JP4557158B2 - Manufacturing method of polyolefin resin-coated steel pipe with excellent surface appearance - Google Patents

Manufacturing method of polyolefin resin-coated steel pipe with excellent surface appearance Download PDF

Info

Publication number
JP4557158B2
JP4557158B2 JP2005064051A JP2005064051A JP4557158B2 JP 4557158 B2 JP4557158 B2 JP 4557158B2 JP 2005064051 A JP2005064051 A JP 2005064051A JP 2005064051 A JP2005064051 A JP 2005064051A JP 4557158 B2 JP4557158 B2 JP 4557158B2
Authority
JP
Japan
Prior art keywords
resin
steel pipe
cooling
polyolefin resin
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005064051A
Other languages
Japanese (ja)
Other versions
JP2006247887A (en
Inventor
泰宏 原田
志郎 宮田
彰彦 古田
直樹 中田
慎一郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005064051A priority Critical patent/JP4557158B2/en
Publication of JP2006247887A publication Critical patent/JP2006247887A/en
Application granted granted Critical
Publication of JP4557158B2 publication Critical patent/JP4557158B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明はポリオレフィン樹脂被覆鋼管の製造方法に関するものである。より詳しくは、ポリオレフィン樹脂被覆表面に凹凸などの外観不良の発生がない、表面外観に優れたポリオレフィン樹脂被覆鋼管の製造方法に関する。   The present invention relates to a method for producing a polyolefin resin-coated steel pipe. More specifically, the present invention relates to a method for producing a polyolefin resin-coated steel pipe having an excellent surface appearance and having no appearance defects such as irregularities on the surface of the polyolefin resin coating.

ポリオレフィン樹脂被覆鋼管の製造方法としては、鋼管の回転方向に対し斜めに配置された搬送ロール(スキューロール)により、加熱した鋼管を回転させつつ管長方向に前進させながら、鋼管の外面に溶融状態のポリオレフィン樹脂シートを連続的に螺旋状に巻き付けて、被覆する方法が知られている。   As a method for producing a polyolefin resin-coated steel pipe, a transport roll (skew roll) disposed obliquely with respect to the rotation direction of the steel pipe is advanced in the pipe length direction while rotating the heated steel pipe, while being melted on the outer surface of the steel pipe. A method is known in which a polyolefin resin sheet is continuously wound in a spiral shape and coated.

近年、長期の防食性能を重視する考えから、ポリオレフィン樹脂被覆の下地プライマーとして、従来の液状プライマーから粉体プライマーを使用する場合が増えてきている。その際には、鋼管の予熱温度を、被覆するポリオレフィン樹脂の融点をはるかに超えた、200℃以上の高温にすることが必要となる場合があり、より高温に対応した被覆技術が望まれている。   In recent years, from the viewpoint of emphasizing long-term anticorrosion performance, the use of a powder primer from a conventional liquid primer as an undercoat primer for polyolefin resin coating is increasing. In that case, it may be necessary to set the preheating temperature of the steel pipe to a high temperature of 200 ° C. or more, far exceeding the melting point of the polyolefin resin to be coated, and a coating technique corresponding to a higher temperature is desired. Yes.

このように、高温の予熱温度の場合であっても、樹脂被覆後、搬送ロールによる被覆樹脂のつぶれを防止する目的から、樹脂を急速に冷却する必要がある。冷却方法として、通常は円周方向に配置されたノズルから噴出された水流により冷却する方法が一般的であるが、冷却後の樹脂表面に不規則な凹凸模様が形成され、外観上問題となる場合があった。   Thus, even in the case of a high preheating temperature, it is necessary to rapidly cool the resin after the resin coating in order to prevent the coating resin from being crushed by the transport roll. As a cooling method, a method of cooling by a water flow ejected from a nozzle arranged in a circumferential direction is generally used, but an irregular uneven pattern is formed on the resin surface after cooling, which causes a problem in appearance. There was a case.

この解決手段として、樹脂被覆直後に耐熱樹脂シートで被覆鋼管を覆い、この状態で外面から水冷を行う方法が開示されている(特許文献1参照)。   As a solution to this problem, a method is disclosed in which a coated steel pipe is covered with a heat-resistant resin sheet immediately after resin coating, and water cooling is performed from the outer surface in this state (see Patent Document 1).

また、溶融したポリオレフィン帯状体を被覆した後、被覆表面に水の微粒子を噴霧しながら、圧縮空気を吹きつけて被覆表面に付着した水滴を吹き飛ばす方法も開示されている(特許文献2参照)。   In addition, a method is also disclosed in which, after coating a melted polyolefin strip, spraying compressed air and blowing water droplets adhering to the coating surface while spraying fine water particles on the coating surface (see Patent Document 2).

特開平6−143417号公報JP-A-6-143417 特開平11−291398号公報JP 11-291398 A

しかしながら、樹脂被覆直後に耐熱樹脂シートで覆う方法では耐熱樹脂シートの巻き付け工程が必要なため、被覆スピードが速い場合には適しておらず、また、連続生産には不向きである。     However, the method of covering with a heat-resistant resin sheet immediately after resin coating requires a step of winding the heat-resistant resin sheet, and thus is not suitable when the coating speed is high, and is not suitable for continuous production.

また、水の微粒子を噴霧しながら圧縮空気を吹き付ける方法では、水の粒子を吹き付けたのち、圧縮空気で完全に水滴を吹き飛ばす事は困難であった。さらに、水の粒子により冷却しただけでは、特に高温の鋼管予熱を必要とする場合は、冷却能力が不十分であり、その後の圧縮空気による冷却では、表面が復熱、再溶融し、再度水冷した際に凹凸が発生するなど、充分に凹凸の課題を防止することは困難であった。     Further, in the method of spraying compressed air while spraying fine water particles, it is difficult to completely blow off water droplets with compressed air after spraying water particles. In addition, cooling with water particles alone does not provide sufficient cooling capacity, particularly when high-temperature steel pipe preheating is required, and subsequent cooling with compressed air causes the surface to reheat, remelt, It was difficult to sufficiently prevent the unevenness problem, such as unevenness being generated.

従って、高温の予熱温度に対応した凹凸発生防止方法として、良好なものはこれまでなかったのが実態であった。   Therefore, in reality, there has been no good method for preventing the occurrence of unevenness corresponding to a high preheating temperature.

本発明の目的は、防食性能に優れた粉体プライマーに要求される、高温の鋼管予熱を行なった場合においても、冷却後の樹脂表面の凹凸発生を防止することが可能な表面外観に優れたポリオレフィン樹脂被覆鋼管の製造方法を提供することにある。   The object of the present invention is to provide an excellent surface appearance that can prevent the occurrence of unevenness on the resin surface after cooling, even when preheating a high-temperature steel pipe, which is required for a powder primer having excellent anticorrosion performance. An object of the present invention is to provide a method for producing a polyolefin resin-coated steel pipe.

本発明者らは、鋭意検討を行った結果、冷却後の樹脂表面に凹凸の生成する原因が、溶融状態の樹脂に、局部的に付着した水滴により、樹脂が局部的に冷却・結晶化することにあることを見出した。そこで、樹脂表面をラミナー水冷し該樹脂表面全体を連続した水膜で覆って融点未満の温度まで冷却し、かつ一旦冷却した後、樹脂表面が融点以上に復熱しないようにさらに連続的に冷却することで、樹脂表面の凹凸発生が顕著に軽減され、表面外観に優れたポリオレフィン樹脂被覆鋼管が製造できることを見出し、本発明を完成させるに至った。   As a result of intensive studies, the present inventors have found that the resin is locally cooled and crystallized due to the water droplets locally attached to the molten resin due to the formation of irregularities on the resin surface after cooling. I found out that there was. Therefore, the resin surface is cooled by laminar water, the entire resin surface is covered with a continuous water film, cooled to a temperature below the melting point, and once cooled, further continuously cooled so that the resin surface does not reheat above the melting point. As a result, it was found that the occurrence of unevenness on the resin surface was remarkably reduced and a polyolefin resin-coated steel pipe excellent in surface appearance could be produced, and the present invention was completed.

すなわち、本発明は、回転している鋼管表面に、溶融状態にあるシート状ポリオレフィン樹脂を螺旋状に巻き付けながら被覆してなるポリオレフィン樹脂被覆鋼管の製造方法において、該樹脂被覆後の冷却工程で、樹脂表面をラミナー水冷し該樹脂表面全体を連続した水膜で覆って該樹脂の融点未満の温度まで冷却し、さらに前記ラミナー水冷後も、樹脂表面温度を融点以上に上昇させることなく冷却を継続するとともに、前記ラミナー水冷が円筒ノズルを配置し、かつ前記円筒ノズルから気泡を含まないように層流の水流を吐出して行うことを特徴とする表面外観に優れたポリオレフィン樹脂被覆鋼管の製造方法に関するものである。 That is, the present invention is a method for producing a polyolefin resin-coated steel pipe formed by coating a rotating steel pipe surface while spirally winding a sheet-like polyolefin resin in a molten state, in the cooling step after the resin coating, The resin surface is cooled with laminar water, and the entire resin surface is covered with a continuous water film to cool to a temperature below the melting point of the resin. Further, after the laminar water cooling, cooling is continued without increasing the resin surface temperature above the melting point. And the laminar water cooling is performed by disposing a cylindrical nozzle and discharging a laminar water flow so as not to include bubbles from the cylindrical nozzle. It is about.

本発明により、鋼管の外面に溶融状態のポリオレフィン樹脂シートを連続的に螺旋状に巻付けていくポリオレフィン樹脂被覆方法において、被覆表面に凹凸のない表面外観の優れたポリオレフィン樹脂被覆鋼管を得ることができる。   According to the present invention, in a polyolefin resin coating method in which a molten polyolefin resin sheet is continuously spirally wound around the outer surface of a steel pipe, a polyolefin resin-coated steel pipe having an excellent surface appearance with no unevenness on the coated surface can be obtained. it can.

本発明で用いられる鋼管の種類や寸法は特に制限されないが、例えば、電縫管、スパイラル鋼管、UOE鋼管、メッキ管が挙げられる。   Although the kind and dimension of the steel pipe used by this invention are not restrict | limited in particular, For example, an electric sewing pipe, a spiral steel pipe, a UOE steel pipe, and a plated pipe are mentioned.

まず、必要により、鋼管外面にアルカリ脱脂・酸性処理またはブラスト処理などの除錆処理を施し、表面を清浄化する。次に優れた防食性を付与するために、鋼管の表面にクロメート処理、燐酸塩処理等の下地処理をほどこしてもよい。さらにその上層に、ポリオレフィン樹脂との接着性を高めるために、エポキシ樹脂等のプライマー層を設けても良い。プライマー層形成前のプライマーの形態としては、粉体プライマー、液状プライマー等があげられる。   First, if necessary, the outer surface of the steel pipe is subjected to rust removal treatment such as alkali degreasing / acid treatment or blast treatment to clean the surface. Next, in order to impart excellent corrosion resistance, the surface of the steel pipe may be subjected to a ground treatment such as chromate treatment or phosphate treatment. Further, a primer layer such as an epoxy resin may be provided on the upper layer in order to enhance the adhesion with the polyolefin resin. Examples of the form of the primer before forming the primer layer include a powder primer and a liquid primer.

プライマー層を形成させる場合には、通常、鋼管を100℃〜250℃程度の温度に加熱する。鋼管の加熱方式としては、高周波誘導加熱、遠赤外加熱、ガス直火加熱などの方法が挙げられる。プライマー層の形成方法としてはスプレー塗装、ロール塗布、刷毛塗り、しごき塗布などの方法が用いられる。   When forming the primer layer, the steel pipe is usually heated to a temperature of about 100 ° C to 250 ° C. Examples of the heating method for the steel pipe include high-frequency induction heating, far-infrared heating, and gas direct-fire heating. As a method for forming the primer layer, methods such as spray coating, roll coating, brush coating, and ironing are used.

本発明の鋼管はポリオレフィン樹脂を被覆するものであるが、ポリオレフィン樹脂は一般に接着性が弱いため接着層を設けることが好ましい。接着層として好ましいものは変性ポリオレフィン樹脂やアイオノマー樹脂などである。変性ポリオレフィン樹脂としては、ポリオレフィン樹脂層に用いられるポリオレフィン樹脂をマレイン酸、アクリル酸、メタクリル酸などの不飽和カルボン酸もしくはその酸無水物で変性したものなどを用いることができる。接着層の厚みは0.1〜2mm程度、好ましくは0.3〜1.0mm程度が適当である。   Although the steel pipe of the present invention covers a polyolefin resin, it is preferable to provide an adhesive layer because the polyolefin resin generally has poor adhesion. Preferred examples of the adhesive layer include modified polyolefin resins and ionomer resins. As the modified polyolefin resin, a polyolefin resin used for the polyolefin resin layer may be modified with an unsaturated carboxylic acid such as maleic acid, acrylic acid or methacrylic acid or an acid anhydride thereof. The thickness of the adhesive layer is about 0.1 to 2 mm, preferably about 0.3 to 1.0 mm.

ポリオレフィン樹脂被覆に用いられるポリオレフィン樹脂としては、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、ホモポリプロピレン、ランダムポリプロピレン、ブロックポリプロピレン、ポリブテン、ポリメチルペンテンなどの公知のポリオレフィン樹脂を用いることができる。ポリオレフィン樹脂の融点は、特に制限されないが、ポリエチレンの場合102〜137℃程度、通常押出被覆で使用する範囲は110〜125℃程度、ポリプロピレンの場合130〜170℃程度、通常押出被覆で使用する範囲は140〜165℃程度、ポリブテンの場合115〜135℃程度、通常押出被覆で使用する範囲は120〜130℃程度、ポリメチルペンテンの場合220〜240℃程度である。このポリオレフィン樹脂被覆の厚みは1〜5mm程度、通常1.5〜3.5mm程度である。   Known polyolefin resins such as low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, homopolypropylene, random polypropylene, block polypropylene, polybutene, polymethylpentene, etc. Can be used. The melting point of the polyolefin resin is not particularly limited, but in the case of polyethylene, it is about 102 to 137 ° C., and the range usually used for extrusion coating is about 110 to 125 ° C., in the case of polypropylene, about 130 to 170 ° C., the range usually used for extrusion coating. Is about 140 to 165 ° C, in the case of polybutene is about 115 to 135 ° C, and the range normally used for extrusion coating is about 120 to 130 ° C, and in the case of polymethylpentene is about 220 to 240 ° C. The thickness of the polyolefin resin coating is about 1 to 5 mm, usually about 1.5 to 3.5 mm.

本発明の方法においては、ポリオレフィン樹脂を加熱溶融してシート状に押出す。ポリオレフィン樹脂の溶融温度は融点より10〜160℃程度高く、好ましくはポリエチレン、ポリブテンの場合60〜140℃程度、ポリプロピレンの場合50〜110℃程度高くする。ポリメチルペンテンの場合は40〜70℃程度高くする。シート状に押出すダイは公知のものでよく、Tダイ等を利用できる。シートの幅は特に制限されないが350〜550mm程度である。   In the method of the present invention, a polyolefin resin is heated and melted and extruded into a sheet shape. The melting temperature of the polyolefin resin is about 10 to 160 ° C. higher than the melting point, preferably about 60 to 140 ° C. for polyethylene and polybutene, and about 50 to 110 ° C. for polypropylene. In the case of polymethylpentene, the temperature is increased by about 40 to 70 ° C. The die to be extruded into a sheet shape may be a known one, and a T die or the like can be used. The width of the sheet is not particularly limited, but is about 350 to 550 mm.

接着層を設ける場合には、これをポリオレフィン樹脂に先立って鋼管に被覆してもよいが、ポリオレフィン樹脂を共押出しするのが簡便である。   When the adhesive layer is provided, the steel pipe may be coated prior to the polyolefin resin, but it is easy to co-extrude the polyolefin resin.

ダイから押出された溶融状態のポリオレフィン樹脂シートを必要により下地処理が施された鋼管の表面に螺旋状に巻回していく。   A polyolefin resin sheet in a molten state extruded from a die is spirally wound around the surface of a steel pipe that has been subjected to a base treatment if necessary.

その際の鋼管の温度は、ポリオレフィン樹脂がポリエチレン樹脂の場合、樹脂の融点より0〜130℃程度高い温度であり、ポリプロピレン樹脂の場合、0〜100℃程度高い温度である。   In this case, the temperature of the steel pipe is about 0 to 130 ° C. higher than the melting point of the resin when the polyolefin resin is polyethylene resin, and about 0 to 100 ° C. when the polyolefin resin is polypropylene resin.

そこで、次いでこのポリオレフィン樹脂被覆鋼管を冷却するが、本発明ではまずラミナー水冷し、その際に形成される水膜で樹脂表面全体を覆って冷却を行うところに特徴がある。
ラミナー水冷(ラミナー冷却)とは、ミスト冷却やスプレー冷却とは異なり、棒状に吐出する水流による冷却のことである。この吐出された水流が樹脂表面に接触して水膜を形成する。
本発明では樹脂表面全体を連続した水膜で覆って該樹脂の融点未満の温度まで冷却することがとくに重要である。
樹脂表面の円周方向の全周にわたって、すき間(水膜で覆われていない部分)が生じることがないよう連続した水膜で覆うことにより、樹脂の局部的な冷却、結晶化を抑制し、樹脂表面の凹凸発生を回避することが可能となる。樹脂表面の一部に水膜で覆われていない部分が生じると、その部分に凹凸模様が形成されやすくなる。
通常、樹脂被覆鋼管を水冷する際には、該鋼管を回転させ、かつ前進させながら冷却する。本発明においては、ラミナー水冷を開始してから、樹脂表面温度が該樹脂の融点未満の温度に下がるまでの間、とぎれることのない水膜で覆われた状態を維持できるように冷却できればよい。
Then, this polyolefin resin-coated steel pipe is then cooled. In the present invention, laminar water cooling is first performed, and the entire resin surface is covered with a water film formed at that time to perform cooling.
Laminar water cooling (laminar cooling), unlike mist cooling or spray cooling, is cooling by a water flow discharged in a rod shape. This discharged water flow contacts the resin surface to form a water film.
In the present invention, it is particularly important that the entire resin surface is covered with a continuous water film and cooled to a temperature below the melting point of the resin.
By covering with a continuous water film so that there is no gap (portion not covered with a water film) over the entire circumference in the circumferential direction of the resin surface, local cooling and crystallization of the resin are suppressed, It is possible to avoid the occurrence of unevenness on the resin surface. When a portion that is not covered with a water film is formed on a part of the resin surface, a concavo-convex pattern is easily formed on the portion.
Usually, when water-cooling a resin-coated steel pipe, the steel pipe is cooled while being rotated and advanced. In the present invention, it is only necessary to be able to maintain the state of being covered with an uninterrupted water film from the start of laminar water cooling until the resin surface temperature falls below the melting point of the resin.

このラミナー冷却には、通常円筒ノズルから気泡を含まないように層流の水流を吐出して行う。円筒ノズル(開口形状は円状が好ましい。)は個別に設ける他、円状の管の内側に吐出口(開口形状は円状が好ましい。)を略等間隔に設けたものであってもよい。この管を螺旋状に形成することもできる。吐出口の間隔を狭め、かつ吐出口と樹脂表面との間隔を狭めて、水膜が途切れないようにすることが重要である。
鋼管の下面側の樹脂表面においても、水膜が途切れることなく付着した状態を維持するためには、下面側にも円筒ノズルを配置するとともに、樹脂被覆鋼管の外径、回転速度、送り速度等に応じて円筒ノズルの数及び間隔、吐出口と樹脂表面の間隔、冷却水量、吐出圧等を適宜、設定すればよい。
この点で、円筒ノズルの吐出口間の間隔は鋼管外径、冷却水量等により異なるが、管周方向に200〜700mm程度、好ましくは300〜500mm程度、吐出口とポリオレフィン樹脂表面との間隔は50〜400mm程度、好ましくは50〜200mm程度とするのがよい。これによって、円筒ノズルから吐出される水が樹脂表面に均一に接触して水膜を形成し、均一な冷却を行うことができる。円筒ノズルの数は通常、円周方向に8〜12個程度になる。
This laminar cooling is usually performed by discharging a laminar water flow from a cylindrical nozzle so as not to include bubbles. The cylindrical nozzles (opening shape is preferably circular) may be provided separately, or discharge ports (opening shape is preferably circular) may be provided inside the circular tube at substantially equal intervals. . The tube can also be formed in a spiral shape. It is important to narrow the interval between the discharge ports and the interval between the discharge port and the resin surface so that the water film is not interrupted.
In order to keep the water film attached without interruption even on the resin surface on the lower surface side of the steel pipe, a cylindrical nozzle is also arranged on the lower surface side, and the outer diameter, rotation speed, feed speed, etc. of the resin-coated steel pipe The number and interval of the cylindrical nozzles, the interval between the discharge port and the resin surface, the cooling water amount, the discharge pressure, and the like may be set as appropriate.
In this respect, although the interval between the discharge ports of the cylindrical nozzle varies depending on the outer diameter of the steel pipe, the amount of cooling water, etc., the interval between the discharge port and the polyolefin resin surface is about 200 to 700 mm, preferably about 300 to 500 mm in the pipe circumferential direction. The thickness is about 50 to 400 mm, preferably about 50 to 200 mm. As a result, water discharged from the cylindrical nozzle uniformly contacts the resin surface to form a water film, and uniform cooling can be performed. The number of cylindrical nozzles is usually about 8 to 12 in the circumferential direction.

吐出する水の温度は、特別の目的がなければ、使用水そのままでよく、常温〜50℃程度である。   If there is no special purpose, the temperature of the water to be discharged may be used as it is, and is about room temperature to about 50 ° C.

ラミナー冷却による水冷はポリオレフィン樹脂表面温度が該樹脂の融点未満、好ましくは軟化点以下になるまで行う。このために、水膜が少なくとも15秒間、好ましくは15〜60秒間供給され続けるだけの水膜が形成される領域を確保することが好ましい。   Water cooling by laminar cooling is performed until the surface temperature of the polyolefin resin is lower than the melting point of the resin, preferably below the softening point. For this reason, it is preferable to secure a region where a water film is formed so that the water film is continuously supplied for at least 15 seconds, preferably 15 to 60 seconds.

表面の冷却速度は樹脂被覆後、最初の搬送ロールに樹脂表面が接触するまでの間に、樹脂表面の温度が確実に融点未満に下がる冷却速度であることが必須であるが、通常10〜100℃/secの範囲となる。   It is essential that the cooling rate of the surface is a cooling rate at which the temperature of the resin surface surely falls below the melting point before the resin surface comes into contact with the first transport roll after resin coating, but usually 10 to 100. It is in the range of ° C / sec.

また、一旦ラミナー冷却を行った後、水冷を中止するとすぐに鋼管のもつ熱が樹脂表面に伝わり樹脂表面が融点以上に復熱する。この場合、再び水冷すると前記の冷却方法によらなければ凹凸が発生する。したがって、ラミナー冷却により樹脂温度を融点未満に下げたあとは、引き続き公知の冷却方法により、後に冷却を中止しても融点まで復熱しなくなるまで冷却を継続する。通常は、鋼管温度が環境温度に下がるまで冷却を継続するのがよい。   Further, once the laminar cooling is performed, the water of the steel pipe is transferred to the resin surface as soon as the water cooling is stopped, and the resin surface is reheated to the melting point or higher. In this case, when water cooling is performed again, unevenness occurs unless the cooling method is used. Therefore, after the resin temperature is lowered below the melting point by laminar cooling, the cooling is continued by a known cooling method until the heat is not restored to the melting point even if the cooling is stopped later. Normally, cooling should be continued until the steel pipe temperature falls to the ambient temperature.

この公知の冷却方法としては、通常はノズルからの水流であり、これは表面の復熱を防止しうる方法であれば、方式やノズル配置等に制約はない。スプレー冷却による水冷でもよい。また鋼管の温度がその後に冷却を中止しても樹脂の融点以上に復熱しなくなる温度以下に下がった後は、空気等による放冷であっても問題はない。   This known cooling method is usually a water flow from the nozzle, and there is no restriction on the method and nozzle arrangement as long as it is a method capable of preventing the surface reheating. Water cooling by spray cooling may be used. Further, there is no problem even if the steel pipe is cooled by air or the like after the temperature of the steel pipe has dropped below the temperature at which it does not reheat above the melting point of the resin even if cooling is stopped.

[実施例1〜6、比較例1〜3]
JISG−3457によるSTPY40、管長12m、外径914.4mm、管厚9mmのUOE鋼管を使用し、その鋼管の外表面をグリットブラスト処理により清浄度をSa2.5以上とした。スキューロール上を回転させながら、搬送し、まず転写ロールを用いて、クロメート処理液を該鋼管表面に塗布した。塗布後、塗布面が次のスキューロールと接触するまでに、第1インダクションヒーターにより、鋼管温度を100℃に昇温し、焼付けてクロメート層を形成した。次に、230℃まで鋼管温度を第2インダクションヒーターにより昇温し、エポキシ粉体塗料(密度1.49、粒径250μm以下)を静電粉体塗装機により膜厚350〜400μmとなるように外面に塗装した。
[Examples 1-6, Comparative Examples 1-3]
A UOE steel pipe having STPY 40 according to JISG-3457, pipe length of 12 m, outer diameter of 914.4 mm, and pipe thickness of 9 mm was used, and the outer surface of the steel pipe was made to have a cleanness of Sa 2.5 or more by grit blasting. It was conveyed while rotating on the skew roll, and first, the chromate treatment liquid was applied to the surface of the steel pipe using a transfer roll. After coating, the steel pipe temperature was raised to 100 ° C. by a first induction heater until the coated surface contacted the next skew roll, and baked to form a chromate layer. Next, the steel pipe temperature is raised to 230 ° C. by the second induction heater, and the epoxy powder coating (density 1.49, particle size 250 μm or less) is made to have a film thickness of 350 to 400 μm by the electrostatic powder coating machine. Painted on the outside.

この鋼管に、図1に示すようにしてポリオレフィン樹脂を被覆した。ポリオレフィン樹脂と変性ポリオレフィン樹脂がそれぞれの押出機からTダイを通して帯状に共押出しされ、図面右方に回転しながら進行している鋼管に螺旋状に巻付けられていく。変性ポリエチレン樹脂接着層には厚み0.2〜0.5mmの無水マレイン酸変性ポリエチレン(融点121℃、MFR1.0)を用い、ポリエチレン樹脂層には厚み3.0mmの高密度ポリエチレン(密度0.943、融点124℃、MFR0.24)を用いた。こうしてポリオレフィン樹脂が被覆された鋼管のポリオレフィン樹脂被覆の表面温度は220〜230℃であった。   This steel pipe was coated with a polyolefin resin as shown in FIG. A polyolefin resin and a modified polyolefin resin are coextruded in a strip shape from each extruder through a T-die, and are spirally wound around a steel pipe that is advancing while rotating to the right in the drawing. Maleic anhydride-modified polyethylene (melting point 121 ° C., MFR 1.0) having a thickness of 0.2 to 0.5 mm is used for the modified polyethylene resin adhesive layer, and high-density polyethylene (density 0. 943, melting point 124 ° C., MFR 0.24). The surface temperature of the polyolefin resin coating of the steel pipe thus coated with the polyolefin resin was 220 to 230 ° C.

次に、この鋼管を、図1に示すように、円筒ノズルを円状に配置したその内側を通過させてラミナー水冷を行った。ノズルの吐出口間の間隔は管長方向に100mm間隔で1〜3列とし、円周方向には略等間隔で4〜10個配置した。そして吐出口と樹脂表面との間隔は200mmであった。
各実施例で用いたノズルの数は表1に示した。尚、帯状溶融樹脂シートの巻付位置(サポートロールの中心)とノズル(複数列の場合は最前列)との間の距離は約250cmである。
Next, as shown in FIG. 1, this steel pipe was passed through the inside of which a cylindrical nozzle was arranged in a circular shape to perform laminar water cooling. The intervals between the discharge ports of the nozzles were 1 to 3 rows at 100 mm intervals in the tube length direction, and 4 to 10 nozzles were arranged at substantially equal intervals in the circumferential direction. The distance between the discharge port and the resin surface was 200 mm.
The number of nozzles used in each example is shown in Table 1. In addition, the distance between the winding position of the belt-shaped molten resin sheet (center of the support roll) and the nozzle (the front row in the case of a plurality of rows) is about 250 cm.

ラミナー水冷後は表1に記載の通りスプレー冷却又は空冷を行った。   After laminar water cooling, spray cooling or air cooling was performed as shown in Table 1.

こうして得られたポリオレフィン樹脂被覆鋼管の外観評価を次のようにして行った。   The appearance evaluation of the polyolefin resin-coated steel pipe thus obtained was performed as follows.

外観の評価
ポリオレフィン樹脂を被覆し、冷却した後の被覆樹脂表面外観を目視で確認し、凹凸の有無をしらべた。凹凸(微細なものも含む。)があるものは×、ないものは○として評価した。また、冷却が間に合わず、ロールによる圧痕による凹凸が発生したものについても×とした。
Appearance Evaluation After coating with a polyolefin resin and cooling, the appearance of the surface of the coating resin was visually confirmed to check for irregularities. Evaluation was made as x when there was unevenness (including fine ones) and ○ when there was no unevenness. Moreover, it was set as x also about what the unevenness | corrugation by the indentation by a roll generate | occur | produced in time for cooling.

上記の実験条件及び結果をまとめて表1に示す。   The above experimental conditions and results are summarized in Table 1.

Figure 0004557158
Figure 0004557158

本発明の製造方法で得られたポリオレフィン樹脂被覆鋼管は、ガス管、水道管、ラインパイプ、鋼管杭など防食鋼管に使用される。   The polyolefin resin-coated steel pipe obtained by the production method of the present invention is used for anticorrosion steel pipes such as gas pipes, water pipes, line pipes and steel pipe piles.

本発明の方法でポリオレフィン樹脂被覆鋼管を製造している例を示す側面図である。It is a side view which shows the example which manufactures the polyolefin resin coating steel pipe by the method of this invention.

Claims (1)

回転している鋼管表面に、溶融状態にあるシート状ポリオレフィン樹脂を螺旋状に巻き付けながら被覆してなるポリオレフィン樹脂被覆鋼管の製造方法において、該樹脂被覆後の冷却工程で、樹脂表面をラミナー水冷し該樹脂表面全体を連続した水膜で覆って該樹脂の融点未満の温度まで冷却し、さらに前記ラミナー水冷後も、樹脂表面温度を融点以上に上昇させることなく冷却を継続するとともに、前記ラミナー水冷が円筒ノズルを配置し、かつ前記円筒ノズルから気泡を含まないように層流の水流を吐出して行うことを特徴とする、表面外観に優れたポリオレフィン樹脂被覆鋼管の製造方法 In a method for producing a polyolefin resin-coated steel pipe, which is obtained by coating a rotating steel pipe surface while spirally winding a sheet-like polyolefin resin in a molten state, the resin surface is laminar water-cooled in a cooling step after the resin coating. The entire resin surface is covered with a continuous water film and cooled to a temperature lower than the melting point of the resin, and after the laminar water cooling, cooling is continued without increasing the resin surface temperature above the melting point , and the laminar water cooling is performed. A method for producing a polyolefin resin-coated steel pipe excellent in surface appearance, characterized in that a cylindrical nozzle is disposed and a laminar water flow is discharged from the cylindrical nozzle so as not to contain bubbles.
JP2005064051A 2005-03-08 2005-03-08 Manufacturing method of polyolefin resin-coated steel pipe with excellent surface appearance Active JP4557158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005064051A JP4557158B2 (en) 2005-03-08 2005-03-08 Manufacturing method of polyolefin resin-coated steel pipe with excellent surface appearance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005064051A JP4557158B2 (en) 2005-03-08 2005-03-08 Manufacturing method of polyolefin resin-coated steel pipe with excellent surface appearance

Publications (2)

Publication Number Publication Date
JP2006247887A JP2006247887A (en) 2006-09-21
JP4557158B2 true JP4557158B2 (en) 2010-10-06

Family

ID=37088881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005064051A Active JP4557158B2 (en) 2005-03-08 2005-03-08 Manufacturing method of polyolefin resin-coated steel pipe with excellent surface appearance

Country Status (1)

Country Link
JP (1) JP4557158B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115715236B (en) * 2020-07-07 2024-04-30 第一高周波工业株式会社 Method for manufacturing three-layer coated metal tube

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50108587A (en) * 1974-02-04 1975-08-27
JPS61206428U (en) * 1985-06-18 1986-12-26
JPH03197020A (en) * 1989-12-26 1991-08-28 Mitsubishi Materials Corp Device for cooling resin-coated pipe
JPH0911306A (en) * 1995-06-29 1997-01-14 Sumitomo Metal Ind Ltd Manufacture of plastic-coated steel pipe
JPH11291398A (en) * 1998-04-09 1999-10-26 Nippon Steel Corp Manufacture of polyolefin-coated steel pipe and manufacturing device
JP2004160532A (en) * 2002-11-15 2004-06-10 Nippon Steel Corp Hot-rolled steel strip cooling control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50108587A (en) * 1974-02-04 1975-08-27
JPS61206428U (en) * 1985-06-18 1986-12-26
JPH03197020A (en) * 1989-12-26 1991-08-28 Mitsubishi Materials Corp Device for cooling resin-coated pipe
JPH0911306A (en) * 1995-06-29 1997-01-14 Sumitomo Metal Ind Ltd Manufacture of plastic-coated steel pipe
JPH11291398A (en) * 1998-04-09 1999-10-26 Nippon Steel Corp Manufacture of polyolefin-coated steel pipe and manufacturing device
JP2004160532A (en) * 2002-11-15 2004-06-10 Nippon Steel Corp Hot-rolled steel strip cooling control method

Also Published As

Publication number Publication date
JP2006247887A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
EP0445556B1 (en) Process for coating a metal strip with plastic powder
JP4557158B2 (en) Manufacturing method of polyolefin resin-coated steel pipe with excellent surface appearance
JP4300988B2 (en) Manufacturing method of polyolefin resin-coated steel pipe with excellent surface appearance
KR20220160866A (en) Manufacturing method of steel pipe with high corrosion resistance
KR100312859B1 (en) Method and apparatus for polyethylene sheet coating steel by high-frequency induction heating
JP3165265B2 (en) Manufacturing method of aluminum flat tube for heat exchanger
JP5848617B2 (en) Amorphous plate and manufacturing method thereof
JP2003275814A (en) Method for manufacturing galvanized welded h-shaped steel
JP5905265B2 (en) High production efficiency amorphous sheet manufacturing method and manufacturing equipment
US20090098296A1 (en) Method for manufacturing coated pipes
JPS62140816A (en) Manufacture of theremoplastic resin pipe and device therefor
JP3667840B2 (en) Manufacturing method of heat exchange pipe
JPH11291398A (en) Manufacture of polyolefin-coated steel pipe and manufacturing device
JP2005088299A (en) Method for producing polyolefin resin-coated steel pipe excellent in surface appearance
JP5983450B2 (en) Molten metal coating equipment
JPH0911306A (en) Manufacture of plastic-coated steel pipe
JP2606051B2 (en) Manufacturing method of polyethylene coated steel pipe
KR20180120411A (en) Cladding pipe and method for manufacturing the same
JP3215526B2 (en) Manufacturing method of aluminum flat tube for heat exchanger
JP2006274365A (en) Apparatus for cooling steel strip
CN113976626A (en) Oil control method for aluminum foil rolling process
KR100484228B1 (en) Method and apparatus for polyethylene sheet coating of steel surface
KR20180037863A (en) sheet-clad steel and steel tube utiling the same and apparatus for manufacturing thereof
JP3071606B2 (en) Manufacturing method of laminated metal sheet
JPH01312060A (en) Wiping nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4557158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250