工程において、塗布端部での極板切断状況を観察した結果を表1にまとめて示した。その後、正常に作製された極板を選択して電池幅に合うようにスリットし、150℃、2時間で真空乾燥して6種類の電池用正極を得た。
【0024】
(3)負極の作製
リン片状天然黒鉛(d002値:3.356Å、Lc値:1000Å、平均粒径:20μm)と、スチレン−ブタジエンゴム(SBR)のディスパージョン(固形分:48%)を水に分散させて、増粘剤であるカルボキシメチルセルロース(CMC)を添加して負極作製用スラリーを調製した。尚、この負極合剤スラリーの乾燥後の固形分質量組成比が、黒鉛:SBR:CMC=100:3:2となるように負極合剤を調製した。次いで、正極の製造に用いた装置と同じ装置を用いて、合剤塗布端部の塗布質量低減部位の幅Wが0.0mmとなるように、負極の金属製芯体箔(集電体)としての銅箔(箔厚:8μm)の両面に、乾燥後質量で200g/m(片面塗布100g/m、集電体除く)となるよう塗布した後、乾燥させてその極板を圧縮し、活物質の充填密度1.7g/cmの負極を作製した。その後、極板を電池幅に合うようにスリットし、110℃、2時間で真空乾燥して電池用の負極を得た。
【0025】
(電解液とセパレータの調製)
非水電解液として、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との体積比50/50の混合溶媒に、LiPFを1モル/リットル溶かした溶液を使用した。また、セパレータとしては、ポリプロピレン製の微多孔膜を使用した。
【0026】
(電池の作製)
以上のようにして得られた6種類の正極、負極、および、セパレータを巻回し、上記のように作製した電解液を用いて、6種類の円筒型(AAサイズ、放電容量:600mAh)のリチウム二次電池を作製した。
【0027】
(電池特性試験)
各電池において、25℃中1It(1C)で4.1Vまで充電した後、4.1Vで定電圧充電(10mA cut off)し、1Itあるいは2Itで、2.75Vまで放電させ、このときの放電容量および放電容量比を比較した。その結果を表1にまとめて示した。なお、1Itは600mAに設定した。
【0028】
【表1】

Figure 0004565811
【0029】
表1から次のことがわかる。
(1)W=0.0mmの比較例1では、極板圧縮時にほぼ全てに切断が見られた。
(2)W=0.2mmの比較例2でも、極板圧縮時にほとんどの場合切断され、安定な生産が不可能であった。
(3)W=0.5mm以上の実施例1〜では、活物質の充填密度を上げるための極板圧縮を行っても、極板の切断は見られなかった。
(4)電池の放電容量を見ると、W=0.2mmの比較例2では若干容量低下が見られる。塗布端部の質量が、W=0.5mmより大きい実施例1〜3より多く塗布されているにもかかわらず、放電容量が低い原因は、塗布端部が過圧縮となり電解液の浸透が低下したため、塗布質量増加分の放電ができなくなったためと考えられる。
(5)実施例4のように、W=7.0mm以上になると、その塗布端部の質量低減分だけ電池放電容量が低下することになる。
【0030】
(実施例、比較例
実施例2の正極板と同様にして、正極合剤塗布端部の塗布質量低減部位の幅Wを3.0mm一定とし、充填密度を表2に示すように3.5〜3.9g/cmとなるように圧縮して、5種類の実施例に係る正極を作製し、その時の極板切断状況を確認した。また、塗布端部の塗布質量低減部位の幅Wを0.0mm一定とし、その他の条件は実施例の極板と同様にして5種類の比較例の正極を作製し、圧縮工程での極板切断状況を確認した。結果をまとめて表2に示した。
【0031】
【表2】
Figure 0004565811
【0032】
表2の結果から以下のことが分かる。
(1)実施例に係るW=3.0mmの正極は、充填密度3.5〜3.9g/cmまで圧縮しても、圧縮時に極板の切断が見られなかった。それに対し、W=0.0mmの比較例に係る正極は、いずれの充填密度でも極板の切断が見られた。
(2)充填密度3.7g/cm以上の3種類場合、比較例の極板を圧縮する際に見られた極板の切断状況は、他のものと比するとより差が顕著であった。
【0033】
(実施例6〜9、比較例4、5
(正極の作製)
正極合剤塗布端部の塗布質量低減部位の幅Wが0.0mmとなるように塗布した他は、実施例1の場合と同じ条件で正極を作製した。
【0034】
(負極の作製)
負極合剤塗布端部の塗布質量低減部位の幅Wを、0.0mm(比較例、試料:X)、0.2mm(比較例、試料:X)、0.5mm(実施例、試料:A)、3.0mm(実施例、試料:A)、5.0mm(実施例、試料:A)及び7.0mm(実施例9、試料:A9)として作製した他は実施例1と同じ条件で負極を作製した。そして、実施例1〜、比較例1及び2の場合と同様にして、負極の塗布端部の塗布質量低減部の幅Wと極板圧縮時(1.7g/cm)の極板切断状況及び電池の放電容量を確認した。その結果をまとめて表3に示した。
【0035】
【表3】
Figure 0004565811
【0036】
表3の結果から次のことが分かる。
(1)正極の場合と同様に、負極合剤塗布端部の塗布質量低減部の幅Wを変化させて切断状況を確認したところ、W=0.5mm以上の幅であれば負極の切断がなく生産上問題ないことがわかった。
(2)W=0.0mmの比較例及びW=0.2mmの比較例の負極を用いた電池では放電容量が低かった。この電池を充電状態で分解すると、負極端部の過圧縮となったところにLi金属が析出していた。これが低容量となった原因と思われる。
(3)W=7.0mmの実施例9のように塗布質量低減部の幅が大きくなると、過圧縮による切断はないが、正極から移動するLiの受け入れ量が確保されず、この場合もLi金属が析出していた。そのために放電容量が低くなったと考えられる。
【0037】
(実施例10、比較例
実施例の極板と同様に、負極合剤塗布端部の塗布質量低減部の幅Wを3.0mm一定とし、表4に示すように負極合剤の充填密度が1.5〜1.9g/cmとなるように圧縮して5種類の比較例の負極を作製し、その時の極板切断状況を確認した。同様に、塗布端部の塗布質量低減部位の幅Wが0.0mm一定となるようにして5種類の比較例の負極を作製した。その後、実施例10の負極と同様に、圧縮工程での極板切断状況を確認した。その結果をまとめて表4に示した。
【0038】
【表4】
Figure 0004565811
【0039】
表4の結果から次のことが分かる。
(1)負極合剤塗布端部の塗布質量低減部位のW幅が3.0mmの実施例10の負極を、充填密度1.5〜1.9g/cmまで圧縮しても、圧縮時に極板の切断が見られないのに対して、塗布端部の塗布質量低減部を作らなかった比較例の負極では、いずれの充填密度でも極板の切断が見られた。
(2)充填密度1.7g/cm以上の3種類の場合、比較例の負極を圧縮する際に見られる極板の切断の程度は、他のものと比較してより差が顕著であった。
【0040】
以上の実施例及び比較例について説明したところにより、正極合剤及び負極合剤ともに、金属製芯体箔上に塗布されている合剤塗布部分で、未塗布部分との境界(塗布端)から長手方向に0.5mm以上の所定範囲にわたり、それ以外の範囲の合剤層の厚みより薄くなされておれば、加圧圧縮工程における金属製芯体箔端部の破断が大幅に減少し、良好な結果が得られることが分かる。また、前記所定範囲が5mmをこえると、金属製芯体箔切断防止の効果はあるにしても、活物質合剤塗布量が減るのでその分だけ電池の容量が低下するようなる。したがって、前記所定範囲は、より好ましくは0.5mm以上5mm以下の範囲である。
【0041】
この場合、上記実施例1〜10では、各活物質合剤の厚みは、図2に示したように塗布端部に近づくに従って順次薄くなるようにしたが、段階的に薄くなるようにしても同様の結果が得られた。更に、上記実施例1〜10では、活物質合剤層を図2に示したような裏表で各極合剤の塗布位置をずらした塗布端を有するものとしたが、本発明では金属製芯体箔上に塗布された各極合剤を加圧圧縮する際に急な段差の変化がなければ所定の効果を奏するものであるから、塗布端部のほうが他の部分よりも薄くなっていれば、裏表で各極合剤の塗布位置が同じであってもあるいは裏表でWの値が異なってもよいことは明らかである。
【0042】
また、上記の実施例1〜10の結果から、本発明では正極に塗布された合剤の充填密度は3.7g/cm以上となすことができ、また、負極に塗布された合剤の充填密度は1.7g/cm以上とすることができ、従来のものに比して各極合剤の密度を高くできるので、結果として高容量の電池が得られる。
【0043】
なお、実施例1〜10では、正極活物質としてLiCoOを使用したが、これに限らず周知のマンガン、コバルト、ニッケル、バナジウム、ニオブを少なくとも一種含むリチウム複合金属酸化物を使用することができる。同じく、負極結着剤としてスチレン−ブタジエンゴムのディスパージョン(SBR)を使用したが、その他周知のメチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル、更に、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸等も使用することができる。
【0044】
また、同様に、負極用増粘剤としてカルボキシメチルセルロース(CMC)を使用したが、周知のメチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(塩)、酸化スターチ、リン酸化スターチ、カゼイン等を使用することができる。
【0045】
同様に、電解液としてエチレンカーボネート(EC)とジエチルカーボネート(DEC)混合溶媒を用いたが、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、シクロペンタノン、スルホラン、3−メチルスルホラン、2、4−ジメチルスルホラン、3−メチル−1、3−オキサゾリジン−2−オン、γ−ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1、2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1、3−ジオキソラン、酢酸メチル、酢酸エチル等の単体、2成分及び3成分混合物を等しく使用し得る。
【0046】
また、溶質(電解質)としてLiPF、を使用したが、他にLiBF、LiCFSO、LiAsF、LiN(CFSO、LiOSO(CFCF、LiClO等も使用し得る。
【0047】
【発明の効果】
以上述べたように、本発明によれば、非水系電解質二次電池の製造において、極板の合剤圧縮工程における合剤端部部分での段差が原因となる極板破断を減少させ、非水電解質二次電池の製造効率を向上させることができ、各極合剤の密度を高くすることができので、高容量の非水電解質二次電池を得ることができる。
【図面の簡単な説明】
【図1】本発明の非水系電解質二次電池製造における合剤層塗布形成装置の概略説明図
【図2】本発明の極板における活物質合剤層の塗布状態を説明するための図
【図3】従来の極板における活物質合剤層の塗布状態を説明するための図
【符号の説明】
11 金属製芯体箔
12 第1のローラー
13 スラリーだまり
14 スラリー
15 第2のローラー
16 第3のローラー
17 活物質合剤層塗布部
18 活物質合剤層未塗布部[0001]
[Technical field to which the invention belongs]
The present invention relates to a non-aqueous electrolyte secondary battery and a method for manufacturing the same, and more particularly, in a compression treatment step for increasing a mixture filling density of an electrode plate coated with an active material mixture layer so that breakage is prevented. The present invention relates to a non-aqueous electrolyte secondary battery using the prepared electrode plate and a method for manufacturing the same.
[0002]
[Prior art]
With the rapid spread of portable electronic devices, the required specifications for the batteries used for them are becoming stricter year by year, and in particular, small and thin, high capacity, excellent cycle characteristics, and stable performance are required. Yes. In the field of secondary batteries, lithium non-aqueous electrolyte secondary batteries, which have a higher energy density than other batteries, are attracting attention, and the proportion of lithium non-aqueous electrolyte secondary batteries shows a significant increase in the secondary battery market. ing.
[0003]
This lithium non-aqueous electrolyte secondary battery is composed of a negative electrode in which a negative electrode active material mixture is applied in a film form on both sides of a negative electrode core (current collector) made of an elongated sheet-like copper foil, etc., and an elongated sheet-like aluminum A separator made of a microporous polypropylene film or the like is disposed between the positive electrode core material made of foil or the like and coated with a positive electrode active material mixture in a film form, and the negative electrode and the positive electrode are insulated from each other by the separator. After the cylindrical electrode or the elliptical shape is wound in the state, a wound electrode body is manufactured, and in the case of a rectangular battery, the wound electrode body is further crushed to form a flat shape, and each of the predetermined portions of the negative electrode and the positive electrode is respectively The negative electrode tab and the positive electrode tab are connected and accommodated in an exterior of a predetermined shape.
[0004]
Lithium non-aqueous electrolyte secondary batteries have a high capacity, but the current battery performance is still insufficient to meet market demands, and a further increase in capacity is required. For this purpose, attempts have been made to increase the amount of the active material mixture to be filled in the battery exterior, and the electrode plate after application of the active material mixture is pressed and compressed to make the active material mixture dense and to reduce voids. It has been broken.
[0005]
When manufacturing such an electrode plate for a battery, an active material mixture for positive electrode or negative electrode is usually applied to both surfaces of a metal core foil (current collector), and then a mixture layer is added by a roller press. Although it is cut out to the required dimensions after being compressed, the thickness of the mixture layer on both sides is larger than the thickness of the metal core foil, and the porosity of the mixture layer is usually 10% to 30 after compression. % Is controlled.
[0006]
However, using an electrode plate having the same coating mass and thickness as the central part up to the conventional active material mixture application end, there is a disadvantage that the electrode plate is cut in the pressure compression process for increasing the packing density. It was easy. When the electrode plate is pressure-compressed with a roller press, the metal core foil part to which the mixture layer is not applied is first compressed, and then the part to which the mixture is applied is compressed. In the electrode plate with the coated end portions, the thickness changes from the thickness of the metal core foil to the thickness of the metal core foil and the thickness of the mixture layer on both sides. . That is, when the electrode plate is press-molded in a state where the metal core foil has this level difference, a large stress is applied to the metal core foil due to the level difference, causing the metal core foil to break.
[0007]
In order to improve the cutting of the electrode plate in the step of compressing and compressing in order to increase the packing density of the mixture layer, the following Patent Document 1 applies to the electrode plate 31 as shown in FIG. The design which shifts the application | coating edge part 34 of the prepared mixture layer 33 to the longitudinal direction of the metal core body foil (current collector) 32 by the front and back is proposed. However, due to the recent trend toward higher capacity, the compression ratio of the electrode plate has been increased in order to increase the active material packing density. Even with this proposal, the front and back offset plates can be cut at the boundary with the mixture layer. It has increased.
[0008]
Also, in the following Patent Document 2 and Patent Document 3, the combination of the front and back mixture application start part and the application end part is specified to reduce over-compression due to the large application mass of the application end part, and the electrode plate In the same manner, recent high capacity electrode plates are becoming less effective.
[0009]
[Patent Document 1]
JP-A-10-228930 ([0003] to [0004], [0009], FIGS. 3 and 4)
[Patent Document 2]
JP 2002-134102 A [Patent Document 3]
JP 2001-351610 A
[Problems to be solved by the invention]
In a non-aqueous electrolyte secondary battery typified by a lithium ion battery, a countermeasure against electrode plate breakage caused by a step at the end portion of the mixture in the mixture compression step is an urgent manufacturing task. As a result of repeating various studies to solve the above-mentioned problems, the inventors of the present invention have found that the mixture application portions are provided on both sides of the metal core foil, and the ends of the positive electrode or negative electrode electrode mixture application portions. In the part portion, by forming the positive and negative electrode mixture layers so as to become thinner toward the coating end side, it is found that the breakage of the electrode plate is reduced, and the manufacturing efficiency of the nonaqueous electrolyte secondary battery is improved. The present invention has been completed.
[0011]
That is, an object of the present invention is to provide a nonaqueous electrolyte secondary battery using an electrode in which electrode plate breakage caused by a step at a mixture end portion in a mixture pressure compression process is eliminated. There is. Furthermore, another object of the present invention is to provide a method for manufacturing a non-aqueous electrolyte secondary battery which is improved to reduce electrode breakage.
[0012]
[Means for Solving the Problems]
The above object of the present invention can be achieved by the following configurations. That is, according to the first aspect of the present invention, the positive electrode having the positive electrode mixture layer containing the positive electrode active material capable of occluding and releasing lithium ions on both surfaces of the metal core foil, and the both surfaces of the metal core foil. In the non-aqueous electrolyte secondary battery having a wound electrode body in which a negative electrode having a negative electrode mixture layer containing a negative electrode active material capable of occluding and releasing lithium ions is laminated and wound through a separator, the metal core body The thickness of the positive electrode and / or negative electrode mixture layer over the predetermined range of 0.5 mm or more in the longitudinal direction from the boundary with the uncoated portion of the positive electrode and / or negative electrode mixture layer of the foil, Provided is a non-aqueous electrolyte secondary battery that is thinner than the thickness.
[0013]
According to this aspect, since there is no steep step as in the conventional example in the thickness of the electrode, a large stress is not applied to the metal core foil even when the electrode plate is pressed and compressed. Since the foil is less likely to break and the electrode plate can be compressed at a high density, a non-aqueous electrolyte secondary battery having a higher capacity than the conventional one can be obtained.
In this case, if the predetermined range is 0.5 mm or more, a predetermined effect is obtained. Even if the predetermined range is 5 mm or more, there is an effect of reducing the metal core foil rupture, but the application amount of the active material mixture is reduced. Since the capacity of the battery decreases accordingly, it is preferably in the range of 0.5 mm or more and 5 mm or less.
[0014]
In this aspect, in the predetermined range, it is preferable that the thickness of the positive electrode and / or the negative electrode mixture layer is gradually decreased as the thickness approaches the uncoated portion. With such a configuration, since the step changes smoothly, the change of the stress applied to the metal core foil in the pressure compression process also becomes smooth, so that it can be compressed with higher density. Therefore, a high capacity non-aqueous electrolyte secondary battery can be obtained.
[0015]
In the present invention, it is preferable that a packing density of the positive electrode mixture layer is 3.7 g / cm 3 or more. With such a configuration, a non-aqueous electrolyte secondary battery having a higher capacity than the conventional one can be obtained while using the same positive electrode active material as the conventional one.
[0016]
Furthermore, in this invention, it is preferable that the packing density of the said negative mix layer is 1.7 g / cm < 3 > or more. With such a configuration, a non-aqueous electrolyte secondary battery having a higher capacity than the conventional one can be obtained while using the same negative electrode active material as the conventional one.
[0017]
Moreover, according to the 2nd aspect of this invention, on both surfaces of metal core body foil, the positive electrode which has the positive mix layer containing the positive electrode active material which can occlude-release lithium ion on both surfaces of metal core body foil, and metal core body foil In the method for producing a nonaqueous electrolyte secondary battery, the negative electrode having a negative electrode mixture layer containing a negative electrode active material capable of occluding and releasing lithium ions, and having a wound electrode body that is laminated and wound via a separator,
(1) The process of apply | coating the slurry of the said positive electrode or negative electrode mixture on the said metal core body foil with a 1st roller,
(2) adjusting the coating mass of the slurry by a second roller cooperating with the first roller;
(3) A step of forming an application portion and an unapplication portion of the mixture layer by a third roller that cooperates with the first roller,
The thickness of the positive electrode and / or negative electrode mixture layer over a predetermined range of 0.5 mm or more in the longitudinal direction from the boundary with the uncoated portion of the positive electrode and / or negative electrode mixture layer of the metal core foil Is applied so that it is thinner than the thickness of the mixture layer in other ranges,
(4) A method for producing a non-aqueous electrolyte secondary battery is provided, which includes a step of pressurizing and compressing the positive electrode and / or negative electrode mixture layer thereafter. According to this method, the non-aqueous electrolyte secondary battery according to the first aspect can be easily manufactured continuously.
In this case, if the predetermined range is 0.5 mm or more, a predetermined effect can be obtained. If the predetermined range is 5 mm or more, there is an effect of preventing cutting of the metal core foil, but the amount of active material mixture applied is reduced. The capacity of the battery is reduced by that amount. Therefore, the predetermined range is preferably a range of 0.5 mm to 5 mm.
[0018]
Furthermore, in this aspect, it is preferable that the thickness of the positive electrode and / or negative electrode mixture layer be continuously reduced as the thickness approaches the uncoated portion. If such a method is adopted, since the step changes smoothly in the step of compressing and compressing the positive electrode and / or negative electrode mixture layer, the change in stress applied to the metal core foil becomes smoother. The breakage of the metal core foil is reduced, the production efficiency is improved, and a non-aqueous electrolyte secondary battery having a higher capacity than the conventional one can be produced.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention and comparative examples will be described below with reference to the drawings as necessary.
(Examples 1-4 , Comparative Examples 1-2 )
(Preparation of positive electrode slurry)
A LiCoO 2 powder having an average particle diameter of 5 μm as a positive electrode active material and artificial graphite powder as a conductive agent were mixed at a mass ratio of 9: 1 to prepare a positive electrode mixture. This positive electrode mixture and a binder solution in which 5% by mass of polyvinylidene fluoride is dissolved in N-methyl-2-pyrrolidone (NMP) are kneaded at a solid content mass ratio of 95: 5 to obtain a slurry for producing a positive electrode. Prepared.
[0020]
(Preparation of positive electrode)
This slurry for producing a positive electrode was applied to an aluminum foil (foil thickness: 15 μm) as a metal core foil (current collector) 11 of the positive electrode using the slurry application device 10 shown in FIG. Further, the slurry 14 is pulled up from the slurry reservoir 13 by the first roller 12 and applied, and the slurry application mass is adjusted by the second roller 15 cooperating with the first roller 12. The second roller 15 can be moved up and down, and the gap between the second roller 15 and the first roller 12 can be adjusted, whereby the coating mass of the slurry 14 can be adjusted.
[0021]
Further, the third roller 16 cooperating with the first roller 12 is rotatable and can be moved left and right at the same time, and the metal core foil 11 is conveyed by the third roller 16. At the same time, when the positive electrode mixture slurry 14 is applied onto the metal core foil, the application part 17 and the non-application part 18 are formed. In this way, the coating amount of the positive electrode mixture slurry is reduced at the end portion of the mixture coating portion of the metal core foil 11, and predetermined in the longitudinal direction from the boundary (coating end) with the uncoated portion of the metal core foil 11. The thickness of the active material mixture in the range is made thinner than the thickness of the active material mixture in the other application parts, and by connecting two such devices in series, the active material mixture layer 17 is provided on the front and back sides. Thus, a positive electrode having an application end in which the application position of the positive electrode mixture was shifted between the front and back sides as shown in FIG.
[0022]
Then, the second roller 15 shown in FIG. 1 is moved up and down to change the gap, the amount of slurry applied is changed to change the coating mass at the mixture application end, and the second roller 15 is moved. By adjusting the speed, the width W of the coating mass reducing portion at the coating end is 0.0 mm (Comparative Example 1, Sample: X1), 0.2 mm (Comparative Example 2, Sample: X2), 0.5 mm ( Example 1, Sample: A1), 3.0 mm (Example 2, Sample: A2), 5.0 mm (Example 3, Sample: A3), 7.0 mm ( Example 4 , Sample A4 ) A positive electrode was produced. In this case, the portion where the coating mass is constant is 500 g / m 2 (single-side coating 250 g / m 2 , excluding the current collector) after drying of the double-side coating part. In addition, the thing of the width W of a coating mass reduction site | part 0.0mm shows what does not have this coating mass reduction site | part substantially.
[0023]
Six types of samples coated with the positive electrode mixture were dried and then compressed by a roller press device as shown in FIG. 2 to produce a positive electrode having an active material packing density of 3.7 g / cm 3 . In this compression step, the results of observing the state of electrode plate cutting at the coating end are summarized in Table 1. Thereafter, a normally produced electrode plate was selected, slit to fit the battery width, and vacuum dried at 150 ° C. for 2 hours to obtain six types of battery positive electrodes.
[0024]
(3) Production of negative electrode flake natural graphite (d 002 value: 3.356 mm, Lc value: 1000 mm, average particle size: 20 μm) and styrene-butadiene rubber (SBR) dispersion (solid content: 48%) Was dispersed in water, and carboxymethyl cellulose (CMC) as a thickener was added to prepare a slurry for preparing a negative electrode. In addition, the negative electrode mixture was prepared so that the solid content mass composition ratio after drying of this negative electrode mixture slurry might become graphite: SBR: CMC = 100: 3: 2. Next, using the same apparatus as that used for manufacturing the positive electrode, the negative electrode metal core foil (current collector) so that the width W of the coating mass reduction portion at the mixture coating end is 0.0 mm. After being applied to both sides of the copper foil (foil thickness: 8 μm) as a mass after drying to 200 g / m 2 (single-sided coating 100 g / m 2 , excluding current collector), the electrode plate is dried and compressed. Then, a negative electrode having an active material packing density of 1.7 g / cm 3 was produced. Thereafter, the electrode plate was slit to fit the battery width and vacuum dried at 110 ° C. for 2 hours to obtain a negative electrode for the battery.
[0025]
(Preparation of electrolyte and separator)
As the non-aqueous electrolyte, a solution obtained by dissolving 1 mol / liter of LiPF 6 in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 50/50 was used. As the separator, a polypropylene microporous film was used.
[0026]
(Production of battery)
Six types of positive electrodes, negative electrodes, and separators obtained as described above were wound, and six types of cylindrical (AA size, discharge capacity: 600 mAh) lithium were prepared using the electrolyte prepared as described above. A secondary battery was produced.
[0027]
(Battery characteristics test)
Each battery was charged to 4.1V at 1 It (1 C) at 25 ° C., then charged at a constant voltage of 4.1 V (10 mA cut off) and discharged to 1.75 V at 1 It or 2 It. The capacity and discharge capacity ratio were compared. The results are summarized in Table 1. Note that 1 It was set to 600 mA.
[0028]
[Table 1]
Figure 0004565811
[0029]
Table 1 shows the following.
(1) In Comparative Example 1 where W = 0.0 mm, almost all of the cuts were observed during electrode plate compression.
(2) Even in Comparative Example 2 where W = 0.2 mm, it was almost always cut during electrode plate compression, and stable production was impossible.
(3) In Examples 1 to 4 where W = 0.5 mm or more, the electrode plate was not cut even when the electrode plate was compressed to increase the packing density of the active material.
(4) Looking at the discharge capacity of the battery, a slight decrease in capacity is seen in Comparative Example 2 where W = 0.2 mm. The reason why the discharge capacity is low despite the fact that the mass of the coating end is larger than that of Examples 1 to 3 where W is greater than 0.5 mm is that the coating end is overcompressed and the penetration of the electrolyte is reduced. Therefore, it is thought that the discharge for the increase in the coating mass could not be performed.
(5) As in Example 4 , when W = 7.0 mm or more, the battery discharge capacity is reduced by the amount of mass reduction at the coating end.
[0030]
(Example 5 and Comparative Example 3 )
In the same manner as the positive electrode plate of Example 2, the width W of the application mass reduction portion at the positive electrode mixture application end is fixed at 3.0 mm, and the packing density is 3.5 to 3.9 g / cm as shown in Table 2. The positive electrode according to Example 5 was produced by compressing to 3 and the state of electrode plate cutting at that time was confirmed. In addition, the width W of the coating mass reduction portion at the coating end is fixed to 0.0 mm, and the other conditions are the same as those of the electrode plate of Example 5 , and five types of positive electrodes of Comparative Example 3 are produced. The state of electrode plate cutting was confirmed. The results are summarized in Table 2.
[0031]
[Table 2]
Figure 0004565811
[0032]
From the results in Table 2, the following can be understood.
(1) When the positive electrode of W = 3.0 mm according to Example 5 was compressed to a packing density of 3.5 to 3.9 g / cm 3 , the electrode plate was not cut during compression. On the other hand, in the positive electrode according to Comparative Example 3 where W = 0.0 mm, the electrode plate was cut at any packing density.
(2) In the case of three types having a packing density of 3.7 g / cm 3 or more, the cutting situation of the electrode plate seen when the electrode plate of Comparative Example 3 was compressed was more markedly different than the other ones. It was.
[0033]
(Examples 6 to 9 and Comparative Examples 4 and 5 )
(Preparation of positive electrode)
A positive electrode was produced under the same conditions as in Example 1 except that coating was performed so that the width W of the coating mass reduction portion at the coated end portion of the positive electrode mixture was 0.0 mm.
[0034]
(Preparation of negative electrode)
The width W of the coating mass reduction part of the negative electrode mixture coating end is 0.0 mm (Comparative Example 4 , Sample: X 4 ), 0.2 mm (Comparative Example 5 , Sample: X 5 ), 0.5 mm (Example) 6 , Sample: A 6 ), 3.0 mm (Example 7 , Sample: A 7 ), 5.0 mm (Example 8 , Sample: A 8 ), and 7.0 mm ( Example 9 , Sample: A9 ) Otherwise, a negative electrode was produced under the same conditions as in Example 1. Then, in the same manner as in Examples 1 to 4 and Comparative Examples 1 and 2 , the width W of the coating mass reducing portion at the coating end of the negative electrode and the electrode plate cutting during electrode plate compression (1.7 g / cm 3 ). The situation and the discharge capacity of the battery were confirmed. The results are summarized in Table 3.
[0035]
[Table 3]
Figure 0004565811
[0036]
The following can be understood from the results in Table 3.
(1) As in the case of the positive electrode, the cutting condition was confirmed by changing the width W of the coating mass reducing portion at the negative electrode mixture coating end, and if the width was W = 0.5 mm or more, the negative electrode was cut. There was no problem in production.
(2) The discharge capacity was low in the batteries using the negative electrodes of Comparative Example 4 with W = 0.0 mm and Comparative Example 5 with W = 0.2 mm. When this battery was disassembled in a charged state, Li metal was deposited where the negative electrode end was overcompressed. This seems to be the cause of the low capacity.
(3) When the width of the coating mass reducing part is increased as in Example 9 where W = 7.0 mm, there is no cutting due to overcompression, but the amount of Li that moves from the positive electrode is not secured, and in this case also Li Metal was deposited. Therefore, it is considered that the discharge capacity is lowered.
[0037]
(Example 10 and Comparative Example 6 )
Similar to the electrode plate of Example 7 , the width W of the coating mass reducing portion at the negative electrode mixture application end is kept constant at 3.0 mm, and the negative electrode mixture has a packing density of 1.5-1. The negative electrode of Comparative Example 6 was prepared by compressing to 9 g / cm 3, and the electrode plate cutting state at that time was confirmed. Similarly, five types of negative electrodes of Comparative Example 6 were manufactured so that the width W of the coating mass reduction portion at the coating end was constant at 0.0 mm. Thereafter, as with the negative electrode of Example 10 , the electrode plate cutting state in the compression step was confirmed. The results are summarized in Table 4.
[0038]
[Table 4]
Figure 0004565811
[0039]
The following can be seen from the results in Table 4.
(1) Even when the negative electrode of Example 10 in which the W width at the coating mass reduction portion at the negative electrode mixture coating end is 3.0 mm is compressed to a packing density of 1.5 to 1.9 g / cm 3 , In the negative electrode of Comparative Example 6 in which the coating mass reduction part at the coating end portion was not formed, the electrode plate was cut at any packing density, whereas the plate was not cut.
(2) In the case of three types with a packing density of 1.7 g / cm 3 or more, the degree of cutting of the electrode plate seen when the negative electrode of Comparative Example 6 is compressed is more markedly different than other types. there were.
[0040]
From the description of the above examples and comparative examples, both the positive electrode mixture and the negative electrode mixture are the mixture application part applied on the metal core foil, from the boundary (application end) with the uncoated part. If it is made thinner than the thickness of the mixture layer in the other range over the predetermined range of 0.5 mm or more in the longitudinal direction, the breakage of the metal core body foil end in the pressure compression process is greatly reduced, which is good It can be seen that a good result is obtained. On the other hand , if the predetermined range exceeds 5 mm, even if there is an effect of preventing the metal core foil from being cut, the amount of the active material mixture applied is reduced, so that the capacity of the battery is reduced accordingly. Therefore, the predetermined range is more preferably a range of 0.5 mm or more and 5 mm or less.
[0041]
In this case, in Examples 1 to 10 described above, the thickness of each active material mixture was gradually decreased as it approached the coating end as shown in FIG. Similar results were obtained. Further, in Examples 1 to 10 above, the active material mixture layer has a coating end in which the application position of each electrode mixture is shifted on the back and front as shown in FIG. When applying pressure compression to each electrode mixture applied on the body foil, it will produce the desired effect if there is no sudden step change, so the coating end should be thinner than the other parts. For example, it is clear that the application position of each electrode mixture may be the same on the front and back, or the value of W may be different on the front and back.
[0042]
In addition, from the results of Examples 1 to 10 described above, in the present invention, the packing density of the mixture applied to the positive electrode can be 3.7 g / cm 3 or more, and the mixture applied to the negative electrode The packing density can be set to 1.7 g / cm 3 or more, and the density of each electrode mixture can be increased as compared with the conventional one. As a result, a battery having a high capacity can be obtained.
[0043]
In Examples 1 to 10 , LiCoO 2 was used as the positive electrode active material. However, the present invention is not limited to this, and a lithium composite metal oxide containing at least one of known manganese, cobalt, nickel, vanadium, and niobium can be used. . Similarly, styrene-butadiene rubber dispersion (SBR) was used as the negative electrode binder, but other well-known methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, hydroxyethyl Ethylenically unsaturated carboxylic acid esters such as (meth) acrylates, and ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid and maleic acid can also be used.
[0044]
Similarly, carboxymethylcellulose (CMC) was used as a thickener for the negative electrode, but well-known methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, casein, etc. Can be used.
[0045]
Similarly, a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) was used as the electrolytic solution, but ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclopentanone, sulfolane, 3-methylsulfolane, 2, 4 -Dimethylsulfolane, 3-methyl-1,3-oxazolidine-2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate, dipropyl Simple substances such as carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate The 2-component and 3-component mixture may be equally used.
[0046]
In addition, LiPF 6 was used as a solute (electrolyte), but LiBF 4 , LiCF 3 SO 3 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiOSO 2 (CF 2 ) 3 CF 3 , LiClO 4, etc. Can also be used.
[0047]
【The invention's effect】
As described above, according to the present invention, in the production of a non-aqueous electrolyte secondary battery, the electrode plate breakage caused by the step at the mixture end portion in the mixture compression step of the electrode plate is reduced, Since the production efficiency of the water electrolyte secondary battery can be improved and the density of each electrode mixture can be increased, a high-capacity non-aqueous electrolyte secondary battery can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view of a mixture layer coating forming apparatus in the production of a non-aqueous electrolyte secondary battery of the present invention. FIG. 2 is a diagram for explaining a coating state of an active material mixture layer on an electrode plate of the present invention. FIG. 3 is a diagram for explaining the application state of an active material mixture layer on a conventional electrode plate.
DESCRIPTION OF SYMBOLS 11 Metal core foil 12 1st roller 13 Slurry pool 14 Slurry 15 2nd roller 16 3rd roller 17 Active material mixture layer application part 18 Active material mixture layer non-application part

Claims (7)

金属製芯体箔の両面にリチウムイオンを吸蔵放出可能な正極活物質を含む正極合剤層を有する正極と、金属製芯体箔の両面にリチウムイオンを吸蔵放出可能な負極活物質を含む負極合剤層を有する負極とが、セパレータを介して積層巻回された巻回電極体を有する非水電解質二次電池において、前記金属製芯体箔の正極及び/又は負極合剤層の未塗布部との境界から長手方向に0.5mm以上の所定範囲にわたる前記正極及び/又は負極合剤層の厚みがそれ以外の範囲の合剤層の厚みより薄くなされ、前記所定範囲においては、正極及び/又は負極合剤層の厚みは前記未塗布部に近づくに従って連続的に薄くなるようになされていることを特徴とする非水系電解質二次電池。A positive electrode having a positive electrode mixture layer containing a positive electrode active material capable of occluding and releasing lithium ions on both sides of a metal core foil, and a negative electrode comprising a negative electrode active material capable of occluding and releasing lithium ions on both sides of the metal core foil In a non-aqueous electrolyte secondary battery having a wound electrode body that is laminated and wound through a separator with a negative electrode having a mixture layer, the positive electrode and / or the negative electrode mixture layer of the metal core foil are not applied. The thickness of the positive electrode and / or negative electrode mixture layer over a predetermined range of 0.5 mm or more in the longitudinal direction from the boundary with the portion is made thinner than the thickness of the mixture layer in other ranges, and in the predetermined range, the positive electrode and The non-aqueous electrolyte secondary battery is characterized in that the thickness of the negative electrode mixture layer is continuously reduced as it approaches the uncoated portion . 前記所定範囲が0.5mm以上5mm以下であることを特徴とする請求項1に記載の非水系電解質二次電池。The non-aqueous electrolyte secondary battery according to claim 1, wherein the predetermined range is 0.5 mm or more and 5 mm or less. 前記正極合剤層の充填密度が3.7g/cm3以上であることを特徴とする請求項1又は2に記載の非水系電解質二次電池。Non-aqueous electrolyte secondary battery according to claim 1 or 2 packing density of the positive electrode mixture layer is equal to or is 3.7 g / cm @ 3 or more. 前記負極合剤層の充填密度が1.7g/cm3以上であることを特徴とする請求項1〜3のいずれか1項に記載の非水系電解質二次電池。The nonaqueous electrolyte secondary battery according to claim 1, wherein a filling density of the negative electrode mixture layer is 1.7 g / cm 3 or more. 金属製芯体箔の両面にリチウムイオンを吸蔵放出可能な正極活物質を含む正極合剤層を有する正極と、金属製芯体箔の両面にリチウムイオンを吸蔵放出可能な負極活物質を含む負極合剤層を有する負極とが、セパレータを介して積層巻回された巻回電極体を有する非水電解質二次電池の製造方法において、
(1)前記正極又は負極合剤のスラリ-を第1のローラーにより前記金属製芯体箔上へ塗布する工程、
(2)該第1のローラーと協働する第2のローラーにより該スラリ-の塗布質量を調整する工程、
(3)該第1のローラーと協働する第3のローラーにより前記合剤層の塗布部と未塗布部を形成する工程、
を経ることにより、前記金属製芯体箔の長手方向の正極及び/又は負極合剤層の未塗布部との境界から0.5mm以上の所定範囲にわたる前記正極及び/又は負極合剤層の厚みがそれ以外の範囲の合剤層の厚みより薄くなるように塗布し、
(4)その後に前記正極及び/又は負極合剤層を加圧圧縮する工程を有することを特徴とする非水系電解質二次電池の製造方法。
A positive electrode having a positive electrode mixture layer containing a positive electrode active material capable of occluding and releasing lithium ions on both sides of a metal core foil, and a negative electrode comprising a negative electrode active material capable of occluding and releasing lithium ions on both sides of the metal core foil In the method for producing a nonaqueous electrolyte secondary battery having a wound electrode body in which a negative electrode having a mixture layer is laminated and wound through a separator,
(1) The process of apply | coating the slurry of the said positive electrode or negative electrode mixture on the said metal core body foil with a 1st roller,
(2) adjusting the coating mass of the slurry by a second roller cooperating with the first roller;
(3) A step of forming an application portion and an unapplication portion of the mixture layer by a third roller that cooperates with the first roller,
The thickness of the positive electrode and / or negative electrode mixture layer over a predetermined range of 0.5 mm or more from the boundary with the uncoated portion of the positive electrode and / or negative electrode mixture layer in the longitudinal direction of the metal core foil Is applied so that it is thinner than the thickness of the mixture layer in other ranges,
(4) A method for producing a non-aqueous electrolyte secondary battery, comprising subsequently compressing and compressing the positive electrode and / or negative electrode mixture layer.
前記所定範囲が0.5mm以上5mm以下であることを特徴とする請求項に記載の非水系電解質二次電池。The non-aqueous electrolyte secondary battery according to claim 5 , wherein the predetermined range is 0.5 mm or more and 5 mm or less. 前記所定範囲においては、正極及び/又は負極合剤層の厚みは前記未塗布部に近づくに従って連続的に薄くなるようになしたことを特徴とする請求項又はに記載の非水系電解質二次電池の製造方法。Wherein in the predetermined range, the positive electrode and / or the thickness of the negative electrode mixture layer is a non-aqueous electrolyte according to claim 5 or 6, characterized in that none so continuously thinner as approaching the uncoated portion two A method for manufacturing a secondary battery.
JP2003096581A 2003-03-31 2003-03-31 Non-aqueous electrolyte secondary battery and manufacturing method thereof Expired - Fee Related JP4565811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003096581A JP4565811B2 (en) 2003-03-31 2003-03-31 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096581A JP4565811B2 (en) 2003-03-31 2003-03-31 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2004303622A JP2004303622A (en) 2004-10-28
JP2004303622A5 JP2004303622A5 (en) 2006-04-20
JP4565811B2 true JP4565811B2 (en) 2010-10-20

Family

ID=33408583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096581A Expired - Fee Related JP4565811B2 (en) 2003-03-31 2003-03-31 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4565811B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002927B2 (en) 2005-08-25 2012-08-15 パナソニック株式会社 Non-aqueous electrolyte secondary battery and battery pack using the same
JP5103789B2 (en) * 2006-05-24 2012-12-19 パナソニック株式会社 Negative electrode for lithium secondary battery and lithium secondary battery using the same
CN101662011B (en) * 2008-08-26 2013-05-29 比亚迪股份有限公司 Battery pole piece and preparation method thereof and battery containing same
US20110052954A1 (en) * 2009-02-24 2011-03-03 Panasonic Corporation Battery, method of manufacturing the same and non-aqueous secondary battery using the same
WO2012029401A1 (en) * 2010-09-03 2012-03-08 三洋電機株式会社 Non-aqueous electrolyte rechargeable battery
KR101265212B1 (en) 2011-02-22 2013-05-24 삼성에스디아이 주식회사 Rechargeable battery
JP2015109135A (en) * 2012-03-14 2015-06-11 日産自動車株式会社 Electrode, manufacturing method thereof and manufacturing device
EP2860798B8 (en) * 2012-06-11 2019-10-09 Envision AESC Energy Devices Ltd. Electrode manufacturing method
WO2014034708A1 (en) * 2012-08-29 2014-03-06 シャープ株式会社 Electrode plate and secondary battery
WO2014203424A1 (en) * 2013-06-21 2014-12-24 Necエナジーデバイス株式会社 Secondary battery and electrode production method
WO2015019514A1 (en) * 2013-08-09 2015-02-12 Necエナジーデバイス株式会社 Secondary battery and method for manufacturing same
CN105514350A (en) * 2014-09-25 2016-04-20 东莞新能源科技有限公司 Lithium ion battery
WO2016121734A1 (en) 2015-01-30 2016-08-04 Necエナジーデバイス株式会社 Secondary battery
JP2017117528A (en) * 2015-12-21 2017-06-29 Necエナジーデバイス株式会社 Manufacturing method of electrode sheet
JP2018137187A (en) * 2017-02-23 2018-08-30 パナソニックIpマネジメント株式会社 Lithium ion secondary battery and method for manufacturing the same
CN117423797A (en) * 2017-08-23 2024-01-19 株式会社村田制作所 Rolling device and method for manufacturing laminated structural member
US11637274B2 (en) 2017-11-09 2023-04-25 Lg Energy Solution, Ltd. Strip-shaped electrode used for cylindrical jelly roll and lithium secondary battery comprising same
US20220393250A1 (en) * 2019-11-01 2022-12-08 Sanyo Electric Co., Ltd. Electrode plate, nonaqueous electrolyte secondary battery, and method for producing electrode plate
CN114284464A (en) * 2021-11-23 2022-04-05 上海兰钧新能源科技有限公司 Lithium ion battery positive pole piece and gap coating method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283862A (en) * 2000-03-30 2001-10-12 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2001297763A (en) * 2000-04-12 2001-10-26 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary cell
JP2002279973A (en) * 1996-10-30 2002-09-27 Hitachi Chem Co Ltd Negative electrode for lithium secondary battery, method of manufacturing the same, and the lithium secondary battery
JP2002324544A (en) * 2001-02-26 2002-11-08 Mitsubishi Cable Ind Ltd Positive electrode for lithium secondary battery and lithium secondary battery
JP2002358951A (en) * 2001-05-30 2002-12-13 Gs-Melcotec Co Ltd Non-aqueous electrolyte secondary battery
JP2003068279A (en) * 2001-08-28 2003-03-07 Nec Mobile Energy Kk Battery electrode and manufacturing method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279973A (en) * 1996-10-30 2002-09-27 Hitachi Chem Co Ltd Negative electrode for lithium secondary battery, method of manufacturing the same, and the lithium secondary battery
JP2001283862A (en) * 2000-03-30 2001-10-12 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2001297763A (en) * 2000-04-12 2001-10-26 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary cell
JP2002324544A (en) * 2001-02-26 2002-11-08 Mitsubishi Cable Ind Ltd Positive electrode for lithium secondary battery and lithium secondary battery
JP2002358951A (en) * 2001-05-30 2002-12-13 Gs-Melcotec Co Ltd Non-aqueous electrolyte secondary battery
JP2003068279A (en) * 2001-08-28 2003-03-07 Nec Mobile Energy Kk Battery electrode and manufacturing method of the same

Also Published As

Publication number Publication date
JP2004303622A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP4565811B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5258228B2 (en) Non-aqueous secondary battery
JP5156406B2 (en) Positive electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP6395371B2 (en) Negative electrode active material layer for lithium ion secondary battery and lithium ion secondary battery
JP2010182626A (en) Negative electrode for nonaqueous secondary battery
JP2005293942A (en) Method for manufacturing negative electrode for secondary battery
JP3561628B2 (en) Non-aqueous electrolyte secondary battery
JP2010135272A (en) Lithium-ion battery, and manufacturing method thereof
JP2001283844A (en) Nonaqueous electrolyte battery
JP4242997B2 (en) Non-aqueous electrolyte battery
JP2009081067A (en) Non-aqueous secondary battery
KR20190066867A (en) Negative electrode active material, negative electrode including the negative electrode active material, and lithium secondary battery including the same
JP7315342B2 (en) Negative electrode mixture for secondary battery, negative electrode for secondary battery, and secondary battery
JP3582823B2 (en) Positive electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP2014165038A (en) Electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP4954468B2 (en) Winding electrode, manufacturing method thereof, and battery manufacturing method
JP2005190785A (en) Non-aqueous electrolyte secondary battery
JP2013191415A (en) Nonaqueous electrolyte secondary battery
JP2001196095A (en) Manufacturing method for non-aqueous electrolytic solvent secondary battery
JP7309258B2 (en) Method for manufacturing secondary battery
JP6607388B2 (en) Positive electrode for lithium ion secondary battery and method for producing the same
JP2008041437A (en) Nonaqueous electrolyte secondary battery
JP4270904B2 (en) Non-aqueous lithium secondary battery
JP4560851B2 (en) Method for producing solid electrolyte battery
JP2003317721A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees