JP4556659B2 - Reduction-resistant dielectric ceramic composition and use thereof - Google Patents

Reduction-resistant dielectric ceramic composition and use thereof Download PDF

Info

Publication number
JP4556659B2
JP4556659B2 JP2004365588A JP2004365588A JP4556659B2 JP 4556659 B2 JP4556659 B2 JP 4556659B2 JP 2004365588 A JP2004365588 A JP 2004365588A JP 2004365588 A JP2004365588 A JP 2004365588A JP 4556659 B2 JP4556659 B2 JP 4556659B2
Authority
JP
Japan
Prior art keywords
weight
dielectric
subcomponent
reduction
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004365588A
Other languages
Japanese (ja)
Other versions
JP2006169061A (en
Inventor
愛 渡辺
順 戸島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2004365588A priority Critical patent/JP4556659B2/en
Publication of JP2006169061A publication Critical patent/JP2006169061A/en
Application granted granted Critical
Publication of JP4556659B2 publication Critical patent/JP4556659B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、耐還元性誘電体磁器組成物および該誘電体磁器組成物を用いて得られる誘電体層を有する積層セラミックコンデンサに関する。   The present invention relates to a reduction-resistant dielectric ceramic composition and a multilayer ceramic capacitor having a dielectric layer obtained by using the dielectric ceramic composition.

積層セラミックコンデンサは、プロセッサ、特に高出力マイクロプロセッサの電源の減結合用および緩衝用として用いられる。高出力モードで動作する間、これらの能動電子部品は多量の熱を発生し、たとえ集中的に冷却しても、永続的な動作における高出力プロセッサの温度は70〜80℃にもなる。一方、これらの積層セラミックコンデンサは、例えば寒冷地の冬季には−20℃程度以下まで周囲の環境温度が下がることもある。このように、積層セラミックコンデンサは、広い温度範囲で使用されうるため、温度特性が平坦であることが要求される。   Multilayer ceramic capacitors are used for power supply decoupling and buffering in processors, particularly high power microprocessors. While operating in high power mode, these active electronic components generate a large amount of heat, and even with intensive cooling, the temperature of the high power processor in permanent operation can be as high as 70-80 ° C. On the other hand, in these multilayer ceramic capacitors, for example, the ambient environmental temperature may drop to about −20 ° C. or lower in winter in cold regions. Thus, since the multilayer ceramic capacitor can be used in a wide temperature range, the temperature characteristics are required to be flat.

さらに、近年では、積層セラミックコンデンサの内部電極に、Pd、Au、Ag等の高価な貴金属の他、Ni等の卑金属も用いることができるよう、誘電体磁気組成物は、還元性雰囲気中で焼成可能であることが要求される。   Furthermore, in recent years, dielectric magnetic compositions have been fired in a reducing atmosphere so that not only expensive precious metals such as Pd, Au, and Ag but also base metals such as Ni can be used for internal electrodes of multilayer ceramic capacitors. It is required to be possible.

これらを受けて、種々の誘電体磁器組成物が開発されている(特許文献1〜3参照)。特許文献1では、主成分であるBaTiOと、MgO、CaO、BaO、SrOおよびCrから選択される少なくとも1種を含む第1副成分と、(Ba,Ca)SiO2+x (ただし、x=0.8〜1.2)で表される第2副成分と、V、MoOおよびWOから選択される少なくとも1種を含む第3副成分と、R1の酸化物(ただし、R1はSc、Er、Tm、YbおよびLuから選択される少なくとも1種)を含む第4副成分と少なくとも有する誘電体磁器組成物であって、主成分であるBaTiO100モルに対する各副成分の比率が、第1副成分:0.1〜3モル、第2副成分:2〜10モル、第3副成分:0.01〜0.5モル、第4副成分:0.5〜7モル(ただし、第4副成分のモル数は、R1単独での比率である)である誘電体磁器組成物が提案されている。 In response to these, various dielectric ceramic compositions have been developed (see Patent Documents 1 to 3). In Patent Document 1, BaTiO 3 as a main component, a first subcomponent including at least one selected from MgO, CaO, BaO, SrO, and Cr 2 O 3 , and (Ba, Ca) x SiO 2 + x (however, , X = 0.8 to 1.2), a third subcomponent containing at least one selected from V 2 O 5 , MoO 3 and WO 3, and an oxide of R1 (Where R1 is at least one selected from Sc, Er, Tm, Yb, and Lu) and a dielectric ceramic composition having at least a fourth subcomponent and each of 100 moles of BaTiO 3 as a main component. The ratio of the subcomponents is as follows: first subcomponent: 0.1-3 mol, second subcomponent: 2-10 mol, third subcomponent: 0.01-0.5 mol, fourth subcomponent: 0.5 -7 mol (however, the number of moles of the fourth subcomponent is R Dielectric porcelain compositions are proposed, which is the ratio of 1 alone.

特許文献2では、チタン酸バリウムを含む主成分と、MgO、CaO、BaO、SrOおよびCrから選択される少なくとも1種を含む第1副成分と、酸化シリコンを主成分として含有する第2副成分と、V、MoOおよびWOから選択される少なくとも1種を含む第3副成分と、R1の酸化物(ただし、R1はSc、Er、Tm、YbおよびLuから選択される少なくとも1種)を含む第4副成分と、CaZrOまたはCaO+ZrOを含む第5副成分とを少なくとも有する誘電体磁器組成物であって、チタン酸バリウムを含む主成分100モルに対する各副成分の比率が、第1副成分:0.1〜3モル、第2副成分:2〜10モル、第3副成分:0.01〜0.5モル、第4副成分:0.5〜7モル(ただし、第4副成分のモル数は、R1単独での比率である)、第5副成分:0<第5副成分≦5モルである誘電体磁器組成物が提案されている。 In Patent Document 2, a main component containing barium titanate, a first subcomponent containing at least one selected from MgO, CaO, BaO, SrO and Cr 2 O 3 , and silicon oxide as a main component are contained. and subcomponent, a third subcomponent including at least one kind selected from V 2 O 5, MoO 3 and WO 3, an oxide of R1 (where selection R1 is Sc, Er, Tm, Yb and Lu A dielectric ceramic composition having at least one fourth subcomponent including CaZrO 3 or CaO + ZrO 2 , and each subcomponent with respect to 100 moles of the main component including barium titanate. The ratio of the components is as follows: first subcomponent: 0.1-3 mol, second subcomponent: 2-10 mol, third subcomponent: 0.01-0.5 mol, fourth subcomponent: 0.5- 7 moles (just The number of moles of the fourth subcomponent is a ratio of R1 alone), fifth subcomponent: 0 <the dielectric ceramic composition is the fifth subcomponent ≦ 5 mol are proposed.

特許文献3では、チタン酸バリウムを含む主成分と、AEの酸化物(ただし、AEはMg、Ca、BaおよびSrから選択される少なくとも1種)を含む第1副成分と、Rの酸化物(ただし、RはY、Dy、HoおよびErから選択される少なくとも1種)を含む第2副成分とを有し、前記主成分100モルに対する各副成分の比率が、第1副成分:0モル<第1副成分<0.1モル、第2副成分:1モル<第2副成分<7モルである誘電体磁器組成物が提案されている。   In Patent Document 3, a main component including barium titanate, a first subcomponent including an AE oxide (where AE is at least one selected from Mg, Ca, Ba, and Sr), and an R oxide (Wherein R is at least one selected from Y, Dy, Ho and Er), and the ratio of each subcomponent to 100 moles of the main component is the first subcomponent: 0 Dielectric porcelain compositions in which mol <first subcomponent <0.1 mol and second subcomponent: 1 mol <second subcomponent <7 mol have been proposed.

しかし、これらの誘電体磁器組成物は、誘電率が低く、特に誘電特性の点で更なる改善が要求されていた。
特開2000−154057号公報 特開2001−192264号公報 特開2002−255639号公報
However, these dielectric ceramic compositions have a low dielectric constant, and further improvements have been required particularly in terms of dielectric properties.
JP 2000-154057 A JP 2001-192264 A JP 2002-255639 A

本発明の目的は、焼成時の耐還元性に優れ、焼成後に優れた容量温度特性及び誘電特性を有するとともに、絶縁抵抗の寿命が高められた、耐還元性誘電体磁器組成物を提供することである。また、本発明の目的は、該誘電体磁器組成物を用いて製造された、信頼性が高められた積層セラミックコンデンサを提供することである。   An object of the present invention is to provide a reduction-resistant dielectric ceramic composition that has excellent reduction resistance during firing, has excellent capacity-temperature characteristics and dielectric characteristics after firing, and has an increased insulation resistance life. It is. Another object of the present invention is to provide a multilayer ceramic capacitor with high reliability, manufactured using the dielectric ceramic composition.

本発明は、(BaO)m・TiO2(ここで、mは、0.990〜0.994である)100重量%に対して、Y23を0.6〜1.2重量%、MgOを0.6〜1.5重量%、BaSiO3を0.6〜2.0重量%、WO3を0.02〜0.2重量%、MnCO3を0.1〜0.4重量%、およびMoO3を0.02〜0.2重量%で含む、耐還元性誘電体磁器組成物に関する。また、本発明は、上記の耐還元性誘電体磁器組成物を用いて得られる誘電体層を有する積層セラミックコンデンサに関する。 The present invention relates to (BaO) m · TiO 2 (where m is 0.990 to 0.994) 100% by weight, Y 2 O 3 is 0.6 to 1.2% by weight, MgO and 0.6 to 1.5 wt%, the BaSiO 3 0.6 to 2.0% by weight, WO 3 and 0.02 to 0.2 wt%, MnCO 3 and 0.1 to 0.4 wt% And a reduction-resistant dielectric ceramic composition containing MoO 3 at 0.02 to 0.2% by weight. The present invention also relates to a multilayer ceramic capacitor having a dielectric layer obtained by using the above reduction-resistant dielectric ceramic composition.

本発明によれば、焼成時の耐還元性に優れ、焼成後に優れた容量温度特性及び誘電特性を有するとともに、絶縁抵抗の寿命が高められた、耐還元性誘電体磁器組成物が提供される。   According to the present invention, there is provided a reduction-resistant dielectric ceramic composition which has excellent reduction resistance during firing, has excellent capacity-temperature characteristics and dielectric characteristics after firing, and has an increased insulation resistance life. .

例えば、本発明の耐還元性誘電体磁器組成物を、酸素分圧P(O2)が、例えば10−9〜10−12MPaの低酸素分圧下において、例えば1200℃以下で焼成しても、誘電率が3500以上と高く、誘電体損失tanδは6%以下で、25℃での静電容量を基準とした−55℃〜+85℃での静電容量変化率が±15%以下とEIA規格のX5R特性を満足する良好な容量温度特性を有し、常温における容量・絶縁抵抗積(C・R積)が1000以上で、かつ高温負荷加速寿命試験10時間後においても著しい劣化を生じなく、かつ直流破壊電圧が150V/μm以上と高い、耐還元性誘電体磁器組成物が得られる。本発明の耐還元性誘電体磁器組成物を用いて製造された積層セラミックコンデンサには、従来の貴金属より安価な卑金属を使用することができ、たとえば積層セラミックコンデンサの大幅なコストの低減が期待できる。 For example, a reduction resistant dielectric ceramic composition of the present invention, the oxygen partial pressure P (O 2) is, for example, in low oxygen partial pressure of 10 -9 to 10 -12 MPa, for example, even by firing at 1200 ° C. or less The dielectric constant is as high as 3500 or more, the dielectric loss tan δ is 6% or less, and the capacitance change rate at −55 ° C. to + 85 ° C. is ± 15% or less with reference to the capacitance at 25 ° C. EIA It has good capacity-temperature characteristics that satisfy the standard X5R characteristics, has a capacity / insulation resistance product (C / R product) of 1000 or more at normal temperature, and does not cause significant deterioration even after 10 hours of high-temperature load accelerated life test In addition, a reduction-resistant dielectric ceramic composition having a high DC breakdown voltage of 150 V / μm or higher can be obtained. A multilayer ceramic capacitor manufactured using the reduction-resistant dielectric ceramic composition of the present invention can use a base metal that is less expensive than a conventional noble metal, and can be expected to significantly reduce the cost of the multilayer ceramic capacitor, for example. .

本発明の耐還元性誘電体磁器組成物は、(BaO)m・TiO2(ここで、mは、0.990〜0.994を表す)を含む。mがこの範囲にあると、焼成後において、温度による容量変化が抑制され、かつ寿命も長い。mは、0.990〜0.994であることが好ましく、より好ましくは、0.992〜0.994である。 The reduction-resistant dielectric ceramic composition of the present invention contains (BaO) m · TiO 2 (where m represents 0.990 to 0.994). When m is within this range, the capacity change due to temperature is suppressed after firing, and the lifetime is also long. m is preferably 0.990 to 0.994, and more preferably 0.999 to 0.994.

(BaO)m・TiO2(ここで、mは、0.990〜0.994を表す)の製造方法は、特に限定されない。例えば、BaCO3のモル数:TiO2のモル数がm:1となるように秤量し、湿式混合して粉砕した後、乾燥させて、次いで1000〜1300℃の温度で、1〜3時間、か焼することにより製造することができる。BaCO3に代えて、BaC24を使用することも可能である。 The production method of (BaO) m · TiO 2 (where m represents 0.990 to 0.994) is not particularly limited. For example, the number of moles of BaCO 3 : the number of moles of TiO 2 is weighed to m: 1, wet-mixed and pulverized, then dried, and then at a temperature of 1000 to 1300 ° C. for 1 to 3 hours. It can be produced by calcination. It is also possible to use BaC 2 O 4 instead of BaCO 3 .

本発明の組成物は、(BaO)m・TiO2(ここで、mは、上記と同義である)100重量%に対して、Y23を0.6〜1.2重量%、好ましくは、0.6〜0.9重量%で含む。Y23がこの範囲にあると、焼成後において、温度による容量変化が抑制され、誘電率が十分高く、かつ寿命も長い。 The composition of the present invention comprises 0.6 to 1.2% by weight of Y 2 O 3 with respect to 100% by weight of (BaO) m · TiO 2 (where m is as defined above), preferably Is contained in an amount of 0.6 to 0.9% by weight. When Y 2 O 3 is within this range, the capacity change due to temperature is suppressed after firing, the dielectric constant is sufficiently high, and the lifetime is long.

本発明の組成物は、(BaO)m・TiO2(ここで、mは、上記と同義である)100重量%に対して、MgOを0.6〜1.5重量%、好ましくは、0.6〜1.2重量%で含む。MgOがこの範囲にあると、焼成後において、温度による容量変化が抑制され、絶縁破壊電圧が十分高い上に、誘電率も十分高く、かつ寿命も長い。 The composition of the present invention comprises MgO in an amount of 0.6 to 1.5% by weight, preferably 0 with respect to 100% by weight of (BaO) m · TiO 2 (where m is as defined above). It is contained in an amount of 6 to 1.2% by weight. When MgO is in this range, the capacity change due to temperature is suppressed after firing, the dielectric breakdown voltage is sufficiently high, the dielectric constant is sufficiently high, and the lifetime is long.

本発明の組成物は、(BaO)m・TiO2(ここで、mは、上記と同義である)100重量%に対して、BaSiO3を0.6〜2.0重量%、好ましくは、0.8〜1.5重量%で含む。BaSiO3がこの範囲にあると、焼成後において、温度による容量変化が抑制され、誘電率が十分高く、かつ寿命も長い。 The composition of the present invention is composed of 0.6 to 2.0% by weight of BaSiO 3 with respect to 100% by weight of (BaO) m · TiO 2 (where m is as defined above), It is contained at 0.8 to 1.5% by weight. When BaSiO 3 is in this range, the capacitance change due to temperature is suppressed after firing, the dielectric constant is sufficiently high, and the lifetime is long.

本発明の組成物は、(BaO)m・TiO2(ここで、mは、上記と同義である)100重量%に対して、WO3を0.02〜0.2重量%、好ましくは、0.02〜0.1重量%で含む。WO3がこの範囲にあると、焼成後において、C・R積が大きく、絶縁破壊電圧も十分高く、かつ寿命も長い。 The composition of the present invention comprises (BaO) m · TiO 2 (wherein m is as defined above) 100 wt%, WO 3 is 0.02 to 0.2 wt%, preferably It is contained at 0.02 to 0.1% by weight. When WO 3 is in this range, after firing, the C · R product is large, the dielectric breakdown voltage is sufficiently high, and the life is long.

本発明の組成物は、(BaO)m・TiO2(ここで、mは、上記と同義である)100重量%に対して、MnCO3を0.1〜0.4重量%、好ましくは、0.2〜0.4重量%で含む。MnCO3がこの範囲にあると、焼成後において、温度による容量変化が抑制され、C・R積が大きく、誘電率も十分高く、かつ寿命も長い。 The composition of the present invention comprises 0.1 to 0.4% by weight of MnCO 3 with respect to 100% by weight of (BaO) m · TiO 2 (where m is as defined above), preferably It is contained at 0.2 to 0.4% by weight. When MnCO 3 is in this range, the capacity change due to temperature is suppressed after firing, the C · R product is large, the dielectric constant is sufficiently high, and the lifetime is long.

本発明の組成物は、(BaO)m・TiO2(ここで、mは、上記と同義である)100重量%に対して、MoO3を0.02〜0.2重量%、好ましくは、0.05〜0.15重量%で含む。MoO3がこの範囲にあると、焼成後において、温度による容量変化が抑制され、C・R積が大きく、絶縁破壊電圧も十分高く、かつ寿命も長い。 The composition of the present invention comprises (BaO) m · TiO 2 (wherein m is as defined above) 100 wt%, MoO 3 is 0.02 to 0.2 wt%, preferably, Contains from 0.05 to 0.15% by weight. When MoO 3 is in this range, the capacity change due to temperature is suppressed after firing, the C · R product is large, the dielectric breakdown voltage is sufficiently high, and the lifetime is long.

本発明の組成物を用いて、積層セラミックコンデンサの誘電体層を形成することができる。   A dielectric layer of a multilayer ceramic capacitor can be formed using the composition of the present invention.

積層セラミックコンデンサの製造方法は、特に限定されず、例えば、以下により製造することができる。   The manufacturing method of a multilayer ceramic capacitor is not specifically limited, For example, it can manufacture by the following.

基材に、(1)本発明の組成物を印刷または塗布する。本発明の組成物は、場合により、慣用の成分、例えばエタノール、トルエン、プロパノール、ポリビニルアルコール、水等の溶媒、ポリビニルブチラール、エチルセルロース等のバインダ、フタル酸ベンジル部シル等の可塑剤と混合して用いてもよい。印刷または塗布は、通常、焼成後の誘電体層の厚さが2.5〜3.5μmになるようにすることが好ましい。印刷または塗布の方法は、特に限定されず、スクリーン印刷、転写、ドクターブレード等により行うことができる。   (1) The composition of the present invention is printed or applied to a substrate. The composition of the present invention is optionally mixed with a conventional component, for example, a solvent such as ethanol, toluene, propanol, polyvinyl alcohol, water, a binder such as polyvinyl butyral or ethyl cellulose, and a plasticizer such as benzyl phthalate sylphthalate. It may be used. In general, printing or coating is preferably performed so that the thickness of the dielectric layer after firing is 2.5 to 3.5 μm. The printing or coating method is not particularly limited, and can be performed by screen printing, transfer, doctor blade, or the like.

(2)次いで、工程(1)で印刷または塗布された層を乾燥させる。乾燥は、通常、 80〜100℃で、5〜10分間加熱することによって実施される。   (2) Next, the layer printed or applied in step (1) is dried. Drying is usually carried out by heating at 80 to 100 ° C. for 5 to 10 minutes.

(3)形成された層に、内部電極用ペーストを印刷または塗布する。内部電極ペーストは、ニッケル等の卑金属のペーストを好適に用いることができる。印刷または塗布の方法は、特に限定されない。印刷する厚さは、通常、焼成後の内部電極の厚さが0.8〜1.2μmになるような厚さである。   (3) An internal electrode paste is printed or applied to the formed layer. As the internal electrode paste, a paste of a base metal such as nickel can be suitably used. The method for printing or coating is not particularly limited. The thickness to be printed is usually such that the thickness of the internal electrode after firing is 0.8 to 1.2 μm.

(4)次いで、工程(3)で印刷された層を乾燥して、内部電極ペースト層を形成する。乾燥は、通常、80〜100℃で5〜10分間加熱することによって実施される。   (4) Next, the layer printed in the step (3) is dried to form an internal electrode paste layer. Drying is usually carried out by heating at 80 to 100 ° C. for 5 to 10 minutes.

(5)次いで、上記の工程(1)〜(4)を、所望の積層回数が得られるまで反復する。   (5) Next, the above steps (1) to (4) are repeated until a desired number of laminations is obtained.

(6)このようにして得られた未焼成の積層体を、基材から外し、切断して積層ブロックを作製した後、焼成を行う。焼成は、酸素分圧P(O2)が、例えば10−9〜10−12MPaの低酸素分圧下において、1100〜1300℃、好ましくは1180〜1200℃で焼成し、その後、必要に応じて、N2−H2O雰囲気中900〜1100℃で再酸化処理を行うことができる。 (6) The unfired laminate obtained in this way is removed from the substrate, cut to produce a laminate block, and then fired. Firing, the oxygen partial pressure P (O 2) is, for example, in low oxygen partial pressure of 10 -9 ~10 -12 MPa, 1100~1300 ℃ , preferably calcined at 1180-1200 ° C., then, if necessary The reoxidation treatment can be performed at 900 to 1100 ° C. in an N 2 —H 2 O atmosphere.

(7)焼成後の積層セラミックコンデンサに外部電極用の導電ペーストを塗布し、その後に別途、焼成を行うことにより、一対の外部電極を形成して、チップとすることができる。   (7) A pair of external electrodes can be formed into a chip by applying a conductive paste for external electrodes to the fired multilayer ceramic capacitor and then separately firing it.

以下、本発明を実施例および比較例によって説明する。本発明は、これらの実施例によって限定されるものではない。実施例および比較例において、部は重量部、組成の%は重量%で示す。   Hereinafter, the present invention will be described with reference to examples and comparative examples. The present invention is not limited by these examples. In Examples and Comparative Examples, parts are parts by weight, and% of the composition is% by weight.

表1に示した各試料の組成となるように各成分を配合した。なお、(BaO)m・TiO2 およびBaSiO3は以下のようにして調製した。
(BaO)m・TiO2の調製
BaC24のモル数:TiO2のモル数が、表中のmの値:1となるよう秤量し、これをボールミルで6時間湿式混合、粉砕した後乾燥させ、1100℃で2時間空気中でか焼した。さらに擂潰攪拌機等で粗粉砕したあと再度ボールミルで20時間湿式粉砕し、乾燥させて(BaO)m・TiO2を得た。
BaSiO3の調製
BaCO3とSiO2が等モルになるよう秤量し、これをボールミルで6時間湿式混合、粉砕した後乾燥させ、840℃で2時間空気中でか焼した。さらに擂潰攪拌機等で粗粉砕したあと再度ボールミルで20時間湿式粉砕し、乾燥させてBaSiO3を得た。
Each component was blended so as to have the composition of each sample shown in Table 1. (BaO) m · TiO 2 and BaSiO 3 were prepared as follows.
(BaO) m · TiO 2 preparation The number of moles of BaC 2 O 4 : Weighed so that the number of moles of TiO 2 would be the value of m in the table: 1 and wet-mixed and pulverized with a ball mill for 6 hours. Dried and calcined in air at 1100 ° C. for 2 hours. Further, after coarsely pulverizing with a pulverizing stirrer or the like, the powder was again wet-ground with a ball mill for 20 hours and dried to obtain (BaO) m · TiO 2 .
Preparation of BaSiO 3 BaCO 3 and SiO 2 were weighed so as to have an equimolar amount, wet-mixed by a ball mill for 6 hours, pulverized, dried, and calcined in air at 840 ° C. for 2 hours. Furthermore, after coarsely pulverizing with a pulverizing stirrer or the like, it was wet pulverized again with a ball mill for 20 hours and dried to obtain BaSiO 3 .

次いで、これらをボールミルで、エタノール、トルエンを加えて湿式混合粉砕した。含まれる粒子の平均粒径は0.3μmである。その後ポリビニルブチラール系バインダとフタル酸ベンジルブチルをさらに投入し、混合してペーストを調整した。このペーストをドクターブレード法でシート成形し、厚さ2.3μmのグリーンシートを得た。そしてこのグリーンシート上にニッケル電極ペーストをスクリーン印刷し、乾燥後互いに対向電極になるように積層し、熱圧着により一体化した。なお、ニッケル電極ペーストは、平均粒径0.2μmのニッケル粒子100重量部と、有機ビヒクル(エチルセルロース8重量部をターピネオール92重量部に溶解したもの)40重量部と、ターピネオール10重量部とを3本ロールにより混練してペースト化したものである。   Then, these were wet mixed and pulverized by adding ethanol and toluene with a ball mill. The average particle size of the contained particles is 0.3 μm. Thereafter, a polyvinyl butyral binder and benzylbutyl phthalate were further added and mixed to prepare a paste. This paste was formed into a sheet by a doctor blade method to obtain a green sheet having a thickness of 2.3 μm. Then, a nickel electrode paste was screen-printed on the green sheet, dried and laminated so as to be opposed to each other, and integrated by thermocompression bonding. The nickel electrode paste comprises 3 parts of 100 parts by weight of nickel particles having an average particle size of 0.2 μm, 40 parts by weight of an organic vehicle (8 parts by weight of ethyl cellulose dissolved in 92 parts by weight of terpineol), and 10 parts by weight of terpineol. It is kneaded with this roll and made into a paste.

熱圧着により一体化した積層体から個々のコンデンサ用積層ブロックをブレードで切り出した。このようにして得られた積層ブロックを、H2:N2が体積比で1:99の雰囲気中で500℃まで加熱しバインダを燃焼させた後、酸素分圧10−9〜10−12MPaのH2-N2-H2Oからなる還元性雰囲気中において表2に示す温度で2時間焼成し、その後N2−H2O雰囲気中1000℃で再酸化処理を行い、積層セラミックコンデンサとした。 Individual laminated blocks for capacitors were cut out from the laminated body integrated by thermocompression bonding with a blade. The laminated block thus obtained was heated to 500 ° C. in an atmosphere having a volume ratio of H 2 : N 2 of 1:99 to burn the binder, and then an oxygen partial pressure of 10 −9 to 10 −12 MPa. Fired at a temperature shown in Table 2 for 2 hours in a reducing atmosphere composed of H 2 —N 2 —H 2 O and then re-oxidized at 1000 ° C. in an N 2 —H 2 O atmosphere to obtain a multilayer ceramic capacitor did.

得られた積層セラミックコンデンサの表面に銅電極ペーストを塗布し、中性雰囲気中900℃で焼付けし、外部電極を形成し、積層セラミックコンデンサとした。この実施例で作成したチップ積層セラミックコンデンサの寸法は、それぞれ以下のとおりである。
外観寸法:幅=1.4mm、長さ=2.1mm、厚み=0.4mm
誘電体厚み:t=1.7μm
有効積層数:N=29
A copper electrode paste was applied to the surface of the obtained multilayer ceramic capacitor and baked at 900 ° C. in a neutral atmosphere to form an external electrode to obtain a multilayer ceramic capacitor. The dimensions of the chip multilayer ceramic capacitor prepared in this example are as follows.
Appearance dimensions: Width = 1.4mm, Length = 2.1mm, Thickness = 0.4mm
Dielectric thickness: t = 1.7 μm
Effective number of layers: N = 29

実施例の各試料について各種特性を測定した。測定方法は以下のとおりである。
静電容量(C)、誘電正接(tanδ):自動ブリッジで1KHz、1Vrmsで測定した。
絶縁抵抗(R):高絶縁抵抗により6.3Vを1分間印加した後の値を測定した。
C・R積:上記CとRの積を求めた。
容量温度変化率:25℃での静電容量を基準とし、−55℃と85℃での変化率で最大である値を示した。尚、全ての試料は85℃での変化率が最大であったので、85℃での変化率を示した。
高温負荷加速寿命試験(HALT):各試料を10個づつ105℃の恒温槽に入れて直流電圧25Vを印加し、直流電界下で絶縁抵抗を測定した。絶縁抵抗が1×10Ω以下になるまでの時間を寿命時間とした。
絶縁破壊電圧(VB):10V/秒の昇圧スピードで直流電圧を印加し、5mAの漏洩電流が観察されたときの電圧を測定することにより求めた。
Various characteristics were measured for each sample of the example. The measurement method is as follows.
Capacitance (C), dielectric loss tangent (tan δ): measured with an automatic bridge at 1 kHz and 1 Vrms.
Insulation resistance (R): The value after applying 6.3 V for 1 minute with a high insulation resistance was measured.
C · R product: The product of C and R was determined.
Capacitance temperature change rate: Based on the capacitance at 25 ° C., the maximum change rate at −55 ° C. and 85 ° C. was shown. In addition, since the change rate in 85 degreeC was the maximum for all the samples, the change rate in 85 degreeC was shown.
High temperature load accelerated life test (HALT): Ten samples were placed in a 105 ° C. constant temperature bath, a DC voltage of 25 V was applied, and the insulation resistance was measured under a DC electric field. The time until the insulation resistance became 1 × 10 6 Ω or less was defined as the lifetime.
Dielectric breakdown voltage (VB): It was obtained by applying a DC voltage at a boosting speed of 10 V / sec and measuring the voltage when a leakage current of 5 mA was observed.

表1に、測定結果を示す。*は、比較例である。   Table 1 shows the measurement results. * Is a comparative example.

Figure 0004556659
Figure 0004556659

Figure 0004556659
Figure 0004556659

mがそれぞれ1.004および0.996の例1、2では、容量温度変化率が−15%より大きく、かつ寿命時間が短い。mが0.985の例6では、寿命時間が短い。   In Examples 1 and 2 where m is 1.004 and 0.996, respectively, the capacity-temperature change rate is greater than −15% and the lifetime is short. In Example 6 where m is 0.985, the lifetime is short.

の配合量が、0.5重量%の例7では、容量温度変化率が−15%より大きく、1.4重量%の例12では、誘電率が小さく、かつ寿命時間が短い。 In Example 7 where the blending amount of Y 2 O 3 is 0.5% by weight, the rate of change in capacity temperature is larger than −15%, and in Example 12 where 1.4% by weight, the dielectric constant is small and the lifetime is short. .

MgOの配合量が、0.4重量%の例13では、容量温度変化率が−15%より大きく、絶縁破壊電圧が150V/μm以下と低く、かつ寿命時間が短い。1.7重量%の例18では、誘電率が3500以下と小さい。   In Example 13 where the blending amount of MgO is 0.4% by weight, the capacity-temperature change rate is greater than −15%, the dielectric breakdown voltage is as low as 150 V / μm or less, and the lifetime is short. In Example 18 of 1.7% by weight, the dielectric constant is as small as 3500 or less.

BaSiOの配合量が、0.4重量%の例19では、容量温度変化率が−15%より大きく、かつ寿命時間が短い。2.5重量%の例24では、誘電率が3500以下と小さい。 In Example 19 where the blending amount of BaSiO 3 is 0.4% by weight, the capacity-temperature change rate is greater than −15% and the lifetime is short. In Example 24 of 2.5% by weight, the dielectric constant is as small as 3500 or less.

WO3の配合量が、0重量%の例25では、C・R積が1000以下となり、絶縁破壊電圧が150V/μm以下と低く、かつ寿命時間が短い。0.3重量%の例30では、C・R積が1000以下となり、絶縁破壊電圧が150V/μm以下と低く、かつ寿命時間が短い。 In Example 25 in which the blending amount of WO 3 is 0% by weight, the C · R product is 1000 or less, the dielectric breakdown voltage is as low as 150 V / μm or less, and the lifetime is short. In Example 30 of 0.3 wt%, the C · R product is 1000 or less, the dielectric breakdown voltage is as low as 150 V / μm or less, and the lifetime is short.

MnCO3の配合量が、0.05重量%の例31では、容量温度変化率が−15%より大きくなり、C・R積が1000以下となり、かつ寿命時間が短い。0.6重量%の例35では、誘電率が3500以下と小さい。 In Example 31, where the blending amount of MnCO 3 is 0.05% by weight, the rate of change in capacity temperature is greater than −15%, the C · R product is 1000 or less, and the lifetime is short. In Example 35 of 0.6% by weight, the dielectric constant is as small as 3500 or less.

MoO3の配合量が、0重量%の例36では、絶縁破壊電圧が150V/μm以下と低く、かつ寿命時間が短い。0.3重量%の例40では、容量温度変化率が−15%より大きくなり、C・R積が1000以下となり、絶縁破壊電圧が150V/μm以下と低い。 In Example 36 where the blending amount of MoO 3 is 0% by weight, the dielectric breakdown voltage is as low as 150 V / μm or less and the lifetime is short. In Example 40 of 0.3% by weight, the rate of change in capacity temperature is greater than −15%, the C · R product is 1000 or less, and the dielectric breakdown voltage is as low as 150 V / μm or less.

一方、本発明の実施例にあたる、例3〜5、8〜11、14〜17、20〜23、26〜29、32〜34、37〜39は、いずれの特性もバランスよく良好であった。   On the other hand, Examples 3 to 5, 8 to 11, 14 to 17, 20 to 23, 26 to 29, 32 to 34, and 37 to 39, which correspond to the examples of the present invention, were all well-balanced and good.

本発明によれば、焼成時の耐還元性に優れ、焼成後に優れた容量温度特性及び誘電特性を有するとともに、絶縁抵抗の寿命が高められた、耐還元性誘電体磁器組成物が提供される。該誘電体磁器組成物を用いて製造された積層セラミックコンデンサなどの電子部品は信頼性が高く、産業上の有用性は大きい。   According to the present invention, there is provided a reduction-resistant dielectric ceramic composition which has excellent reduction resistance during firing, has excellent capacity-temperature characteristics and dielectric characteristics after firing, and has an increased insulation resistance life. . Electronic parts such as multilayer ceramic capacitors manufactured using the dielectric ceramic composition are highly reliable and have great industrial utility.

Claims (2)

(BaO)m・TiO2(ここで、mは、0.990〜0.994である)100重量%に対して、
23を0.6〜1.2重量%、
MgOを0.6〜1.5重量%、
BaSiO3を0.6〜2.0重量%、
WO3を0.02〜0.2重量%、
MnCO3を0.1〜0.4重量%、および
MoO3を0.02〜0.2重量%
で含む、耐還元性誘電体磁器組成物。
(BaO) m · TiO 2 (where m is 0.990 to 0.994) 100 wt%,
0.6 to 1.2% by weight of Y 2 O 3
0.6 to 1.5% by weight of MgO
0.6 to 2.0% by weight of BaSiO 3 ,
0.03 to 0.2% by weight of WO 3
0.1 to 0.4% by weight of MnCO 3 and 0.02 to 0.2% by weight of MoO 3
A reduction-resistant dielectric ceramic composition comprising:
請求項1記載の耐還元性誘電体磁器組成物を用いて得られる誘電体層を有する、積層セラミックコンデンサ。   A multilayer ceramic capacitor having a dielectric layer obtained by using the reduction-resistant dielectric ceramic composition according to claim 1.
JP2004365588A 2004-12-17 2004-12-17 Reduction-resistant dielectric ceramic composition and use thereof Active JP4556659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004365588A JP4556659B2 (en) 2004-12-17 2004-12-17 Reduction-resistant dielectric ceramic composition and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004365588A JP4556659B2 (en) 2004-12-17 2004-12-17 Reduction-resistant dielectric ceramic composition and use thereof

Publications (2)

Publication Number Publication Date
JP2006169061A JP2006169061A (en) 2006-06-29
JP4556659B2 true JP4556659B2 (en) 2010-10-06

Family

ID=36670203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004365588A Active JP4556659B2 (en) 2004-12-17 2004-12-17 Reduction-resistant dielectric ceramic composition and use thereof

Country Status (1)

Country Link
JP (1) JP4556659B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101163652A (en) * 2006-06-12 2008-04-16 纳美仕有限公司 Dielectric ceramic composition and multilayer ceramic capacitor
JP2008162826A (en) * 2006-12-27 2008-07-17 Namics Corp Reduction-resistant dielectric ceramic composition, dielectric using it and laminated ceramic capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311828A (en) * 1999-02-26 2000-11-07 Tdk Corp Manufacture of dielectric ceramic composition and manufacture of dielectric layer containing electronic component
JP2002201064A (en) * 2000-12-27 2002-07-16 Nippon Chemicon Corp Dielectric ceramic composition, multilayer ceramic capacitor and its production method
JP2004277263A (en) * 2003-03-18 2004-10-07 Nippon Chemicon Corp Method for producing dielectric porcelain composition, and ceramic capacitor using the dielectric porcelain composition produced thereby

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311828A (en) * 1999-02-26 2000-11-07 Tdk Corp Manufacture of dielectric ceramic composition and manufacture of dielectric layer containing electronic component
JP2002201064A (en) * 2000-12-27 2002-07-16 Nippon Chemicon Corp Dielectric ceramic composition, multilayer ceramic capacitor and its production method
JP2004277263A (en) * 2003-03-18 2004-10-07 Nippon Chemicon Corp Method for producing dielectric porcelain composition, and ceramic capacitor using the dielectric porcelain composition produced thereby

Also Published As

Publication number Publication date
JP2006169061A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP4821357B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP5034839B2 (en) Dielectric porcelain composition and electronic component
JP5343974B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP2011009369A (en) Laminated ceramic electronic component
JP2008247656A (en) Method for producing dielectric porcelain composition and method for manufacturing electronic component
JP6753221B2 (en) Dielectric composition and laminated electronic components
JP2012033556A (en) Laminate ceramic electronic component
JP6089770B2 (en) Dielectric porcelain composition and electronic component
JP4863005B2 (en) Dielectric porcelain composition and electronic component
JP4461679B2 (en) Dielectric porcelain composition and electronic component
JP5141718B2 (en) Dielectric ceramic composition and ceramic electronic component
JP4696891B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP4576807B2 (en) Dielectric porcelain composition and electronic component
JP2013043819A (en) Dielectric ceramic composition and ceramic electronic component
JP2008162862A (en) Dielectric porcelain composition and electronic component
JP5153288B2 (en) Dielectric porcelain composition and electronic component
JP2006173352A (en) Ceramic electronic component and its manufacturing method
US7482299B2 (en) Dielectric ceramic composition and multi-layer ceramic capacitor
JP4556659B2 (en) Reduction-resistant dielectric ceramic composition and use thereof
JP2008174434A (en) Dielectric porcelain composition and electronic component
JP2004203669A (en) Dielectric porcelain composition, electronic components, and manufacturing processes thereof
JP4528921B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP4691790B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP2005281066A (en) Dielectric ceramic and multilayer ceramic capacitor
KR100765708B1 (en) Dielectric magnetic composition and layered ceramic condenser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R150 Certificate of patent or registration of utility model

Ref document number: 4556659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3