JP4565109B2 - Pressure sensitive fiber structure - Google Patents

Pressure sensitive fiber structure Download PDF

Info

Publication number
JP4565109B2
JP4565109B2 JP2007089175A JP2007089175A JP4565109B2 JP 4565109 B2 JP4565109 B2 JP 4565109B2 JP 2007089175 A JP2007089175 A JP 2007089175A JP 2007089175 A JP2007089175 A JP 2007089175A JP 4565109 B2 JP4565109 B2 JP 4565109B2
Authority
JP
Japan
Prior art keywords
pressure
conductive
fiber structure
sensitive
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007089175A
Other languages
Japanese (ja)
Other versions
JP2008249409A (en
Inventor
敦士 増田
哲彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukui Prefecture
Original Assignee
Fukui Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukui Prefecture filed Critical Fukui Prefecture
Priority to JP2007089175A priority Critical patent/JP4565109B2/en
Publication of JP2008249409A publication Critical patent/JP2008249409A/en
Application granted granted Critical
Publication of JP4565109B2 publication Critical patent/JP4565109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、2次元平面の圧力の検知、圧力分布の測定およびそれら圧力の時間的変化の計測に使用する感圧用繊維構造体に関する。   The present invention relates to a pressure-sensitive fiber structure used for detecting a pressure on a two-dimensional plane, measuring a pressure distribution, and measuring a temporal change in the pressure.

繊維構造体上に感圧センサーと電気回路を一体化する方法としては、特許文献1,2のように織物にあらかじめ電気回路を構築した後に回路上に圧力センサーを配置していく方法があるが、広範囲の圧力を検知する場合は平面に多数のセンサーを固定する作業と回路とセンサーをハンダ等により電気的に接続する2つの作業が必要となるために生産性が低く、さらに圧力センサーを配置するために平滑性や繊維構造体が有する特徴である柔軟性が損なわれるという問題がある。   As a method for integrating the pressure-sensitive sensor and the electric circuit on the fiber structure, there is a method of arranging the pressure sensor on the circuit after constructing the electric circuit in advance in the fabric as in Patent Documents 1 and 2. When detecting a wide range of pressures, productivity is low due to the need to fix a large number of sensors on a flat surface and to connect the circuit and sensors electrically by soldering. Therefore, there is a problem that the flexibility, which is a characteristic of the smoothness and the fiber structure, is impaired.

自由曲面への適応が可能でシートと圧力センサーを一体化した感圧シートには、特許文献3や特許文献4があるが、シート上に付加された圧力を検知するためにはマトリックスに配置した複数の導電糸間を各々配線して電気回路を構築し、さらに外部システムと接続する必要があり、この場合もハンダ等による接続方法は生産性が低く、さらにハンダにより導電性繊維間を接着させる方法では、織編物の厚さ方向に貫通した金属塊が生じる等の原因により繊維構造体の柔軟性や平滑性を損なうという問題がある。   There are Patent Documents 3 and 4 as pressure-sensitive sheets that can be applied to a free-form surface and integrate a sheet and a pressure sensor, but are arranged in a matrix in order to detect pressure applied on the sheet. It is necessary to construct an electric circuit by wiring between a plurality of conductive yarns, and to connect to an external system. In this case as well, the connection method using solder or the like is low in productivity, and the conductive fibers are bonded by solder. In the method, there is a problem that the flexibility and smoothness of the fiber structure are impaired due to a metal lump penetrating in the thickness direction of the woven or knitted fabric.

特開平5−299533JP-A-5-299533 特開2006−332647JP 2006-332647 A 特開2004−132765JP 2004-132765 A 特開2006−284276JP 2006-284276 A

上記で記載したように従来の広範囲の圧力を検知する感圧シートを利用して圧力を検知するシステムを構築するには作業工程が多く複雑であるために生産性が低く、さらに感圧シート自体が有していた平滑性、柔軟性等の優れた物理特性もシステム構築後に失われるという課題がある。   As described above, the construction of a system for detecting pressure using a conventional pressure-sensitive sheet for detecting pressure in a wide range is low in productivity due to many complicated work processes, and the pressure-sensitive sheet itself. There is a problem that excellent physical properties such as smoothness and flexibility that are possessed by the system are lost after system construction.

本発明は上記の問題点を解決し、圧力を検知する感圧センサー部分と配線部分が一体化した感圧用繊維構造体を提供することを目的とするものである。   An object of the present invention is to solve the above problems and to provide a pressure-sensitive fiber structure in which a pressure-sensitive sensor portion for detecting pressure and a wiring portion are integrated.

本発明に係る感圧用繊維構造体は、複数の導電糸をたて糸及びよこ糸の一部に用いて織成された平風通織の2重織物からなり、複数の導電糸を面方向に所定の間隔で配置した上面部と、複数の導電糸を2本ずつ面方向に所定の間隔でかつ上面部の導電糸と交差する方向に配置した下面部と、上面部及び下面部の間を所定の間隔に保つ連結部とを備え、押圧により連結部が圧縮状態となることで上面部の導電糸と下面部の導電糸とが接触状態となる感圧用繊維構造体において、前記多層構造織物のたて糸及びよこ糸の一部に用いられるとともに互いに電気的に接続しないように前記上面部及び前記下面部に織り込まれた複数の導電性接続糸を備えており、導電性接続糸は、感圧面を複数の領域に画定して設けられた複数の感圧センサー部のうちの1つにおいて接触状態となる前記上面部の導電糸又は前記下面部の導電糸とそれぞれ電気的に接続状態となるように織り込まれていることを特徴とする。
また、少なくとも1つの前記感圧センサー部の圧縮特性が異なっていることを特徴とする。
The pressure-sensitive fiber structure according to the present invention is composed of a double- woven fabric of plain air weaving using a plurality of conductive yarns as part of a warp and a weft, and the plurality of conductive yarns at a predetermined interval in the surface direction. and the placed top section, and a lower surface portion disposed in a direction crossing the conductive yarn and an upper surface portion at predetermined intervals a plurality of electrically conductive yarn in two by two planar direction between the upper surface portion and lower surface portion at predetermined intervals A pressure-sensitive fiber structure in which the conductive yarn on the upper surface and the conductive yarn on the lower surface are brought into contact with each other when the connecting portion is compressed by pressing, and the warp and the weft of the multilayer structure fabric A plurality of conductive connecting yarns woven into the upper surface portion and the lower surface portion so as not to be electrically connected to each other, and the conductive connecting yarn has a pressure-sensitive surface in a plurality of regions. Among a plurality of pressure-sensitive sensor sections that are defined and provided Characterized in that each conductive thread conductive threads or the lower surface portion of the upper surface portion to be contact woven so as to be electrically connected state in one.
Further, the compression characteristics of at least one of the pressure-sensitive sensor units are different.

本発明に係る感圧用繊維構造体は、その構造体製造と同時に目的に応じた各感圧センサー間の配線が可能となるため、製造工程の省力化により製造時間と製造コストを大幅に低減できる。さらに、感圧用繊維構造体は各センサー間を配線する導電性接続糸からなる配線部とセンシング部を同一繊維構造体内で構成するため、繊維構造体の特性である柔軟性に優れていること、取り扱いが容易であること、スケールアップが容易であることを特徴とする。   The pressure-sensitive fiber structure according to the present invention enables wiring between each pressure-sensitive sensor in accordance with the purpose at the same time as manufacturing the structure, so that the manufacturing time and manufacturing cost can be greatly reduced by saving the manufacturing process. . Furthermore, the pressure sensitive fiber structure is composed of a conductive connecting thread that connects between the sensors and the sensing part in the same fiber structure, so that it has excellent flexibility as a characteristic of the fiber structure, It is easy to handle and is easy to scale up.

以下、本発明について詳細に説明する。
本発明に係る感圧用繊維構造体は、2層以上の複数層構造からなる繊維構造体内に、圧力を検知する1個以上の感圧センサーとその感圧センサーを外部システムと電気的に接続するための1本以上の導電性接続糸を繊維構造体の製造時に配置することで、センサーと配線が一体となることにより、各センサー間の配線工程が省略できるために製造時間および製造コストの大幅な低減が図られることを特徴とする。
Hereinafter, the present invention will be described in detail.
The pressure-sensitive fiber structure according to the present invention electrically connects one or more pressure-sensitive sensors that detect pressure and the pressure sensor to an external system in a fiber structure composed of two or more layers. By arranging one or more conductive connecting yarns for manufacturing the fiber structure, the sensor and the wiring can be integrated, so that the wiring process between the sensors can be omitted, which greatly increases manufacturing time and manufacturing cost. It is characterized in that the reduction can be achieved.

感圧用繊維構造体のセンシング部の感圧センサーと配線の組み合わせとしては、広範囲な平面上の圧力を検知する場合は平面内に配置する複数の感圧センサーを1組の導電性接続糸で接続する方法があり、広範囲な平面上の任意の位置における圧力を個別に検知する場合は平面内の複数の感圧センサーとそれと同数の複数組の導電性接続糸を各々独立して接続する方法が挙げられるが、センシング部の感圧センサーと配線部の導電性接続糸の組み合わせは、目的とする圧力を検知できるものであればこれに限るものではない。
また前述2つの中間である複数領域の圧力を領域ごとに検知する場合は、広範囲の平面上の各特定領域に配置された複数の感圧センサーを領域ごとに各1組の導電性接続糸と接続する方法がある。
As a combination of the pressure sensor and wiring of the sensing part of the pressure sensitive fiber structure, when detecting pressure on a wide range of planes, connect a plurality of pressure sensors arranged in the plane with a set of conductive connecting threads In the case of individually detecting pressures at arbitrary positions on a wide range of planes, there is a method of independently connecting a plurality of pressure-sensitive sensors in the plane and the same number of sets of conductive connecting threads. The combination of the pressure sensor of the sensing unit and the conductive connecting yarn of the wiring unit is not limited to this as long as the target pressure can be detected.
In addition, when detecting the pressure in a plurality of regions, which is the intermediate between the two, for each region, a plurality of pressure-sensitive sensors arranged in each specific region on a wide range of planes are connected to each set of conductive connecting yarns for each region. There is a way to connect.

感圧用繊維構造体は、配線部を構成する導電性接続糸も感圧センサー部と同様に繊維素材で構成できるため、配線部もセンサー部と同等の繊維構造体厚さや柔軟性等の優れた物理特性を有し、取り扱い性、施工性に優れていることを特徴とする。   Since the pressure-sensitive fiber structure can be composed of a fiber material in the same way as the pressure-sensitive sensor part, the conductive connection yarns that make up the wiring part can also be made of the same fiber structure thickness and flexibility as the sensor part. It has physical characteristics and is characterized by excellent handling and construction.

この感圧用繊維構造体を構成する繊維構造体としては織物にて構成されるもの、編物にて構成されるもの等があり、具体例としては風通織り等に代表される2重組織織物、3重組織織物等の多層構造織物、ベルベット織物、ダブル丸編みやダブルラッセルによる立体構造編物等が挙げられるが、センサー部と配線部で導電糸の配列と繊維構造体の構造を異なる構成とすることが可能な繊維構造体であればこれに限るものではない。   As the fiber structure constituting the pressure-sensitive fiber structure, there are a fabric structure, a knitted fabric, and the like, and specific examples include a double-tissue fabric represented by airy weaving, 3 Multi-layered woven fabrics such as heavy tissue woven fabrics, velvet woven fabrics, three-dimensional knitted fabrics with double circular knitting and double raschel, etc. However, it is not limited to this as long as the fiber structure can be used.

感圧用繊維構造体は感圧センサーを直線状に配置する方法、または碁盤の目状に配置する方法により広範囲の平面上の圧力を検知することを特徴とする。感圧センサーの配置方法は任意であり目的とする圧力が検知できる配置であればこれに限るものではない。   The pressure-sensitive fiber structure is characterized in that pressure on a wide range of planes is detected by a method of arranging pressure-sensitive sensors in a straight line or a method of arranging them in a grid pattern. The arrangement method of the pressure-sensitive sensor is arbitrary, and is not limited to this as long as the target pressure can be detected.

感圧用繊維構造体で2段階以上の異なる圧力を検知する方法としては、センシング部の織りもしくは編み組織を変えることで感圧用繊維構造体の圧縮特性を変えて感圧センサーの検知圧力を制御する方法、繊維素材の配列を変えることで感圧用繊維構造体の圧縮特性を変えて感圧センサーの検知圧力を制御する方法、織物または編物の密度を変えることで感圧用繊維構造体の圧縮特性を変えて感圧センサーの検知圧力を制御する方法、または繊維構造体を形成する繊維素材を変えることで感圧用繊維構造体の圧縮特性を変えて感圧センサーの検知圧力を制御する方法または前述の方法を組み合わせて感圧用繊維構造体の圧縮特性を変えて感圧センサーの検知圧力を制御する方法等により感圧用繊維構造体内に検知圧力の異なる2種類以上の感圧センサーを配置し、同じ圧力を検知する感圧センサーごとに各1組の導電性接続糸と接続する方法がある。   As a method of detecting two or more different pressures in the pressure-sensitive fiber structure, the pressure-sensitive sensor's detection pressure is controlled by changing the compression characteristics of the pressure-sensitive fiber structure by changing the weaving or knitting structure of the sensing unit. Method, a method of controlling the pressure detected by the pressure sensor by changing the compression characteristics of the pressure sensitive fiber structure by changing the arrangement of the fiber material, and a compression characteristic of the pressure sensitive fiber structure by changing the density of the woven or knitted fabric A method for controlling the pressure detected by the pressure sensor, or a method for controlling the pressure detected by the pressure sensor by changing the compression characteristics of the pressure sensitive fiber structure by changing the fiber material forming the fiber structure, or the aforementioned Two or more types of sensations with different sensing pressures in the pressure sensing fiber structure, such as by changing the compression characteristics of the pressure sensing fiber structure by combining the methods and controlling the detection pressure of the pressure sensor. The sensors are arranged, there is a method of connecting each pair of conductive connecting string for each pressure-sensitive sensor for detecting the same pressure.

感圧用繊維構造体の感圧センサーと外部システムを接続する配線は、感圧用繊維構造体の端部に配置する方法、感圧センサーと配線をストライプに配置する方法、感圧用繊維構造体の中央を分断するように十字に配置する方法等があるが、配線の配置方法は目的とする圧力が検知できる配置であればこれに限るものではない。   The wiring that connects the pressure-sensitive fiber structure of the pressure-sensitive fiber structure and the external system is arranged at the end of the pressure-sensitive fiber structure, the pressure-sensitive sensor and the wiring are arranged in stripes, the center of the pressure-sensitive fiber structure However, the wiring arrangement method is not limited to this as long as the target pressure can be detected.

本発明に係る感圧用繊維構造体のセンシング部を構成する感圧センサーとしては、複数の導電糸を面方向に所定の間隔で配置した上面部と、複数の導電糸を面方向に所定の間隔でかつ上面部の導電糸と交差する方向に配置した下面部と、上面部及び下面部の間を所定の間隔に保つ連結部を備え、押圧により連結部が圧縮状態となることで上面部の導電糸と下面部の導電糸とが接触状態となることを特徴とする繊維構造体があるが、押圧により検知した圧力を電気信号で伝達できかつ繊維構造体の製造時に接続可能な状態で任意の位置に配置できるセンサーであればこれに限るものではない。   The pressure-sensitive sensor constituting the sensing part of the pressure-sensitive fiber structure according to the present invention includes an upper surface portion in which a plurality of conductive yarns are arranged at a predetermined interval in the surface direction, and a plurality of conductive yarns in the surface direction at a predetermined interval. And a lower surface portion arranged in a direction intersecting with the conductive yarn of the upper surface portion, and a connecting portion that keeps a predetermined distance between the upper surface portion and the lower surface portion, and the connecting portion is compressed by pressing so that the upper surface portion There is a fiber structure characterized in that the conductive yarn and the conductive yarn on the lower surface are in contact with each other, but the pressure detected by pressing can be transmitted with an electric signal and can be connected in the state where the fiber structure can be connected. However, the present invention is not limited to this as long as the sensor can be placed at the position.

感圧用繊維構造体を構成する具体的な非導電糸素材は、ポリエチレンテレフタレート、PBT(ポリブチレンテレフタレート)、PTT(ポリトリメチレンテレフタレート)等のポリエステル系繊維、ナイロン(ポリアミド繊維)、アラミド(芳香族ポリアミド繊維)、ポリプロピレンやポリエチレン等のポリオレフイン系繊維、フッ素繊維、ポリ乳酸繊維、アクリル等の合成繊維、レーヨン、アセテート等の化学繊維、綿、麻、ウール、絹等の天然繊維、セラミックス繊維、ガラス繊維、シリカ繊維等の無機繊維があげられるが、導電性を有しない繊維素材であればこれに限るものではない。
また前述の繊維素材を、撚糸、紡績、混繊、カバーリング等の方法により2種類以上の素材を複合した繊維素材であっても、導電性を有しない繊維素材であればこれに限るものではない。
Specific non-conductive yarn materials constituting the pressure-sensitive fiber structure are polyester fibers such as polyethylene terephthalate, PBT (polybutylene terephthalate), PTT (polytrimethylene terephthalate), nylon (polyamide fiber), aramid (aromatic) Polyamide fibers), polyolefin fibers such as polypropylene and polyethylene, fluorine fibers, polylactic acid fibers, synthetic fibers such as acrylic, chemical fibers such as rayon and acetate, natural fibers such as cotton, hemp, wool and silk, ceramic fibers, glass Examples thereof include inorganic fibers such as fibers and silica fibers, but the fiber material is not limited to this as long as it is a non-conductive fiber material.
In addition, even if the above-mentioned fiber material is a fiber material that is a composite of two or more materials by methods such as twisting, spinning, blending, and covering, it is not limited to this as long as it is a non-conductive fiber material. Absent.

感圧用繊維構造体のセンシング部および配線部を構成する導電糸の具体例としては、銅、リン性銅等の銅系合金、金、白金、銀、鉄、ステンレス、導電性を有するその他の金属合金等の金属繊維およびそれら金属箔をスリットした金属テープ、炭素繊維がある。
ポリエチレンテレフタレート、PBT、PTT等のポリエステル系繊維、ナイロン(ポリアミド繊維)、アラミド(芳香族ポリアミド繊維)、ポリプロピレンやポリエチレン等のポリオレフイン系繊維、フッ素繊維、ポリ乳酸繊維、アクリル等の合成繊維、レーヨン、アセテート等の化学繊維、綿、麻、ウール、絹等の天然繊維、セラミックス繊維、ガラス繊維、シリカ繊維等の無機繊維等の導電性を有しない繊維に前述の銅、リン性銅等の銅系合金、銀、鉄、ステンレス、導電性を有するその他の金属合金等の金属繊維およびそれら金属箔をスリットした金属テープ、炭素繊維等の導電性を有する素材を撚糸、紡績、カバーリング等の手段により複合して導電性機能を付与した糸がある。
乾式めっきや湿式めっき等の化学的手法で、ポリエチレンテレフタレート、PBT(ポリブチレンテレフタレート)、PTT(ポリトリメチレンテレフタレート)等のポリエステル系繊維、ナイロン(ポリアミド繊維)、アラミド(芳香族ポリアミド繊維)、ポリプロピレンやポリエチレン等のポリオレフイン系繊維、フッ素繊維、ポリ乳酸繊維、アクリル等の合成繊維、レーヨン、アセテート等の化学繊維、綿、麻、ウール、絹等の天然繊維、セラミックス繊維、ガラス繊維、シリカ繊維等の無機繊維等の導電性を有しない繊維に、金、白金、銀、銅、ニッケル等の金属および金属合金を表面にコーティングして導電性機能を付与した導電性を有する繊維素材がある。
炭素粉末や銀、銅の粉末をポリエチレンテレフタレート、PBT(ポリブチレンテレフタレート)、PTT(ポリトリメチレンテレフタレート)等のポリエステル系繊維、ナイロン(ポリアミド繊維)、アラミド(芳香族ポリアミド繊維)、ポリプロピレンやポリエチレン等のポリオレフイン系繊維、フッ素繊維、ポリ乳酸繊維、アクリル等の合成繊維、レーヨン、アセテート等の化学繊維の紡糸工程で繊維に練り込み方法で導電性機能を付与した導電性を有する繊維素材がある。
さらには前述の導電性を有しない繊維からなる織物、編物、不織布等の構造体またはフィルムに乾式めっきや湿式めっき等の化学的手法で、金、白金、銀、銅、ニッケル等の金属および金属合金を表面にコーティングして導電性機能を付与し後にスリット加工にてテープ状にした導電性を有する糸等があげられるが、導電性を有する繊維素材であればこれに限るものではない。
また、感圧用繊維構造体のセンサー部と配線部を構成する導電糸素材が異なる素材構成であっても、感圧用繊維構造体の圧力検知機能に影響なければこれに限る物ではない。
Specific examples of the conductive yarn constituting the sensing section and the wiring section of the pressure-sensitive fiber structure include copper, copper-based alloys such as phosphorous copper, gold, platinum, silver, iron, stainless steel, and other metals having conductivity. There are metal fibers such as alloys, metal tapes obtained by slitting these metal foils, and carbon fibers.
Polyester fiber such as polyethylene terephthalate, PBT, PTT, nylon (polyamide fiber), aramid (aromatic polyamide fiber), polyolefin fiber such as polypropylene and polyethylene, fluorine fiber, polylactic acid fiber, synthetic fiber such as acrylic, rayon, Non-conductive fibers such as chemical fibers such as acetate, natural fibers such as cotton, hemp, wool, and silk, ceramic fibers, glass fibers, silica fibers, etc. Metal fibers such as alloys, silver, iron, stainless steel, other metal alloys having conductivity, metal tapes obtained by slitting these metal foils, conductive materials such as carbon fibers, etc. by means of twisting, spinning, covering, etc. There are yarns that have been combined to provide a conductive function.
Chemical methods such as dry plating and wet plating, polyester fibers such as polyethylene terephthalate, PBT (polybutylene terephthalate), PTT (polytrimethylene terephthalate), nylon (polyamide fiber), aramid (aromatic polyamide fiber), polypropylene Polyolefin fiber such as polyethylene and polyethylene, fluorine fiber, polylactic acid fiber, synthetic fiber such as acrylic, chemical fiber such as rayon and acetate, natural fiber such as cotton, hemp, wool, silk, ceramic fiber, glass fiber, silica fiber, etc. There is a conductive fiber material having a conductive function by coating the surface thereof with a metal such as gold, platinum, silver, copper, nickel, and a metal alloy on a non-conductive fiber such as inorganic fiber.
Carbon powder, silver, and copper powder such as polyethylene terephthalate, polyester fiber such as PBT (polybutylene terephthalate), PTT (polytrimethylene terephthalate), nylon (polyamide fiber), aramid (aromatic polyamide fiber), polypropylene, polyethylene, etc. There are conductive fiber materials that are provided with a conductive function by a method of kneading into fibers in a spinning process of synthetic fibers such as polyolefin fibers, fluorine fibers, polylactic acid fibers, acrylics, and chemical fibers such as rayon and acetate.
Furthermore, metals and metals such as gold, platinum, silver, copper, nickel, etc. by chemical methods such as dry plating and wet plating on structures or films such as woven fabrics, knitted fabrics, and nonwoven fabrics made of non-conductive fibers. Examples thereof include conductive yarns that are coated with an alloy on the surface to impart a conductive function and then taped by slitting, but are not limited thereto as long as they are conductive fiber materials.
Moreover, even if the conductive yarn material constituting the sensor part and the wiring part of the pressure-sensitive fiber structure is different, the material is not limited to this as long as it does not affect the pressure detection function of the pressure-sensitive fiber structure.

感圧用繊維構造体の漏電を防ぐ方法としては、繊維構造体の両面をコーティングやラミネートを行う方法がある。コーティングする樹脂としては、ポリウレタン樹脂、フッ素系樹脂、塩化ビニール樹脂、ホットメルト樹脂、合成ゴム樹脂、熱可塑性樹脂等が、ラミネート材料としては熱可塑性フィルム、遮水性を有する織物や不織布、紙、人工皮革、フォーム等があるが、素材に導電性が無く繊維構造体内への液体の流入を遮水できる性能を維持できる材料であればこれに限るものではない。   As a method for preventing leakage of the pressure-sensitive fiber structure, there is a method of coating or laminating both surfaces of the fiber structure. The resin to be coated is polyurethane resin, fluororesin, vinyl chloride resin, hot melt resin, synthetic rubber resin, thermoplastic resin, etc. The laminate material is thermoplastic film, woven or non-woven fabric, paper, artificial Although there are leather, foam, etc., the material is not limited to this as long as the material has no electrical conductivity and can maintain the performance of blocking the inflow of liquid into the fiber structure.

以下本発明の実施の形態を図1〜6に基づいて説明する。   Embodiments of the present invention will be described below with reference to FIGS.

図1は感圧センサーと配線が一体化した感圧用繊維構造体の概略図であり、上面部1と下面部2からなる多層織物に導電糸3(実線),4(点線)、導電性接続糸5(実線),6(点線)を配置しており、図中の実線で表記している導電糸3、導電性接続糸5は上面部1に配置され、点線で表記している導電糸4、導電性接続糸6は下面部2に配置されており、導電糸3,4で構成するセンサーがマトリックス状に配置したセンシング部7を形成し、センシング部の導電糸3,4と接続部8,9で接続した導電性接続糸5,6および外部のシステムを接続するための端子10,11により構成される各センサー間を目的に応じてして接続する配線として配線部12より構成され、端子10,11と外部システムを接続することにより感圧用繊維構造体上に付加された圧力の有無を検知できる。   Fig. 1 is a schematic view of a pressure-sensitive fiber structure in which a pressure-sensitive sensor and wiring are integrated. Yarns 5 (solid line) and 6 (dotted line) are arranged. Conductive yarn 3 indicated by the solid line in the figure and conductive connecting yarn 5 are arranged on the upper surface portion 1 and are indicated by the dotted line. 4, the conductive connecting thread 6 is arranged on the lower surface part 2, the sensor composed of the conductive threads 3 and 4 forms a sensing part 7 arranged in a matrix, and the conductive threads 3 and 4 of the sensing part and the connecting part Consists of the wiring section 12 as wiring that connects the respective sensors configured by the conductive connecting threads 5 and 6 connected at 8 and 9 and the terminals 10 and 11 for connecting an external system according to the purpose. By connecting the terminals 10 and 11 and an external system, it is possible to detect the presence or absence of pressure applied on the pressure-sensitive fiber structure.

感圧用繊維構造体の上面1および下面2を構成する繊維は、たて糸にポリエステル仮撚加工糸(167dtex/48f)、よこ糸にポリエステル仮撚加工糸(167dtex/48f)を使用し、センサー及び配線を構成する導電糸(3,4,5,6)としてはポリエステル仮撚加工糸(167dtex/48f)に銅繊維(理研(株)製、Φ=0.05mm)2本を各々異なる撚り方向に螺旋状に巻き付けたカバーリング糸を使用し、レピア織機にて製造した。   The fibers constituting the upper and lower surfaces 1 and 2 of the pressure-sensitive fiber structure use polyester false twisted yarn (167dtex / 48f) for the warp and polyester false twisted yarn (167dtex / 48f) for the weft. The conductive yarn (3,4,5,6) is composed of polyester false twisted yarn (167dtex / 48f) and two copper fibers (Riken Co., Ltd., Φ = 0.05mm) in different twist directions. Using a covering yarn wound around the wire, it was manufactured on a rapier loom.

図2は実施例1の感圧用繊維構造体の基本となる平風通織り2重組織図である。本実施例1と同等の織物組織図は非常に大きいため、感圧用繊維構造体のセンシング部と配線部を簡易的に示している。
図2より、感圧用繊維構造体の上面に配置されるよこ糸を導電糸3、下面に配置されるたて糸を導電糸4とすることで導電糸3、4は互いに接触することなくセンサーとして機能して、感圧用繊維構造体のセンシング部を構成しており、また、感圧用繊維構造体の上面に配置されるたて糸を導電性接続糸5とすることで、おなじく上面に設置されたよこ糸の導電糸3と接触し、感圧用繊維構造体の下面に配置されるよこ糸の導電性接続糸6は同じく下面に設置される導電糸4と接触して感圧用繊維構造体の配線部を構成している。
FIG. 2 is a double air-woven weave double organization chart that is the basis of the pressure-sensitive fiber structure of Example 1. Since the fabric structure diagram equivalent to Example 1 is very large, the sensing part and the wiring part of the pressure-sensitive fiber structure are simply shown.
As shown in FIG. 2, the conductive yarns 3 and 4 function as a sensor without contacting each other by using the weft yarn arranged on the upper surface of the pressure-sensitive fiber structure as the conductive yarn 3 and the warp yarn arranged on the lower surface as the conductive yarn 4. Thus, the sensing portion of the pressure-sensitive fiber structure is configured, and the warp yarn disposed on the upper surface of the pressure-sensitive fiber structure is set as the conductive connecting yarn 5 so that the weft thread installed on the upper surface is electrically conductive. The weft conductive connecting yarn 6 which is in contact with the yarn 3 and is arranged on the lower surface of the pressure-sensitive fiber structure is also in contact with the conductive yarn 4 placed on the lower surface to constitute the wiring portion of the pressure-sensitive fiber structure. Yes.

実施例1の感圧用繊維構造体の端子10,11に50Ωの抵抗と安定化電源(KIKUSUI製 PMC18-3)を接続して直流回路を構成し、安定化電源から5Vの直流電圧を印加して、圧縮試験機(カトーテック(株)製KES-FB3)で感圧用繊維構造体に圧力を付加したときの50Ωの抵抗の電圧変化をデータロガー(グラフテック製midi LOGGER GL200)にて測定して性能を評価した。   A DC circuit is configured by connecting a 50Ω resistor and a stabilized power source (PMC18-3 made by KIKUSUI) to the terminals 10 and 11 of the pressure-sensitive fiber structure of Example 1, and a DC voltage of 5 V is applied from the stabilized power source. Measure the voltage change of 50Ω resistance with a data logger (Graphitech's midi LOGGER GL200) when pressure is applied to the pressure sensitive fiber structure with a compression tester (KES-FB3, manufactured by Kato Tech Co., Ltd.). Performance was evaluated.

実施例1の感圧用繊維構造体の圧力検知機能を評価した結果を図3に示す。
図3の太線は圧縮試験機にて実施例1の感圧用繊維構造体を50kPaまで加圧し、その後徐圧した時の圧縮量と圧力の変化を表しており、Y軸は実施例1の感圧用繊維構造体に付加した圧縮圧力、X軸にはその時の感圧用繊維構造体の圧縮量である。また、実施例1の感圧用繊維構造体を含む直流回路の抵抗の電圧変をZ軸とし、細線が実施例1の感圧用繊維構造体の圧縮時の電圧変化(圧力検知)を表している。
図より、感圧用繊維構造体を加圧していった時、圧縮圧力が7.5kPaを越えたときに細線が示す抵抗の電圧値が急激に変化しており、本実施例は7.5kPa以上の圧力の有無を検知できる感圧用繊維構造体であることがわかる。
The result of evaluating the pressure detection function of the pressure-sensitive fiber structure of Example 1 is shown in FIG.
The thick line in FIG. 3 represents the amount of compression and the change in pressure when the pressure-sensitive fiber structure of Example 1 was pressurized to 50 kPa with a compression tester and then gradually reduced, and the Y axis represents the feeling of Example 1. The compression pressure applied to the pressure fiber structure, and the X axis is the compression amount of the pressure-sensitive fiber structure at that time. Moreover, the voltage change of the resistance of the DC circuit including the pressure-sensitive fiber structure of Example 1 is taken as the Z axis, and the thin line represents the voltage change (pressure detection) during compression of the pressure-sensitive fiber structure of Example 1. .
From the figure, when the pressure-sensitive fiber structure was pressurized, the voltage value of the resistance indicated by the thin line when the compression pressure exceeded 7.5 kPa changed abruptly. It can be seen that this is a pressure-sensitive fiber structure capable of detecting the presence or absence of.

実施例1の感圧用繊維構造体の柔軟性を評価するために、曲げ試験機(カトーテック(株)製KES-FB2)を使用して曲げ剛性の測定を行った。試料としては、実施例1の感圧用繊維構造体のセンシング部および配線部、さらに比較のために実施例1と同様の織物組織で導電糸が無い繊維素材構成の繊維構造体(比較試料1)、一般的な合成繊維織物として衣料として使用されるポリエステル仮撚加工糸織物(比較試料2)、家庭用網戸等に使用されるポリエステルモノフィラメント織物(比較試料3)を測定し、その結果を表1に示す。   In order to evaluate the flexibility of the pressure sensitive fiber structure of Example 1, the bending stiffness was measured using a bending tester (KES-FB2 manufactured by Kato Tech Co., Ltd.). As a sample, a sensing part and a wiring part of the pressure-sensitive fiber structure of Example 1, and further, for comparison, a fiber structure of a fiber material structure having a woven structure similar to Example 1 and no conductive yarn (Comparative Sample 1) The polyester false-twisted yarn fabric (Comparative Sample 2) used as clothing as a general synthetic fiber fabric, the polyester monofilament fabric (Comparative Sample 3) used for home screen doors, etc. were measured, and the results are shown in Table 1. Shown in

実施例1の感圧用繊維構造体のセンシング部、配線部の曲げ剛性は近い値を示しており、感圧用繊維構造体は全体的に均一の物性を示す繊維構造体であることがわかる。
また、実施例1の感圧用繊維構造体は導電糸を含むこととセンサーの精度向上のために安定した織物構造を形成する織物規格であるため、一般的な衣料用ポリエステル織物と比較すると曲げ剛性が5倍あり硬い織物となっているが、比較例3との曲げ剛性を比較すればわかるように、一般的工業用の繊維材料に比べると1/2以下の曲げ剛性であり、十分柔軟性に優れていることがわかる。
The bending rigidity of the sensing part and the wiring part of the pressure-sensitive fiber structure of Example 1 shows close values, and it can be seen that the pressure-sensitive fiber structure is a fiber structure showing uniform physical properties as a whole.
In addition, since the pressure-sensitive fiber structure of Example 1 includes a conductive yarn and is a fabric standard that forms a stable fabric structure for improving the accuracy of the sensor, it has a bending rigidity compared to a general polyester fabric for clothing. Is 5 times as hard fabric, but as can be seen by comparing the bending stiffness with Comparative Example 3, it is less than 1/2 the bending stiffness compared to general industrial fiber materials, and is sufficiently flexible It turns out that it is excellent in.

実施例2として、複数領域を検知する感圧用繊維構造体に関する具体例を示す。   As Example 2, a specific example relating to a pressure-sensitive fiber structure that detects a plurality of regions will be described.

図4は、複数領域を検知する感圧用繊維構造体を示す概略図であり、実施例2の感圧用繊維構造体のセンシング部は導電糸13〜16で構成し、導電糸13と導電糸15が交錯する9つのセンサーで構成されるセンサー領域A、導電糸14と導電糸15が交錯する9つのセンサーで構成されるセンサー領域B、導電糸13と導電糸16が交錯する9つのセンサーで構成されるセンサー領域C、導電糸14と導電糸16が交錯する9つのセンサーで構成されるセンサー領域Dの4領域に画定し、配線部は、導電糸15と接続部21で接続する導電性接続糸17、導電糸16と接続部22で接続する導電性接続糸18、導電糸13と接続部23で接続する導電性接続糸19、導電糸14と接続部24で接続する導電性接続糸20の4つの配線およびそれらの4つの配線が外部システムと接続するための端子25〜28で構成する。   FIG. 4 is a schematic view showing a pressure-sensitive fiber structure for detecting a plurality of regions. The sensing part of the pressure-sensitive fiber structure of Example 2 is composed of conductive yarns 13 to 16, and the conductive yarn 13 and the conductive yarn 15 Sensor area A composed of 9 sensors intersecting, sensor area B composed of 9 sensors intersecting conductive thread 14 and conductive thread 15, and composed of 9 sensors intersecting conductive thread 13 and conductive thread 16 The sensor region C is divided into four regions, the sensor region D consisting of nine sensors where the conductive yarn 14 and the conductive yarn 16 intersect, and the wiring portion is a conductive connection that is connected by the conductive yarn 15 and the connection portion 21. Thread 17, conductive connection thread 18 connected to conductive thread 16 at connection part 22, conductive connection thread 19 connected to conductive thread 13 and connection part 23, conductive connection thread 20 connected to conductive thread 14 and connection part 24 4 wirings, and these 4 wirings are composed of terminals 25 to 28 for connecting to an external system.

図5は、実施例2の感圧用繊維構造体において導電性接続糸19および20が上面から下面にまたは、下面から上面に配置する場合の基本的な織物組織図を示している。
図5の織物組織図において、たて糸29は下面に配置され、たて糸30は上面に配置され、よこ糸31は領域EおよびFで下面に配置され、よこ糸32は領域EおよびFで上面に配置される。これに対し、よこ糸33は領域Eでは上面に配置されるが領域Fでは下面に配置され、よこ糸34は領域Eでは下面に配置されるが領域Fでは上面に配置される。
この組織図を用いて、図4の接続部24における糸の配置を説明する。まず、導電糸14は領域Eにある下面に配置されたたて糸であり、導電性接続糸20が図5のよこ糸31、導電性接続糸19は図5のよこ糸33である。この場合、導電性接続糸20は域Eでは常に下面に配置されるため導電糸14と交錯して導通状態となり、導電性接続糸19は領域Eでは上面に配置されるため導電糸14と交錯せずに配線できることになる。
FIG. 5 shows a basic fabric structure diagram in the case where the conductive connecting yarns 19 and 20 are arranged from the upper surface to the lower surface or from the lower surface to the upper surface in the pressure-sensitive fiber structure of Example 2.
5, the warp yarn 29 is disposed on the lower surface, the warp yarn 30 is disposed on the upper surface, the weft yarn 31 is disposed on the lower surface in the regions E and F, and the weft yarn 32 is disposed on the upper surface in the regions E and F. . On the other hand, the weft 33 is arranged on the upper surface in the region E but is arranged on the lower surface in the region F, and the weft 34 is arranged on the lower surface in the region E, but is arranged on the upper surface in the region F.
With reference to this organization chart, the arrangement of the yarns at the connecting portion 24 in FIG. 4 will be described. First, the conductive thread 14 is a warp thread disposed on the lower surface in the region E, the conductive connecting thread 20 is the weft thread 31 in FIG. 5, and the conductive connecting thread 19 is the weft thread 33 in FIG. In this case, since the conductive connecting thread 20 is always arranged on the lower surface in the region E, the conductive connecting yarn 20 intersects with the conductive yarn 14 and becomes conductive, and the conductive connecting yarn 19 is arranged on the upper surface in the region E, so It will be possible to wire without.

端子と外部システムを接続する組み合わせ方法として、センサー領域Aの荷重を検知する端子25と27、センサー領域Bの荷重を検知する端子25と28、センサー領域Cの荷重を検知する端子26と27、センサー領域Dの荷重を検知する端子26と28があり、この組み合わせにて実施例2の感圧用繊維構造体は一枚の感圧テキスタイルで4領域を個々に検知できることになる。
特に端子25,26および27,28をそれぞれ外部システムのセパレータに接続し、プログラムで制御することにより随時4つのセンサー領域の各々の荷重を連続的に検知できるシステムを構築することが可能となる。
As a combination method of connecting the terminal and the external system, terminals 25 and 27 for detecting the load in the sensor area A, terminals 25 and 28 for detecting the load in the sensor area B, terminals 26 and 27 for detecting the load in the sensor area C, There are terminals 26 and 28 for detecting the load in the sensor region D, and with this combination, the pressure-sensitive fiber structure of Example 2 can individually detect four regions with a single pressure-sensitive textile.
In particular, by connecting the terminals 25, 26 and 27, 28 to the separators of the external system and controlling them by a program, it is possible to construct a system capable of continuously detecting the loads of each of the four sensor areas at any time.

実施例2の感圧用繊維構造体の素材構成は実施例1と同様であり、繊維構造体のたて糸はポリエステル仮撚加工糸(167dtex/48f)を使用し、よこ糸はポリエステル仮撚加工糸(167dtex/48f)を使用し、センサー及び配線を構成する導電糸13〜16および17〜20にはポリエステル仮撚加工糸(167dtex/48f)に銅繊維(Φ=0.05mm)2本を異なる撚り方向に螺旋状に巻き付けたダブルカバーリング糸を使用し、レピア織機を使用して作製する。   The material structure of the pressure-sensitive fiber structure of Example 2 is the same as that of Example 1. The warp yarn of the fiber structure is a polyester false twisted yarn (167dtex / 48f), and the weft yarn is a polyester false twisted yarn (167dtex). / 48f), and for the conductive yarns 13-16 and 17-20 that make up the sensor and wiring, polyester false twisted yarn (167dtex / 48f) and two copper fibers (Φ = 0.05mm) in different twist directions A double covering yarn wound in a spiral shape is used, and the yarn is produced using a rapier loom.

実施例2の感圧用繊維構造体の圧力検知機能評価は、端子25〜28と、50Ωの電気抵抗、安定化電源(KIKUSUI製 PMC18-3)で構成する直流回路を外部システムとして接続し、安定化電源にて5Vの直流電圧を回路に印加して圧縮試験機(カトーテック(株)製KES-FB3)で感圧用繊維構造体の4領域に圧力を付加したときの50Ωの抵抗の電圧変化をデータロガー(グラフテック製midi LOGGER GL200)で測定して行った。   The pressure detection function evaluation of the pressure sensitive fiber structure of Example 2 was performed by connecting a DC circuit composed of terminals 25 to 28, 50Ω electric resistance, and a stabilized power source (PMC18-3 made by KIKUSUI) as an external system. Voltage change of 50 Ω resistance when a DC voltage of 5 V is applied to the circuit with an integrated power supply and pressure is applied to the four areas of the pressure sensitive fiber structure with a compression tester (KES-FB3, manufactured by Kato Tech Co., Ltd.) Were measured with a data logger (midi LOGGER GL200 manufactured by Graphtec).

図6が実施例2の感圧用繊維構造体の圧力検知機能評価結果であり、各々のセンサー領域A〜Dに圧力を付加して電圧変化を測定したところ、7700〜8200Paの圧力範囲にて電圧値の変化が測定され、本実施例は各4領域とも8.5kPa以上の圧力を検知できる感圧用繊維構造体であることがわかる。   FIG. 6 shows the pressure detection function evaluation results of the pressure sensitive fiber structure of Example 2. When voltage change was measured by applying pressure to each of the sensor regions A to D, the voltage was measured in the pressure range of 7700 to 8200 Pa. The change of the value was measured, and it can be seen that this example is a pressure-sensitive fiber structure capable of detecting a pressure of 8.5 kPa or more in each of the four regions.

実施例3として、2段階の異なる圧力を検知する感圧用繊維構造体の具体例を示す。   As Example 3, a specific example of a pressure-sensitive fiber structure for detecting two different pressures is shown.

図7は、実施例3の感圧用繊維構造体を示す構成図であり、センシング部は導電糸37〜40で構成され、導電糸37,39で構成される感圧センサー49と導電糸38,40で構成される感圧センサー50は検知する圧力が異なり、感圧センサー49は感圧センサー50と比較して低荷重の圧力を検知するセンサー構成とし、配線部は、導電糸37と接続部43で接続する導電性接続糸41、導電糸38と接続部44で接続する導電性接続糸42、導電糸39と接続部47で接続する導電性接続糸45、導電糸40と接続部48で接続する導電性接続糸46の4つの配線および端子51〜54で構成する。   FIG. 7 is a configuration diagram illustrating the pressure-sensitive fiber structure of Example 3, in which the sensing unit includes the conductive yarns 37 to 40, and the pressure-sensitive sensor 49 and the conductive yarns 38, configured of the conductive yarns 37 and 39. The pressure sensor 50 composed of 40 has a different pressure to be detected, the pressure sensor 49 has a sensor structure that detects a low load pressure compared to the pressure sensor 50, and the wiring part is a conductive thread 37 and a connection part. Conductive connection thread 41 connected at 43, conductive connection thread 42 connected at conductive part 38 and connection part 44, conductive connection thread 45 connected at conductive part 39 and connection part 47, conductive thread 40 and connection part 48 It is composed of four wires of the conductive connecting thread 46 to be connected and terminals 51 to 54.

感圧センサー50の断面図を図8(1)に、感圧センサー49の断面図を図8(2)に示す。
感圧センサー50は空間56にスペーサー繊維55が配置されるため、感圧センサー50に圧力が付加された時に導電糸38と接触するように加圧変形する導電糸40を含む感圧繊維構造体の加圧変形可能領域57は、感圧センサー49に圧力が付加された時に導電糸37と接触するように加圧変形する導電糸39を含む感圧繊維構造体の加圧変形可能領域58と比較して狭いため、同じ素材構成であっても導電糸が接触するのに必要な圧力が異なり、感圧センサー50は感圧センサー49より高い圧力(荷重)を検知する感圧センサーとなり、実施例3では高荷重を検知する感圧センサー50と低荷重を検知する感圧センサー49を同一感圧用繊維構造体内に実現できる。
A cross-sectional view of the pressure-sensitive sensor 50 is shown in FIG. 8 (1), and a cross-sectional view of the pressure-sensitive sensor 49 is shown in FIG. 8 (2).
Since the pressure-sensitive sensor 50 has the spacer fiber 55 disposed in the space 56, the pressure-sensitive fiber structure includes the conductive yarn 40 that is pressure-deformed so as to come into contact with the conductive yarn 38 when pressure is applied to the pressure-sensitive sensor 50. The pressure-deformable region 57 of the pressure-sensitive fiber structure includes a conductive yarn 39 that is pressure-deformed so as to come into contact with the conductive yarn 37 when pressure is applied to the pressure-sensitive sensor 49. The pressure required to contact the conductive yarn is different even if the material composition is the same because of the narrower structure, and the pressure sensor 50 becomes a pressure sensor that detects higher pressure (load) than the pressure sensor 49. In Example 3, the pressure-sensitive sensor 50 that detects a high load and the pressure-sensitive sensor 49 that detects a low load can be realized in the same pressure-sensitive fiber structure.

端子51〜54と外部システムを接続し、低荷重を検知する感圧センサー49の情報を端子51と53の電気信号より取得し、高荷重を検知する感圧センサー50の情報を端子52と54の電気信号より取得することで、実施例3の感圧用繊維構造体は一枚の感圧テキスタイルで異なる2段階の荷重を別々に検知できるシステムとなる。
特に端子51,52および53,54をそれぞれ外部システムのセパレータに接続してプログラム制御することにより、低荷重を検知する感圧センサー49と高荷重を検知する感圧センサー50の検知荷重の中間の荷重、および高荷重を検知する感圧センサー50の検知荷重以上の荷重の2段階の荷重を連続的に検知できるシステムが構築できる。
Terminals 51 to 54 are connected to an external system, information on the pressure sensor 49 that detects low load is obtained from the electrical signals of the terminals 51 and 53, and information on the pressure sensor 50 that detects high load is obtained on the terminals 52 and 54. By obtaining from the electrical signal, the pressure-sensitive fiber structure of Example 3 becomes a system capable of separately detecting two different loads in a single pressure-sensitive textile.
In particular, the terminals 51, 52 and 53, 54 are connected to an external system separator and controlled by a program, so that the pressure sensing sensor 49 for detecting a low load and the pressure sensing sensor 50 for detecting a high load are intermediate between the detected loads. It is possible to construct a system capable of continuously detecting loads in two stages, that is, a load higher than the detection load of the pressure-sensitive sensor 50 that detects a load and a high load.

実施例3の感圧用繊維構造体の素材構成は、繊維構造体のたて糸にポリエステル仮撚加工糸(167dtex/48f)、よこ糸にポリエステル仮撚加工糸(167dtex/48f)を使用し、センサー及び配線を構成する導電糸37〜40および導電性接続糸41,42,45,46にはポリエステル仮撚加工糸(167dtex/48f)に銅繊維(Φ=0.05mm×2本)を螺旋状に巻き付けたカバーリング糸を使用し、感圧センサー50のたて糸の一部に使用するスペーサー繊維としてはポリエステル1100dtexを使用し、レピア織機を使用して作製する。   The material composition of the pressure-sensitive fiber structure of Example 3 uses a polyester false twisted yarn (167dtex / 48f) for the warp yarn of the fiber structure, and a polyester false twisted yarn (167dtex / 48f) for the weft yarn. Copper fibers (Φ = 0.05mm × 2) were spirally wound around polyester false twisted yarn (167dtex / 48f) on the conductive yarns 37-40 and the conductive connecting yarns 41, 42, 45, 46 Covering yarn is used, and polyester fiber 1100dtex is used as a spacer fiber used for a part of the warp yarn of the pressure-sensitive sensor 50, and a rapier loom is used.

実施例3の感圧用繊維構造体の圧力検知機能評価は、端子51〜54と、50Ωの電気抵抗、安定化電源(KIKUSUI製 PMC18-3)で構成する直流回路を外部システムとして接続し、安定化電源にて5Vの直流電圧を印加して圧縮試験機(カトーテック(株)製KES-FB3)で感圧用繊維構造体に圧力を付加したときの50Ωの抵抗の電圧変化をデータロガー(グラフテック製midi LOGGER GL200)で測定して行った。   The pressure detection function evaluation of the pressure-sensitive fiber structure of Example 3 was performed by connecting a DC circuit composed of terminals 51 to 54, 50Ω electric resistance, and a stabilized power supply (PMC18-3 manufactured by KIKUSUI) as an external system. Data logger (Graphtech) The voltage change of resistance of 50Ω when a DC voltage of 5V is applied from a power source and pressure is applied to the pressure sensitive fiber structure with a compression tester (KES-FB3 manufactured by Kato Tech Co., Ltd.) The measurement was carried out with a midi LOGGER GL200).

図9の(1),(2)は実施例3の感圧用繊維構造体の圧力検知機能評価結果であり、Y軸に感圧用繊維構造体の圧縮圧力、X軸に感圧用繊維構造体の圧縮量を示しており、太線は圧縮試験機にて実施例3の感圧用繊維構造体を50kPaまで加圧し、その後徐圧した時の感圧用繊維構造体の圧縮量と圧力の変化を表している。また、Z軸は直流回路の抵抗の電圧変化を表示しており、図中の細線が実施例3の感圧用繊維構造体の圧縮過程における直流回路抵抗の電圧変化、つまり圧力検知の有無を表示している。
低荷重センサー49(図9-(1))と高荷重センサー50(図9-(2))では、実施例3の感圧用繊維構造体の圧縮過程における直流回路抵抗の電圧に変化が生じた時の圧縮圧力が異なり、各々8.3kPaと16kPaであり、低荷重センサー49は8.3kPa以上の圧力を検知でき、高荷重センサー50は16kPa以上の圧力を検知できることがわかる。このことは、本実施例が2つの異なる圧力を検知できる感圧用繊維構造体であることを示している。
(1) and (2) of FIG. 9 are the pressure detection function evaluation results of the pressure-sensitive fiber structure of Example 3. The compression pressure of the pressure-sensitive fiber structure is on the Y-axis, and the pressure-sensitive fiber structure is on the X-axis. The thick line represents the amount of compression of the pressure-sensitive fiber structure and the change in pressure when the pressure-sensitive fiber structure of Example 3 was pressurized to 50 kPa with a compression tester and then gradually reduced. Yes. In addition, the Z axis indicates the voltage change of the resistance of the DC circuit, and the thin line in the figure indicates the voltage change of the DC circuit resistance in the compression process of the pressure-sensitive fiber structure of Example 3, that is, whether or not pressure is detected. is doing.
In the low load sensor 49 (FIG. 9- (1)) and the high load sensor 50 (FIG. 9- (2)), a change occurred in the voltage of the DC circuit resistance in the compression process of the pressure-sensitive fiber structure of Example 3. It can be seen that the compression pressure at different times is 8.3 kPa and 16 kPa, respectively, the low load sensor 49 can detect a pressure of 8.3 kPa or more, and the high load sensor 50 can detect a pressure of 16 kPa or more. This indicates that this example is a pressure-sensitive fiber structure that can detect two different pressures.

実施例3の感圧用繊維構造体の端子51と53および端子52と54に各々に市販の電子オルゴール回路を接続し、実施例3の感圧用繊維構造体が加圧されて低荷重センサー49と高荷重センサー50が導通時に異なる電子音が発生するシステムを構築した。
体重72kgの人間が実施例3の感圧用繊維構造体上に静かに乗った時は電子音が2つ発生し、体重50kgの人間が実施例3の感圧用繊維構造体上に静かに乗った時は電子音が一つしか発生せず、本実施例は2つの異なる圧力を検知できる感圧用繊維構造体であることがわかる。
A commercially available electronic music box circuit is connected to each of the terminals 51 and 53 and the terminals 52 and 54 of the pressure-sensitive fiber structure of Example 3, and the low-load sensor 49 and the pressure-sensitive fiber structure of Example 3 are pressurized. We constructed a system that generates different electronic sounds when the high-load sensor 50 is turned on.
When a person weighing 72 kg quietly rides on the pressure-sensitive fiber structure of Example 3, two electronic sounds are generated, and a person weighing 50 kg gently rides on the pressure-sensitive fiber structure of Example 3. At that time, only one electronic sound is generated, and it can be seen that this example is a pressure-sensitive fiber structure capable of detecting two different pressures.

本発明は感圧センサーと配線が一体化した繊維構造体による広範囲の圧力を検知可能な感圧用繊維構造体であるため、取り扱い性の容易であるだけでなく柔軟性や耐屈曲性に優れ、立体物の曲面に沿って張り合わせることができるなど優れた加工性・施工性も有する。
シート内に配線を有しているため、感圧用繊維構造体にコーティング等の撥水、耐水処理も容易に可能であり、屋外での使用を含め汎用性が高く、建築業界、自動車業界など様々な産業分野での適応が期待される。
Since the present invention is a pressure-sensitive fiber structure that can detect a wide range of pressure by a fiber structure in which a pressure-sensitive sensor and wiring are integrated, it is not only easy to handle but also has excellent flexibility and bending resistance, It also has excellent workability and workability, such as being able to bond along the curved surface of a three-dimensional object.
With wiring in the seat, pressure-sensitive fiber structure can be easily subjected to water-repellent and water-resistant treatments such as coating, and is highly versatile including outdoor use. Adaptation in various industrial fields is expected.

具体的製品用途としては、広範囲の領域で人の体重を検知する簡易システムとして介護分野や建築分野、また各種物体の有無を検知する圧力検知スステムとして輸送分野や各種産業設備での応用が期待される。
大型システムとしては、建造物の床等に配置して人の動きや入退室を検知するセンサーやスイッチ、またホール等の着席状況把握システムなど様々な用途・製品化が期待されている。小型のシステムとしては、ベッドや椅子での離床や着座を検知するセンサー、または防護衣料などのウェアラブルシステムのスイッチとして製品化が期待されている。
Specific product applications are expected to be applied in the nursing and construction fields as a simple system that detects human weight in a wide range of areas, and in the transportation field and various industrial facilities as a pressure detection system that detects the presence or absence of various objects. The
Large-scale systems are expected to be used in various applications and products, such as sensors and switches that are placed on the floor of a building to detect people's movements and entering / leaving rooms, and seating status monitoring systems such as halls. As a small system, it is expected to be commercialized as a sensor for detecting bed leaving or sitting in a chair or a seat, or as a switch for a wearable system such as protective clothing.

感圧用繊維構造体の構成図である。It is a block diagram of the pressure-sensitive fiber structure. 感圧用繊維構造体の織物組織図である。It is a textile organization chart of a fiber structure for pressure sensing. 感圧用繊維構造体の圧力検知特性を示すグラフである。It is a graph which shows the pressure detection characteristic of the fiber structure for pressure sensing. 複数領域を検知する感圧用繊維構造体の構成図である。It is a block diagram of the fiber structure for pressure sensing which detects a several area | region. 感圧用繊維構造体の上面と下面に交互に導電糸を配置する織物組織図である。It is a textile organization chart which arranges conductive yarn alternately on the upper surface and the lower surface of the pressure sensitive fiber structure. 複数領域を検知する感圧用繊維構造体の圧力検知特性を示すグラフである。It is a graph which shows the pressure detection characteristic of the fiber structure for pressure sensing which detects a several area | region. 異なる圧力を検知する感圧用繊維構造体の構成図である。It is a block diagram of the pressure sensitive fiber structure which detects a different pressure. 検知圧力の異なる感圧センサーを構成する繊維構造体の断面図である。It is sectional drawing of the fiber structure which comprises the pressure sensitive sensor from which detection pressure differs. 異なる圧力を検知する感圧用繊維構造体の圧力検知特性を示すグラフである。It is a graph which shows the pressure detection characteristic of the pressure sensitive fiber structure which detects a different pressure.

符号の説明Explanation of symbols

1 上面
2 下面
3 導電糸
4 導電糸
5 導電性接続糸
6 導電性接続糸
7 センシング部
8 接続部
9 接続部
10 端子
11 端子
12 配線部
13 導電糸
14 導電糸
15 導電糸
16 導電糸
17 導電性接続糸
18 導電性接続糸
19 導電性接続糸
20 導電性接続糸
21 接続部
22 接続部
23 接続部
24 接続部
25 端子
26 端子
27 端子
28 端子
29 たて糸
30 たて糸
31 よこ糸
32 よこ糸
33 よこ糸
34 よこ糸
35 上面
36 下面
37 導電糸
38 導電糸
39 導電糸
40 導電糸
41 導電性接続糸
42 導電性接続糸
43 接続部
44 接続部
45 導電性接続糸
46 導電性接続糸
47 接続部
48 接続部
49 感圧センサー
50 感圧センサー
51 端子
52 端子
53 端子
54 端子
55 スペーサー繊維
56 空間
57 加圧変形可能領域
58 加圧変形可能領域
DESCRIPTION OF SYMBOLS 1 Upper surface 2 Lower surface 3 Conductive thread 4 Conductive thread 5 Conductive connection thread 6 Conductive connection thread 7 Sensing part 8 Connection part 9 Connection part 10 Terminal 11 Terminal 12 Wiring part 13 Conductive thread 14 Conductive thread 15 Conductive thread 16 Conductive thread 17 Conductive Connection thread 18 Conductive connection thread 19 Conductive connection thread 20 Conductive connection thread 21 Connection section 22 Connection section 23 Connection section 24 Connection section 25 Terminal 26 Terminal 27 Terminal 28 Terminal 29 Warp thread 30 Weft thread 31 Weft thread 33 Weft thread 34 Weft thread 35 Upper surface 36 Lower surface 37 Conductive thread 38 Conductive thread 39 Conductive thread 40 Conductive thread 41 Conductive connection thread 42 Conductive connection thread 43 Connection section 44 Connection section 45 Conductive connection thread 46 Conductive connection thread 47 Connection section 48 Connection section 49 Pressure sensor 50 Pressure sensitive sensor 51 Terminal 52 Terminal 53 Terminal 54 Terminal 55 Spacer fiber 5 Space 57 deform under pressure area 58 to deform under pressure area

Claims (2)

複数の導電糸をたて糸及びよこ糸の一部に用いて織成された平風通織の2重織物からなり、複数の導電糸を面方向に所定の間隔で配置した上面部と、複数の導電糸を2本ずつ面方向に所定の間隔でかつ上面部の導電糸と交差する方向に配置した下面部と、上面部及び下面部の間を所定の間隔に保つ連結部とを備え、押圧により連結部が圧縮状態となることで上面部の導電糸と下面部の導電糸とが接触状態となる感圧用繊維構造体において、前記多層構造織物のたて糸及びよこ糸の一部に用いられるとともに互いに電気的に接続しないように前記上面部及び前記下面部に織り込まれた複数の導電性接続糸を備えており、導電性接続糸は、感圧面を複数の領域に画定して設けられた複数の感圧センサー部のうちの1つにおいて接触状態となる前記上面部の導電糸又は前記下面部の導電糸とそれぞれ電気的に接続状態となるように織り込まれていることを特徴とする感圧用繊維構造体。 It consists of a double woven fabric of plain wind weaving using a plurality of conductive yarns as part of the warp yarn and the weft yarn, and an upper surface portion in which the plurality of conductive yarns are arranged at predetermined intervals in the surface direction, and the plurality of conductive yarns. Two lower surfaces each having a predetermined interval in the surface direction and in a direction intersecting with the conductive yarn on the upper surface portion, and a connecting portion for maintaining a predetermined distance between the upper surface portion and the lower surface portion, and connecting portions by pressing In the pressure-sensitive fiber structure in which the conductive yarn on the upper surface and the conductive yarn on the lower surface are brought into contact with each other by being compressed, the pressure sensitive fiber structure is used for a part of the warp yarn and the weft yarn of the multilayer fabric and is electrically connected to each other. A plurality of conductive connection yarns woven into the upper surface portion and the lower surface portion so as not to be connected, and the conductive connection yarns are provided with a plurality of pressure-sensitive sensors provided with pressure-sensitive surfaces defined in a plurality of regions. Said contact in one of the parts Pressure sensing fiber structure characterized by being woven into each conductive yarn of the conductive threads or the lower surface of the face portion so that the electrically connected state. 少なくとも1つの前記感圧センサー部の圧縮特性が異なっていることを特徴とする請求項1に記載の感圧用繊維構造体。

The pressure-sensitive fiber structure according to claim 1, wherein the compression characteristics of at least one of the pressure-sensitive sensor portions are different.

JP2007089175A 2007-03-29 2007-03-29 Pressure sensitive fiber structure Active JP4565109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007089175A JP4565109B2 (en) 2007-03-29 2007-03-29 Pressure sensitive fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007089175A JP4565109B2 (en) 2007-03-29 2007-03-29 Pressure sensitive fiber structure

Publications (2)

Publication Number Publication Date
JP2008249409A JP2008249409A (en) 2008-10-16
JP4565109B2 true JP4565109B2 (en) 2010-10-20

Family

ID=39974548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007089175A Active JP4565109B2 (en) 2007-03-29 2007-03-29 Pressure sensitive fiber structure

Country Status (1)

Country Link
JP (1) JP4565109B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090319A (en) * 2014-10-31 2016-05-23 国立大学法人鳥取大学 Planar pressure sensor
JP2017198678A (en) * 2013-03-15 2017-11-02 ナノ コンポジット プロダクツ インコーポレイテッド Composite material used as strain gauge
US10260968B2 (en) 2013-03-15 2019-04-16 Nano Composite Products, Inc. Polymeric foam deformation gauge
US10405779B2 (en) 2015-01-07 2019-09-10 Nano Composite Products, Inc. Shoe-based analysis system
JP2020177015A (en) * 2019-04-15 2020-10-29 タカノ株式会社 Pressure-sensitive sensor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5668966B2 (en) * 2009-10-15 2015-02-12 株式会社槌屋 Conductive fabric and touch sensor device using conductive fabric
JP6572420B2 (en) * 2015-03-05 2019-09-11 株式会社槌屋 Conductive fabric and pressure sensor using conductive fabric
CN108593157B (en) * 2018-03-13 2024-02-02 上海思澄智能科技有限公司 Fabric sensor for pressure distributed monitoring
WO2020179054A1 (en) * 2019-03-07 2020-09-10 竹中繊維株式会社 Sensor element, sensor device, and method of manufacturing sensor element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0876910A (en) * 1994-09-07 1996-03-22 Nissha Printing Co Ltd Sensor for detecting coordinates of contact
JPH10144168A (en) * 1996-11-12 1998-05-29 Sensor Technol Kk Planar switch
JP2003529901A (en) * 2000-04-03 2003-10-07 ブルーネル ユニバーシティ Conductive fabric
JP2004330370A (en) * 2003-05-08 2004-11-25 Nitta Ind Corp Tactile sensor for robot hand
JP2006284276A (en) * 2005-03-31 2006-10-19 Fukui Prefecture Pressure-sensitive sensor sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1891254A2 (en) * 2005-05-31 2008-02-27 Koninklijke Philips Electronics N.V. A fully textile electrode lay-out allowing passive and active matrix addressing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0876910A (en) * 1994-09-07 1996-03-22 Nissha Printing Co Ltd Sensor for detecting coordinates of contact
JPH10144168A (en) * 1996-11-12 1998-05-29 Sensor Technol Kk Planar switch
JP2003529901A (en) * 2000-04-03 2003-10-07 ブルーネル ユニバーシティ Conductive fabric
JP2004330370A (en) * 2003-05-08 2004-11-25 Nitta Ind Corp Tactile sensor for robot hand
JP2006284276A (en) * 2005-03-31 2006-10-19 Fukui Prefecture Pressure-sensitive sensor sheet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198678A (en) * 2013-03-15 2017-11-02 ナノ コンポジット プロダクツ インコーポレイテッド Composite material used as strain gauge
US10263174B2 (en) 2013-03-15 2019-04-16 Nano Composite Products, Inc. Composite material used as a strain gauge
US10260968B2 (en) 2013-03-15 2019-04-16 Nano Composite Products, Inc. Polymeric foam deformation gauge
US10658567B2 (en) 2013-03-15 2020-05-19 Nano Composite Products, Inc. Composite material used as a strain gauge
US11329212B2 (en) 2013-03-15 2022-05-10 Nano Composite Products, Inc. Composite conductive foam insole
US11874184B2 (en) 2013-03-15 2024-01-16 Nano Composite Products, Inc. Composite conductive foam
JP2016090319A (en) * 2014-10-31 2016-05-23 国立大学法人鳥取大学 Planar pressure sensor
US10405779B2 (en) 2015-01-07 2019-09-10 Nano Composite Products, Inc. Shoe-based analysis system
US11564594B2 (en) 2015-01-07 2023-01-31 Nano Composite Products, Inc. Shoe-based analysis system
JP2020177015A (en) * 2019-04-15 2020-10-29 タカノ株式会社 Pressure-sensitive sensor
JP7046114B2 (en) 2019-04-15 2022-04-01 タカノ株式会社 Pressure sensor

Also Published As

Publication number Publication date
JP2008249409A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
JP4565109B2 (en) Pressure sensitive fiber structure
KR102630881B1 (en) Piezoelectric element and device using same
JP4273233B2 (en) Pressure-sensitive sensor sheet
US7544627B2 (en) Pressure sensing fabric
CN110926661B (en) Flexible fabric pressure and strain composite sensor
KR20170003101A (en) Pressure sensing sensor and pressure sensing apparatus comprising the same
JP2016031269A (en) Body pressure distribution measurement device
JP7416357B2 (en) Composite yarn for position detection for capacitive touch sensing
KR20160118110A (en) Intergrated sensor
JP2019219395A (en) Force sensing element and sensor
Roh Conductive yarn embroidered circuits for system on textiles
Cui et al. Fibrous triboelectric nanogenerators: fabrication, integration, and application
KR101082856B1 (en) Sensor textile, textile based pressure sensor, instrument for preparing textile based pressure sensor and method for textile based pressure sensor
JP2012177565A (en) Tensile deformation detection fabric
JP3782951B2 (en) Sensor and sensor output treatment device
WO2019167744A1 (en) Sensor electrode and planar sensor using same
KR20170093655A (en) Tactile sensor
JP7046114B2 (en) Pressure sensor
KR20210025454A (en) Fiber based multi-cell pressure sensor for pressure measurement and position measurement
Balgale et al. Woven textile pressure switch
JP2020190535A (en) Displacement sensor
WO2022181268A1 (en) Fabric-like sensor and fabric-like sensor device
JPH02304824A (en) Planar switch
KR20180103481A (en) Intergrated sensor
WO2020213505A1 (en) Pressure-sensitive sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081021

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20081021

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100629

R150 Certificate of patent or registration of utility model

Ref document number: 4565109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250