JP4561348B2 - Magnetic recording medium, magnetic recording apparatus, and method of manufacturing magnetic recording medium - Google Patents

Magnetic recording medium, magnetic recording apparatus, and method of manufacturing magnetic recording medium Download PDF

Info

Publication number
JP4561348B2
JP4561348B2 JP2004366714A JP2004366714A JP4561348B2 JP 4561348 B2 JP4561348 B2 JP 4561348B2 JP 2004366714 A JP2004366714 A JP 2004366714A JP 2004366714 A JP2004366714 A JP 2004366714A JP 4561348 B2 JP4561348 B2 JP 4561348B2
Authority
JP
Japan
Prior art keywords
magnetic recording
recording medium
layer
magnetic
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004366714A
Other languages
Japanese (ja)
Other versions
JP2006172662A (en
Inventor
司 井谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2004366714A priority Critical patent/JP4561348B2/en
Publication of JP2006172662A publication Critical patent/JP2006172662A/en
Application granted granted Critical
Publication of JP4561348B2 publication Critical patent/JP4561348B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、記録面上を浮上する又は擦動する磁気ヘッドにより磁気記録の書込、読出がなされる磁気記録媒体に関し、とくに記録面の環境耐性及び耐磨耗性に優れかつ潤滑特性の劣化が少ない磁気記録媒体に関する。   The present invention relates to a magnetic recording medium in which magnetic recording is written and read by a magnetic head that floats or rubs on a recording surface, and in particular, the recording surface is excellent in environmental resistance and wear resistance, and has deteriorated lubrication characteristics. The present invention relates to a magnetic recording medium with a small amount.

今日、磁気ディスク装置、例えばハードディスクドライブ(HDD)では、高速かつ高密度に記録するために、磁気記録媒体を高速回転させるとともに磁気ヘッドの浮上量を小さくする努力が続けられており、さらには記録面を磁気ヘッドが擦動する磁気記憶装置も検討されている。なお、本明細書において、記録面とは磁気ヘッドにより磁気記録層への磁気記録又は読出がなされる側の磁気記録媒体表面をいう。   Today, in a magnetic disk device such as a hard disk drive (HDD), in order to perform high-speed and high-density recording, efforts are made to rotate the magnetic recording medium at a high speed and reduce the flying height of the magnetic head. A magnetic storage device in which a magnetic head rubs the surface has also been studied. In the present specification, the recording surface refers to the surface of the magnetic recording medium on the side where magnetic recording or reading is performed on the magnetic recording layer by the magnetic head.

しかし、磁気記録媒体の磁気ヘッドの浮上量の減少や擦動は、磁気記録媒体の表面(記録面)への磁気ヘッドの衝突確率を高くする。高速回転時のこのような衝突は重大なクラッシュの引き金になる可能性がある。このため、記録面を、磁気ヘッドの衝突時の磨耗やクラッシュから保護することができる高い耐磨耗性と優れた潤滑特性を有する磁気記録媒体が求められている。   However, a decrease in the flying height or friction of the magnetic head of the magnetic recording medium increases the probability of the magnetic head colliding with the surface (recording surface) of the magnetic recording medium. Such a collision during high speed rotation can trigger a serious crash. For this reason, there is a need for a magnetic recording medium having high wear resistance and excellent lubrication characteristics that can protect the recording surface from wear and crash during collision of the magnetic head.

図7は、従来の磁気記録媒体と磁気ヘッドの関係を表す断面図である。図7を参照して、従来の磁気ディスク装置、例えばハードディスクドライブ(HDD)に用いられる磁気記録媒体10の記録面10aの保護は、磁気記録層4上に設けられた保護層21と、その保護層21上に塗布された潤滑剤8とでなされていた。保護層21は、ダイヤモンドライクカーボン(以下「DLC」という。)のような耐磨耗性を有する硬質材料から構成され、磁気記録層4を磁気ヘッド7の接触(より正確には磁気ヘッドのスライド面7dとの接触)による損傷から保護するとともに、磁気記録層4が雰囲気中の水分及び酸性化学物質により腐食されることを防止する。潤滑剤8は、PFPE(パーフルオロポリエーテル)のような流動性を有する潤滑材料からなり、磁気ヘッド7の接触時の摩擦を軽減する。   FIG. 7 is a cross-sectional view showing the relationship between a conventional magnetic recording medium and a magnetic head. Referring to FIG. 7, the recording surface 10a of a magnetic recording medium 10 used in a conventional magnetic disk device, for example, a hard disk drive (HDD) is protected by a protective layer 21 provided on the magnetic recording layer 4 and the protection thereof. It was made with the lubricant 8 applied on the layer 21. The protective layer 21 is made of a hard material having wear resistance such as diamond-like carbon (hereinafter referred to as “DLC”), and the magnetic recording layer 4 is brought into contact with the magnetic head 7 (more precisely, sliding of the magnetic head). The magnetic recording layer 4 is protected from being damaged by moisture and acidic chemicals in the atmosphere. The lubricant 8 is made of a lubricating material having fluidity such as PFPE (perfluoropolyether), and reduces friction when the magnetic head 7 contacts.

潤滑特性の劣化が少なく、耐磨耗性に優れた磁気記録媒体10を提供するため、撥水性を有する中空カーボンナノチューブを潤滑剤として用いる技術が公開されている(特許文献1を参照)。図8は従来の改良された潤滑方法の説明図であり、カーボンナノチューブを分散させた潤滑剤を用いたときの磁気記録媒体と磁気ヘッドの状態を断面図により表している。   In order to provide the magnetic recording medium 10 with little deterioration of lubrication characteristics and excellent wear resistance, a technique using hollow carbon nanotubes having water repellency as a lubricant is disclosed (see Patent Document 1). FIG. 8 is an explanatory view of a conventional improved lubrication method, and shows a state of a magnetic recording medium and a magnetic head in a cross-sectional view when a lubricant in which carbon nanotubes are dispersed is used.

図8を参照して、潤滑剤8に分散されたカーボンナノチューブ22は、保護層21の表面にカーボンナノチューブ22の側面を接して吸着し、厚さがほぼカーボンナノチューブ6の直径に等しい層を形成する。従って、磁気ヘッド7は保護層21上に吸着されたカーボンナノチューブ22に阻まれ、保護層21への接触は回避される。このため、保護層21の磨耗、損傷を防ぐことができる。   Referring to FIG. 8, carbon nanotubes 22 dispersed in lubricant 8 are adsorbed by contacting the side surfaces of carbon nanotubes 22 with the surface of protective layer 21 to form a layer whose thickness is approximately equal to the diameter of carbon nanotubes 6. To do. Accordingly, the magnetic head 7 is blocked by the carbon nanotubes 22 adsorbed on the protective layer 21, and contact with the protective layer 21 is avoided. For this reason, abrasion and damage of the protective layer 21 can be prevented.

一方、磁気ヘッド7がカーボンナノチューブ22に衝突しても、カーボンナノチューブ22は強靱で損傷を受けない。また、カーボンナノチューブ22は転動して衝突の衝撃を逃がすので、高温にならない。このため、この磁気記録媒体10は耐磨耗性に優れ、かつ潤滑剤8の劣化が少ない。さらに、潤滑剤8を用いず、カーボンナノチューブのみを保護層21の表面に分散して潤滑層とする方法も開示されている。この方法では、磁気ヘッドと保護層21の距離をカーボンナノチューブ22の直径まで短くすることができる。
特開2001−67644号公報
On the other hand, even if the magnetic head 7 collides with the carbon nanotube 22, the carbon nanotube 22 is strong and not damaged. Further, since the carbon nanotubes 22 roll to release the impact of the collision, the carbon nanotubes 22 do not reach a high temperature. For this reason, the magnetic recording medium 10 is excellent in wear resistance and the lubricant 8 is less deteriorated. Furthermore, a method of dispersing only the carbon nanotubes on the surface of the protective layer 21 without using the lubricant 8 to form a lubricating layer is also disclosed. In this method, the distance between the magnetic head and the protective layer 21 can be reduced to the diameter of the carbon nanotube 22.
JP 2001-67644 A

上述した従来の磁気記録媒体10では、流動性を有する潤滑剤8が硬質の保護層21上に塗布されているため、磁気記録媒体10の回転速度が大きくなると潤滑剤8が飛散して減少し(いわゆるスピンオフ)次第に記録面10aの潤滑特性が失わる。とくに、高速回転時に磁気ヘッド7と記録面10aとが接触した場合、接触面が瞬間的に高温になり潤滑剤8が変質し、潤滑特性が著しく低下してしまい、場合によってはヘッドクラッシュに至る場合もある。   In the conventional magnetic recording medium 10 described above, since the lubricant 8 having fluidity is applied on the hard protective layer 21, the lubricant 8 scatters and decreases as the rotational speed of the magnetic recording medium 10 increases. (So-called spin-off) Gradually, the lubricating properties of the recording surface 10a are lost. In particular, when the magnetic head 7 and the recording surface 10a come into contact with each other during high-speed rotation, the contact surface instantaneously becomes high temperature, the lubricant 8 is denatured, and the lubrication characteristics are remarkably deteriorated. In some cases.

また、磁気記録層4上に保護層21を設けるために、磁気ヘッド7のスライド面7dと磁気記録層4間の距離(磁気的スペーシング)が磁気ヘッド7の浮上量より保護層21の厚さだけ長くなり、記録密度の向上の障害となっている。この保護層21を薄くすると、磁気記録層4の組成成分が保護層21に被覆されていない部分を通って表面まで拡散して腐食生成物を形成し、この腐食生成物が磁気ヘッド7のスライド面7dに衝突するので、保護層21をあまり薄くすることはできない。   Further, in order to provide the protective layer 21 on the magnetic recording layer 4, the distance (magnetic spacing) between the slide surface 7 d of the magnetic head 7 and the magnetic recording layer 4 is determined by the thickness of the protective layer 21 based on the flying height of the magnetic head 7. Therefore, it becomes longer and becomes an obstacle to improving the recording density. When the protective layer 21 is thinned, the composition component of the magnetic recording layer 4 diffuses to the surface through a portion that is not covered with the protective layer 21 to form a corrosion product, and this corrosion product slides on the magnetic head 7. Since it collides with the surface 7d, the protective layer 21 cannot be made too thin.

このように、保護層と潤滑剤とで磁気記録層を保護する従来の磁気記録媒体では、スピンオフ及び磁気ヘッドの接触により記録面の潤滑特性が劣化する。また、カーボンナノチューブを潤滑剤に分散させる方法では、磁気記録媒体10の高速回転時のスピンオフを避けられず、潤滑特性の劣化を招く。また、潤滑剤8を用いず、カーボンナノチューブを保護層21表面に分散して潤滑層を形成する方法では、カーボンナノチューブ22の層がその直径程度と薄いため、雰囲気中の水分等が凝集して形成された水滴が容易に保護層21表面に接触し、その下の磁気記録層4を腐食するおそれがある。このため、厚い保護層21の配設が欠かせず、記録密度の向上が阻害されていた。   As described above, in the conventional magnetic recording medium in which the magnetic recording layer is protected by the protective layer and the lubricant, the lubrication characteristics of the recording surface deteriorate due to the spin-off and the contact of the magnetic head. Further, in the method of dispersing the carbon nanotubes in the lubricant, the spin-off at the time of high speed rotation of the magnetic recording medium 10 cannot be avoided, and the lubrication characteristics are deteriorated. Further, in the method of forming the lubricating layer by dispersing the carbon nanotubes on the surface of the protective layer 21 without using the lubricant 8, the carbon nanotube 22 layer is as thin as its diameter, so that moisture in the atmosphere aggregates. The formed water droplets may easily come into contact with the surface of the protective layer 21 and corrode the magnetic recording layer 4 therebelow. For this reason, the provision of the thick protective layer 21 is indispensable, and the improvement of the recording density is hindered.

本発明は、磁気記録層と磁気ヘッド間の距離が小さく、かつ記録面の潤滑特性の劣化及び磁気記録層の腐食が生じ難い磁気記録媒体、及びその磁気記録媒体を用いた磁気記録装置を提供することを目的としている。   The present invention provides a magnetic recording medium in which the distance between the magnetic recording layer and the magnetic head is small, the lubrication characteristics of the recording surface are hardly deteriorated, and the magnetic recording layer is hardly corroded, and a magnetic recording apparatus using the magnetic recording medium The purpose is to do.

上記課題を解決するために、本発明の第一の構成に係る磁気記録媒体は、その記録面にカーボンナノチューブが根元を固定されて立設されたカーボンナノチューブ層を有する。
In order to solve the above-described problems, the magnetic recording medium according to the first configuration of the present invention has a carbon nanotube layer in which carbon nanotubes are erected with their roots fixed on the recording surface.

カーボンナノチューブは、単層(SWNT)又は多層(WMNT)の円筒構造からなる直径がサブnm〜数十nm程度の針状物質であり、可撓性を有する。このため、磁気ヘッドが記録面に接近して磁気ヘッドのスライド面がカーボンナノチューブの先端に接触すると、カーボンナノチューブは撓んで磁気ヘッドを受け止めるように作用するので、記録面に垂直方向の衝撃が緩和される。また、磁気ヘッドの衝突時にスライド面と記録面との間に作用するずれ応力は、接触したカーボンナノチューブがスライド面の進行方向にさらに撓むことで緩和される。このように、磁気ヘッドの記録面への衝突の衝撃が緩和されるから、記録面、例えば磁気記録層の表面の損傷を有効に防ぐことができる。   The carbon nanotube is a needle-like substance having a diameter of sub-nm to several tens of nanometers having a single-layer (SWNT) or multi-layer (WMNT) cylindrical structure, and has flexibility. Therefore, when the magnetic head approaches the recording surface and the slide surface of the magnetic head comes into contact with the tip of the carbon nanotube, the carbon nanotube bends and acts to receive the magnetic head, so that the impact in the direction perpendicular to the recording surface is reduced. Is done. Further, the deviation stress acting between the slide surface and the recording surface at the time of the collision of the magnetic head is alleviated by further bending the contacted carbon nanotubes in the traveling direction of the slide surface. Thus, since the impact of the collision with the recording surface of the magnetic head is alleviated, it is possible to effectively prevent damage to the recording surface, for example, the surface of the magnetic recording layer.

さらに、磁気ヘッド衝突時の衝撃が大きい場合は、カーボンナノチューブは根元近くから倒伏し略全長に渡ってその側面を記録面に接触して延在するようになる。磁気ヘッドのスライド面は、この倒伏したカーボンナノチューブの層の上を滑走する。カーボンナノチューブは耐磨耗性に優れるから、倒伏したカーボンナノチューブの層は良好な潤滑層として作用する。またカーボンナノチューブは強靱で、かかる磁気ヘッドの衝突、滑走によってカーボンナノチューブが破損することは少ない。なお、多少の本数のカーボンナノチューブが破損しても、カーボンナノチューブの立設密度は高いから、記録面の耐磨耗性及び潤滑特性が問題とされる程に劣化することは少ない。このように、衝突の衝撃が大きい場合でも、記録面と磁気ヘッドの間に必ずカーボンナノチューブが介在して磁気ヘッドが記録面に直接接触しないから、磁気ヘッド及び磁気記録媒体の損傷が防止される。   Furthermore, when the impact at the time of collision of the magnetic head is large, the carbon nanotubes fall from near the base and extend with their side surfaces in contact with the recording surface over substantially the entire length. The sliding surface of the magnetic head slides over this lying carbon nanotube layer. Since carbon nanotubes are excellent in wear resistance, the lying carbon nanotube layer acts as a good lubricating layer. In addition, carbon nanotubes are strong, and the carbon nanotubes are rarely damaged by the collision and sliding of the magnetic head. Even if a certain number of carbon nanotubes are damaged, the standing density of the carbon nanotubes is high, so that the wear resistance and lubrication characteristics of the recording surface are rarely deteriorated. As described above, even when the impact of the collision is large, the carbon head is always interposed between the recording surface and the magnetic head so that the magnetic head does not directly contact the recording surface, thereby preventing damage to the magnetic head and the magnetic recording medium. .

また、上記本発明の第一の構成では、流動性を有する潤滑剤を必要としないので、潤滑剤の劣化又は減少による潤滑特性の劣化を生ずることがない。このように潤滑剤を使用しない場合には、カーボンナノチューブの表面が撥水性であること、具体的には水との接触角が90度を超える撥水性処理がされている必要がある。これにより、雰囲気中の水分が凝集して水滴が形成されても、大きな表面張力が働いて、立設するカーボンナノチューブの先端に水滴が球状に保持され、水滴が記録面に接することが阻止される。従って、保護層がなくても記録面から進行する腐食を防止することができる。このため、保護層を設けず、磁気記録層を直接記録面として表出することができる。これにより、磁気ヘッドと記録面との距離を、保護層を設けた場合に較べて小さくすることができ、高い記録密度を実現することができる。勿論、必要ならば保護層を設けてもよい。   Further, in the first configuration of the present invention, since a lubricant having fluidity is not required, there is no occurrence of deterioration of lubrication characteristics due to deterioration or reduction of the lubricant. When the lubricant is not used in this way, the surface of the carbon nanotubes must be water repellent, specifically, a water repellent treatment in which the contact angle with water exceeds 90 degrees is required. As a result, even if moisture in the atmosphere aggregates and water droplets are formed, a large surface tension is applied and the water droplets are held in a spherical shape at the tips of the standing carbon nanotubes, and the water droplets are prevented from coming into contact with the recording surface. The Therefore, corrosion that proceeds from the recording surface can be prevented without a protective layer. For this reason, a magnetic recording layer can be directly exposed as a recording surface without providing a protective layer. Thereby, the distance between the magnetic head and the recording surface can be reduced as compared with the case where the protective layer is provided, and a high recording density can be realized. Of course, a protective layer may be provided if necessary.

本発明のカーボンナノチューブは、その根元を記録面に固定して立設される。固定することで、磁気ヘッドが衝突してもカーボンナノチューブが衝突位置から排除されることを防ぐことができる。このため、カーボンナノチューブに基づく耐磨耗性を長く維持することができる。カーボンナノチューブを立設する角度は、記録面に垂直方向が好ましいが、これに限らず斜めに立設されてもよい。   The carbon nanotube of the present invention is erected with its root fixed to the recording surface. By fixing, it is possible to prevent the carbon nanotube from being excluded from the collision position even if the magnetic head collides. For this reason, the wear resistance based on the carbon nanotube can be maintained for a long time. The angle at which the carbon nanotubes are erected is preferably perpendicular to the recording surface, but is not limited thereto, and may be erected obliquely.

カーボンナノチューブの外径は、可撓性の観点から細いことが好ましい。この点から、カーボンナノチューブの直径は20nm以下が好ましく、とくに単層構造のナノチューブ(SWNT)は直径がサブnm〜5nmであるので適している。   The outer diameter of the carbon nanotube is preferably thin from the viewpoint of flexibility. From this point, the diameter of the carbon nanotube is preferably 20 nm or less, and the single-walled nanotube (SWNT) is particularly suitable because the diameter is sub nm to 5 nm.

カーボンナノチューブの長さ及び立設密度は、水分の進入の阻止、カーボンナノチューブの可撓性、及び磁気ヘッドの浮上量を考慮して適切に定められる。即ち、雰囲気から凝集してカーボンナノチューブの先端に付着した水滴が記録面に到達するのを防ぐには、長くかつ高密度の方がよい。なお、このとき考慮すべき水滴は、記録ビットサイズ程度以上の大きさのものである。カーボンナノチューブの可撓性を高めて磁気ヘッドの磨耗、損傷を防ぐには、長くかつ低密度の方がよい。磁気ヘッドの浮上量を小さくするには、短くかつ低密度の方がよい。これらを考慮すると、例えば、数μm幅の記録ビットサイズ、数十nmの浮遊量、カーボンナノチューブが直径10〜20nmの多層構造のナノチューブ(MWNT)とするとき、カーボンナノチューブの長さ及び密度はそれぞれ700nm以下、4×1012本/m2 以上とすることが好ましい。 The length and standing density of the carbon nanotubes are appropriately determined in consideration of the prevention of moisture entry, the flexibility of the carbon nanotubes, and the flying height of the magnetic head. That is, in order to prevent water droplets aggregated from the atmosphere and adhering to the tip of the carbon nanotube from reaching the recording surface, a longer and higher density is better. Note that the water droplets to be taken into consideration at this time are those having a recording bit size or more. In order to increase the flexibility of the carbon nanotube and prevent the magnetic head from being worn or damaged, a longer and lower density is better. In order to reduce the flying height of the magnetic head, shorter and lower density are better. Considering these, for example, when a recording bit size of several μm width, a floating amount of several tens of nm, and a carbon nanotube having a multi-layered nanotube (MWNT) having a diameter of 10 to 20 nm, the length and density of the carbon nanotube are respectively It is preferably 700 nm or less and 4 × 10 12 pieces / m 2 or more.

本発明の第二の構成では、上記本発明の第一の構成のカーボンナノチューブが立設する記録面に潤滑剤を塗布する。即ち、記録面に塗布された潤滑剤は、立設するカーボンナノチューブの間を埋める層を形成する。本構成では、潤滑剤の塗布により、記録面の潤滑特性をさらに優れたものとすることができる。なお、本構成のカーボンナノチューブは、潤滑剤によりカーボンナノチューブの表面がコーテングされて撥水性となるから、カーボンナノチューブ自体は撥水処理がされていなくてもよい。   In the second configuration of the present invention, a lubricant is applied to the recording surface on which the carbon nanotubes of the first configuration of the present invention are erected. That is, the lubricant applied to the recording surface forms a layer that fills the space between the standing carbon nanotubes. In this configuration, the lubrication characteristics of the recording surface can be further improved by applying the lubricant. In addition, since the surface of the carbon nanotube is coated with a lubricant to be water repellent, the carbon nanotube itself may not be subjected to water repellent treatment.

本構成では、記録面に塗布された潤滑剤は、記録面に高密度に立設されたカーボンナノチューブの根元を浸すように記録面上に広がる。このため、磁気記録媒体、すなわち記録面が高速回転しても、潤滑剤は高密度のカーボンナノチューブに遮られて飛散しないので、潤滑剤のスピンオフが抑制される。従って、記録面の潤滑特性の劣化が少ない。   In this configuration, the lubricant applied to the recording surface spreads on the recording surface so as to immerse the roots of the carbon nanotubes erected at high density on the recording surface. For this reason, even if the magnetic recording medium, that is, the recording surface rotates at high speed, the lubricant is blocked by the high-density carbon nanotubes and is not scattered, so that the spin-off of the lubricant is suppressed. Therefore, there is little deterioration in the lubrication characteristics of the recording surface.

本第二の構成のカーボンナノチューブの立設密度は、潤滑剤の流動を抑制する観点から高いことが望ましい。通常用いられる潤滑剤であるPFPE(パーフルオロポリエーテル)系潤滑剤を、20,000rpmで回転する直径10cmの磁気記録媒体に)用いたとき、カーボンナノチューブの密度が4×1012本/m2 以上あれば有効にスピンオフを抑制することができる。 It is desirable that the standing density of the carbon nanotube of the second configuration is high from the viewpoint of suppressing the flow of the lubricant. When a PFPE (perfluoropolyether) lubricant, which is a commonly used lubricant, is used (for a magnetic recording medium having a diameter of 10 cm rotating at 20,000 rpm), the density of the carbon nanotubes is 4 × 10 12 / m 2. If it is more, spin-off can be effectively suppressed.

上述した第一及び第二の構成の磁気記録媒体を、磁気ヘッドが記録面に押圧され擦動する擦動型の磁気記録装置に用いることができる。磁気ヘッドを記録面に押圧すると、磁気ヘッドと記録面との間に倒伏したカーボンナノチューブが介在し、磁気ヘッドはそのカーボンナノチューブの層の上を擦動する。カーボンナノチューブは硬質で潤滑性及び耐磨耗性に優れるから、この倒伏したカーボンナノチューブの層は優れた潤滑層及び保護層として機能する。この場合、磁気ヘッドと記録面との距離はカーボンナノチューブの直径程度と短く、記録密度を容易に高くすることができる。   The magnetic recording media having the first and second configurations described above can be used in a sliding type magnetic recording apparatus in which a magnetic head is pressed against a recording surface and rubbed. When the magnetic head is pressed against the recording surface, the lying carbon nanotubes are interposed between the magnetic head and the recording surface, and the magnetic head rubs on the carbon nanotube layer. Since the carbon nanotubes are hard and excellent in lubricity and wear resistance, the layer of carbon nanotubes that has fallen down functions as an excellent lubricating layer and protective layer. In this case, the distance between the magnetic head and the recording surface is as short as the diameter of the carbon nanotube, and the recording density can be easily increased.

上述したように、本発明の磁気記録媒体は、磁気ヘッドの衝突を緩和しかつ水分の進入を阻止するので、保護層を薄く又は除去することができるので磁気ヘッドと磁気記録層間の距離が短く、高密度に記録することができる。   As described above, the magnetic recording medium of the present invention alleviates the collision of the magnetic head and prevents moisture from entering, so that the protective layer can be thinned or removed, so that the distance between the magnetic head and the magnetic recording layer is short. High density recording.

また、潤滑剤を使用する構成では、潤滑剤のスピンオフが抑制されるから、潤滑特性の劣化が少ない磁気記録媒体を提供することができる。   Further, in the configuration using the lubricant, since the spin-off of the lubricant is suppressed, it is possible to provide a magnetic recording medium with little deterioration of the lubrication characteristics.

本発明の第一実施形態は、保護層を設けない磁気記録媒体に関する。図1は本発明の第一実施形態断面図であり、磁気記録媒体とその記録面上を浮上する磁気ヘッドを表している。図2は本発明の第一実施形態の部分拡大断面図であり、表面に水滴が付着した記録媒体を表している。   The first embodiment of the present invention relates to a magnetic recording medium without a protective layer. FIG. 1 is a sectional view of a first embodiment of the present invention, showing a magnetic recording medium and a magnetic head flying above the recording surface. FIG. 2 is a partially enlarged cross-sectional view of the first embodiment of the present invention, showing a recording medium having water droplets attached to the surface.

本発明の第一実施形態に係る磁気記録媒体は、浮上型のハードディスク磁気装置に用いられる磁気ディスクである。この磁気記録媒体は、図1及び図2を参照して、ガラス基板1上に、厚さ5μmのNi−P層2、厚さ15nmのCr系下地層3、厚さ30nmのCo系磁気記録層4がこの順序でスパッタにより積層され、その磁気記録層4表面(本実施形態では記録面10aとなる。)にカーボンナノチューブ6が記録面10aにほぼ垂直に立設されたカーボンナノチューブ層5が形成されている。   The magnetic recording medium according to the first embodiment of the present invention is a magnetic disk used in a floating type hard disk magnetic device. 1 and FIG. 2, this magnetic recording medium includes a Ni-P layer 2 having a thickness of 5 μm, a Cr-based underlayer 3 having a thickness of 15 nm, and a Co-based magnetic recording having a thickness of 30 nm on a glass substrate 1. The layers 4 are laminated in this order by sputtering, and a carbon nanotube layer 5 is formed on the surface of the magnetic recording layer 4 (which becomes the recording surface 10a in the present embodiment) with the carbon nanotubes 6 standing substantially perpendicular to the recording surface 10a. Is formed.

なお、カーボンナノチューブ6と記録面10aとがなす角度は、磁気ヘッド7をカーボンナノチューブ6が撓んで受け止めることができる程度の角度があれば足りる。また、その角度も全てのカーボンナノチューブ6が同一である必要はなく、全体としてある方向、例えば垂直方向に分布していればよい。さらに、カーボンナノチューブ6が毛髪状に絡み合うものでもよい。   The angle formed between the carbon nanotube 6 and the recording surface 10a only needs to be an angle that allows the carbon nanotube 6 to bend and receive the magnetic head 7. Also, the carbon nanotubes 6 do not have to have the same angle as long as they are distributed in a certain direction, for example, the vertical direction. Further, the carbon nanotubes 6 may be entangled in a hair shape.

かかるカーボンナノチューブ6は、例えば周知のCVD法を用いて成長させることができる。二瓶瑞久等は、表面化学 vol.25,No.6,pp326−331,2004に、触媒を含む成長面上に多層構造のカーボンナノチューブ(MWNT)を立設するように成長させるCVD技術を公開している。また、Yoichi Murakami等は、Chemical Physics Letters 385 (2004) 298−303に、Co−Mo触媒を含む成長面上に立設する単層構造のカーボンナノチューブ(SWNT)を成長するCVD技術を公開している。本実施形態のカーボンナノチューブ6はこのようなCVD法を用いて成長することができる。勿論、立設するカーボンナノチューブ6を形成できる他の方法を用いることもできる。   Such carbon nanotubes 6 can be grown using, for example, a well-known CVD method. Mizuhisa Nibe et al., Surface Chemistry vol. 25, no. 6, pp 326-331, 2004 discloses a CVD technique for growing a carbon nanotube (MWNT) having a multi-layer structure on a growth surface including a catalyst. In addition, Yoichi Murakami et al., In Chemical Physics Letters 385 (2004) 298-303, disclosed a CVD technique for growing a single-walled carbon nanotube (SWNT) standing on a growth surface containing a Co-Mo catalyst. Yes. The carbon nanotube 6 of this embodiment can be grown using such a CVD method. Of course, other methods capable of forming the standing carbon nanotubes 6 can also be used.

本第一実施形態のカーボンナノチューブ6は、チャンバ内に外部バイアス電圧を印加することができる電極を備えたプラズマCVD装置(図示せず)を用い、以下の工程を経て形成された。先ず、表面に磁気記録層4が形成された状態の磁気記録媒体10を、記録面10aを上方に向けて電極上に載置し、350℃に加熱し保持する。次いで、チャンバ内にCVDガスを導入した後、プラズマを励起し、電極に400Vの負電圧のバイアス電圧を印加しつつ、磁気記録媒体10の記録面10aにカーボンナノチューブ6を成長した。CVDガスとして流量10sccmのメタノールと流量100sccmの水素ガスを混合してチャンバ内に流入した。チャンバ内の圧力は250Paであり、プラズマは2.4GHzのマイクロ波で励起した。この装置では、チャンバ内の電極には負のバイアス電圧が印加されているため、電極表面にほぼ垂直に電気力線が発生する。この状態で多層構造のカーボンナノチューブ6(MWNT)が、ほぼ電極表面に垂直に、即ち記録面10aに垂直に成長した。   The carbon nanotube 6 of the first embodiment was formed through the following steps using a plasma CVD apparatus (not shown) provided with an electrode capable of applying an external bias voltage in the chamber. First, the magnetic recording medium 10 having the magnetic recording layer 4 formed on the surface is placed on the electrode with the recording surface 10a facing upward, and heated to 350 ° C. and held. Next, after introducing a CVD gas into the chamber, plasma was excited, and carbon nanotubes 6 were grown on the recording surface 10 a of the magnetic recording medium 10 while applying a negative bias voltage of 400 V to the electrodes. As a CVD gas, methanol having a flow rate of 10 sccm and hydrogen gas having a flow rate of 100 sccm were mixed and flowed into the chamber. The pressure in the chamber was 250 Pa, and the plasma was excited with 2.4 GHz microwave. In this apparatus, since a negative bias voltage is applied to the electrodes in the chamber, electric lines of force are generated substantially perpendicular to the electrode surfaces. In this state, the multi-layered carbon nanotube 6 (MWNT) grew almost perpendicular to the electrode surface, that is, perpendicular to the recording surface 10a.

CVD法を用いたカーボンナノチューブ6の成長には、よく知られているように成長面に触媒が存在する必要がある。本第一実施形態では、記録面10aとして表出する面がCoを含む磁気記録層の表面なので、成長面となる記録面10aにはCoが分散して存在する。この記録面10aに分散するCoが触媒として作用するので、容易にカーボンナノチューブ6が立設するように成長する。   As is well known, the growth of the carbon nanotubes 6 using the CVD method requires the presence of a catalyst on the growth surface. In the first embodiment, since the surface exposed as the recording surface 10a is the surface of the magnetic recording layer containing Co, Co is present in a dispersed manner on the recording surface 10a serving as the growth surface. Since Co dispersed on the recording surface 10a acts as a catalyst, the carbon nanotubes 6 grow easily so as to stand upright.

上述したバイアス電圧を印加したCVD法により成長したカーボンナノチューブ6は、直径が10〜20nm、長さが100nm、立設密度が1×1014本/m2 であった。 The carbon nanotubes 6 grown by the above-described CVD method applying the bias voltage had a diameter of 10 to 20 nm, a length of 100 nm, and a standing density of 1 × 10 14 / m 2 .

次いで、カーボンナノチューブ6の表面を撥水処理した。撥水処理は、少量のPFPE系の潤滑剤を記録面10aに塗布し、カーボンナノチューブ6表面に潤滑剤をコートした。また、既述の特許文献1にあるように、カーボンナノチューブ成長後に、メタン等の疎水性官能基を含むガスのプラズマに暴露することで行なうこともできる。これらの撥水処理により、カーボンナノチューブ6に水との接触角が90°を超える疎水性を付与することができる。   Next, the surface of the carbon nanotube 6 was subjected to water repellent treatment. In the water repellent treatment, a small amount of PFPE-based lubricant was applied to the recording surface 10a, and the surface of the carbon nanotube 6 was coated with the lubricant. Further, as described in Patent Document 1 described above, after carbon nanotube growth, it can be performed by exposing to plasma of a gas containing a hydrophobic functional group such as methane. By these water repellent treatments, the carbon nanotubes 6 can be given hydrophobicity with a contact angle with water exceeding 90 °.

このように、カーボンナノチューブ層5を構成するカーボンナノチューブ6を撥水処理すると、雰囲気から凝集した水がカーボンナノチューブ層5表面に落下しても、図2を参照して、水は表面張力により球形の水滴11になってカーボンナノチューブ6の先端に保持され、記録面10a(即ち磁気記録層4の表面)まで到達しない。このため、磁気記録層4が雰囲気に表出していても磁気記録層4の腐食は阻止される。このように、カーボンナノチューブ6を撥水性にすると、磁気記録層4を被覆する保護層を設ける必要はないか、あるいは後述する第三実施形態のように極めて薄い保護層とすることができる。   In this way, when the carbon nanotubes 6 constituting the carbon nanotube layer 5 are subjected to water repellent treatment, even if water aggregated from the atmosphere falls on the surface of the carbon nanotube layer 5, the water is spherical due to the surface tension as shown in FIG. The water droplet 11 is held at the tip of the carbon nanotube 6 and does not reach the recording surface 10a (that is, the surface of the magnetic recording layer 4). For this reason, even if the magnetic recording layer 4 is exposed to the atmosphere, corrosion of the magnetic recording layer 4 is prevented. Thus, when the carbon nanotubes 6 are made water-repellent, it is not necessary to provide a protective layer that covers the magnetic recording layer 4, or an extremely thin protective layer can be formed as in the third embodiment described later.

次に、本発明の第一実施形態の磁気記録媒体10を備えた磁気記録装置の動作を説明する。図3は本発明の第一実施形態の動作説明用断面図(その1)であり、図1の部分拡大図であって記録・書込動作時のカーボンナノチューブの状態を表している。図4は本発明の第一実施形態の動作説明用断面図(その2)であり、磁気ヘッドが記録面へ衝突した状態を表している。   Next, the operation of the magnetic recording apparatus including the magnetic recording medium 10 according to the first embodiment of the present invention will be described. FIG. 3 is a sectional view (No. 1) for explaining the operation of the first embodiment of the present invention, and is a partially enlarged view of FIG. 1, showing the state of the carbon nanotubes during the recording / writing operation. FIG. 4 is a cross-sectional view (part 2) for explaining the operation of the first embodiment of the present invention, showing a state where the magnetic head has collided with the recording surface.

正常な書込・読出状態では、図3を参照して、磁気ヘッド7は記録面10aから10nm〜数十nm浮上して飛行する。なお、図1を参照して、磁気ヘッド7及び磁気記録媒体10は相対的にそれぞれ逆方向の進行方向7c、10cに移動している。再び図3を参照して、カーボンナノチューブ6の長さは100nmと磁気ヘッド7の浮上量より長いので、磁気ヘッド7のスライド面7dにカーボンナノチューブ6が接触し、接触したカーボンナノチューブ6aは磁気ヘッド7の進行方向へ反るように撓む。即ち、磁気ヘッド7は撓んだカーボンナノチューブ6aにより支持される。このとき、カーボンナノチューブ6は、スライド面7dに接触すると撓んで進行方向7cの衝撃を緩和する。また、上下の衝撃は、カーボンナノチューブ6aの撓みにより吸収される。従って、本実施形態の磁気記録媒体は、衝撃の吸収力に優れている。なお、磁気ヘッド7の後端7bが通過した記録面10aでは、撓んでいたカーボンナノチューブ6aが再び立設してもとの状態に戻る。   In a normal writing / reading state, referring to FIG. 3, the magnetic head 7 flies 10 nm to several tens of nm from the recording surface 10a. Referring to FIG. 1, the magnetic head 7 and the magnetic recording medium 10 are relatively moved in the reverse traveling directions 7c and 10c, respectively. Referring again to FIG. 3, since the length of the carbon nanotube 6 is 100 nm, which is longer than the flying height of the magnetic head 7, the carbon nanotube 6 contacts the slide surface 7d of the magnetic head 7, and the contacted carbon nanotube 6a is the magnetic head. 7 to bend in the direction of travel. That is, the magnetic head 7 is supported by the bent carbon nanotube 6a. At this time, the carbon nanotubes 6 bend when they come into contact with the slide surface 7d, and relieve the impact in the traveling direction 7c. The upper and lower impacts are absorbed by the bending of the carbon nanotubes 6a. Therefore, the magnetic recording medium of this embodiment is excellent in shock absorption. Note that, on the recording surface 10a through which the rear end 7b of the magnetic head 7 has passed, the bent carbon nanotube 6a returns to its original state even if it is erected again.

磁気ヘッド7が記録面10aへ衝突するほどの大きな力が加わった場合、図4を参照して、磁気ヘッド7直下のカーボンナノチューブ6aは、スライド面7dに押圧されて完全に倒伏し、ほぼ全長が記録面10aに接して延在する。その結果、磁気ヘッド7と記録面10aとの間に倒伏したカーボンナノチューブ6aが挟まれ、このカーボンナノチューブ6a上を磁気ヘッド7が滑走する。従って、本実施形態の磁気記録媒体10は、磁気ヘッド7と記録面10aとが直接衝突することがなく、保護層がなくても優れた耐衝撃性、耐磨耗性を保持できる。   When a force large enough to cause the magnetic head 7 to collide with the recording surface 10a is applied, referring to FIG. 4, the carbon nanotubes 6a immediately below the magnetic head 7 are pressed down by the slide surface 7d and completely fall down, so that almost the entire length is reached. Extends in contact with the recording surface 10a. As a result, the lying carbon nanotube 6a is sandwiched between the magnetic head 7 and the recording surface 10a, and the magnetic head 7 slides on the carbon nanotube 6a. Therefore, the magnetic recording medium 10 of this embodiment does not directly collide with the magnetic head 7 and the recording surface 10a, and can maintain excellent impact resistance and wear resistance even without a protective layer.

上述した第一実施形態の磁気記録媒体10を、擦動型の磁気ヘッドに適用することもできる。このとき、磁気ヘッド7は記録面10aに押圧され、図4を参照して、磁気ヘッド7と記録面10aとの間に倒伏したカーボンナノチューブ6aを挟み、磁気ヘッド7はこのカーボンナノチューブ6a上を擦動する。これにより、磁気ヘッド7と磁気記録層4との距離を、カーボンナノチューブ6aの直径程度まで小さくすることができる。   The magnetic recording medium 10 of the first embodiment described above can also be applied to a sliding type magnetic head. At this time, the magnetic head 7 is pressed against the recording surface 10a, and referring to FIG. 4, the lying carbon nanotube 6a is sandwiched between the magnetic head 7 and the recording surface 10a, and the magnetic head 7 moves over the carbon nanotube 6a. Rub. Thereby, the distance between the magnetic head 7 and the magnetic recording layer 4 can be reduced to about the diameter of the carbon nanotube 6a.

本発明の第二実施形態は、カーボンナノチューブが立設された記録面上に潤滑剤からなる潤滑層を形成した記録媒体に関する。図5は本発明の第二実施形態断面図であり、磁気記録媒体の表面の構造を表している。   The second embodiment of the present invention relates to a recording medium in which a lubricating layer made of a lubricant is formed on a recording surface on which carbon nanotubes are erected. FIG. 5 is a sectional view of the second embodiment of the present invention, showing the structure of the surface of the magnetic recording medium.

本第二実施形態では、図5を参照して、磁気記録媒体10の記録面10aに、カーボンナノチューブ6が立設され、カーボンナノチューブ層5が形成されている。このカーボンナノチューブ6の成長前の磁気記録媒体10の構造、及びカーボンナノチューブ6の成長方法は第一実施形態と同様である。次いで、dip法(浸漬法)により、記録面10a上にPFPE系の潤滑剤8を塗布する。この潤滑剤8はカーボンナノチューブ6の根元、即ち記録面10a上まで沈降し記録面10aを被覆する潤滑剤8の層を形成する。次いで、窒素中で紫外線を照射して、カーボンナノチューブ6と潤滑剤8との付着性を高める。本第二実施形態の磁気記録媒体10は潤滑剤8があるため第一実施形態のものより潤滑特性が優れている。なお、本実施形態では潤滑剤8が疎水性を有するからカーボンナノチューブ6の撥水化処理を省略することもできる。   In the second embodiment, referring to FIG. 5, carbon nanotubes 6 are erected on the recording surface 10 a of the magnetic recording medium 10 to form the carbon nanotube layer 5. The structure of the magnetic recording medium 10 before the growth of the carbon nanotubes 6 and the growth method of the carbon nanotubes 6 are the same as in the first embodiment. Next, a PFPE-based lubricant 8 is applied on the recording surface 10a by a dip method (dipping method). The lubricant 8 settles down to the base of the carbon nanotube 6, that is, the recording surface 10a, and forms a layer of the lubricant 8 that covers the recording surface 10a. Next, ultraviolet rays are irradiated in nitrogen to enhance the adhesion between the carbon nanotubes 6 and the lubricant 8. Since the magnetic recording medium 10 of the second embodiment has the lubricant 8, the lubricating characteristics are superior to those of the first embodiment. In this embodiment, since the lubricant 8 has hydrophobicity, the water repellency treatment of the carbon nanotubes 6 can be omitted.

本第二実施形態の磁気記録媒体10のスピンオフ耐性を評価した。第二実施形態の磁気記録媒体10を20,000rpmで30分間回転を継続したのち、回転前後の潤滑剤8の量の変化を観測した。潤滑剤8の量は、磁気記録媒体10の記録面10aの反射赤外線吸収スペクトルのうちC−F結合に基づく吸収ピーク(1300cm-1)の強度により評価した。その結果、回転前後で潤滑剤8の変化は観測されなかった。この結果は、本第二実施形態の磁気記録媒体10が、潤滑剤8のスピンオフによる劣化が極めて小さいことを示している。 The spin-off resistance of the magnetic recording medium 10 of the second embodiment was evaluated. After the magnetic recording medium 10 of the second embodiment was continuously rotated at 20,000 rpm for 30 minutes, a change in the amount of the lubricant 8 before and after the rotation was observed. The amount of the lubricant 8 was evaluated by the intensity of the absorption peak (1300 cm −1 ) based on the C—F bond in the reflected infrared absorption spectrum of the recording surface 10 a of the magnetic recording medium 10. As a result, no change in the lubricant 8 was observed before and after the rotation. This result indicates that the magnetic recording medium 10 of the second embodiment is extremely small in deterioration due to the spin-off of the lubricant 8.

さらに、本発明に係る磁気記録媒体10の耐湿性試験を行ない、従来の磁気記録媒体と比較した。本発明の第一及び第二実施形態の磁気記録媒体10を、温度65℃、湿度80%の環境に24時間放置した。その後、室温にて希硝酸を磁気記録媒体10に滴下し、1時間放置したのち滴下した希硝酸に含まれる元素を定量分析した。定量分析には、誘導プラズマ質量分析計(IPC−MS)を用いた。その結果、磁気記録層4の主成分であるCoの溶出量は両実施形態とも2.5μg/m2 であった。この本発明の実施形態に係る磁気記録媒体10からのCoの溶出量は、ダイヤモンド状カーボン保護層21及び潤滑剤の層を磁気記録層4上に設けた従来の磁気記録媒体の溶出量と同じであった。このように、本発明に係る磁気記録媒体10は、保護層21がなくても保護層がある従来の磁気記録媒体と同程度の耐腐食性を有している。 Further, a moisture resistance test of the magnetic recording medium 10 according to the present invention was performed and compared with a conventional magnetic recording medium. The magnetic recording medium 10 of the first and second embodiments of the present invention was left in an environment of a temperature of 65 ° C. and a humidity of 80% for 24 hours. Thereafter, dilute nitric acid was dropped onto the magnetic recording medium 10 at room temperature, and after standing for 1 hour, the elements contained in the dropped dilute nitric acid were quantitatively analyzed. An induction plasma mass spectrometer (IPC-MS) was used for quantitative analysis. As a result, the elution amount of Co as the main component of the magnetic recording layer 4 was 2.5 μg / m 2 in both the embodiments. The elution amount of Co from the magnetic recording medium 10 according to the embodiment of the present invention is the same as the elution amount of the conventional magnetic recording medium in which the diamond-like carbon protective layer 21 and the lubricant layer are provided on the magnetic recording layer 4. Met. Thus, the magnetic recording medium 10 according to the present invention has the same level of corrosion resistance as a conventional magnetic recording medium having a protective layer without the protective layer 21.

本発明の第三実施形態は、第一及び第二実施形態の磁気記録媒体の記録面に保護層を設けた実施形態に関する。図6は本発明の第三実施形態断面図であり、磁気記録層の表面に保護層が設けられた磁気記録媒体を表している。   The third embodiment of the present invention relates to an embodiment in which a protective layer is provided on the recording surface of the magnetic recording medium of the first and second embodiments. FIG. 6 is a cross-sectional view of a third embodiment of the present invention, showing a magnetic recording medium in which a protective layer is provided on the surface of the magnetic recording layer.

図6を参照して、本第三実施形態の磁気記録媒体10は、磁気記録層4の表面にダイヤモンド状カーボンからなる保護層9が設けられている点を除き、第一又は第二実施形態と同様である。このように、保護層9を設けることで磁気記録層4の損傷、腐食をより効果的に抑制することができる。   Referring to FIG. 6, the magnetic recording medium 10 of the third embodiment is the first or second embodiment except that a protective layer 9 made of diamond-like carbon is provided on the surface of the magnetic recording layer 4. It is the same. Thus, by providing the protective layer 9, damage and corrosion of the magnetic recording layer 4 can be more effectively suppressed.

この保護層9は、従来の磁気記録媒体の保護層21に較べて薄く形成することができる。例えば、下層の磁気記録層4からCo等が保護層9表面に拡散するほど薄くすることもできる。さらには、保護層9が例えば2nm以下と薄くて、磁気記録層4の一部が表出するものでもよい。このように保護層9を薄くすると、保護層9表面に触媒となるCo等が拡散するので、その表面に第一実施形態と同様の方法を用いて立設するカーボンナノチューブを成長することができる。また、保護層9が厚くその表面にCo等が存在しない場合は、保護層9をCo等の触媒となる元素を含むダイヤモンド状カーボンをスパッタ等により形成することで、保護層9表面に第一実施形態と同様にしてカーボンナノチューブ6を成長することができる。他に、保護層9表面に触媒となる元素をスパッタにより分散させたのち、カーボンナノチューブ6を成長してもよい。   The protective layer 9 can be formed thinner than the protective layer 21 of the conventional magnetic recording medium. For example, the thickness can be reduced as Co or the like diffuses from the lower magnetic recording layer 4 to the surface of the protective layer 9. Furthermore, the protective layer 9 may be as thin as 2 nm or less, for example, and a part of the magnetic recording layer 4 may be exposed. When the protective layer 9 is thinned in this manner, Co or the like that becomes a catalyst diffuses on the surface of the protective layer 9, so that carbon nanotubes standing on the surface can be grown using the same method as in the first embodiment. . If the protective layer 9 is thick and Co or the like is not present on the surface thereof, the protective layer 9 is formed on the surface of the protective layer 9 by forming diamond-like carbon containing an element serving as a catalyst such as Co by sputtering or the like. The carbon nanotube 6 can be grown in the same manner as in the embodiment. In addition, the carbon nanotubes 6 may be grown after an element serving as a catalyst is dispersed on the surface of the protective layer 9 by sputtering.

上述した本明細書の記載には、以下の付記記載の発明が開示されている。
(付記1)基板上に記録層を有する磁気記録媒体において、
前記記録層表面にカーボンナノチューブが立設されたカーボンナノチューブ層を有することを特徴とする磁気記録媒体。
(付記2)前記カーボンナノチューブが長さ700nm以下、密度4×1012本/m2 以上で配置された請求項1記載の磁気記録媒体。
(付記3)前記カーボンナノチューブが単層構造である付記1記載の磁気記録媒体。
(付記4)前記カーボンナノチューブの直径が、20nm以下である付記1記載の磁気記録媒体。
(付記5)前記カーボンナノチューブ層に潤滑剤が塗布されていることを特徴とする付記1記載の磁気記録媒体。
(付記6)前記潤滑剤の膜厚が、前記カーボンナノチューブの長さよりも薄いことを特徴とする付記5記載の磁気記録媒体。
(付記7)前記カーボンナノチューブの表面が撥水性であることを特徴とする付記1記載の磁気記録媒体。
(付記8)前記記録層上に保護層が設けられていることを特徴とする付記1記載の磁気記録媒体。
(付記9)付記1〜8の何れかに記載の磁気記録媒体を備えた磁気記録装置。
In the description of the present specification described above, the invention described in the following supplementary notes is disclosed.
(Appendix 1) In a magnetic recording medium having a recording layer on a substrate,
A magnetic recording medium comprising a carbon nanotube layer in which carbon nanotubes are erected on the surface of the recording layer.
(Supplementary note 2) The magnetic recording medium according to claim 1, wherein the carbon nanotubes are arranged with a length of 700 nm or less and a density of 4 × 10 12 pieces / m 2 or more.
(Supplementary note 3) The magnetic recording medium according to supplementary note 1, wherein the carbon nanotube has a single-layer structure.
(Additional remark 4) The magnetic recording medium of Additional remark 1 whose diameter of the said carbon nanotube is 20 nm or less.
(Supplementary note 5) The magnetic recording medium according to supplementary note 1, wherein a lubricant is applied to the carbon nanotube layer.
(Additional remark 6) The magnetic recording medium of Additional remark 5 characterized by the film thickness of the said lubricant being thinner than the length of the said carbon nanotube.
(Supplementary note 7) The magnetic recording medium according to supplementary note 1, wherein a surface of the carbon nanotube is water repellent.
(Supplementary note 8) The magnetic recording medium according to supplementary note 1, wherein a protective layer is provided on the recording layer.
(Supplementary note 9) A magnetic recording apparatus including the magnetic recording medium according to any one of supplementary notes 1 to 8.

本発明によれば、耐衝撃性、耐腐食性に優れ、かつ潤滑特性の劣化が少ない磁気記録媒体を提供することができるから、ハードデスク等の磁気記録装置の信頼性を著しく向上することができる。   According to the present invention, it is possible to provide a magnetic recording medium that is excellent in impact resistance and corrosion resistance and has little deterioration in lubrication characteristics, so that the reliability of a magnetic recording apparatus such as a hard disk can be remarkably improved. it can.

本発明の第一実施形態断面図First embodiment cross-sectional view of the present invention 本発明の第一実施形態の部分拡大断面図Partial enlarged sectional view of the first embodiment of the present invention 本発明の第一実施形態の動作説明用断面図(その1)Sectional drawing for demonstrating operation | movement of 1st embodiment of this invention (the 1) 本発明の第一実施形態の動作説明用断面図(その2)Sectional drawing for demonstrating operation | movement of 1st embodiment of this invention (the 2) 本発明の第二実施形態断面図Cross-sectional view of the second embodiment of the present invention 本発明の第三実施形態断面図Cross-sectional view of a third embodiment of the present invention 従来の磁気記録媒体と磁気ヘッドの関係を表す断面図Sectional drawing showing the relationship between a conventional magnetic recording medium and a magnetic head 従来の改良された潤滑方法の説明図Illustration of conventional improved lubrication method

符号の説明Explanation of symbols

1 基板
2 Ni−P層
3 Cr系下地層
4 磁気記録層
5 カーボンナノチューブ層
6,6a,22 カーボンナノチューブ
7 磁気ヘッド
7a 先端
7b 後端
7c 磁気ヘッドの進行方向
7d スライド面
8 潤滑剤
9,21 保護層
10 磁気記録媒体
10a 記録面
10c 磁気記録媒体の進行方向
11 水滴
DESCRIPTION OF SYMBOLS 1 Substrate 2 Ni-P layer 3 Cr system underlayer 4 Magnetic recording layer 5 Carbon nanotube layer 6, 6a, 22 Carbon nanotube 7 Magnetic head 7a Front end 7b Rear end 7c Magnetic head traveling direction 7d Slide surface 8 Lubricant 9, 21 Protective layer 10 Magnetic recording medium 10a Recording surface 10c Direction of travel of magnetic recording medium 11 Water droplet

Claims (6)

基板上に記録層を有する磁気記録媒体において、
前記記録層表面にカーボンナノチューブが根元を固定されて立設されたカーボンナノチューブ層を有することを特徴とする磁気記録媒体。
In a magnetic recording medium having a recording layer on a substrate,
The magnetic recording medium characterized by having a carbon nanotube layer in which the carbon nanotubes on the recording layer surface is erected and fixed to the base.
前記カーボンナノチューブが長さ700nm以下、密度4×1012本/m2 以上で配置された請求項1記載の磁気記録媒体。 The magnetic recording medium according to claim 1, wherein the carbon nanotubes are arranged with a length of 700 nm or less and a density of 4 × 10 12 / m 2 or more. 前記カーボンナノチューブ層に潤滑剤が塗布されていることを特徴とする請求項1記載の磁気記録媒体。   The magnetic recording medium according to claim 1, wherein a lubricant is applied to the carbon nanotube layer. 前記カーボンナノチューブの表面が撥水性であることを特徴とする請求項1記載の磁気記録媒体。   2. The magnetic recording medium according to claim 1, wherein the surface of the carbon nanotube is water repellent. 請求項1、2、3又は4記載の磁気記録媒体を備えた磁気記録装置。   A magnetic recording apparatus comprising the magnetic recording medium according to claim 1, 2, 3 or 4. 基板上に記録層を有する磁気記録媒体の製造方法において、In a method for manufacturing a magnetic recording medium having a recording layer on a substrate,
基板上に、少なくとも表面に金属触媒を含有する記録層を形成する工程と、Forming a recording layer containing a metal catalyst on at least the surface of the substrate;
前記金属を触媒とする触媒法により前記記録層表面にカーボンナノチューブを形成して、前記記録層表面に立設するカーボンナノチューブ層を形成する工程とを有することを特徴とする磁気記録媒体の製造方法。Forming a carbon nanotube on the surface of the recording layer by a catalytic method using the metal as a catalyst, and forming a carbon nanotube layer standing on the surface of the recording layer. .
JP2004366714A 2004-12-17 2004-12-17 Magnetic recording medium, magnetic recording apparatus, and method of manufacturing magnetic recording medium Expired - Fee Related JP4561348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004366714A JP4561348B2 (en) 2004-12-17 2004-12-17 Magnetic recording medium, magnetic recording apparatus, and method of manufacturing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004366714A JP4561348B2 (en) 2004-12-17 2004-12-17 Magnetic recording medium, magnetic recording apparatus, and method of manufacturing magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2006172662A JP2006172662A (en) 2006-06-29
JP4561348B2 true JP4561348B2 (en) 2010-10-13

Family

ID=36673223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004366714A Expired - Fee Related JP4561348B2 (en) 2004-12-17 2004-12-17 Magnetic recording medium, magnetic recording apparatus, and method of manufacturing magnetic recording medium

Country Status (1)

Country Link
JP (1) JP4561348B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5028744B2 (en) * 2005-02-15 2012-09-19 富士通株式会社 Method for forming carbon nanotube and method for manufacturing electronic device
CN100591613C (en) * 2006-08-11 2010-02-24 清华大学 Carbon nano-tube composite material and preparation method thereof
JP5112044B2 (en) * 2007-12-27 2013-01-09 株式会社東芝 Carbon nanotube production equipment
CN101591015B (en) * 2008-05-28 2013-02-13 清华大学 Preparation method of banded carbon nano tube film
JP2011112392A (en) * 2009-11-24 2011-06-09 Panasonic Electric Works Co Ltd Acceleration sensor
JP5789737B2 (en) * 2009-11-24 2015-10-07 パナソニックIpマネジメント株式会社 Acceleration sensor
JP2011112390A (en) * 2009-11-24 2011-06-09 Panasonic Electric Works Co Ltd Acceleration sensor
JP5716149B2 (en) * 2009-11-24 2015-05-13 パナソニックIpマネジメント株式会社 Acceleration sensor
JP2011112389A (en) * 2009-11-24 2011-06-09 Panasonic Electric Works Co Ltd Acceleration sensor
WO2011064642A2 (en) 2009-11-24 2011-06-03 パナソニック電工株式会社 Acceleration sensor
JP2014002123A (en) * 2012-06-21 2014-01-09 Nitto Denko Corp Method for cutting droplet and method for analyzing cross section of droplet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000141056A (en) * 1998-09-21 2000-05-23 Lucent Technol Inc Device having adhesive carbon nano-tube film
JP2001067644A (en) * 1999-08-26 2001-03-16 Nova Science Kk Coating lubricant for magnetic recording device and lubricating structure utilizing same
JP2004299926A (en) * 2003-03-28 2004-10-28 Fujitsu Ltd Carbon nanotube production catalyst, carbon nanotube, and method for producing the carbon nanotube
JP2004344992A (en) * 2003-05-20 2004-12-09 Japan Atom Energy Res Inst Method for bonding nanotubes in arranged state

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2546114B2 (en) * 1992-12-22 1996-10-23 日本電気株式会社 Foreign substance-encapsulated carbon nanotubes and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000141056A (en) * 1998-09-21 2000-05-23 Lucent Technol Inc Device having adhesive carbon nano-tube film
JP2001067644A (en) * 1999-08-26 2001-03-16 Nova Science Kk Coating lubricant for magnetic recording device and lubricating structure utilizing same
JP2004299926A (en) * 2003-03-28 2004-10-28 Fujitsu Ltd Carbon nanotube production catalyst, carbon nanotube, and method for producing the carbon nanotube
JP2004344992A (en) * 2003-05-20 2004-12-09 Japan Atom Energy Res Inst Method for bonding nanotubes in arranged state

Also Published As

Publication number Publication date
JP2006172662A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP4561348B2 (en) Magnetic recording medium, magnetic recording apparatus, and method of manufacturing magnetic recording medium
US20070042154A1 (en) Self-assembled monolayer enhanced DLC coatings
US7259937B2 (en) Magnetic recording device having a head slider utilizing a water-repellant resin lubricant having specified surface tension properties
JP5465454B2 (en) Magnetic disk and manufacturing method thereof
US20130114165A1 (en) FePt-C BASED MAGNETIC RECORDING MEDIA WITH ONION-LIKE CARBON PROTECTION LAYER
US6589641B1 (en) Thin films of crosslinked fluoropolymer on a carbon substrate
JP3912497B2 (en) Magnetic recording medium
JPWO2007116812A1 (en) Magnetic disk and manufacturing method thereof
US20060177570A1 (en) Hybrid coating for magnetic heads
JP4008933B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus
KR20050083759A (en) Phase change media for high density data storage
US8018683B2 (en) Head slider and magnetic recording device therewith
US20150179200A1 (en) Slider including one or more fluid pathways, and related apparatuses and methods
US20150325263A1 (en) Slider and/or hard disc including coating, and optionally one or more additives that can dissipate electrical charge
JP2006286104A (en) Magnetic head and manufacturing method thereof
US7824562B2 (en) Method of reducing an etch rate
JP4652163B2 (en) Magnetic recording medium, head slider and magnetic recording apparatus
US20090310257A1 (en) Head slider and magnetic storage device with head slider
JP2010168512A (en) Lubricant and magnetic disk unit using the same
JP2006277779A (en) Magnetic recording medium and magnetic recording apparatus
JP2001331926A (en) Magnetic recording medium
JP5392375B2 (en) recoding media
JP2001067644A (en) Coating lubricant for magnetic recording device and lubricating structure utilizing same
JP3941011B2 (en) Recording medium and manufacturing method thereof
JP2009054228A (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees