JP4563322B2 - Glassy carbon-coated carbon material and method for producing the same - Google Patents

Glassy carbon-coated carbon material and method for producing the same Download PDF

Info

Publication number
JP4563322B2
JP4563322B2 JP2006007692A JP2006007692A JP4563322B2 JP 4563322 B2 JP4563322 B2 JP 4563322B2 JP 2006007692 A JP2006007692 A JP 2006007692A JP 2006007692 A JP2006007692 A JP 2006007692A JP 4563322 B2 JP4563322 B2 JP 4563322B2
Authority
JP
Japan
Prior art keywords
glassy carbon
layer
carbon material
glassy
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006007692A
Other languages
Japanese (ja)
Other versions
JP2006143587A (en
Inventor
章博 三浦
秀彦 野崎
直人 太田
賜 土居
哲朗 東城
正之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2006007692A priority Critical patent/JP4563322B2/en
Publication of JP2006143587A publication Critical patent/JP2006143587A/en
Application granted granted Critical
Publication of JP4563322B2 publication Critical patent/JP4563322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

本発明は、炭素材を基体とし、その表面層にガラス状炭素層を有するガラス状炭素被覆炭素材に係り、さらに詳しくは、半導体、光ファイバ等の製造の際に使用されるサセプタ、るつぼ、ボート、ヒータ、熱処理用治具等の各種部材、金属蒸着用るつぼ、ガラス封着用治具、セラミック焼結用治具などに好適に使用できるガラス状炭素被覆炭素材及びその製造方法に関する。   The present invention relates to a glassy carbon-coated carbon material having a carbon material as a base and having a glassy carbon layer on its surface layer. More specifically, the present invention relates to a susceptor, crucible, used in the manufacture of semiconductors, optical fibers, and the like. The present invention relates to a glassy carbon-coated carbon material that can be suitably used for various members such as boats, heaters, heat treatment jigs, crucibles for metal vapor deposition, glass sealing jigs, ceramic sintering jigs, and the like, and a method for producing the same.

各種の炭素材を基体として、その表面層にガラス状炭素層を有するガラス状炭素被覆炭素材は、炭素材のガス不浸透性、耐摩耗性、化学安定性、表面硬度などを向上させたり、粉塵の発生を防止したりする部材として、各種の用途に広範に使用されており、下記特許文献1〜3などに先行技術が開示されている。例えば、ガラス状炭素層に要求される特性の一つである耐摩耗性は、炭素材の場合では機械的摩耗によりその表面から微粉が簡単に発生して被処理製品を汚染するため、その表面層にガラス状炭素層を形成することによって微粉の発生を防ぎ耐摩耗性を向上させるものである。   A glassy carbon-coated carbon material having a glassy carbon layer on the surface layer of various carbon materials as a base, improves the gas impermeability, wear resistance, chemical stability, surface hardness, etc. of the carbon material, As a member for preventing the generation of dust, it is widely used for various applications, and the prior art is disclosed in the following Patent Documents 1 to 3, and the like. For example, the wear resistance, which is one of the characteristics required for a glassy carbon layer, is that in the case of carbon materials, fine particles are easily generated from the surface due to mechanical wear and contaminate the product to be treated. By forming a glassy carbon layer on the layer, the generation of fine powder is prevented and the wear resistance is improved.

この種のガラス状炭素被覆炭素材は、層形成時の熱処理温度によってその特性が大きく変化するため、熱処理温度値の決定は重要であるが、熱処理温度を決定しても昇温速度が異なると、得られるガラス状炭素層の物性が異なってしまうことになる。すなわち、熱処理温度と昇温速度は一体不可分の関係であり、これらの条件はガラス状炭素層の特性を支配する大きな要因となるものである。それ故、品質の安定したガラス状炭素被覆炭素材を製造するためには、熱処理温度と昇温速度とを綿密に決定する必要がある。   This kind of glassy carbon-coated carbon material has its characteristics greatly changed depending on the heat treatment temperature at the time of layer formation, so it is important to determine the heat treatment temperature value. The physical properties of the obtained glassy carbon layer will be different. That is, the heat treatment temperature and the rate of temperature increase are inseparable, and these conditions are a major factor that governs the properties of the glassy carbon layer. Therefore, in order to produce a glassy carbon-coated carbon material with stable quality, it is necessary to carefully determine the heat treatment temperature and the temperature increase rate.

特開平5−319939号公報JP-A-5-319939 特開平5−262510号公報JP-A-5-262510 特開平6−93453号公報JP-A-6-93453

ところで、ガラス状炭素層の形成方法には各種の方法があり、例えば各種の合成樹脂を該樹脂が可溶な有機溶媒に溶解して前駆体溶液を調整し、次いでこの溶液を炭素材の表面層に含浸又は/及び塗布し、乾燥後、不活性雰囲気又は真空雰囲気で硬化、更に焼成することによって形成できるが、このような熱処理時において処理炉内位置に起因する温度分布により、熱処理温度や昇温速度を決定しても、得られるガラス状炭素層は耐摩耗性や基体に対する付着性が低かったり、半導体ウエハ等の被処理製品と固着したりするなど品質欠陥を招く場合がしばしばある。従って、たとえ熱処理温度や昇温速度を規定してガラス状炭素層を形成したとしても、高耐摩耗性、高固着性を備えた被覆層であるかどうかの保証は得られ難く、品質保持の点で問題が多いのが実状である。   By the way, there are various methods for forming the glassy carbon layer, for example, various synthetic resins are dissolved in an organic solvent in which the resin is soluble to prepare a precursor solution, and this solution is then applied to the surface of the carbon material. It can be formed by impregnating or / and applying to the layer, drying, curing in an inert atmosphere or vacuum atmosphere, and further firing, but the temperature distribution due to the position in the processing furnace during such heat treatment, Even when the rate of temperature increase is determined, the obtained glassy carbon layer often has quality defects such as low abrasion resistance and adhesion to the substrate, and adhesion to a product to be processed such as a semiconductor wafer. Therefore, even if the glassy carbon layer is formed by specifying the heat treatment temperature and the rate of temperature rise, it is difficult to guarantee that the coating layer has high wear resistance and high adhesiveness. The reality is that there are many problems.

本発明は、このような問題点の解消を図るために成されたものであり、本発明の目的は、高耐摩耗性、高固着性を備えた所謂、健全性に富んだガラス状炭素被覆炭素材を提供することにある。   The present invention has been made in order to solve such problems, and the object of the present invention is to provide a so-called glassy carbon coating with high wear resistance and high adhesion, which is rich in soundness. To provide carbon materials.

本発明は、上記の目的を達成するため以下に述べる構成としたものである。即ち、本発明は、2500℃〜3200℃で熱処理された炭素材から成る基体の表面層にガラス状炭素層を有するガラス状炭素被覆炭素材であ、前記ガラス状炭素層の表面が、1〜30cPの粘度に調整したポリカルボジイミド樹脂をテトラクロロエチレンに溶解した溶液を用いて形成され、X線光電子分光法により測定したO1S及びC1Sピークの面積比O1S/C1Sを0.1〜0.2とする表面性状を備えることで耐摩耗性を有し、被処理物と固着しないことを特徴とする The present invention has the following configuration in order to achieve the above object. That is, the present invention is, 2500 ℃ ~3200 Ri glassy carbon-coated carbon material der having a glassy carbon layer on the surface layer of the substrate made of heat-treated carbon material in ° C., the surface of the glassy carbon layer is 1 O 1S and C 1S peak area ratio O 1S / C 1S formed by using a solution obtained by dissolving a polycarbodiimide resin adjusted to a viscosity of 30 cP in tetrachlorethylene and measured by X-ray photoelectron spectroscopy is 0.1 to 0 It is characterized in that it has wear resistance by having a surface property of .2 and does not adhere to the workpiece .

本発明はまた、2500℃〜3200℃で熱処理され且つ平均気孔半径が0.1〜5.0μmの炭素材の表面に、ポリカルボジイミド樹脂をテトラクロロエチレンに溶解した溶液を1〜30cPの粘度に調整して得た前駆体溶液を含浸又は/及び塗布し、乾燥後、不活性雰囲気中又は真空雰囲気中で加熱硬化し、更に焼成することによって、炭素材から成る基体の表面層に、1〜200μmの厚みで、X線光電子分光法により測定したO1S及びC1Sピークの面積比O1S/C1Sを0.1〜0.2とする表面性状のガラス状炭素層を有する、耐摩耗性を有し、被処理物と固着しないガラス状炭素被覆炭素材を製造することを特徴とするガラス状炭素被覆炭素材の製造方法である。 In the present invention, a solution obtained by dissolving a polycarbodiimide resin in tetrachloroethylene on the surface of a carbon material heat-treated at 2500 ° C. to 3200 ° C. and having an average pore radius of 0.1 to 5.0 μm is adjusted to a viscosity of 1 to 30 cP. The precursor solution obtained in this manner is impregnated or / and applied, dried, heat-cured in an inert atmosphere or vacuum atmosphere, and further baked to give a surface layer of 1 to 200 μm on the surface layer of the carbon material. It has a glassy carbon layer having a surface property with an area ratio O 1S / C 1S of the O 1S and C 1S peaks measured by X-ray photoelectron spectroscopy of 0.1 to 0.2, and having wear resistance. And it is a manufacturing method of the glassy carbon covering carbon material characterized by manufacturing the glassy carbon covering carbon material which does not adhere to a processed material.

本発明に係るガラス状炭素被覆炭素材は、ガラス状炭素層に要求される特性、即ち、ガス不浸透性、耐摩耗性、化学安定性、表面高硬度、防発塵性等の諸特性を具備する上に、被処理製品との固着や汚染、被覆層の変質、ガス発生が起こらず、被覆層と基体との密着性が良好であり、損傷し難いなど、優れた特性を有するものになる。従って、本発明に係るガラス状炭素被覆炭素材は、半導体、光ファイバ等の製造の際に使用されるサセプタ、るつぼ、ボート、ヒータ、熱処理用治具等の各種部材、金属蒸着用るつぼ、ガラス封着用治具、セラミック焼結用治具などに好適に使用することが可能である。   The glassy carbon-coated carbon material according to the present invention has characteristics required for a glassy carbon layer, that is, various properties such as gas impermeability, abrasion resistance, chemical stability, high surface hardness, and dust resistance. In addition, it has excellent characteristics such as adhesion to the product to be processed, contamination, alteration of the coating layer, no gas generation, good adhesion between the coating layer and the substrate, and resistance to damage. Become. Accordingly, the glassy carbon-coated carbon material according to the present invention is a susceptor, a crucible, a boat, a heater, various members such as a jig for heat treatment used in the manufacture of semiconductors, optical fibers, etc., a metal evaporation crucible, glass It can be suitably used for a sealing jig, a ceramic sintering jig, and the like.

以下、本発明の好ましい実施の形態に関して説明する。本発明者等は、熱処理を施した後のガラス状炭素層の物的特性と、その表面をXPSで観測した際の炭素(C)、酸素(O)及び窒素(N)の元素の挙動(特にディジタル的割合で示した比)とを詳細に調査・検討した結果、ガラス状炭素層の表面が、XPSで測定したO1S及びC1Sピークの面積比O1S/C1Sが0.1〜0.2の値であれば、耐摩耗性や基体との固着性が良好で、被処理製品と固着することがない等の健全性を有することを知見するに至ったものである。 Hereinafter, preferred embodiments of the present invention will be described. The inventors have investigated the physical properties of the glassy carbon layer after heat treatment and the behavior of carbon (C), oxygen (O) and nitrogen (N) elements when the surface is observed by XPS ( in particular digitally ratio which is a percentage) and a detailed investigation and study the results, the surface of the glassy carbon layer, 0.1 area ratio O 1S / C 1S of O 1S and C 1S peak measured by XPS When the value is 0.2, it has been found that the wear resistance and the adhesion to the substrate are good, and that it has soundness such as no adhesion to the product to be processed.

基体となる炭素材としては特に制約されないが、通常は2500〜3200℃の範囲内で熱処理された等方性や異方性の炭素材を使用することができる。炭素材の熱処理が2500℃未満では、黒鉛化が十分に進行していないために、ガラス状炭素層を形成する際の熱処理(炭素化)時に基体が収縮してしまって、ガラス状炭素層に微細な亀裂や剥離が生じ易く、その結果、微粉が発生し易くなるからである。また、熱処理温度が3200℃を超える炭素材を使用すると、黒鉛化が進み過ぎており、基体表面は微粉が頗る発生し易い状態であるため、熱処理すればガラス状炭素となる前駆体溶液を含浸・塗布する際に微粉が混入してしまい、ガラス状炭素層を形成しても微粉の発生を防ぐことが困難になる。さらに、このような層の場合、表面硬度が低くなるため、機械的摩耗によって微粉が発生し易くなるからに他ならない。   Although it does not restrict | limit especially as a carbon material used as a base | substrate, Usually, the isotropic and anisotropic carbon material heat-processed within the range of 2500-3200 degreeC can be used. When the heat treatment of the carbon material is less than 2500 ° C., graphitization has not progressed sufficiently, so that the base contracts during the heat treatment (carbonization) when forming the glassy carbon layer, resulting in the glassy carbon layer. This is because fine cracks and peeling are likely to occur, and as a result, fine powder is likely to be generated. In addition, if a carbon material having a heat treatment temperature exceeding 3200 ° C. is used, graphitization has progressed too much and the surface of the substrate is in a state where fine powder is likely to be generated. -When applying, fine powder is mixed, and even if a glassy carbon layer is formed, it is difficult to prevent the generation of fine powder. Furthermore, in the case of such a layer, the surface hardness is low, so that fine powder is easily generated due to mechanical wear.

ガラス状炭素層の形成は公知の各方法で行えば良く、例えば、各種合成樹脂を有機溶媒に溶解して前駆体溶液を製造する。次いで、この溶液を炭素材の表面層に含浸又は/及び塗布し、乾燥後、不活性雰囲気又は真空雰囲気で加熱硬化し、更に焼成して形成することができる。また、液状樹脂をそのまま基体に含浸又は/及び塗布して加熱硬化、更に焼成しても形成できる。いずれにしても本発明においては、ガラス状炭素層の形成方法に格別の制約を受けない。以下にガラス状炭素層の前駆体溶液を用いて被覆層を形成する方法に基づき、ガラス状炭素被覆炭素材を製造する方法を説明する。   The glassy carbon layer may be formed by any known method. For example, various synthetic resins are dissolved in an organic solvent to produce a precursor solution. Then, this solution can be impregnated or applied on the surface layer of the carbon material, dried, heat-cured in an inert atmosphere or vacuum atmosphere, and further baked to form. Alternatively, it can be formed by impregnating or / and applying a liquid resin to a substrate as it is, followed by heat curing and further baking. In any case, in the present invention, the method for forming the glassy carbon layer is not particularly restricted. Hereinafter, a method for producing a glassy carbon-coated carbon material will be described based on a method for forming a coating layer using a precursor solution of a glassy carbon layer.

ガラス状炭素被覆炭素材を製造するためには、炭素材の表面層に、前駆体溶液を含浸又は/及び塗布すれば良いが、炭素基体の平均気孔半径が0.1μm未満では、基体へのアンカー効果が低く、摩擦や急激な加熱、急冷等により容易に亀裂、剥離等が生じ易い。また、5.0μmより大きいと適当な厚みの前駆体溶液を含浸又は/及び塗布しても、基体表面層の気孔を十分に塞ぐことができず、緻密な層を形成するのが難しい。それ故、平均気孔半径が0.1〜5.0μmの炭素材の表面層に前駆体溶液を含浸又は/及び塗布することによって、健全性を有するガラス状炭素被覆炭素材を製造し得るものである。なお、基体に対する固着強度が高く、かつ緻密な膜を形成する為には、平均気孔半径が0.2〜2.0μmの炭素材を基体に用いるのがさらに好ましい。この場合、炭素基体の平均気孔半径は、水銀圧入法で最大圧力1100kg/cm2、試料と水銀との接触角141.3°で測定した累積気孔容積の1/2とした。 In order to produce a glassy carbon-coated carbon material, the surface layer of the carbon material may be impregnated with and / or coated with a precursor solution. However, if the average pore radius of the carbon substrate is less than 0.1 μm, The anchor effect is low, and cracks, delamination, etc. easily occur due to friction, rapid heating, rapid cooling, or the like. On the other hand, if it is larger than 5.0 μm, even if impregnated or / and coated with a precursor solution having an appropriate thickness, the pores of the surface layer of the substrate cannot be sufficiently blocked, and it is difficult to form a dense layer. Therefore, a glassy carbon-coated carbon material having soundness can be produced by impregnating or / and applying a precursor solution to a surface layer of a carbon material having an average pore radius of 0.1 to 5.0 μm. is there. In order to form a dense film having high adhesion strength to the substrate, it is more preferable to use a carbon material having an average pore radius of 0.2 to 2.0 μm for the substrate. In this case, the average pore radius of the carbon substrate was ½ of the cumulative pore volume measured by the mercury intrusion method with a maximum pressure of 1100 kg / cm 2 and a contact angle of 141.3 ° between the sample and mercury.

ここで、合成樹脂は焼成後ガラス状炭素質を与えるものであれば特に問われない。このガラス状炭素質を与える合成樹脂としてはフェノール樹脂、フラン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリカルボジイミド樹脂、エポキシ樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、キシレン樹脂、アルキド樹脂、塩化ビニル樹脂などを例示できる。また、使用する有機溶媒は合成樹脂を溶解するものであれば特に問われないが、例えばテトラクロロエチレン、トリクロロエチレン、ジメチルアセトアミド、N−メチルピロリドン、ケトン類(アセトン、メチルエチルケトン等)、アルコール類(メタノール、エタノール等)などがある。これらの溶媒は単独で用いてもよく、又、溶解性を損なわない範囲で二種類以上を混合して用いてもよい。このうち、樹脂の溶解性や被覆層形成の容易性の観点から、ポリカルボジイミド樹脂はテトラクロロエチレン、フェノール樹脂はメタノール、ポリアミドイミド樹脂はN−メチルピロリドン等の組合せが好ましい。   Here, the synthetic resin is not particularly limited as long as it gives glassy carbonaceous material after firing. Synthetic resins that give glassy carbonaceous materials include phenolic resins, furan resins, polyamide resins, polyimide resins, polyamideimide resins, polycarbodiimide resins, epoxy resins, urea resins, melamine resins, unsaturated polyester resins, xylene resins, alkyd resins. And vinyl chloride resin. The organic solvent to be used is not particularly limited as long as it dissolves the synthetic resin. For example, tetrachloroethylene, trichloroethylene, dimethylacetamide, N-methylpyrrolidone, ketones (acetone, methyl ethyl ketone, etc.), alcohols (methanol, ethanol, etc.) Etc.). These solvents may be used alone, or two or more of them may be mixed and used as long as the solubility is not impaired. Among these, from the viewpoint of the solubility of the resin and the ease of forming the coating layer, the polycarbodiimide resin is preferably a combination of tetrachloroethylene, the phenol resin is methanol, the polyamideimide resin is N-methylpyrrolidone, and the like.

基体に含浸する場合は、樹脂の重合度と溶媒希釈率により若干異なるが、これらを1〜50cP(centipoise)の粘度になるように混合して前駆体溶液を製造するのが良い。粘度が、50cPを超えるとガラス封着用治具等の小さい穴を有する製品では穴詰まりを生じるおそれがあり、1cP未満では含浸後に基体表面層に残存する量が少なくなる。特に最適な粘度は5〜30cPである。一方、基体に塗布する場合は、前記基体に含浸する場合と同様に1〜50cPの粘度でよいが、0.1〜30cPが適している。これは30cPを超えると、平滑で、かつ剥離や亀裂に強い層を得ることが難しくなり、1cP未満では、塗布回数を多くしなければならず、手間が掛かるため、工業的ではないからである。 When the substrate is impregnated, it varies slightly depending on the degree of polymerization of the resin and the solvent dilution rate, but it is preferable to prepare a precursor solution by mixing them so as to have a viscosity of 1 to 50 cP (centipoise). If the viscosity exceeds 50 cP , a product having small holes such as a glass sealing jig may cause clogging. If the viscosity is less than 1 cP , the amount remaining on the substrate surface layer after impregnation decreases. A particularly optimum viscosity is 5 to 30 cP . On the other hand, when applied to a substrate, the viscosity may be 1 to 50 cP as in the case of impregnating the substrate, but 0.1 to 30 cP is suitable. If it exceeds 30 cP , it is difficult to obtain a smooth and strong layer against peeling and cracking, and if it is less than 1 cP , the number of times of application must be increased and it is time-consuming, which is not industrial. It is.

このようにして得られた前駆体溶液を、基体に含浸したり、ハケ、スプレー等により塗布したりする。このような含浸物や塗布物を通常は60〜100℃で乾燥した後、150〜300℃で加熱して硬化、次いで600〜3000℃で焼成してガラス状炭素被覆層を形成することができるが、本発明ではガラス状炭素層の表面がXPSで測定したO1S及びC1Sピークの面積比O1S/C1Sを0.1〜0.2の値になるように焼成等の熱処理を行う必要がある。ここで、形成するガラス状炭素層の厚みは使用目的によって異なるが、通常、1〜200μmである。厚みが1μmよりも少ないとガス不浸透性、耐摩耗性、化学安定性を発揮しにくくなり、又、200μmよりも厚くすると塗布したガラス状炭素層が黒鉛基体より剥離したり、ガラス状炭素層に亀裂が生じたりするので好ましくない。 The precursor solution thus obtained is impregnated into the substrate or applied by brushing, spraying or the like. Such an impregnated product or coated product is usually dried at 60 to 100 ° C., then heated and cured at 150 to 300 ° C., and then baked at 600 to 3000 ° C. to form a glassy carbon coating layer. However, in the present invention, the surface of the glassy carbon layer is subjected to heat treatment such as firing so that the area ratio O 1S / C 1S of the O 1S and C 1S peaks measured by XPS is 0.1 to 0.2. There is a need. Here, the thickness of the glassy carbon layer to be formed varies depending on the purpose of use, but is usually 1 to 200 μm. If the thickness is less than 1 μm, gas impermeability, abrasion resistance, and chemical stability are difficult to be exhibited. If the thickness is greater than 200 μm, the applied glassy carbon layer peels off from the graphite substrate, or the glassy carbon layer. It is not preferable because cracks occur in the surface.

ガラス状炭素層の表面に関してXPSで測定したO1S及びC1Sピークの面積比O1S/C1Sが0.2を超えると、基体表面層に含浸又は/及び塗布した物質の炭素化が進んでいないため、層の熱収縮が大きく、急熱により亀裂や剥離が生じる。更には、ヘテロ原子を残存しているため、熱処理製品との固着や汚染、層の変質、ガス発生の原因になる。一方、O1S及びC1Sピークの面積比O1S/C1Sが0.1未満では炭素化が進み過ぎているため、被覆層は損傷し易く、耐摩耗性も低下し、微粉が発生する。本発明に係るガラス状炭素層の表面はO1S及びC1Sピークの面積比O1S/C1Sを0.1〜0.2の値としているため、亀裂や剥離、層の変質、被処理製品への固着や汚染、ガス発生等が生じない、取扱い時に被覆層に傷が付かない等の著しく優れた特性を発揮し得るものとなる。 When the area ratio O 1S / C 1S of the O 1S and C 1S peaks measured by XPS with respect to the surface of the glassy carbon layer exceeds 0.2, carbonization of the material impregnated or / and coated on the substrate surface layer proceeds. Therefore, thermal contraction of the layer is large, and cracks and peeling occur due to rapid heating. Furthermore, since the hetero atoms remain, it causes sticking and contamination with the heat-treated product, layer alteration, and gas generation. On the other hand, if the area ratio O 1S / C 1S of the O 1S and C 1S peaks is less than 0.1, the carbonization is too advanced, so that the coating layer is easily damaged, wear resistance is reduced, and fine powder is generated. Since the surface of the glassy carbon layer according to the present invention has an area ratio O 1S / C 1S of O 1S and C 1S peaks of 0.1 to 0.2, cracks, delamination, layer alteration, processed products It is possible to exhibit remarkably excellent characteristics such as no sticking, contamination, gas generation, and the like, and no damage to the coating layer during handling.

以下、本発明の実施例について説明する。本発明者等は、各種の合成樹脂を使用して熱処理を施した後のガラス状炭素層の物的特性と、その表面をXPSで観測した際の炭素(C)、酸素(O)及び窒素(N)の元素の挙動(特にディジタル的割合で示した比)とを詳細に調査・検討した結果に基づいて、本発明を完成するに至ったものである。なお本発明において、XPSの測定としては、各種の技術分野で広く用いられており、かつ、その測定手法についても良く知られているC1S、O1S及びN1Sを対象として測定した。その主な結果を以下に(1)〜(7)の各項に分けて記述する。 Examples of the present invention will be described below. The inventors of the present invention have found that the physical properties of the glassy carbon layer after heat treatment using various synthetic resins and the carbon (C), oxygen (O) and nitrogen when the surface is observed by XPS. The present invention has been completed based on the results of detailed investigation and examination of the behavior of the element (N) (particularly, the ratio expressed in digital proportion). In the present invention, XPS measurement was performed on C 1S , O 1S and N 1S which are widely used in various technical fields and well known for their measurement techniques. The main results are described in the following sections (1) to (7).

(1) 窒素を含む合成樹脂を使用した場合において、窒素のN1Sピークは観測することができず、ガラス状炭素層の特性にはおよそ無関係であった。但し、乾燥工程後の被覆層には小さなN1Sピークを観測することができたが、この層はガラス状炭素の形態をとっておらず、本発明に係る被覆層ではない。換言すれば、焼成するとN1Sピークは存在しなくなり、基体に塗布した物質はガラス状炭素に変化すると考えられる。
(2) 酸素のO1Sピークはどの試料も左右対称であり、ピーク位置が532〜534eVのものが観測された。
(3) 炭素のC1Sピークは左右対称のものから高エネルギー側に裾が広がった形状のものまであり、ピーク位置が284〜287eVのものが観測された。
(1) When a synthetic resin containing nitrogen was used, the N 1S peak of nitrogen could not be observed, and was almost unrelated to the properties of the glassy carbon layer. However, although a small N 1S peak could be observed in the coating layer after the drying step, this layer does not take the form of glassy carbon and is not a coating layer according to the present invention. In other words, when fired, the N 1S peak disappears, and the material applied to the substrate is considered to change to glassy carbon.
(2) The oxygen O 1S peak was symmetrical in any sample, and peaks having a peak position of 532 to 534 eV were observed.
(3) Carbon C 1S peaks ranged from being bilaterally symmetric to those having a skirt extending toward the high energy side, and peaks having a peak position of 284 to 287 eV were observed.

なお参考までに、結合エネルギーの変化(化学シフト)は、存在する化学種の化学結合状態の変化を示しており、より低いエネルギー側へシフトしたピークを示している試料は、次のように考察できる。即ち、炭素化があまり進んでいないときには、局在化した分子軌道を持つ「−C=O」、「−N=C−」などの結合は、熱処理により切断されて脱離したり、分子内での組替えが生じたりする。それと共に炭素化され、より安定な六角網目構造を形成するようになる。従って、このような結合状態、即ち結合エネルギーの変化が、O1S及びC1Sのピーク位置の低エネルギー側へのシフトとなったものであり、このように低エネルギー側へのシフトが大きいもの程、炭素化が進んでいると考えられる。 For reference, the change in bond energy (chemical shift) indicates the change in the chemical bond state of the existing chemical species, and the sample showing the peak shifted to the lower energy side is considered as follows. it can. That is, when carbonization is not progressing so much, bonds such as “—C═O” and “—N═C—” having localized molecular orbitals are cleaved and removed by heat treatment. May be rearranged. At the same time, it is carbonized to form a more stable hexagonal network structure. Therefore, such a binding state, that is, a change in binding energy is a shift of the peak positions of O 1S and C 1S to the lower energy side, and the larger the shift to the lower energy side is, the more this is. It is thought that carbonization is progressing.

(4) O1Sピークの高さは、一番低いピークを1とした場合、1〜3.5倍程度の範囲内で全試料のピークが観測された。
(5) C1Sピークの高さは、一番低いピークを1とした場合、1〜1.5倍程度の範囲内で全試料のピークが観測された。
(6) O1Sピークの面積は、一番小さいピークを1とした場合、1〜2.7倍程度の範囲内で全試料のO1Sピークの面積が観測された。
(7) C1Sピークの面積は、一番小さいピークを1とした場合、1〜1.5倍程度の範囲内で全試料のC1Sピークの面積が観測された。
(4) With respect to the height of the O 1S peak, when the lowest peak is 1, peaks of all samples were observed within a range of about 1 to 3.5 times.
(5) With respect to the height of the C 1S peak, when the lowest peak is 1, the peaks of all samples were observed within a range of about 1 to 1.5 times.
(6) With respect to the area of the O 1S peak, when the smallest peak is 1, the area of the O 1S peak of all samples was observed within a range of about 1 to 2.7 times.
(7) As for the area of the C 1S peak, when the smallest peak is 1, the area of the C 1S peak of all samples was observed within a range of about 1 to 1.5 times.

以上の結果に基づき、O1S及びC1Sのピークの位置、高さ、面積の項目中から、ガラス状炭素層の特性と密接な関係にあるものを各種実験によって定めた結果、ガラス状炭素層の前記健全性を評価するためには、O1S及びC1Sのピークの面積比O1S/C1Sが適当であることが判った。以下に実験例及び比較例によって、本発明を更に具体的に説明する。 Based on the above results, among the items of O 1S and C 1S peak positions, heights, and areas, those having a close relationship with the characteristics of the glassy carbon layer were determined by various experiments. It was found that the area ratio O 1S / C 1S of the O 1S and C 1S peaks is appropriate for evaluating the soundness of the above. Hereinafter, the present invention will be described more specifically with reference to experimental examples and comparative examples.

実施例1,(A)〜実施例4,(D)、比較例1,(E)〜比較例5,(I)及び参照例1,(J)〜参照例3,(L):平均気孔半径1.5μm、熱処理温度3000℃の等方性炭素材を基体とし、ポリカルボジイミド樹脂をテトラクロロエチレンで溶解したガラス状炭素前駆体溶液を基体表面層に含浸及びスプレー塗布し、焼成速度及び焼成温度を変えて、XPSにより測定したO1S及びC1Sのピークの面積比O1S/C1Sが下記の表1に示すような値のガラス状炭素層(厚み:50μm)を形成した(実施例1〜実施例4及び比較例1〜比較例5)。なお、表1における参照例1〜3は黒鉛基体のみのものである。 Example 1, (A) to Example 4, (D), Comparative Example 1, (E) to Comparative Example 5, (I) and Reference Example 1, (J) to Reference Example 3, (L): Average pores An isotropic carbon material having a radius of 1.5 μm and a heat treatment temperature of 3000 ° C. is used as a base, and a glassy carbon precursor solution in which polycarbodiimide resin is dissolved in tetrachloroethylene is impregnated and sprayed onto the base surface layer. varied, glassy carbon layer of value such as the ratio of peak areas of the O 1S and C 1S measured by XPS O 1S / C 1S is shown in Table 1 below (thickness: 50 [mu] m) was formed (example 1 Example 4 and Comparative Examples 1 to 5). In addition, Reference Examples 1 to 3 in Table 1 are only for the graphite substrate.

Figure 0004563322
Figure 0004563322

実施例1〜実施例4、比較例1〜比較例5及び参照例1〜参照例3についてそれらの試料の引掻試験、固着試験及び急熱試験を行い、ガラス状炭素層の健全性を比較評価した。
〈試験1:連続荷重方式による引掻試験〉引掻針を実施例1〜実施例4、比較例1〜比較例5及び参照例1〜参照例3の各試料表面に垂直に降ろし、垂直方向の荷重を0から500gまで増やしながら表面を引っ掻く。このとき、引掻針の先端が受けた力を引掻強度として記録し、被覆層が破損したときの垂直荷重(臨界荷重)を比較した。この結果は、主に被覆層の付着力、剪断力を評価したものである。なお、参照例1〜参照例3は、基体表面が削られ始めた際の荷重を臨界荷重とした。
About Examples 1 to 4, Comparative Examples 1 to 5 and Reference Examples 1 to 3, the samples were subjected to a scratch test, a sticking test, and a rapid thermal test, and the soundness of the glassy carbon layer was compared. evaluated.
<Test 1: Scratch test by the continuous load method> The scratching needle is lowered vertically on the sample surfaces of Examples 1 to 4, Comparative Examples 1 to 5, and Reference Examples 1 to 3, and the vertical direction. The surface is scratched while increasing the load from 0 to 500 g. At this time, the force received by the tip of the scratching needle was recorded as the scratching strength, and the vertical load (critical load) when the coating layer was damaged was compared. This result mainly evaluates the adhesive force and shear force of the coating layer. In Reference Example 1 to Reference Example 3, the load when the substrate surface started to be cut was defined as the critical load.

〈試験2:一定荷重方式による往復引掻試験〉試験1と同様に、引掻針を各試料表面に垂直に降ろし、垂直方向荷重50g一定として引掻針で直線方向に往復運動させ、被覆層が破損するまでの往復回数を比較した。この結果は、主に被覆層の耐摩耗性を評価したものである。なお、参照例1〜参照例3は、基体表面が削られ始めた際の荷重を臨界荷重とした。   <Test 2: Reciprocating scratch test by constant load method> As in test 1, the scratching needle is lowered vertically on the surface of each sample, and the vertical load is fixed at 50 g, and the reciprocating motion is linearly performed by the scratching needle. We compared the number of round trips until the breakage. This result mainly evaluates the wear resistance of the coating layer. In Reference Example 1 to Reference Example 3, the load when the substrate surface started to be cut was defined as the critical load.

ここで、引掻試験は次の条件で行った。
・機 種: トライボギア TYPE22・記録計: フラットベット型ペンレコーダ・引掻針: ダイヤモンド製(先端0.1mm,R90°)
・荷 重: 連続荷重測定:0〜500g 一定荷重測定:50g・荷重速度: 連続荷重測定:10g/秒・引掻速度: 連続荷重測定:0.5mm/秒 一定荷重測定:5mm/秒
Here, the scratch test was performed under the following conditions.
・ Model: Tribogear TYPE22 ・ Recorder: Flatbed pen recorder ・ Scratching needle: Made of diamond (0.1mm tip, R90 °)
・ Load: Continuous load measurement: 0 to 500 g Constant load measurement: 50 g ・ Load speed: Continuous load measurement: 10 g / second ・ Scratch speed: Continuous load measurement: 0.5 mm / second Constant load measurement: 5 mm / second

これらの引掻試験の結果を表1及び図1,2に示す。この結果より、ガラス状炭素層表面がO1S/C1S(面積比)が0.1未満になると、臨界荷重及び破損までの往復回数が顕著に低下することが判る。又、基体のみを用いた参照例1〜参照例3においても耐摩耗性は実施例1〜実施例4に劣り、粉塵を発生した。なお、図1には、各試料における被覆層が破損したときの垂直荷重(臨界荷重)とO1S/C1S(面積比)の関係が、また図2には、同じく破損したときの往復回数とO1S/C1S(面積比)の関係がそれぞれ示されている。 The results of these scratch tests are shown in Table 1 and FIGS. From this result, it can be seen that when the O 1S / C 1S (area ratio) of the glassy carbon layer surface is less than 0.1, the critical load and the number of reciprocations until breakage are significantly reduced. Further, in Reference Examples 1 to 3 using only the substrate, the wear resistance was inferior to that of Examples 1 to 4, and dust was generated. 1 shows the relationship between the vertical load (critical load) and the O 1S / C 1S (area ratio) when the coating layer in each sample is broken, and FIG. 2 shows the number of reciprocations when the coating layer is broken. And the relationship of O 1S / C 1S (area ratio) are shown.

〈試験3:固着試験〉各試料の表面上にシリコンウエハを置き、300℃/時間の昇温速度に設定した炉に入れ、炉内温度がガラス状炭素被覆炭素材が通常使用される代表的な温度である1200℃に到達後、この温度で1時間保持した。これにより、シリコンウエハが各試料に固着するか否かを調べた。   <Test 3: Adhesion test> A silicon wafer is placed on the surface of each sample, placed in a furnace set at a heating rate of 300 ° C./hour, and the temperature inside the furnace is typically a glassy carbon-coated carbon material. After reaching a high temperature of 1200 ° C., this temperature was maintained for 1 hour. Thereby, it was examined whether or not the silicon wafer was fixed to each sample.

この固着試験結果を表1に示す。この結果から明らかなように、ガラス状炭素層表面のO1S/C1S(面積比)が0.2を超えると、シリコンウエハに固着することが判る。 The adhesion test results are shown in Table 1. As is apparent from this result, it is found that when O 1S / C 1S (area ratio) on the surface of the glassy carbon layer exceeds 0.2, it adheres to the silicon wafer.

〈試験4:急熱試験〉各試料(室温状態)を1000℃に設定した炉に素早く入れて急熱した。この急熱により、ガラス状炭素層に亀裂や剥離が生じるか否かを調べた。   <Test 4: Rapid Heat Test> Each sample (room temperature state) was quickly put into a furnace set at 1000 ° C. and rapidly heated. It was investigated whether the glassy carbon layer was cracked or peeled by this rapid heating.

この急熱試験結果を表1に示す。この結果より、ガラス状炭素層表面がO1S/C1S(面積比)が0.2を超えると、亀裂が生じることが判る。 The rapid heat test results are shown in Table 1. From this result, it can be seen that when the O 1S / C 1S (area ratio) exceeds 0.2 on the surface of the glassy carbon layer, a crack occurs.

以上の各試験結果からみて、表面のO1S/C1S(面積比)が0.1〜0.2のガラス状炭素層に関して健全性を確保していることが証されることが判る。 From the above test results, it can be seen that it is proved that soundness is secured with respect to the glassy carbon layer having a surface O 1S / C 1S (area ratio) of 0.1 to 0.2.

〈XPS測定条件〉
ここで、XPSの測定は全て以下の条件で行った。
・測定装置: ESCA−750(島津製作所(株)製)
・X線源: MgKα線
・加速電圧: 8kV
・測定時の真空度: 10−6Pa以下
・C1S測定範囲: 280〜294eV(0.1eVステップ)
・O1S測定範囲: 526〜540eV(0.1eVステップ)
・N1S測定範囲: 395〜410eV(0.1eVステップ)
<XPS measurement conditions>
Here, all XPS measurements were performed under the following conditions.
・ Measuring device: ESCA-750 (manufactured by Shimadzu Corporation)
・ X-ray source: MgKα ray ・ Acceleration voltage: 8 kV
・ Vacuum degree during measurement: 10 −6 Pa or less ・ C 1S measurement range: 280 to 294 eV (0.1 eV step)
O 1S measurement range: 526 to 540 eV (0.1 eV step)
N 1S measurement range: 395 to 410 eV (0.1 eV step)

また、O1S/C1S(面積比)の値は、ピークの両裾を結ぶ線をバックグランド線とし、この線より上に存在するピーク面積の全カウント数(cps)をそのピークの面積とし、O1Sピークの面積をC1Sピークの面積で除した値である。 In addition, the value of O 1S / C 1S (area ratio) is defined as a line connecting the skirts of the peak as a background line, and the total count (cps) of the peak area existing above this line as the area of the peak. , O 1S peak area divided by C 1S peak area.

各試料における被覆層が破損したときの垂直荷重(臨界荷重)とO1S/C1S(面積比)の関係を示す分布図である。It is a distribution map which shows the relationship between the vertical load (critical load) and O1S / C1S (area ratio) when the coating layer in each sample is damaged. 各試料における被覆層が破損したときの往復回数とO1S/C1S(面積比)の関係を示す分布図である。It is a distribution map which shows the relationship between the number of reciprocations when the coating layer in each sample is damaged and O 1S / C 1S (area ratio).

Claims (2)

2500℃〜3200℃で熱処理された炭素材から成る基体の表面層にガラス状炭素層を有するガラス状炭素被覆炭素材であ、前記ガラス状炭素層の表面が、1〜30cPの粘度に調整したポリカルボジイミド樹脂をテトラクロロエチレンに溶解した溶液を用いて形成され、X線光電子分光法により測定したO1S及びC1Sピークの面積比O1S/C1Sを0.1〜0.2とする表面性状を備えることで耐摩耗性を有し、被処理物と固着しないことを特徴とするガラス状炭素被覆炭素材。 2500 ℃ ~3200 Ri glassy carbon-coated carbon material der having a glassy carbon layer on the surface layer of the substrate made of heat-treated carbon material in ° C., the surface of the glassy carbon layer is adjusted to a viscosity of. 1 to 30 cP The surface property is formed using a solution obtained by dissolving the polycarbodiimide resin in tetrachloroethylene , and the area ratio O 1S / C 1S of the O 1S and C 1S peaks measured by X-ray photoelectron spectroscopy is 0.1 to 0.2. A glassy carbon-coated carbon material that has wear resistance and does not adhere to a workpiece. 2500℃〜3200℃で熱処理され且つ平均気孔半径が0.1〜5.0μmの炭素材の表面に、ポリカルボジイミド樹脂をテトラクロロエチレンに溶解した溶液を1〜30cPの粘度に調整して得た前駆体溶液を含浸又は/及び塗布し、乾燥後、不活性雰囲気中又は真空雰囲気中で加熱硬化し、更に焼成することによって、炭素材から成る基体の表面層に、1〜200μmの厚みで、X線光電子分光法により測定したO1S及びC1Sピークの面積比O1S/C1Sを0.1〜0.2とする表面性状のガラス状炭素層を有する、耐摩耗性を有し、被処理物と固着しないガラス状炭素被覆炭素材を製造することを特徴とするガラス状炭素被覆炭素材の製造方法。 Precursor obtained by adjusting a solution of polycarbodiimide resin in tetrachloroethylene to a viscosity of 1 to 30 cP on the surface of a carbon material heat-treated at 2500 to 3200 ° C. and having an average pore radius of 0.1 to 5.0 μm The solution is impregnated or / and coated, dried, heat-cured in an inert atmosphere or vacuum atmosphere, and further baked to form a X-ray on the surface layer of the substrate made of a carbon material with a thickness of 1 to 200 μm. A surface-treated glassy carbon layer having an area ratio O 1S / C 1S of O 1S and C 1S peaks measured by photoelectron spectroscopy of 0.1 to 0.2, having wear resistance, and an object to be processed A method for producing a glassy carbon-coated carbon material, characterized in that a glassy carbon-coated carbon material that does not adhere to the glass is produced.
JP2006007692A 2006-01-16 2006-01-16 Glassy carbon-coated carbon material and method for producing the same Expired - Fee Related JP4563322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006007692A JP4563322B2 (en) 2006-01-16 2006-01-16 Glassy carbon-coated carbon material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006007692A JP4563322B2 (en) 2006-01-16 2006-01-16 Glassy carbon-coated carbon material and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8246277A Division JPH1095668A (en) 1996-09-18 1996-09-18 Vitreous carbon-coated carbon material and its production

Publications (2)

Publication Number Publication Date
JP2006143587A JP2006143587A (en) 2006-06-08
JP4563322B2 true JP4563322B2 (en) 2010-10-13

Family

ID=36623699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007692A Expired - Fee Related JP4563322B2 (en) 2006-01-16 2006-01-16 Glassy carbon-coated carbon material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4563322B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5253209B2 (en) * 2009-02-03 2013-07-31 日東商事株式会社 Carbon molded body and method for producing the same
KR101210966B1 (en) 2010-12-28 2012-12-11 한국세라믹기술원 High-Strength Complex Material
KR101548903B1 (en) * 2015-03-19 2015-09-04 (주)코미코 Lift pin and method for manufacturing the same
JP7405524B2 (en) * 2019-07-01 2023-12-26 イビデン株式会社 Graphite material and its manufacturing method

Also Published As

Publication number Publication date
JP2006143587A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JPWO2017082147A1 (en) Coating formed on a graphite substrate and method for producing the same
KR101276506B1 (en) Surface-treated ceramic member, method for producing same, and vacuum processing device
Barroso et al. Polysilazane‐based coatings with anti‐adherent properties for easy release of plastics and composites from metal molds
JP4563322B2 (en) Glassy carbon-coated carbon material and method for producing the same
Niu et al. Preparation and anti-oxidation properties of Si (O) C coated carbon-bonded carbon fibre composites
Konegger et al. Preparation of polymer-derived ceramic coatings by dip-coating
KR101210882B1 (en) Graphite crucible with glassy carbon coatings and method for manufacturing the same
KR101331403B1 (en) Process for silicon carbide coating on graphite
TW202313523A (en) A method for preparing coated substrates, a coated substrate and use thereof
KR102134406B1 (en) Graphite Mold with Coating layer of SiC and SiOC/C
JP4024946B2 (en) Mechanical seal member
US20100089499A1 (en) Method of manufacturing metal coated with ceramic
JPH1095668A (en) Vitreous carbon-coated carbon material and its production
KR101110351B1 (en) Structures of the graphite foam
KR101856145B1 (en) Process for SiC coating on graphite foam containing silicon
JP6309526B2 (en) Carbon material and jig for heat treatment using the carbon material
CN115819119B (en) Coating forming method of isostatic pressing graphite crucible
JP6265802B2 (en) Oxide-coated carbon material with enhanced coating adhesion and method for producing the same
JP5307476B2 (en) Surface-treated ceramic member and manufacturing method thereof
JP3966911B2 (en) In-furnace members and jigs
JP3245678B2 (en) Method for producing carbon material coated with carbon coating
TW202237530A (en) Graphite element and manufacturing method thereof
JP5462652B2 (en) Surface-treated ceramic member and manufacturing method thereof
JP3098579B2 (en) Silicon carbide-based heat-treated members for semiconductor production
JP2005231982A (en) Two-phase type glassy carbon member and manufacturing method therefor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090826

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090902

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees