JP4556557B2 - Method for producing carbon nanotube - Google Patents

Method for producing carbon nanotube Download PDF

Info

Publication number
JP4556557B2
JP4556557B2 JP2004245781A JP2004245781A JP4556557B2 JP 4556557 B2 JP4556557 B2 JP 4556557B2 JP 2004245781 A JP2004245781 A JP 2004245781A JP 2004245781 A JP2004245781 A JP 2004245781A JP 4556557 B2 JP4556557 B2 JP 4556557B2
Authority
JP
Japan
Prior art keywords
pair
electric field
semiconductor substrate
carbon nanotube
catalytic metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004245781A
Other languages
Japanese (ja)
Other versions
JP2006062900A (en
Inventor
英雄 長浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2004245781A priority Critical patent/JP4556557B2/en
Publication of JP2006062900A publication Critical patent/JP2006062900A/en
Application granted granted Critical
Publication of JP4556557B2 publication Critical patent/JP4556557B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、カーボンナノチューブの製造方法に関し、特に、半導体基板の一表面に平行な面内で所望の方向にカーボンナノチューブを成長可能なカーボンナノチューブの製造方法に関するものである。   The present invention relates to a carbon nanotube manufacturing method, and more particularly to a carbon nanotube manufacturing method capable of growing carbon nanotubes in a desired direction within a plane parallel to one surface of a semiconductor substrate.

近年、所謂ナノテクノロジーの分野において注目されているカーボンナノチューブを用いた種々のカーボンナノチューブ応用デバイス(例えば、電子放出素子、ディスプレイ、電界効果型トランジスタ、メモリ、半導体圧力センサ、半導体加速度センサなど)や、カーボンナノチューブの製造方法が各所で研究開発されている。   Various carbon nanotube application devices using carbon nanotubes that have been attracting attention in the field of so-called nanotechnology in recent years (for example, electron-emitting devices, displays, field-effect transistors, memories, semiconductor pressure sensors, semiconductor acceleration sensors, etc.) Carbon nanotube production methods are being researched and developed at various locations.

ここにおいて、カーボンナノチューブの成長方向を制御可能なカーボンナノチューブの製造方法としては、半導体基板の一表面に直交する方向にカーボンナノチューブを成長可能なカーボンナノチューブの製造方法(例えば、特許文献1参照)や、半導体基板の一表面に平行な面内で所望の方向にカーボンナノチューブを成長可能なカーボンナノチューブの製造方法(例えば、特許文献2参照)が提案されている。   Here, as a method for producing carbon nanotubes capable of controlling the growth direction of carbon nanotubes, a method for producing carbon nanotubes capable of growing carbon nanotubes in a direction perpendicular to one surface of a semiconductor substrate (for example, see Patent Document 1) There has been proposed a carbon nanotube manufacturing method (see, for example, Patent Document 2) capable of growing carbon nanotubes in a desired direction within a plane parallel to one surface of a semiconductor substrate.

上記特許文献2に開示されたカーボンナノチューブの製造方法では、図9に示すように、絶縁層2上に触媒金属部4,4の対を形成し、絶縁層2上で対となる触媒金属部4,4よりも外側に配置された一対の電界発生用の金属電極13,13間に電圧を印加することで金属電極13,13間に電界を発生させた状態でCVD法により触媒金属部4,4間にカーボンナノチューブ5を成長させる。   In the carbon nanotube manufacturing method disclosed in Patent Document 2, a pair of catalytic metal portions 4 and 4 is formed on the insulating layer 2 as shown in FIG. The catalytic metal portion 4 is formed by a CVD method in a state where an electric field is generated between the metal electrodes 13 and 13 by applying a voltage between the pair of metal electrodes 13 and 13 for generating an electric field arranged outside the electrodes 4 and 4. , 4, carbon nanotubes 5 are grown.

また、半導体基板の一表面に平行な面内で所望の方向にカーボンナノチューブを成長可能なカーボンナノチューブの製造方法としては、図10(a),(b)に示すように、シリコン基板からなる半導体基板1上の絶縁層2上に対となる電界発生用の金属電極13,13を形成してから、各金属電極13,13上に触媒金属部4,4を形成した後、対となる金属電極13,13間に直流電源Eから電圧を印加することで金属電極13,13間に電界を発生させた状態でCVD法により触媒金属部4,4間にカーボンナノチューブ5を成長させる方法が考えられる。   Further, as a carbon nanotube manufacturing method capable of growing carbon nanotubes in a desired direction in a plane parallel to one surface of a semiconductor substrate, as shown in FIGS. 10A and 10B, a semiconductor made of a silicon substrate is used. After forming metal electrodes 13 and 13 for electric field generation to be paired on the insulating layer 2 on the substrate 1 and then forming the catalyst metal portions 4 and 4 on the metal electrodes 13 and 13, the metal to be paired A method of growing the carbon nanotubes 5 between the catalytic metal parts 4 and 4 by the CVD method in a state where an electric field is generated between the metal electrodes 13 and 13 by applying a voltage from the DC power source E between the electrodes 13 and 13 is considered. It is done.

ところで、カーボンナノチューブ応用デバイスの一例として挙がっている半導体圧力センサや半導体加速度センサなどの半導体物理量センサでは4つのゲージ抵抗素子をブリッジ接続して感度を高めることが一般的に行われているが、この種の半導体物理量センサのゲージ抵抗素子としてカーボンナノチューブを採用する場合、上述の図9や図10を参照しながら説明したカーボンナノチューブの製造方法を適用することが考えられる。なお、ゲージ抵抗素子としてカーボンナノチューブを採用した半導体物理量センサの製造プロセスに関しては、カーボンナノチューブの製造後に、絶縁層2の表面側に絶縁膜を形成してから、カーボンナノチューブ5に電気的に接続されブリッジ回路などの回路パターンを構成する金属配線15,15(図9参照)を形成するプロセスが考えられる。
特表2002−530805号公報(段落〔0017〕,〔0021〕,〔0024〕,〔0030〕および図1,3,4) 特表2003−504857号公報(段落〔0046〕,〔0049〕および図3)
By the way, in a semiconductor physical quantity sensor such as a semiconductor pressure sensor and a semiconductor acceleration sensor which are listed as an example of a carbon nanotube application device, it is generally performed to increase sensitivity by bridge-connecting four gauge resistance elements. When a carbon nanotube is employed as a gauge resistance element of a kind of semiconductor physical quantity sensor, it is conceivable to apply the carbon nanotube manufacturing method described with reference to FIGS. 9 and 10 described above. In addition, regarding the manufacturing process of the semiconductor physical quantity sensor that employs the carbon nanotube as the gauge resistance element, after the carbon nanotube is manufactured, an insulating film is formed on the surface side of the insulating layer 2 and then electrically connected to the carbon nanotube 5. A process for forming the metal wirings 15 and 15 (see FIG. 9) constituting a circuit pattern such as a bridge circuit is conceivable.
JP 2002-530805 A (paragraphs [0017], [0021], [0024], [0030] and FIGS. 1, 3 and 4) Japanese translation of PCT publication No. 2003-504857 (paragraphs [0046], [0049] and FIG. 3)

しかしながら、上述の図9や図10を参照しながら説明したカーボンナノチューブの製造方法を適用して製造するカーボンナノチューブ応用デバイスの構成要素のパターン設計にあたっては、上述の電界発生用の金属電極13,13が回路パターンを構成する金属配線15,15に影響を与えない(例えば、金属電極13,13と回路パターンを構成する金属配線15,15と短絡しない)ように金属電極13,13のパターン設計を行う必要があり、金属電極13,13のパターン設計の制約が多いので、1枚のウェハに多数のカーボンナノチューブ応用デバイスを製造するような場合には上述のカーボンナノチューブの製造方法を適用することが難しいという不具合があった。なお、カーボンナノチューブ5の製造後に金属電極13,13をエッチングにより除去することも考えられるが、金属電極13,13のエッチングの際にカーボンナノチューブ5がエッチングダメージを受けて劣化してしまう恐れがあるので、このようなプロセスの採用は難しい。   However, in the pattern design of the constituent elements of the carbon nanotube application device manufactured by applying the carbon nanotube manufacturing method described with reference to FIGS. 9 and 10, the above-described metal electrodes 13 and 13 for electric field generation are used. Does not affect the metal wirings 15 and 15 constituting the circuit pattern (for example, the metal wirings 13 and 13 and the metal wirings 15 and 15 constituting the circuit pattern are not short-circuited). Since there are many restrictions on the pattern design of the metal electrodes 13 and 13 in the case of manufacturing a large number of carbon nanotube application devices on one wafer, the above-described carbon nanotube manufacturing method may be applied. There was a problem that it was difficult. Although it is conceivable to remove the metal electrodes 13 and 13 by etching after the carbon nanotubes 5 are manufactured, the carbon nanotubes 5 may be damaged due to etching damage when the metal electrodes 13 and 13 are etched. So it is difficult to adopt such a process.

本発明は上記事由に鑑みて為されたものであり、その目的は、半導体基板の一表面上の絶縁層上における各触媒金属部の近傍に電界発生用の金属電極を設けることなしに半導体基板の一表面に平行な面内で所望の方向にカーボンナノチューブを成長可能なカーボンナノチューブの製造方法を提供することにある。   The present invention has been made in view of the above-mentioned reasons, and its purpose is to provide a semiconductor substrate without providing a metal electrode for generating an electric field in the vicinity of each catalytic metal portion on an insulating layer on one surface of the semiconductor substrate. Another object of the present invention is to provide a carbon nanotube production method capable of growing carbon nanotubes in a desired direction within a plane parallel to one surface.

請求項1の発明は、半導体基板の一表面上の絶縁層上において互いに離間して形成された対となる触媒金属部間にカーボンナノチューブを成長させるにあたって、対となる触媒金属部の形成前に、半導体基板の前記一表面側に対となる触媒金属部間への電界発生用であり対となる高濃度不純物拡散層を形成しておき、対となる触媒金属部の形成後に、対となる高濃度不純物拡散層間に電圧を印加することで対となる触媒金属部間に電界を発生させ且つ絶縁層の表面側に炭素を含む原料ガスを供給して対となる触媒金属部間にカーボンナノチューブを成長させることを特徴とする。   According to the first aspect of the present invention, when the carbon nanotubes are grown between the pair of catalyst metal portions formed on the insulating layer on one surface of the semiconductor substrate so as to be separated from each other, before the formation of the pair of catalyst metal portions, A high-concentration impurity diffusion layer for forming an electric field between the pair of catalyst metal parts is formed on the one surface side of the semiconductor substrate, and the pair is formed after the pair of catalyst metal parts is formed. By applying a voltage between the high concentration impurity diffusion layers, an electric field is generated between the pair of catalytic metal parts, and a carbon-containing source gas is supplied to the surface side of the insulating layer to form carbon nanotubes between the paired catalytic metal parts. It is characterized by growing.

この発明によれば、カーボンナノチューブを成長させる際、対となる高濃度不純物拡散層間に電圧を印加することにより対となる触媒金属部間に電界を発生させることができ、対となる触媒金属部間に対となる触媒金属部の並設方向を長手方向とするカーボンナノチューブを成長させることができるので、半導体基板の一表面上の絶縁層上における各触媒金属部の近傍に電界発生用の金属電極を設けることなしに半導体基板の一表面に平行な面内で所望の方向にカーボンナノチューブを成長させることが可能となる。したがって、高濃度不純物拡散層および各高濃度不純物拡散層それぞれと電気的に接続される通電用の配線のパターンを適宜設計することにより、1枚のウェハに多数のカーボンナノチューブ応用デバイスを製造するような場合のカーボンナノチューブの製造方法として適用可能となる。   According to the present invention, when a carbon nanotube is grown, an electric field can be generated between the pair of catalyst metal parts by applying a voltage between the pair of high concentration impurity diffusion layers, and the pair of catalyst metal parts Since carbon nanotubes can be grown with the parallel direction of the paired catalyst metal portions as the longitudinal direction, a metal for generating an electric field is formed in the vicinity of each catalyst metal portion on the insulating layer on one surface of the semiconductor substrate. It is possible to grow carbon nanotubes in a desired direction within a plane parallel to one surface of the semiconductor substrate without providing an electrode. Therefore, a large number of carbon nanotube application devices are manufactured on one wafer by appropriately designing a high-concentration impurity diffusion layer and a pattern of a current-carrying wiring electrically connected to each high-concentration impurity diffusion layer. In this case, the method can be applied as a carbon nanotube production method.

請求項2の発明は、請求項1の発明において、対となる高濃度不純物拡散層それぞれの導電形を半導体基板の導電形とは異ならせることを特徴とする。   The invention of claim 2 is characterized in that, in the invention of claim 1, the conductivity type of each of the paired high concentration impurity diffusion layers is different from the conductivity type of the semiconductor substrate.

この発明によれば、対となる高濃度不純物拡散層を同時に形成することができ、対となる高濃度不純物拡散層間の距離の精度を高めることができるので、対となる触媒金属部間に発生する電界の強度や分布の再現性を高めることができる。   According to the present invention, a pair of high-concentration impurity diffusion layers can be formed at the same time, and the accuracy of the distance between the pair of high-concentration impurity diffusion layers can be increased. The reproducibility of the strength and distribution of the electric field can be increased.

請求項3の発明は、請求項1の発明において、対となる高濃度不純物拡散層における一方の高濃度不純物拡散層の導電形を半導体基板の導電形と同じ導電形とするとともに他方の高濃度不純物拡散層の導電形を半導体基板の導電形と異なる導電形とし、且つ、対となる触媒金属部の形成前に、半導体基板において対となる高濃度不純物拡散層間の部位に前記他方の高濃度不純物拡散層と同じ導電形で半導体基板の表面の電界集中を緩和する低濃度の電界緩和領域を形成しておくことを特徴とする。   According to a third aspect of the present invention, in the first aspect of the invention, the conductivity type of one high-concentration impurity diffusion layer in the paired high-concentration impurity diffusion layer is the same conductivity type as that of the semiconductor substrate and the other high-concentration impurity diffusion layer The conductivity type of the impurity diffusion layer is different from the conductivity type of the semiconductor substrate, and before the formation of the pair of catalytic metal parts, the other high concentration is formed in a portion between the pair of high concentration impurity diffusion layers in the semiconductor substrate. A low concentration electric field relaxation region that relaxes electric field concentration on the surface of the semiconductor substrate is formed with the same conductivity type as the impurity diffusion layer.

この発明によれば、対となる高濃度不純物拡散層間に電圧を印加したときに半導体基板の表面電界が緩和されて、対となる触媒金属部それぞれの近傍の電界集中が緩和されるので、対となる触媒金属部間に所望の方向のカーボンナノチューブを安定して成長させることができる。   According to the present invention, when a voltage is applied between the pair of high-concentration impurity diffusion layers, the surface electric field of the semiconductor substrate is relaxed, and the electric field concentration in the vicinity of each of the pair of catalyst metal parts is relaxed. Thus, carbon nanotubes in a desired direction can be stably grown between the catalytic metal portions.

請求項4の発明は、請求項3の発明において、電界緩和領域の形成にあたっては、半導体基板において対となる高濃度不純物拡散層間の部位に電界緩和領域を複数形成することを特徴とする。   According to a fourth aspect of the present invention, in the invention of the third aspect, when the electric field relaxation region is formed, a plurality of electric field relaxation regions are formed in a portion between the pair of high-concentration impurity diffusion layers in the semiconductor substrate.

この発明によれば、半導体基板の表面電界をより効果的に緩和でき、対となる触媒金属部間の電界をより効果的に緩和することができる。   According to this invention, the surface electric field of the semiconductor substrate can be more effectively relaxed, and the electric field between the catalyst metal parts that form a pair can be more effectively mitigated.

請求項5の発明は、請求項3の発明において、電界緩和領域の形成にあたっては、前記他方の高濃度不純物拡散層側から前記一方の高濃度不純物拡散層側に向かって不純物濃度が低くなる電界緩和領域を形成することを特徴とする。   According to a fifth aspect of the present invention, in the invention of the third aspect, in forming the electric field relaxation region, an electric field whose impurity concentration decreases from the other high concentration impurity diffusion layer side toward the one high concentration impurity diffusion layer side. A relaxation region is formed.

この発明によれば、半導体基板の表面電界をより効果的に緩和でき、対となる触媒金属部間の電界をより効果的に緩和することができる。   According to this invention, the surface electric field of the semiconductor substrate can be more effectively relaxed, and the electric field between the catalyst metal parts that form a pair can be more effectively mitigated.

請求項6の発明は、半導体基板の一表面上の絶縁層上において互いに離間して形成された対となる触媒金属部間にカーボンナノチューブを成長させるにあたって、対となる触媒金属部の形成前に、半導体基板の前記一表面側であって且つ絶縁層の表面よりも半導体基板側に対となる触媒金属部間への電界発生用の抵抗部を形成しておき、対となる触媒金属部の形成後に、抵抗部の両端間に電圧を印加することで対となる触媒金属部間に電界を発生させ且つ絶縁層の表面側に炭素を含む原料ガスを供給して対となる触媒金属部間にカーボンナノチューブを成長させることを特徴とする。   According to the sixth aspect of the present invention, when the carbon nanotubes are grown between the pair of catalyst metal portions formed on the insulating layer on one surface of the semiconductor substrate so as to be separated from each other, before the formation of the pair of catalyst metal portions, Forming a resistance portion for generating an electric field between the pair of catalytic metal portions on the one surface side of the semiconductor substrate and closer to the semiconductor substrate side than the surface of the insulating layer; After formation, an electric field is generated between the pair of catalytic metal parts by applying a voltage across the resistance part, and a source gas containing carbon is supplied to the surface side of the insulating layer to form a pair between the catalytic metal parts. It is characterized by growing carbon nanotubes.

この発明によれば、カーボンナノチューブを成長させる際、抵抗部の両端間に電圧を印加することにより対となる触媒金属部間に電界を発生させることができ、対となる触媒金属部間に対となる触媒金属部の並設方向を長手方向とするカーボンナノチューブを成長させることができるので、半導体基板の一表面上の絶縁層上における各触媒金属部の近傍に電界発生用の金属電極を設けることなしに半導体基板の一表面に平行な面内で所望の方向にカーボンナノチューブを成長させることが可能となる。したがって、抵抗部および抵抗部の両端部それぞれと電気的に接続される通電用の配線のパターンを適宜設計することにより、1枚のウェハに多数のカーボンナノチューブ応用デバイスを製造するような場合のカーボンナノチューブの製造方法として適用可能となる。   According to the present invention, when the carbon nanotube is grown, an electric field can be generated between the pair of catalytic metal parts by applying a voltage between both ends of the resistance part. Since carbon nanotubes having the longitudinal direction of the catalyst metal portions as the longitudinal direction can be grown, a metal electrode for generating an electric field is provided in the vicinity of each catalyst metal portion on the insulating layer on one surface of the semiconductor substrate. It is possible to grow carbon nanotubes in a desired direction within a plane parallel to one surface of the semiconductor substrate. Therefore, the carbon in the case where a large number of carbon nanotube application devices are manufactured on one wafer by appropriately designing the wiring pattern for energization that is electrically connected to each of the resistance portion and both ends of the resistance portion. It becomes applicable as a manufacturing method of a nanotube.

請求項7の発明は、請求項6の発明において、抵抗部を形成するにあたっては、絶縁層中に埋設されるポリシリコン層からなる抵抗部を形成することを特徴とする。   According to a seventh aspect of the invention, in the invention of the sixth aspect, the resistance portion is formed of a polysilicon layer embedded in the insulating layer when the resistance portion is formed.

この発明によれば、抵抗部を一般的な半導体製造プロセスにより簡単に形成することができる。   According to the present invention, the resistance portion can be easily formed by a general semiconductor manufacturing process.

請求項8の発明は、請求項6の発明において、抵抗部を形成するにあたっては、拡散抵抗層からなる抵抗部を形成することを特徴とする。   The invention of claim 8 is characterized in that, in the invention of claim 6, when the resistance portion is formed, a resistance portion made of a diffusion resistance layer is formed.

この発明によれば、抵抗部を一般的な半導体製造プロセスにより簡単に形成することができる。   According to the present invention, the resistance portion can be easily formed by a general semiconductor manufacturing process.

請求項9の発明は、半導体基板の一表面上の絶縁層上において互いに離間して形成された対となる触媒金属部間にカーボンナノチューブを成長させるにあたって、対となる触媒金属部の形成前に、絶縁層中に対となる触媒金属部間への電界発生用の容量素子を形成しておき、対となる触媒金属部の形成後に、容量素子の両端間に電圧を印加することで対となる触媒金属部間に電界を発生させ且つ絶縁層の表面側に炭素を含む原料ガスを供給して対となる触媒金属部間にカーボンナノチューブを成長させることを特徴とする。   According to the ninth aspect of the present invention, when the carbon nanotubes are grown between the pair of catalytic metal portions formed on the insulating layer on one surface of the semiconductor substrate so as to be separated from each other, before the formation of the pair of catalytic metal portions, The capacitive element for generating an electric field between the pair of catalytic metal parts is formed in the insulating layer, and after forming the paired catalytic metal part, a voltage is applied between both ends of the capacitive element to form the pair. An electric field is generated between the catalytic metal parts, and a source gas containing carbon is supplied to the surface side of the insulating layer to grow carbon nanotubes between the paired catalytic metal parts.

この発明によれば、カーボンナノチューブを成長させる際、容量素子の両端間に電圧を印加することにより対となる触媒金属部間に電界を発生させることができ、対となる触媒金属部間に対となる触媒金属部の並設方向を長手方向とするカーボンナノチューブを成長させることができるので、半導体基板の一表面上の絶縁層上における各触媒金属部の近傍に電界発生用の金属電極を設けることなしに半導体基板の一表面に平行な面内で所望の方向にカーボンナノチューブを成長させることが可能となる。したがって、容量素子および容量素子それぞれと電気的に接続される通電用の配線のパターンを適宜設計することにより、1枚のウェハに多数のカーボンナノチューブ応用デバイスを製造するような場合のカーボンナノチューブの製造方法として適用可能となる。   According to the present invention, when the carbon nanotube is grown, an electric field can be generated between the pair of catalytic metal parts by applying a voltage between both ends of the capacitive element. Since carbon nanotubes having the longitudinal direction of the catalyst metal portions as the longitudinal direction can be grown, a metal electrode for generating an electric field is provided in the vicinity of each catalyst metal portion on the insulating layer on one surface of the semiconductor substrate. It is possible to grow carbon nanotubes in a desired direction within a plane parallel to one surface of the semiconductor substrate. Therefore, the production of carbon nanotubes in the case where a large number of carbon nanotube applied devices are produced on one wafer by appropriately designing the capacitive element and the wiring pattern for energization electrically connected to each capacitive element. Applicable as a method.

請求項10の発明は、請求項1ないし請求項9の発明において、対となる触媒金属部間に発生させる電界の所望の強度に応じて絶縁層の材料を、SiO、Si、Ta、ZnOの群から選択することを特徴とする。
ことを特徴とする。
According to a tenth aspect of the present invention, in the first to ninth aspects of the invention, the material of the insulating layer is selected from SiO 2 , Si 3 N 4 , and the like according to the desired strength of the electric field generated between the pair of catalytic metal parts. It is characterized by selecting from the group of Ta 2 O 5 and ZnO 2 .
It is characterized by that.

この発明によれば、絶縁層の材料を、それぞれ誘電率が異なるSiO、Si、Ta、ZnOの群から選択することにより、対となる触媒金属部間に発生させる電界の強度や分布を制御することができる。 According to this invention, the material of the insulating layer is generated between the pair of catalytic metal parts by selecting from the group of SiO 2 , Si 3 N 4 , Ta 2 O 5 , and ZnO 2 having different dielectric constants. The intensity and distribution of the electric field can be controlled.

請求項1ないし請求項10の発明では、半導体基板の一表面上の絶縁層上における各触媒金属部の近傍に電界発生用の金属電極を設けることなしに半導体基板の一表面に平行な面内で所望の方向にカーボンナノチューブを成長させることが可能となるという効果がある。   According to the first to tenth aspects of the present invention, an in-plane parallel to one surface of the semiconductor substrate is provided without providing a metal electrode for generating an electric field in the vicinity of each catalytic metal portion on the insulating layer on the one surface of the semiconductor substrate. Thus, it is possible to grow the carbon nanotubes in a desired direction.

(実施形態1)
以下、本実施形態のカーボンナノチューブの製造方法について図1(a),(b)を参照しながら説明する。
(Embodiment 1)
Hereinafter, the carbon nanotube manufacturing method of the present embodiment will be described with reference to FIGS.

シリコン基板からなる半導体基板1の一表面(図1(b)における上面)上のSiO膜からなる絶縁層2上において互いに離間して形成された対となる触媒金属部4,4間にカーボンナノチューブ5を成長させるにあたって、まず、対となる触媒金属部4,4の形成前に、半導体基板1の上記一表面側に対となる触媒金属部4,4間への電界発生用であり対となる高濃度不純物拡散層3a,3bを形成する。ここにおいて、本実施形態では、半導体基板1として導電形がn形(n)のシリコン基板を用いており、対となる高濃度不純物拡散層3a,3bの導電形をp形(p)として半導体基板1の導電形とは異ならせてあるが、半導体基板1として導電形がp形(p)のシリコン基板を用いてもよく、この場合は、対となる高濃度不純物拡散層3a,3bの導電形をn形(n)として半導体基板1の導電形と異ならせればよい。また、対となる高濃度不純物拡散層3a,3b間の距離は、後で形成する対となる触媒金属部4,4間の距離よりも大きく且つ対となる触媒金属部4,4の互いの対向面とは反対側の側面間(図1(a),(b)における左側の触媒金属部4の左側面と右側の触媒金属部4の右側面との間)の距離よりも小さく設定してある。なお、高濃度不純物拡散層3a,3bは、例えば、半導体基板1の上記一表面上にイオン注入用のマスク層を形成してから、p形不純物(例えば、ボロンなど)のイオン注入を高ドーズ量の条件で行い、熱拡散させることにより形成すればよい。 Carbon is formed between the pair of catalytic metal parts 4 and 4 formed on the insulating layer 2 made of the SiO 2 film on one surface of the semiconductor substrate 1 made of a silicon substrate (upper surface in FIG. 1B). In growing the nanotube 5, first, before the formation of the pair of catalyst metal parts 4, 4, the electrode 5 is for generating an electric field between the pair of catalyst metal parts 4, 4 on the one surface side of the semiconductor substrate 1. High-concentration impurity diffusion layers 3a and 3b are formed. Here, in the present embodiment, a silicon substrate having a conductivity type of n-type (n ) is used as the semiconductor substrate 1, and the conductivity type of the high-concentration impurity diffusion layers 3a and 3b to be paired is a p-type (p + ). However, the semiconductor substrate 1 may be a p-type (p ) silicon substrate, and in this case, a high-concentration impurity diffusion layer 3a as a pair is used. , 3b may be n-type (n + ) so as to be different from that of the semiconductor substrate 1. Further, the distance between the paired high-concentration impurity diffusion layers 3a and 3b is larger than the distance between the paired catalyst metal parts 4 and 4 to be formed later, and the paired catalyst metal parts 4 and 4 are mutually connected. It is set to be smaller than the distance between the side surfaces opposite to the facing surface (between the left side surface of the left catalyst metal portion 4 and the right side surface of the right catalyst metal portion 4 in FIGS. 1A and 1B). It is. The high-concentration impurity diffusion layers 3a and 3b are formed by, for example, forming a mask layer for ion implantation on the one surface of the semiconductor substrate 1 and then performing ion implantation of p-type impurities (for example, boron) at a high dose. What is necessary is just to carry out on condition of quantity, and to form by carrying out thermal diffusion.

高濃度不純物拡散層3a,3bの対の形成後、半導体基板1の一表面側にSiO膜からなる絶縁層2を例えば熱酸化法やCVD法などによって形成する。 After the pair of high-concentration impurity diffusion layers 3a and 3b is formed, an insulating layer 2 made of a SiO 2 film is formed on one surface side of the semiconductor substrate 1 by, for example, a thermal oxidation method or a CVD method.

続いて、絶縁層2上に対となる触媒金属部4,4を所定距離(後で成長させるカーボンナノチューブの所望の長さ寸法)だけ離間して互いの対向面が平行となる形状で形成する。ここにおいて、対となる触媒金属部4,4と対となる高濃度不純物拡散層3a,3bとの相対的な位置関係は、半導体基板1の厚み方向(図1(b)における上下方向)において触媒金属部4,4の一部と高濃度不純物拡散層3a,3bの一部とが重なる位置関係となっている。また、触媒金属部4,4の対の形成にあたっては、絶縁層2上にカーボンナノチューブを成長させるための触媒金属材料(例えば、鉄、ニッケル、コバルトなど)からなる触媒金属薄膜を成膜し、リソグラフィ技術およびエッチング技術を利用して触媒金属薄膜をパターニングすることによってそれぞれ触媒金属薄膜の一部からなる触媒金属部4,4を形成する。なお、触媒金属部4,4の平面形状は図10(a)に示した従来例と同じ細長の長方形状の形状として、触媒金属部4,4の長手方向を絶縁層2の上記一表面に平行な面内で触媒金属部4,4の並設方向(図1(a)における左右方向)と直交する方向に一致させてある。   Subsequently, a pair of catalytic metal portions 4 and 4 are formed on the insulating layer 2 so as to be spaced apart by a predetermined distance (a desired length dimension of carbon nanotubes to be grown later) and their opposing surfaces are parallel to each other. . Here, the relative positional relationship between the pair of catalyst metal portions 4 and 4 and the pair of high-concentration impurity diffusion layers 3a and 3b is in the thickness direction of the semiconductor substrate 1 (vertical direction in FIG. 1B). A part of the catalyst metal parts 4 and 4 and a part of the high concentration impurity diffusion layers 3a and 3b overlap each other. In forming the pair of catalyst metal portions 4 and 4, a catalyst metal thin film made of a catalyst metal material (for example, iron, nickel, cobalt, etc.) for growing carbon nanotubes on the insulating layer 2 is formed, By patterning the catalytic metal thin film using the lithography technique and the etching technique, the catalytic metal parts 4 and 4 each consisting of a part of the catalytic metal thin film are formed. The planar shape of the catalyst metal parts 4 and 4 is the same elongated rectangular shape as the conventional example shown in FIG. 10A, and the longitudinal direction of the catalyst metal parts 4 and 4 is on the one surface of the insulating layer 2. It is made to correspond to the direction orthogonal to the parallel arrangement direction (left-right direction in Fig.1 (a)) of the catalyst metal parts 4 and 4 in a parallel surface.

対となる触媒金属部4,4の形成後に、各高濃度不純物拡散層3a,3bそれぞれに電気的に接続される通電用の配線14,14(図1(b)参照)を形成してから、配線14,14を介して対となる高濃度不純物拡散層3a,3b間に所定の電圧(直流電圧)を印加することで対となる高濃度不純物拡散層3a,3b間および対となる触媒金属部4,4間に電界を発生させ且つ絶縁層2の表面側に炭素を含む原料ガス(例えば、炭化水素を含むCガス、Cガス、CHガスなど)を供給して例えばCVD法によって対となる触媒金属部4,4間にカーボンナノチューブ5を成長させる(対となる触媒金属部4,4の一方の触媒金属部4から他方の触媒金属部4へ向かってカーボンナノチューブ5を成長させる)。ここにおいて、対となる高濃度不純物拡散層3a,3b間に電圧を印加することによって、絶縁層2を介して、対となる触媒金属部4,4間には均一な電界分布が生じる。なお、CVD法によってカーボンナノチューブを成長させる際の基板温度は、原料ガスおよび触媒金属材料の種類に応じて例えば500℃〜1000℃の範囲で適宜設定すればよい。 After the formation of the pair of catalytic metal parts 4 and 4, after forming the current-carrying wirings 14 and 14 (see FIG. 1B) electrically connected to the high-concentration impurity diffusion layers 3a and 3b, respectively. By applying a predetermined voltage (DC voltage) between the paired high-concentration impurity diffusion layers 3a and 3b via the wirings 14 and 14, the paired high-concentration impurity diffusion layers 3a and 3b and the paired catalyst An electric field is generated between the metal parts 4 and 4 and a source gas containing carbon (for example, C 2 H 2 gas containing hydrocarbon, C 2 H 4 gas, CH 4 gas, etc.) is supplied to the surface side of the insulating layer 2. Then, for example, the carbon nanotubes 5 are grown between the pair of catalyst metal parts 4 and 4 by the CVD method (from one catalyst metal part 4 of the pair of catalyst metal parts 4 and 4 toward the other catalyst metal part 4. Carbon nanotubes 5 are grown). Here, by applying a voltage between the paired high-concentration impurity diffusion layers 3 a and 3 b, a uniform electric field distribution is generated between the paired catalytic metal parts 4 and 4 via the insulating layer 2. In addition, what is necessary is just to set the substrate temperature at the time of growing a carbon nanotube by CVD method suitably in the range of 500 to 1000 degreeC according to the kind of source gas and a catalyst metal material, for example.

なお、カーボンナノチューブ応用デバイスとして例えば半導体圧力センサや半導体加速度センサなどの半導体物理量センサを想定し、当該半導体物理量センサの製造プロセスを考えた場合には、マイクロマシンニング技術などによって半導体基板1を所定形状の構造体(半導体圧力センサであれば、ダイヤフラム部を有する構造体、半導体加速度センサであれば、支持部に撓み部を介して支持された重り部を有する構造体)に加工した後、上述のカーボンナノチューブの製造方法を採用してカーボンナノチューブ5を製造し、その後、絶縁層2の表面側に絶縁膜を形成してから、カーボンナノチューブ5に電気的に接続されブリッジ回路などの回路パターンを構成する金属配線15,15を形成すればよい。   When a semiconductor physical quantity sensor such as a semiconductor pressure sensor or a semiconductor acceleration sensor is assumed as a carbon nanotube application device and a manufacturing process of the semiconductor physical quantity sensor is considered, the semiconductor substrate 1 is formed into a predetermined shape by a micromachining technique or the like. After processing into a structure (a structure having a diaphragm if a semiconductor pressure sensor, or a weight having a weight supported by a supporting part via a flexible part if a semiconductor acceleration sensor), the above-mentioned carbon A carbon nanotube 5 is manufactured by adopting a nanotube manufacturing method, and after that, an insulating film is formed on the surface side of the insulating layer 2 and then electrically connected to the carbon nanotube 5 to form a circuit pattern such as a bridge circuit. Metal wirings 15 and 15 may be formed.

以上説明したカーボンナノチューブの製造方法によれば、カーボンナノチューブ5を成長させる際、対となる高濃度不純物拡散層3a,3b間に所定の電圧を印加することにより対となる触媒金属部4,4間に均一な電界分布を発生させることができ、対となる触媒金属部4,4間に対となる触媒金属部4,4の並設方向を長手方向とするカーボンナノチューブ5を成長させることができるので、半導体基板1の上記一表面上の絶縁層2上における各触媒金属部4,4の近傍に電界発生用の金属電極13,13(図9および図10参照)を設けることなしに半導体基板1の上記一表面に平行な面内で所望の方向にカーボンナノチューブを成長させることが可能となる(図1(a)の左右方向を長手方向とするカーボンナノチューブ5を成長させることが可能となる)。したがって、高濃度不純物拡散層3a,3bおよび各高濃度不純物拡散層3a,3bそれぞれと電気的に接続される通電用の配線14,14のパターンを適宜設計することにより、カーボンナノチューブの製造に際して必要な構成要素がカーボンナノチューブ応用デバイスの回路パターンを形成する金属配線15,15へ影響を与えるのを防止することができるとともに、1枚のウェハに多数のカーボンナノチューブ応用デバイスを製造するような場合のカーボンナノチューブの製造方法として適用可能となる。   According to the carbon nanotube manufacturing method described above, when the carbon nanotube 5 is grown, a predetermined voltage is applied between the paired high-concentration impurity diffusion layers 3a and 3b to form the paired catalyst metal portions 4 and 4. A uniform electric field distribution can be generated between them, and carbon nanotubes 5 can be grown with the parallel direction of the pair of catalyst metal portions 4 and 4 as the longitudinal direction between the pair of catalyst metal portions 4 and 4. Therefore, the semiconductor can be formed without providing the metal electrodes 13 and 13 (see FIGS. 9 and 10) for generating an electric field in the vicinity of the catalytic metal portions 4 and 4 on the insulating layer 2 on the one surface of the semiconductor substrate 1. It becomes possible to grow carbon nanotubes in a desired direction within a plane parallel to the one surface of the substrate 1 (a carbon nanotube 5 having a longitudinal direction in the horizontal direction in FIG. 1A is grown). Rukoto is possible). Therefore, it is necessary for the production of carbon nanotubes by appropriately designing the patterns of the high-concentration impurity diffusion layers 3a and 3b and the conductive wirings 14 and 14 electrically connected to the respective high-concentration impurity diffusion layers 3a and 3b. In this case, it is possible to prevent various components from affecting the metal wirings 15 and 15 forming the circuit pattern of the carbon nanotube application device, and to manufacture a large number of carbon nanotube application devices on one wafer. It becomes applicable as a manufacturing method of a carbon nanotube.

また、対となる高濃度不純物拡散層3a,3bの導電形および不純物濃度を同じとしてあるので、対となる高濃度不純物拡散層3a,3bを同時に形成することができるから、対となる高濃度不純物拡散層3a,3b間の距離の精度を高めることができ、対となる触媒金属部4,4間に発生する電界の強度や分布の再現性を高めることができる。   Further, since the conductivity type and impurity concentration of the paired high-concentration impurity diffusion layers 3a and 3b are the same, the paired high-concentration impurity diffusion layers 3a and 3b can be formed at the same time. The accuracy of the distance between the impurity diffusion layers 3a and 3b can be increased, and the reproducibility of the strength and distribution of the electric field generated between the paired catalyst metal portions 4 and 4 can be increased.

なお、図9や図10を参照しながら説明した従来のカーボンナノチューブの製造方法では、対となる金属電極13,13の形状と対となる金属電極13,13間に印加する電圧の電圧値とで対となる触媒金属部4,4間の電界分布や電位勾配が決定されるが、本実施形態のカーボンナノチューブの製造方法では、各高濃度不純物拡散層3a,3bの不純物濃度やサイズを適宜変更することにより、対となる触媒金属部4,4間に発生する電界分布や電位勾配などのより細かな制御が可能となる。   In the conventional carbon nanotube manufacturing method described with reference to FIGS. 9 and 10, the shape of the pair of metal electrodes 13 and 13 and the voltage value of the voltage applied between the pair of metal electrodes 13 and 13 In the carbon nanotube manufacturing method of this embodiment, the impurity concentration and size of each of the high-concentration impurity diffusion layers 3a and 3b are appropriately set. By changing, it becomes possible to perform finer control of the electric field distribution and the potential gradient generated between the pair of catalytic metal parts 4 and 4.

ところで、対となる触媒金属部4,4の平面形状が上述のような細長の長方形状の形状となって且つ対となる触媒金属部4,4の互いの対向面が平面となっている場合、対となる触媒金属部4,4間には多数のカーボンナノチューブ5が成長するが、上述のように触媒金属部4,4間の電界分布の均一性が高い状態で各カーボンナノチューブを成長させるので、各カーボンナノチューブ5の成長初期から成長終了まで各カーボンナノチューブ5の成長方向を安定して制御することができ、成長途中のカーボンナノチューブ5同士が干渉して絡み合うのを防止することができる。   By the way, when the planar shape of the catalyst metal parts 4 and 4 which become a pair becomes the above-mentioned elongate rectangular shape, and the mutual opposing surface of the catalyst metal parts 4 and 4 which become a pair becomes a plane A large number of carbon nanotubes 5 grow between the pair of catalytic metal parts 4 and 4, but as described above, each carbon nanotube is grown in a state in which the electric field distribution between the catalytic metal parts 4 and 4 is high. Therefore, the growth direction of the carbon nanotubes 5 can be stably controlled from the initial growth of the carbon nanotubes 5 to the end of the growth, and the carbon nanotubes 5 during the growth can be prevented from interfering with each other.

(実施形態2)
本実施形態のカーボンナノチューブの製造方法は基本的には実施形態1の製造方法と同じであり、対となる触媒金属部4,4の形成前に対となる高濃度不純物拡散層3a,3bを形成するにあたって、図2(a),(b)に示すように、対となる高濃度不純物拡散層3a,3bにおける一方の高濃度不純物拡散層3aの導電形をn形(n)として半導体基板1と同じ導電形とするとともに他方の高濃度不純物拡散層3bの導電形をp形(p)として半導体基板1の導電形と異なる導電形としている点が相違する。また、対となる触媒金属部4,4の形成前に、半導体基板1において対となる高濃度不純物拡散層3a,3b間の部位に上記他方の高濃度不純物拡散層3bと同じ導電形で半導体基板1の表面の電界集中を緩和する低濃度の電界緩和領域6を形成している点が相違するが、他の工程は実施形態1と同じである。なお、本実施形態では、半導体基板1の導電形をn形(n)とし、上記一方の高濃度不純物拡散層3aの導電形をn形(n)、上記他方の高濃度不純物拡散層3bの導電形をp形(p)としてあるので、電界緩和領域6の導電形をp形(p)としてあるが、半導体基板1の導電形をp形(p)とし、上記一方の高濃度不純物拡散層3aの導電形をp形(p)、上記他方の高濃度不純物拡散層3bの導電形をn形(n)として、電界緩和領域6の導電形をn形(n)としてもよい。
(Embodiment 2)
The manufacturing method of the carbon nanotube of this embodiment is basically the same as the manufacturing method of Embodiment 1, and the high-concentration impurity diffusion layers 3a and 3b are formed before the formation of the pair of catalytic metal parts 4 and 4. In forming the semiconductor, as shown in FIGS. 2A and 2B, the conductivity type of one high-concentration impurity diffusion layer 3a in the pair of high-concentration impurity diffusion layers 3a and 3b is n-type (n + ). The difference is that the conductivity type is the same as that of the substrate 1 and the conductivity type of the other high-concentration impurity diffusion layer 3 b is p-type (p + ), which is different from the conductivity type of the semiconductor substrate 1. In addition, before the formation of the pair of catalytic metal portions 4 and 4, the semiconductor substrate 1 has a semiconductor of the same conductivity type as that of the other high concentration impurity diffusion layer 3b in a portion between the pair of high concentration impurity diffusion layers 3a and 3b. The difference is that a low-concentration electric field relaxation region 6 that relaxes electric field concentration on the surface of the substrate 1 is formed, but the other steps are the same as those in the first embodiment. In the present embodiment, the conductivity type of the semiconductor substrate 1 is n-type (n ), the conductivity type of the one high-concentration impurity diffusion layer 3 a is n-type (n + ), and the other high-concentration impurity diffusion layer is Since the conductivity type of 3b is p-type (p + ), the conductivity type of the electric field relaxation region 6 is p-type (p ), but the conductivity type of the semiconductor substrate 1 is p-type (p ) The conductivity type of the high-concentration impurity diffusion layer 3a is p-type (p + ), the conductivity type of the other high-concentration impurity diffusion layer 3b is n-type (n + ), and the conductivity type of the electric field relaxation region 6 is n-type ( n -) may be used.

しかして、本実施形態のカーボンナノチューブの製造方法によれば、実施形態1と同様に、半導体基板1の上記一表面上の絶縁層2上における各触媒金属部4,4の近傍に電界発生用の金属電極13,13(図9および図10参照)を設けることなしに半導体基板1の上記一表面に平行な面内で所望の方向にカーボンナノチューブを成長させることが可能となる。また、通電用の配線14,14を介して対となる高濃度不純物拡散層3a,3b間に電圧を印加したときに高濃度不純物拡散層3a,3b間に空乏層が形成されるが、電界緩和領域6を設けてあることにより、半導体基板1において高濃度不純物拡散層3a,3b近傍で電界が集中せずに高濃度不純物拡散層3a,3b間に広がり(つまり、半導体基板1の表面電界が緩和されて)、対となる触媒金属部4,4それぞれの近傍の電界集中が緩和されるので、電界集中が緩和された電界分布の状態で対となる触媒金属部4,4間にカーボンナノチューブ5を成長させることとなり、対となる触媒金属部4,4間に所望の方向のカーボンナノチューブ5を安定して成長させることができる(カーボンナノチューブ5の成長方向の制御性が向上する)。   Thus, according to the carbon nanotube manufacturing method of the present embodiment, as in the first embodiment, an electric field is generated in the vicinity of each catalytic metal portion 4, 4 on the insulating layer 2 on the one surface of the semiconductor substrate 1. The carbon nanotubes can be grown in a desired direction within a plane parallel to the one surface of the semiconductor substrate 1 without providing the metal electrodes 13 and 13 (see FIGS. 9 and 10). In addition, a depletion layer is formed between the high-concentration impurity diffusion layers 3a and 3b when a voltage is applied between the pair of high-concentration impurity diffusion layers 3a and 3b via the current-carrying wirings 14 and 14. By providing the relaxation region 6, the electric field does not concentrate near the high concentration impurity diffusion layers 3 a and 3 b in the semiconductor substrate 1 and spreads between the high concentration impurity diffusion layers 3 a and 3 b (that is, the surface electric field of the semiconductor substrate 1). Since the electric field concentration in the vicinity of each of the pair of catalyst metal parts 4 and 4 is relaxed, the carbon between the catalyst metal parts 4 and 4 in the state of electric field distribution in which the electric field concentration is relaxed is reduced. The nanotube 5 is grown, and the carbon nanotube 5 in a desired direction can be stably grown between the pair of catalytic metal parts 4 and 4 (the controllability of the growth direction of the carbon nanotube 5 is improved). .

(実施形態3)
本実施形態のカーボンナノチューブの製造方法は基本的には実施形態2の製造方法と同じであり、図3(a),(b)に示すように、電界緩和領域6の形成にあたっては、半導体基板1において対となる高濃度不純物拡散層3a,3b間の部位に電界緩和領域6を複数形成する点が相違するだけであり、他の工程は実施形態2と同じである。すなわち、本実施形態では、対となる高濃度不純物拡散層3a,3bの離間方向(図3(a),(b)における左右方向であって、電界のかかる方向)における電界緩和領域6の幅を実施形態2よりも小さくし、対となる高濃度不純物拡散層3a,3bの間に、複数の電界緩和領域6を上記離間方向に所定間隔ずつ離して形成している点が実施形態2と相違するだけである。
(Embodiment 3)
The manufacturing method of the carbon nanotube of the present embodiment is basically the same as the manufacturing method of the second embodiment. As shown in FIGS. 3A and 3B, in forming the electric field relaxation region 6, a semiconductor substrate is used. The only difference is that a plurality of electric field relaxation regions 6 are formed in a portion between the pair of high-concentration impurity diffusion layers 3a and 3b in FIG. 1, and the other steps are the same as those in the second embodiment. That is, in the present embodiment, the width of the electric field relaxation region 6 in the separating direction of the paired high-concentration impurity diffusion layers 3a and 3b (the horizontal direction in FIGS. 3A and 3B and the electric field application direction). Is smaller than that of the second embodiment, and a plurality of electric field relaxation regions 6 are formed at predetermined intervals in the separation direction between the paired high-concentration impurity diffusion layers 3a and 3b. Only the difference.

しかして、本実施形態のカーボンナノチューブの製造方法によれば、実施形態1と同様に、半導体基板1の上記一表面上の絶縁層2上における各触媒金属部4,4の近傍に電界発生用の金属電極13,13(図9および図10参照)を設けることなしに半導体基板1の上記一表面に平行な面内で所望の方向にカーボンナノチューブを成長させることが可能となる。また、実施形態2の製造方法に比べて、半導体基板1の表面電界をより効果的に緩和でき、対となる触媒金属部4,4間の電界をより効果的に緩和することができ、カーボンナノチューブ5の成長方向の制御性がより向上する。   Thus, according to the carbon nanotube manufacturing method of the present embodiment, as in the first embodiment, an electric field is generated in the vicinity of each catalytic metal portion 4, 4 on the insulating layer 2 on the one surface of the semiconductor substrate 1. The carbon nanotubes can be grown in a desired direction within a plane parallel to the one surface of the semiconductor substrate 1 without providing the metal electrodes 13 and 13 (see FIGS. 9 and 10). Further, compared with the manufacturing method of the second embodiment, the surface electric field of the semiconductor substrate 1 can be more effectively relaxed, and the electric field between the pair of catalyst metal parts 4 and 4 can be more effectively mitigated. Controllability of the growth direction of the nanotube 5 is further improved.

(実施形態4)
本実施形態のカーボンナノチューブの製造方法は基本的には実施形態2の製造方法と同じであり、図4(a),(b)に示すように、電界緩和領域6の形成にあたって、上記他方の高濃度不純物拡散層3b側から上記一方の高濃度不純物拡散層3a側に向かって不純物濃度が低くなる電界緩和領域6を形成する点が相違するだけであり、他の工程は実施形態2と同じである。ここにおいて、本実施形態では、不純物濃度を段階的に変化させた2つの低濃度不純物領域6a,6bにより電界緩和領域6を構成しており、上記他方の高濃度不純物拡散層3bに近い側の低濃度不純物領域6aの不純物濃度よりも上記一方の高濃度不純物拡散層3aに近い側の低濃度不純物領域6bの不純物濃度の方が低くなっている。なお、本実施形態では、電界緩和領域6を2つの低濃度不純物領域6a,6bにより構成しているが、不純物濃度を段階的に変化させた3つ以上の低濃度不純物領域により構成してもよい。
(Embodiment 4)
The manufacturing method of the carbon nanotube of the present embodiment is basically the same as the manufacturing method of the second embodiment. As shown in FIGS. 4A and 4B, when the electric field relaxation region 6 is formed, the other method is used. The only difference is that the electric field relaxation region 6 in which the impurity concentration decreases from the high concentration impurity diffusion layer 3b side toward the one high concentration impurity diffusion layer 3a side, and the other steps are the same as in the second embodiment. It is. Here, in the present embodiment, the electric field relaxation region 6 is constituted by two low concentration impurity regions 6a and 6b whose impurity concentrations are changed stepwise, and the side closer to the other high concentration impurity diffusion layer 3b. The impurity concentration of the low concentration impurity region 6b closer to the one high concentration impurity diffusion layer 3a is lower than the impurity concentration of the low concentration impurity region 6a. In the present embodiment, the electric field relaxation region 6 is composed of two low concentration impurity regions 6a and 6b, but may be composed of three or more low concentration impurity regions whose impurity concentration is changed stepwise. Good.

しかして、本実施形態のカーボンナノチューブの製造方法によれば、実施形態1と同様に、半導体基板1の上記一表面上の絶縁層2上における各触媒金属部4,4の近傍に電界発生用の金属電極13,13(図9および図10参照)を設けることなしに半導体基板1の上記一表面に平行な面内で所望の方向にカーボンナノチューブを成長させることが可能となる。また、実施形態2の製造方法に比べて、半導体基板1の表面電界をより効果的に緩和でき、対となる触媒金属部4,4間の電界をより効果的に緩和することができ、カーボンナノチューブ5の成長方向の制御性がより向上する。   Thus, according to the carbon nanotube manufacturing method of the present embodiment, as in the first embodiment, an electric field is generated in the vicinity of each catalytic metal portion 4, 4 on the insulating layer 2 on the one surface of the semiconductor substrate 1. The carbon nanotubes can be grown in a desired direction within a plane parallel to the one surface of the semiconductor substrate 1 without providing the metal electrodes 13 and 13 (see FIGS. 9 and 10). Further, compared with the manufacturing method of the second embodiment, the surface electric field of the semiconductor substrate 1 can be more effectively relaxed, and the electric field between the pair of catalyst metal parts 4 and 4 can be more effectively mitigated. Controllability of the growth direction of the nanotube 5 is further improved.

(実施形態5)
以下、本実施形態のカーボンナノチューブの製造方法について図5(a),(b)を参照しながら説明するが、実施形態1と同様の工程については説明を適宜省略する。
(Embodiment 5)
Hereinafter, the carbon nanotube manufacturing method of the present embodiment will be described with reference to FIGS. 5A and 5B, but description of the same steps as those of Embodiment 1 will be omitted as appropriate.

シリコン基板からなる半導体基板1の一表面(図5(b)における上面)上のSiO膜からなる絶縁層2上において互いに離間して形成された対となる触媒金属部4,4間にカーボンナノチューブ5を成長させるにあたって、まず、対となる触媒金属部4,4の形成前に、半導体基板1の上記一表面側であって且つ絶縁層2の表面よりも半導体基板1側に対となる触媒金属部4,4間への電界発生用の抵抗部7を形成する。ここにおいて、本実施形態では、抵抗部7をポリシリコン層により構成しており、絶縁層2中に抵抗部7を埋設している。具体的には、絶縁層2の一部を構成するSiO膜からなる第1の絶縁膜2aを半導体基板1の上記一表面上に例えばCVD法などによって形成した後、ポリシリコン層をCVD法などによって形成し、当該ポリシリコン層をリソグラフィ技術およびエッチング技術によってパターニングすることで抵抗部7を形成してから、第1の絶縁膜2aおよび抵抗部7の露出部位を覆うようにSiO膜からなる第2の絶縁膜2bを例えばCVD法などによって形成することで、第1の絶縁膜2aと第2の絶縁膜2bとで構成される絶縁層2中に抵抗部7を埋設すればよい。なお、後で形成する対となる触媒金属部4,4の並設方向における抵抗部7の長さ寸法は触媒金属部4,4間の距離よりも大きく、対となる触媒金属部4,4の互いの対向面とは反対側の側面間(図5(a),(b)における左側の触媒金属部4の左側面と右側の触媒金属部4の右側面との間)の距離よりも大きく設定してある。 Carbon is formed between the pair of catalytic metal parts 4 and 4 formed on the insulating layer 2 made of the SiO 2 film on one surface of the semiconductor substrate 1 made of a silicon substrate (upper surface in FIG. 5B). When growing the nanotubes 5, first, before the formation of the pair of catalyst metal parts 4, 4, the semiconductor substrate 1 is paired on the one surface side of the semiconductor substrate 1 and on the semiconductor substrate 1 side of the surface of the insulating layer 2. A resistance portion 7 for generating an electric field between the catalytic metal portions 4 and 4 is formed. Here, in the present embodiment, the resistance portion 7 is formed of a polysilicon layer, and the resistance portion 7 is embedded in the insulating layer 2. Specifically, a first insulating film 2a made of a SiO 2 film constituting a part of the insulating layer 2 is formed on the one surface of the semiconductor substrate 1 by, for example, the CVD method, and then the polysilicon layer is formed by the CVD method. After forming the resistance portion 7 by patterning the polysilicon layer by lithography technique and etching technique, the SiO 2 film is formed so as to cover the exposed portion of the first insulating film 2a and the resistance portion 7. By forming the second insulating film 2b to be formed by, for example, a CVD method or the like, the resistance portion 7 may be embedded in the insulating layer 2 constituted by the first insulating film 2a and the second insulating film 2b. In addition, the length dimension of the resistance part 7 in the juxtaposition direction of the pair of catalyst metal parts 4 and 4 to be formed later is larger than the distance between the catalyst metal parts 4 and 4, and the pair of catalyst metal parts 4 and 4 Than the distance between the opposite side surfaces of each other (between the left side surface of the left catalyst metal portion 4 and the right side surface of the right catalyst metal portion 4 in FIGS. 5A and 5B). Largely set.

続いて、絶縁層2上に対となる触媒金属部4,4を所定距離(後で成長させるカーボンナノチューブの所望の長さ寸法)だけ離間して互いの対向面が平行となる形状で形成する。   Subsequently, a pair of catalytic metal portions 4 and 4 are formed on the insulating layer 2 so as to be spaced apart by a predetermined distance (a desired length dimension of carbon nanotubes to be grown later) and their opposing surfaces are parallel to each other. .

対となる触媒金属部4,4の形成後に、抵抗部7の両端部(図5(a)における左右両端部)それぞれに電気的に接続される通電用の配線14,14を形成してから、配線14,14を介して抵抗部7の両端間に所定の電圧(直流電圧)を印加することで対となる触媒金属部4,4間に電界を発生させ且つ絶縁層2の表面側に炭素を含む原料ガス(例えば、炭化水素を含むCガス、Cガス、CHガスなど)を供給して例えばCVD法によって対となる触媒金属部4,4間にカーボンナノチューブ5を成長させる(対となる触媒金属部4,4の一方の触媒金属部4から他方の触媒金属部4へ向かってカーボンナノチューブ5を成長させる)。ここにおいて、抵抗部7の両端間に電圧を印加することによって、第2の絶縁膜2bを介して、対となる触媒金属部4,4間には均一な電界分布が生じる。 After the formation of the pair of catalytic metal parts 4 and 4, the energization wirings 14 and 14 are formed that are electrically connected to both ends of the resistance part 7 (both left and right ends in FIG. 5A). By applying a predetermined voltage (DC voltage) between both ends of the resistance portion 7 through the wirings 14 and 14, an electric field is generated between the pair of catalyst metal portions 4 and 4, and on the surface side of the insulating layer 2 A source gas containing carbon (for example, C 2 H 2 gas containing hydrocarbon, C 2 H 4 gas, CH 4 gas, etc.) is supplied, and carbon nanotubes are formed between the catalytic metal parts 4 and 4 paired by, for example, the CVD method. 5 is grown (the carbon nanotube 5 is grown from one catalyst metal portion 4 of the pair of catalyst metal portions 4 and 4 toward the other catalyst metal portion 4). Here, by applying a voltage between both ends of the resistance portion 7, a uniform electric field distribution is generated between the pair of catalytic metal portions 4 and 4 via the second insulating film 2b.

なお、カーボンナノチューブ応用デバイスとして例えば半導体圧力センサや半導体加速度センサなどの半導体物理量センサを想定し、当該半導体物理量センサの製造プロセスを考えた場合には、マイクロマシンニング技術などによって半導体基板1を所定形状の構造体(半導体圧力センサであれば、ダイヤフラム部を有する構造体、半導体加速度センサであれば、支持部に撓み部を介して支持された重り部を有する構造体)に加工した後、上述のカーボンナノチューブの製造方法を採用してカーボンナノチューブ5を製造し、その後、絶縁層2の表面側に絶縁膜を形成してから、カーボンナノチューブ5に電気的に接続されブリッジ回路などの回路パターンを構成する金属配線15,15を形成すればよい。   When a semiconductor physical quantity sensor such as a semiconductor pressure sensor or a semiconductor acceleration sensor is assumed as a carbon nanotube application device and a manufacturing process of the semiconductor physical quantity sensor is considered, the semiconductor substrate 1 is formed into a predetermined shape by a micromachining technique or the like. After processing into a structure (a structure having a diaphragm if a semiconductor pressure sensor, or a weight having a weight supported by a supporting part via a flexible part if a semiconductor acceleration sensor), the above-mentioned carbon A carbon nanotube 5 is manufactured by adopting a nanotube manufacturing method, and after that, an insulating film is formed on the surface side of the insulating layer 2 and then electrically connected to the carbon nanotube 5 to form a circuit pattern such as a bridge circuit. Metal wirings 15 and 15 may be formed.

以上説明したカーボンナノチューブの製造方法によれば、カーボンナノチューブ5を成長させる際、半導体基板1の上記一表面側であって且つ絶縁層2の表面よりも半導体基板1側に設けた抵抗部7の両端間に所定の電圧を印加することにより対となる触媒金属部4,4間に均一な電界分布を発生させることができ、対となる触媒金属部4,4間に対となる触媒金属部4,4の並設方向を長手方向とするカーボンナノチューブ5を成長させることができるので、半導体基板1の上記一表面上の絶縁層2上における各触媒金属部4,4の近傍に電界発生用の金属電極13,13(図9および図10参照)を設けることなしに半導体基板1の上記一表面に平行な面内で所望の方向にカーボンナノチューブを成長させることが可能となる(図5(a)の左右方向を長手方向とするカーボンナノチューブ5を成長させることが可能となる)。したがって、抵抗部7および抵抗部7の両端部それぞれと電気的に接続される通電用の配線のパターンを適宜設計することにより、カーボンナノチューブの製造に際して必要な構成要素がカーボンナノチューブ応用デバイスの回路パターンを形成する金属配線へ影響を与えるのを防止することができるとともに、1枚のウェハに多数のカーボンナノチューブ応用デバイスを製造するような場合のカーボンナノチューブの製造方法として適用可能となる。   According to the carbon nanotube manufacturing method described above, when the carbon nanotube 5 is grown, the resistance portion 7 provided on the one surface side of the semiconductor substrate 1 and closer to the semiconductor substrate 1 than the surface of the insulating layer 2 is used. By applying a predetermined voltage between both ends, a uniform electric field distribution can be generated between the pair of catalyst metal portions 4 and 4, and the pair of catalyst metal portions 4 and 4 forms a pair of catalyst metal portions. Since carbon nanotubes 5 having the longitudinal direction of 4 and 4 as the longitudinal direction can be grown, an electric field is generated in the vicinity of each catalytic metal portion 4 and 4 on the insulating layer 2 on the one surface of the semiconductor substrate 1. The carbon nanotubes can be grown in a desired direction in a plane parallel to the one surface of the semiconductor substrate 1 without providing the metal electrodes 13 and 13 (see FIGS. 9 and 10) (FIG. 5 ( a The left-right direction and it is possible to grow the carbon nanotubes 5 whose longitudinal direction). Therefore, by appropriately designing the resistance part 7 and the pattern of the current-carrying wiring that is electrically connected to both ends of the resistance part 7, the necessary components for the production of the carbon nanotubes are the circuit pattern of the carbon nanotube application device. It is possible to prevent the influence on the metal wiring forming the carbon nanotubes, and it can be applied as a carbon nanotube manufacturing method in the case where a large number of carbon nanotube applied devices are manufactured on one wafer.

また、抵抗部7を形成するにあたっては、絶縁層2中に埋設されるポリシリコン層からなる抵抗部7を形成するようにしているので、抵抗部7を一般的な半導体製造プロセスにより簡単に形成することができる。また、図9や図10を参照しながら説明した従来のカーボンナノチューブの製造方法では、対となる金属電極13,13の形状と対となる金属電極13,13間に印加する電圧の電圧値とで対となる触媒金属部4,4間の電界分布や電位勾配が決定されるが、本実施形態のカーボンナノチューブの製造方法では、抵抗部7の不純物濃度やサイズを適宜変更することにより、対となる触媒金属部4,4間に発生する電界分布や電位勾配などのより細かな制御が可能となる。ここに、抵抗部7の不純物濃度を変更するには、ポリシリコン層の成膜時の条件を変更してもよいし、ポリシリコン層の成膜後にイオン注入を行うようにしてドーズ量を変更するようにしてもよい。   In forming the resistance portion 7, the resistance portion 7 made of a polysilicon layer embedded in the insulating layer 2 is formed. Therefore, the resistance portion 7 is easily formed by a general semiconductor manufacturing process. can do. In the conventional carbon nanotube manufacturing method described with reference to FIGS. 9 and 10, the shape of the pair of metal electrodes 13, 13 and the voltage value of the voltage applied between the pair of metal electrodes 13, 13 are as follows. The electric field distribution and potential gradient between the paired catalytic metal parts 4 and 4 are determined. However, in the method of manufacturing the carbon nanotube of this embodiment, the impurity concentration and size of the resistance part 7 can be changed as appropriate. Finer control of the electric field distribution and potential gradient generated between the catalytic metal parts 4 and 4 becomes possible. Here, in order to change the impurity concentration of the resistance portion 7, the conditions at the time of forming the polysilicon layer may be changed, or the dose amount is changed by performing ion implantation after forming the polysilicon layer. You may make it do.

なお、本実施形態では、半導体基板1として導電形がn形(n)のシリコン基板を用いているが、半導体基板1として導電形がp形(p)のシリコン基板を用いてもよい。 In the present embodiment, an n-type (n ) silicon substrate is used as the semiconductor substrate 1, but a p-type (p ) silicon substrate may be used as the semiconductor substrate 1. .

(実施形態6)
本実施形態のカーボンナノチューブの製造方法は実施形態5と略同じであり、実施形態5では、抵抗部7をポリシリコン層により構成して絶縁層2中に埋設していたのに対して、本実施形態では、図6(a),(b)に示すように、抵抗部7を拡散抵抗層により構成し半導体基板1内に形成している点に特徴がある。
(Embodiment 6)
The carbon nanotube manufacturing method of the present embodiment is substantially the same as that of the fifth embodiment. In the fifth embodiment, the resistance portion 7 is formed of a polysilicon layer and embedded in the insulating layer 2. As shown in FIGS. 6A and 6B, the embodiment is characterized in that the resistance portion 7 is formed of a diffused resistance layer and is formed in the semiconductor substrate 1.

すなわち、本実施形態のカーボンナノチューブの製造方法では、対となる触媒金属部4,4の形成前に、半導体基板1の上記一表面側に半導体基板1とは異なる導電形の抵抗拡散層からなる抵抗部7を形成してから、半導体基板1の上記一表面上に抵抗部7の両端部それぞれと電気的に接続されるコンタクト電極18,18を形成し、その後、半導体基板1の上記一表面側にSiO膜からなる絶縁層2を例えばCVD法などによって形成する。絶縁層2を形成した後の工程は実施形態5と同様である。 That is, in the carbon nanotube manufacturing method of the present embodiment, a resistance diffusion layer having a conductivity type different from that of the semiconductor substrate 1 is formed on the one surface side of the semiconductor substrate 1 before the formation of the pair of catalytic metal portions 4 and 4. After forming the resistance portion 7, contact electrodes 18 and 18 electrically connected to both ends of the resistance portion 7 are formed on the one surface of the semiconductor substrate 1, and then the one surface of the semiconductor substrate 1 is formed. An insulating layer 2 made of a SiO 2 film is formed on the side by, for example, a CVD method. The process after forming the insulating layer 2 is the same as that of the fifth embodiment.

しかして、本実施形態のカーボンナノチューブの製造方法によれば、カーボンナノチューブ5を成長させる際、半導体基板1の上記一表面側であって且つ絶縁層2の表面よりも半導体基板1側に設けた抵抗部7の両端間にコンタクト電極18,18を介して所定の電圧を印加することにより対となる触媒金属部4,4間に均一な電界分布を発生させることができ、対となる触媒金属部4,4間に対となる触媒金属部4,4の並設方向を長手方向とするカーボンナノチューブ5を成長させることができるので、半導体基板1の上記一表面上の絶縁層2上における各触媒金属部4,4の近傍に電界発生用の金属電極13,13(図9および図10参照)を設けることなしに半導体基板1の上記一表面に平行な面内で所望の方向にカーボンナノチューブを成長させることが可能となる。したがって、抵抗部7およびコンタクト電極18,18それぞれと電気的に接続される通電用の配線(図示せず)のパターンを適宜設計することにより、カーボンナノチューブの製造に際して必要な構成要素がカーボンナノチューブ応用デバイスの回路パターンを形成する金属配線15,15へ影響を与えるのを防止することができるとともに、1枚のウェハに多数のカーボンナノチューブ応用デバイスを製造するような場合のカーボンナノチューブの製造方法として適用可能となる。また、抵抗部7を形成するにあたっては、拡散抵抗層からなる抵抗部7を形成するようにしているので、抵抗部7を一般的な半導体製造プロセスにより簡単に形成することができる。また、図9や図10を参照しながら説明した従来のカーボンナノチューブの製造方法では、対となる金属電極13,13の形状と対となる金属電極13,13間に印加する電圧の電圧値とで対となる触媒金属部4,4間の電界分布や電位勾配が決定されるが、本実施形態のカーボンナノチューブの製造方法では、イオン注入を利用して形成する抵抗部7の不純物濃度やサイズを適宜変更することにより、対となる触媒金属部4,4間に発生する電界分布や電位勾配などのより細かな制御が可能となる。   Thus, according to the carbon nanotube manufacturing method of the present embodiment, when the carbon nanotube 5 is grown, the carbon nanotube 5 is provided on the one surface side of the semiconductor substrate 1 and closer to the semiconductor substrate 1 than the surface of the insulating layer 2. By applying a predetermined voltage across the resistance portion 7 via the contact electrodes 18 and 18, a uniform electric field distribution can be generated between the pair of catalyst metal portions 4 and 4, and the pair of catalyst metals. Since the carbon nanotubes 5 having the longitudinal direction of the parallel arrangement of the catalytic metal parts 4, 4 between the parts 4, 4 can be grown, each of the insulating layers 2 on the one surface of the semiconductor substrate 1 can be grown. Without providing the metal electrodes 13 and 13 (see FIGS. 9 and 10) for generating an electric field in the vicinity of the catalytic metal portions 4 and 4, carbon nano-wires in a desired direction within a plane parallel to the one surface of the semiconductor substrate 1 are provided. Chu It becomes possible to grow the drive. Therefore, by appropriately designing the pattern of current-carrying wiring (not shown) that is electrically connected to each of the resistance portion 7 and the contact electrodes 18 and 18, the constituent elements necessary for manufacturing the carbon nanotubes can be applied to the carbon nanotubes. It is possible to prevent the metal wirings 15 and 15 forming the circuit pattern of the device from being affected, and to apply as a carbon nanotube manufacturing method in the case where a large number of carbon nanotube applied devices are manufactured on one wafer. It becomes possible. In forming the resistance portion 7, the resistance portion 7 made of a diffused resistance layer is formed. Therefore, the resistance portion 7 can be easily formed by a general semiconductor manufacturing process. In the conventional carbon nanotube manufacturing method described with reference to FIGS. 9 and 10, the shape of the pair of metal electrodes 13, 13 and the voltage value of the voltage applied between the pair of metal electrodes 13, 13 are as follows. The electric field distribution and potential gradient between the paired catalyst metal parts 4 and 4 are determined. In the carbon nanotube manufacturing method of this embodiment, the impurity concentration and size of the resistor part 7 formed by ion implantation are used. By appropriately changing, finer control of the electric field distribution and potential gradient generated between the pair of catalytic metal parts 4 and 4 becomes possible.

なお、本実施形態では、半導体基板1の導電形をn形(n)とし、抵抗部7を構成する拡散抵抗層の導電形をp形(p)としてあるが、半導体基板1の導電形をp形(p)とし、拡散抵抗層の導電形をn形(n)としてもよい。 In the present embodiment, the conductivity type of the semiconductor substrate 1 is n-type (n ), and the conductivity type of the diffusion resistance layer constituting the resistance portion 7 is p-type (p ). The shape may be p-type (p ), and the conductivity type of the diffusion resistance layer may be n-type (n ).

(実施形態7)
以下、本実施形態のカーボンナノチューブの製造方法について図7(a),(b)を参照しながら説明するが、実施形態1と同様の工程については説明を適宜省略する。
(Embodiment 7)
Hereinafter, the carbon nanotube manufacturing method of the present embodiment will be described with reference to FIGS. 7A and 7B, but description of the same steps as those of Embodiment 1 will be omitted as appropriate.

n形(n)のシリコン基板からなる半導体基板1の一表面(図7(b)における上面)上のSiO膜からなる絶縁層2上において互いに離間して形成された対となる触媒金属部4,4間にカーボンナノチューブ5を成長させるにあたって、まず、対となる触媒金属部4,4の形成前に、絶縁層2中に対となる触媒金属部4,4間への電界発生用の容量素子8を形成する。ここにおいて、本実施形態では、容量素子8を、絶縁層2中に埋設された対となる電極8a,8aと絶縁層2のうち対となる電極8a,8a間に介在する部分とで構成される容量要素(コンデンサ)の直列回路により構成しており、具体的には、絶縁層2の一部を構成するSiO膜からなる第1の絶縁膜2aを半導体基板1の上記一表面上に例えばCVD法などによって形成した後、ポリシリコン層をCVD法などによって形成し、当該ポリシリコン層をリソグラフィ技術およびエッチング技術によってパターニングすることで多数の電極8aを形成してから、第1の絶縁膜2aおよび各電極8aの露出部位を覆うようにSiO膜からなる第2の絶縁膜2bを例えばCVD法などによって形成することで、第1の絶縁膜2aと第2の絶縁膜2bとで構成される絶縁層2中に容量素子8を埋設すればよい。 Paired catalytic metals formed on the insulating layer 2 made of SiO 2 film on one surface of the semiconductor substrate 1 made of an n-type (n ) silicon substrate (upper surface in FIG. 7B). When growing the carbon nanotube 5 between the portions 4 and 4, first, an electric field is generated between the pair of catalyst metal portions 4 and 4 in the insulating layer 2 before the formation of the pair of catalyst metal portions 4 and 4. The capacitive element 8 is formed. Here, in the present embodiment, the capacitive element 8 is composed of a pair of electrodes 8a and 8a embedded in the insulating layer 2 and a portion of the insulating layer 2 interposed between the pair of electrodes 8a and 8a. Specifically, a first insulating film 2 a made of SiO 2 film constituting a part of the insulating layer 2 is formed on the one surface of the semiconductor substrate 1. For example, after forming by a CVD method or the like, a polysilicon layer is formed by a CVD method or the like, and the polysilicon layer is patterned by a lithography technique and an etching technique to form a large number of electrodes 8a, and then the first insulating film the 2a and the second insulating film 2b made of SiO 2 film to cover the exposed portion of each electrode 8a by forming for example, by a CVD method, a first insulating film 2a and the second insulation The insulating layer 2 composed of the film 2b may be embedded in the capacitor 8.

続いて、絶縁層2上に対となる触媒金属部4,4を所定距離(後で成長させるカーボンナノチューブの所望の長さ寸法)だけ離間して互いの対向面が平行となる形状で形成する。   Subsequently, a pair of catalytic metal portions 4 and 4 are formed on the insulating layer 2 so as to be spaced apart by a predetermined distance (a desired length dimension of carbon nanotubes to be grown later) and their opposing surfaces are parallel to each other. .

対となる触媒金属部4,4の形成後に、容量素子8の両端部(図7(a),(b)における左右両端の電極8a,8a)それぞれに電気的に接続される通電用の配線14,14を形成してから、配線14,14を介して容量素子8の両端間に所定の電圧(直流電圧)を印加することで対となる触媒金属部4,4間に電界を発生させ且つ絶縁層2の表面側に炭素を含む原料ガス(例えば、炭化水素を含むCガス、Cガス、CHガスなど)を供給して例えばCVD法によって対となる触媒金属部4,4間にカーボンナノチューブ5を成長させる(対となる触媒金属部4,4の一方の触媒金属部4から他方の触媒金属部4へ向かってカーボンナノチューブ5を成長させる)。ここにおいて、容量素子8の両端間に電圧を印加することによって、第2の絶縁膜2bを介して、対となる触媒金属部4,4間には均一な電界分布が生じる。 After the formation of the pair of catalytic metal parts 4 and 4, current-carrying wirings that are electrically connected to both ends of the capacitive element 8 (left and right electrodes 8a and 8a in FIGS. 7A and 7B), respectively. 14 and 14, and a predetermined voltage (DC voltage) is applied across the capacitor element 8 via the wirings 14 and 14 to generate an electric field between the pair of catalyst metal parts 4 and 4. Further, a source metal gas containing carbon (for example, C 2 H 2 gas containing hydrocarbon, C 2 H 4 gas, CH 4 gas, etc.) is supplied to the surface side of the insulating layer 2 to form a catalyst metal that is paired by, for example, a CVD method The carbon nanotubes 5 are grown between the parts 4 and 4 (the carbon nanotubes 5 are grown from one catalyst metal part 4 of the pair of catalyst metal parts 4 and 4 toward the other catalyst metal part 4). Here, by applying a voltage between both ends of the capacitive element 8, a uniform electric field distribution is generated between the pair of catalytic metal portions 4 and 4 via the second insulating film 2b.

なお、カーボンナノチューブ応用デバイスとして例えば半導体圧力センサや半導体加速度センサなどの半導体物理量センサを想定し、当該半導体物理量センサの製造プロセスを考えた場合には、マイクロマシンニング技術などによって半導体基板1を所定形状の構造体(半導体圧力センサであれば、ダイヤフラム部を有する構造体、半導体加速度センサであれば、支持部に撓み部を介して支持された重り部を有する構造体)に加工した後、上述のカーボンナノチューブの製造方法を採用してカーボンナノチューブ5を製造し、その後、絶縁層2の表面側に絶縁膜を形成してから、カーボンナノチューブ5に電気的に接続されブリッジ回路などの回路パターンを構成する金属配線15,15を形成すればよい。   When a semiconductor physical quantity sensor such as a semiconductor pressure sensor or a semiconductor acceleration sensor is assumed as a carbon nanotube application device and a manufacturing process of the semiconductor physical quantity sensor is considered, the semiconductor substrate 1 is formed into a predetermined shape by a micromachining technique or the like. After processing into a structure (a structure having a diaphragm if a semiconductor pressure sensor, or a weight having a weight supported by a supporting part via a flexible part if a semiconductor acceleration sensor), the above-mentioned carbon A carbon nanotube 5 is manufactured by adopting a nanotube manufacturing method, and after that, an insulating film is formed on the surface side of the insulating layer 2 and then electrically connected to the carbon nanotube 5 to form a circuit pattern such as a bridge circuit. Metal wirings 15 and 15 may be formed.

以上説明したカーボンナノチューブの製造方法によれば、カーボンナノチューブ5を成長させる際、半導体基板1の上記一表面側であって且つ絶縁層2の表面よりも半導体基板1側に設けた容量素子8の両端間に所定の電圧を印加することにより対となる触媒金属部4,4間に均一な電界分布を発生させることができ、対となる触媒金属部4,4間に対となる触媒金属部4,4の並設方向を長手方向とするカーボンナノチューブ5を成長させることができるので、半導体基板1の上記一表面上の絶縁層2上における各触媒金属部4,4の近傍に電界発生用の金属電極13,13(図9および図10参照)を設けることなしに半導体基板1の上記一表面に平行な面内で所望の方向にカーボンナノチューブを成長させることが可能となる。したがって、容量素子8および容量素子8の両端部それぞれと電気的に接続される通電用の配線14,14のパターンを適宜設計することにより、カーボンナノチューブの製造に際して必要な構成要素がカーボンナノチューブ応用デバイスの回路パターンを形成する金属配線15,15へ影響を与えるのを防止することができるとともに、1枚のウェハに多数のカーボンナノチューブ応用デバイスを製造するような場合のカーボンナノチューブの製造方法として適用可能となる。   According to the carbon nanotube manufacturing method described above, when the carbon nanotube 5 is grown, the capacitance element 8 provided on the semiconductor substrate 1 side of the semiconductor substrate 1 and on the one surface side of the semiconductor substrate 1. By applying a predetermined voltage between both ends, a uniform electric field distribution can be generated between the pair of catalyst metal portions 4 and 4, and the pair of catalyst metal portions 4 and 4 forms a pair of catalyst metal portions. Since carbon nanotubes 5 having the longitudinal direction of 4 and 4 as the longitudinal direction can be grown, an electric field is generated in the vicinity of each catalytic metal portion 4 and 4 on the insulating layer 2 on the one surface of the semiconductor substrate 1. The carbon nanotubes can be grown in a desired direction within a plane parallel to the one surface of the semiconductor substrate 1 without providing the metal electrodes 13 and 13 (see FIGS. 9 and 10). Therefore, by appropriately designing the pattern of the energizing wires 14 and 14 that are electrically connected to the capacitive element 8 and both ends of the capacitive element 8, the constituent elements necessary for the production of the carbon nanotube are the carbon nanotube application devices. It is possible to prevent the metal wirings 15 and 15 forming the circuit pattern from being affected and to be applied as a carbon nanotube manufacturing method in the case where a large number of carbon nanotube applied devices are manufactured on one wafer. It becomes.

また、図9や図10を参照しながら説明した従来のカーボンナノチューブの製造方法では、対となる金属電極13,13の形状と対となる金属電極13,13間に印加する電圧の電圧値とで対となる触媒金属部4,4間の電界分布や電位勾配が決定されるが、本実施形態のカーボンナノチューブの製造方法では、容量素子8において対となる電極8a,8a間の間隔や対向面積、絶縁層2の材料(第2の絶縁膜2bの材料)を適宜変更することにより、容量素子8の容量値を変更することができて、対となる触媒金属部4,4間に発生する電界分布や電位勾配などのより細かな制御が可能となる。ここにおいて、図7(a),(b)では、容量素子8において対となる電極8a,8aを対となる触媒金属部4,4の並設方向に離間して形成しているが、図8(a),(b)に示すように、絶縁層2中に複数(図示例では、9つ)の電極8aを千鳥状に配列されるように形成し、互いの横方向ではなく斜め方向に位置する電極8a,8aの対と、絶縁層2のうち対となる電極8a,8a間に介在する部分とで容量要素を構成するようにしてもよい。   In the conventional carbon nanotube manufacturing method described with reference to FIGS. 9 and 10, the shape of the pair of metal electrodes 13, 13 and the voltage value of the voltage applied between the pair of metal electrodes 13, 13 are as follows. The electric field distribution and the potential gradient between the paired catalytic metal parts 4 and 4 are determined. However, in the carbon nanotube manufacturing method of this embodiment, the distance between the paired electrodes 8a and 8a in the capacitive element 8 By appropriately changing the area and the material of the insulating layer 2 (the material of the second insulating film 2b), the capacitance value of the capacitive element 8 can be changed and generated between the pair of catalytic metal parts 4 and 4 Finer control of the electric field distribution and potential gradient is possible. Here, in FIGS. 7A and 7B, the electrodes 8a and 8a that form a pair in the capacitive element 8 are formed apart from each other in the direction in which the catalyst metal parts 4 and 4 form a pair. 8 (a) and 8 (b), a plurality (nine in the illustrated example) of electrodes 8a are formed in the insulating layer 2 so as to be arranged in a staggered manner, and not in a lateral direction but in an oblique direction. A capacitive element may be configured by the pair of electrodes 8a and 8a positioned at the portion and the portion of the insulating layer 2 interposed between the pair of electrodes 8a and 8a.

ところで、上記各実施形態では、絶縁層2の材料をSiOとしてあるが、対となる触媒金属部4,4間に発生させる電界の所望の強度に応じて絶縁層2の材料を、SiO、Si、Ta、ZnOの群から選択するようにしてもよい。要するに、絶縁層2の材料を、それぞれ誘電率が異なるSiO、Si、Ta、ZnOの群から選択することにより、対となる触媒金属部4,4間に発生させる電界の強度や分布を制御することができる。 Incidentally, the above-described embodiments, the insulating layer 2 material are as SiO 2, the material of the insulating layer 2 depending on the desired intensity of the electric field generated between the catalytic metal part 4, 4 to be paired, SiO 2 , Si 3 N 4 , Ta 2 O 5 , ZnO 2 may be selected. In short, the material of the insulating layer 2 is generated between the pair of catalytic metal parts 4 and 4 by selecting from the group of SiO 2 , Si 3 N 4 , Ta 2 O 5 and ZnO 2 having different dielectric constants. The intensity and distribution of the electric field can be controlled.

なお、上記各実施形態で説明したカーボンナノチューブの製造方法は、上述の半導体物理量センサに限らず、絶縁層2の一表面に平行な面内で長手方向を所望の方向に一致させる必要のある種々のカーボンナノチューブ応用デバイスの製造方法に適用できる。また、上記各実施形態では、半導体基板1としてシリコン基板を用いているが、半導体基板1はカーボンナノチューブ応用デバイスの仕様に応じて適宜選定すればよく、シリコン基板以外の半導体基板(例えば、GaAs基板、InP基板、SiC基板、所謂SOI基板など)を用いてもよい。   Note that the carbon nanotube manufacturing method described in each of the above embodiments is not limited to the above-described semiconductor physical quantity sensor, and various methods that require the longitudinal direction to coincide with a desired direction in a plane parallel to one surface of the insulating layer 2. It can apply to the manufacturing method of carbon nanotube applied device. In each of the above embodiments, a silicon substrate is used as the semiconductor substrate 1, but the semiconductor substrate 1 may be appropriately selected according to the specifications of the carbon nanotube application device, and a semiconductor substrate other than the silicon substrate (for example, a GaAs substrate). InP substrate, SiC substrate, so-called SOI substrate, or the like may be used.

実施形態1におけるカーボンナノチューブの製造方法の説明図であって、(a)は平面図、(b)は(a)のA−A’断面図である。2A and 2B are explanatory diagrams of a method for producing carbon nanotubes in Embodiment 1, wherein FIG. 2A is a plan view, and FIG. 2B is a cross-sectional view taken along line A-A ′ in FIG. 実施形態2におけるカーボンナノチューブの製造方法の説明図であって、(a)は平面図、(b)は(a)のA−A’断面図である。FIG. 4 is an explanatory diagram of a method for producing carbon nanotubes in Embodiment 2, wherein (a) is a plan view and (b) is a cross-sectional view taken along line A-A ′ of (a). 実施形態3におけるカーボンナノチューブの製造方法の説明図であって、(a)は平面図、(b)は(a)のA−A’断面図である。It is explanatory drawing of the manufacturing method of the carbon nanotube in Embodiment 3, Comprising: (a) is a top view, (b) is A-A 'sectional drawing of (a). 実施形態4におけるカーボンナノチューブの製造方法の説明図であって、(a)は平面図、(b)は(a)のA−A’断面図である。It is explanatory drawing of the manufacturing method of the carbon nanotube in Embodiment 4, Comprising: (a) is a top view, (b) is A-A 'sectional drawing of (a). 実施形態5におけるカーボンナノチューブの製造方法の説明図であって、(a)は平面図、(b)は(a)のA−A’断面図である。FIG. 7 is an explanatory diagram of a method for producing carbon nanotubes in Embodiment 5, wherein (a) is a plan view and (b) is a cross-sectional view taken along line A-A ′ of (a). 実施形態6におけるカーボンナノチューブの製造方法の説明図であって、(a)は平面図、(b)は(a)のA−A’断面図である。It is explanatory drawing of the manufacturing method of the carbon nanotube in Embodiment 6, Comprising: (a) is a top view, (b) is A-A 'sectional drawing of (a). 実施形態7におけるカーボンナノチューブの製造方法の説明図であって、(a)は平面図、(b)は(a)のA−A’断面図である。It is explanatory drawing of the manufacturing method of the carbon nanotube in Embodiment 7, Comprising: (a) is a top view, (b) is A-A 'sectional drawing of (a). 同上における他のカーボンナノチューブの製造方法の説明図であって、(a)は平面図、(b)は(a)のA−A’断面図である。It is explanatory drawing of the manufacturing method of the other carbon nanotube in the same as the above, Comprising: (a) is a top view, (b) is A-A 'sectional drawing of (a). 従来例におけるカーボンナノチューブの製造方法の説明図である。It is explanatory drawing of the manufacturing method of the carbon nanotube in a prior art example. 他の従来例におけるカーボンナノチューブの製造方法の説明図であって、(a)は主要工程平面図、(b)は主要工程断面図である。It is explanatory drawing of the manufacturing method of the carbon nanotube in another prior art example, Comprising: (a) is a main process top view, (b) is a main process sectional drawing.

符号の説明Explanation of symbols

1 半導体基板
2 絶縁層
3a,3b 高濃度不純物拡散層
4,4 触媒金属部
5 カーボンナノチューブ
14,14 配線
15,15 金属配線
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Insulating layer 3a, 3b High concentration impurity diffusion layer 4,4 Catalytic metal part 5 Carbon nanotube 14,14 Wiring 15,15 Metal wiring

Claims (10)

半導体基板の一表面上の絶縁層上において互いに離間して形成された対となる触媒金属部間にカーボンナノチューブを成長させるにあたって、対となる触媒金属部の形成前に、半導体基板の前記一表面側に対となる触媒金属部間への電界発生用であり対となる高濃度不純物拡散層を形成しておき、対となる触媒金属部の形成後に、対となる高濃度不純物拡散層間に電圧を印加することで対となる触媒金属部間に電界を発生させ且つ絶縁層の表面側に炭素を含む原料ガスを供給して対となる触媒金属部間にカーボンナノチューブを成長させることを特徴とするカーボンナノチューブの製造方法。   When growing a carbon nanotube between a pair of catalytic metal portions formed on the insulating layer on one surface of the semiconductor substrate so as to be separated from each other, the one surface of the semiconductor substrate is formed before the formation of the pair of catalytic metal portions. A high-concentration impurity diffusion layer for forming an electric field between the pair of catalyst metal portions is formed on the side, and a voltage is generated between the pair of high-concentration impurity diffusion layers after the formation of the pair of catalyst metal portions. To generate an electric field between the pair of catalyst metal parts and supply a source gas containing carbon to the surface side of the insulating layer to grow carbon nanotubes between the pair of catalyst metal parts. A method for producing carbon nanotubes. 対となる高濃度不純物拡散層それぞれの導電形を半導体基板の導電形とは異ならせることを特徴とする請求項1記載のカーボンナノチューブの製造方法。   2. The method for producing carbon nanotubes according to claim 1, wherein the conductivity type of each of the pair of high-concentration impurity diffusion layers is different from that of the semiconductor substrate. 対となる高濃度不純物拡散層における一方の高濃度不純物拡散層の導電形を半導体基板の導電形と同じ導電形とするとともに他方の高濃度不純物拡散層の導電形を半導体基板の導電形と異なる導電形とし、且つ、対となる触媒金属部の形成前に、半導体基板において対となる高濃度不純物拡散層間の部位に前記他方の高濃度不純物拡散層と同じ導電形で半導体基板の表面の電界集中を緩和する低濃度の電界緩和領域を形成しておくことを特徴とする請求項1記載のカーボンナノチューブの製造方法。   The conductivity type of one high-concentration impurity diffusion layer in the paired high-concentration impurity diffusion layer is the same conductivity type as that of the semiconductor substrate, and the conductivity type of the other high-concentration impurity diffusion layer is different from that of the semiconductor substrate. Before the formation of the catalytic metal part to be a conductive type and a pair, the electric field on the surface of the semiconductor substrate having the same conductive type as that of the other high-concentration impurity diffusion layer is formed at a site between the paired high-concentration impurity diffusion layers in the semiconductor substrate. 2. The method for producing carbon nanotubes according to claim 1, wherein a low concentration electric field relaxation region for relaxing concentration is formed. 電界緩和領域の形成にあたっては、半導体基板において対となる高濃度不純物拡散層間の部位に電界緩和領域を複数形成することを特徴とする請求項3記載のカーボンナノチューブの製造方法。   4. The method of manufacturing a carbon nanotube according to claim 3, wherein when forming the electric field relaxation region, a plurality of electric field relaxation regions are formed in a portion between the high-concentration impurity diffusion layers to be paired in the semiconductor substrate. 電界緩和領域の形成にあたっては、前記他方の高濃度不純物拡散層側から前記一方の高濃度不純物拡散層側に向かって不純物濃度が低くなる電界緩和領域を形成することを特徴とする請求項3記載のカーボンナノチューブの製造方法。   4. The electric field relaxation region is formed by forming an electric field relaxation region in which an impurity concentration decreases from the other high concentration impurity diffusion layer side toward the one high concentration impurity diffusion layer side. Carbon nanotube manufacturing method. 半導体基板の一表面上の絶縁層上において互いに離間して形成された対となる触媒金属部間にカーボンナノチューブを成長させるにあたって、対となる触媒金属部の形成前に、半導体基板の前記一表面側であって且つ絶縁層の表面よりも半導体基板側に対となる触媒金属部間への電界発生用の抵抗部を形成しておき、対となる触媒金属部の形成後に、抵抗部の両端間に電圧を印加することで対となる触媒金属部間に電界を発生させ且つ絶縁層の表面側に炭素を含む原料ガスを供給して対となる触媒金属部間にカーボンナノチューブを成長させることを特徴とするカーボンナノチューブの製造方法。   When growing a carbon nanotube between a pair of catalytic metal portions formed on the insulating layer on one surface of the semiconductor substrate so as to be separated from each other, the one surface of the semiconductor substrate is formed before the formation of the pair of catalytic metal portions. A resistance portion for generating an electric field between the pair of catalytic metal portions is formed on the semiconductor substrate side of the insulating layer surface, and both ends of the resistance portion are formed after forming the paired catalytic metal portions. An electric field is generated between the paired catalytic metal parts by applying a voltage between them, and a carbon source gas is supplied to the surface side of the insulating layer to grow carbon nanotubes between the paired catalytic metal parts. A method for producing a carbon nanotube characterized by the following. 抵抗部を形成するにあたっては、絶縁層中に埋設されるポリシリコン層からなる抵抗部を形成することを特徴とする請求項6記載のカーボンナノチューブの製造方法。   7. The method of manufacturing a carbon nanotube according to claim 6, wherein when forming the resistance portion, the resistance portion made of a polysilicon layer embedded in the insulating layer is formed. 抵抗部を形成するにあたっては、拡散抵抗層からなる抵抗部を形成することを特徴とする請求項6記載のカーボンナノチューブの製造方法。   7. The method of manufacturing a carbon nanotube according to claim 6, wherein when forming the resistance portion, a resistance portion comprising a diffusion resistance layer is formed. 半導体基板の一表面上の絶縁層上において互いに離間して形成された対となる触媒金属部間にカーボンナノチューブを成長させるにあたって、対となる触媒金属部の形成前に、絶縁層中に対となる触媒金属部間への電界発生用の容量素子を形成しておき、対となる触媒金属部の形成後に、容量素子の両端間に電圧を印加することで対となる触媒金属部間に電界を発生させ且つ絶縁層の表面側に炭素を含む原料ガスを供給して対となる触媒金属部間にカーボンナノチューブを成長させることを特徴とするカーボンナノチューブの製造方法。   When growing the carbon nanotubes between the pair of catalytic metal portions formed on the insulating layer on one surface of the semiconductor substrate so as to be separated from each other, before the pair of catalytic metal portions is formed, Forming a capacitive element for generating an electric field between the catalytic metal parts, and forming a pair of catalytic metal parts, and then applying a voltage between both ends of the capacitive element to form an electric field between the catalytic metal parts. And a carbon nanotube is grown between a pair of catalytic metal parts by supplying a source gas containing carbon to the surface side of the insulating layer. 対となる触媒金属部間に発生させる電界の所望の強度に応じて絶縁層の材料を、SiO、Si、Ta、ZnOの群から選択することを特徴とする請求項1ないし請求項9のいずれかに記載のカーボンナノチューブの製造方法。 The material of the insulating layer is selected from the group of SiO 2 , Si 3 N 4 , Ta 2 O 5 , and ZnO 2 according to the desired strength of the electric field generated between the pair of catalytic metal parts. The method for producing a carbon nanotube according to any one of claims 1 to 9.
JP2004245781A 2004-08-25 2004-08-25 Method for producing carbon nanotube Expired - Fee Related JP4556557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004245781A JP4556557B2 (en) 2004-08-25 2004-08-25 Method for producing carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004245781A JP4556557B2 (en) 2004-08-25 2004-08-25 Method for producing carbon nanotube

Publications (2)

Publication Number Publication Date
JP2006062900A JP2006062900A (en) 2006-03-09
JP4556557B2 true JP4556557B2 (en) 2010-10-06

Family

ID=36109701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004245781A Expired - Fee Related JP4556557B2 (en) 2004-08-25 2004-08-25 Method for producing carbon nanotube

Country Status (1)

Country Link
JP (1) JP4556557B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100829573B1 (en) 2006-11-02 2008-05-14 삼성전자주식회사 Electronic device, field effect transistor, and method of fabricating the same
CN102175381B (en) * 2011-03-10 2013-02-27 上海交通大学 Pressure sensor and preparation method thereof based on composite plating of carbon nano tube and metallic copper

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261724A (en) * 1997-03-17 1998-09-29 Asahi Kasei Micro Syst Kk Non-volatile semiconductor storage and its manufacture
JP2001077354A (en) * 1999-08-31 2001-03-23 Miyazaki Oki Electric Co Ltd Vertical insulating gate semiconductor device
JP2003504857A (en) * 1999-07-02 2003-02-04 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ Apparatus using nanoscopic wire, array, and method of manufacturing the same
JP2003158093A (en) * 2001-09-06 2003-05-30 Nippon Telegr & Teleph Corp <Ntt> Inter-element wiring formation method
JP2003282924A (en) * 2002-03-25 2003-10-03 Fujitsu Ltd Photo detector and method of manufacturing the same
JP2004163373A (en) * 2002-11-15 2004-06-10 Matsushita Electric Works Ltd Semiconductor type physical quantity sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261724A (en) * 1997-03-17 1998-09-29 Asahi Kasei Micro Syst Kk Non-volatile semiconductor storage and its manufacture
JP2003504857A (en) * 1999-07-02 2003-02-04 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ Apparatus using nanoscopic wire, array, and method of manufacturing the same
JP2001077354A (en) * 1999-08-31 2001-03-23 Miyazaki Oki Electric Co Ltd Vertical insulating gate semiconductor device
JP2003158093A (en) * 2001-09-06 2003-05-30 Nippon Telegr & Teleph Corp <Ntt> Inter-element wiring formation method
JP2003282924A (en) * 2002-03-25 2003-10-03 Fujitsu Ltd Photo detector and method of manufacturing the same
JP2004163373A (en) * 2002-11-15 2004-06-10 Matsushita Electric Works Ltd Semiconductor type physical quantity sensor

Also Published As

Publication number Publication date
JP2006062900A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
EP2540662B1 (en) Graphene structure and method of manufacturing the graphene structure, and graphene device and method of manufacturing the graphene device
US9660036B2 (en) Graphene layer, method of forming the same, device including graphene layer and method of manufacturing the device
CN100490180C (en) Vertical field effect transistor and method for fabricating the same
CN103890580A (en) Apparatus for the processing of single molecules
KR101213861B1 (en) A lithographic process using a nanowire mask, and nanoscale devices fabricated using the process
CN103765595A (en) Semiconductor device structures including vertical transistor devices, arrays of vertical transistor devices, and methods of fabrication
JP2008135748A (en) Field-effect transistor utilizing nanotube and its manufacturing method
JP2010515283A (en) Carbon nanotube transistor manufacturing method and carbon nanotube transistor using the same
WO2018139322A1 (en) Silicon carbide semiconductor device
CN104303313A (en) Nanodevice and manufacturing method for same
JP5817204B2 (en) Silicon carbide semiconductor device
KR100819004B1 (en) Microelectronics and method of fabricating the same
CN208722876U (en) Power MOS (Metal Oxide Semiconductor) device
US5905294A (en) High rated voltage semiconductor device with floating diffusion regions
KR20140121197A (en) Graphene device, and method of fabricating the same
JP4556557B2 (en) Method for producing carbon nanotube
JP2005197612A (en) Integrated quantum thin-line transistor, manufacturing method thereof, integrated thin-line transistor, manufacturing method thereof, and electronic application device
JP2007005783A (en) Method of high topography patterning
KR20170015705A (en) Semiconductor device and method for manufacturing the same
JP4821101B2 (en) Carbon nanotube manufacturing method and carbon nanotube manufacturing apparatus
US20130217565A1 (en) Method of forming nano-pads of catalytic metal for growth of single walled carbon nanotubes
KR102059349B1 (en) 3d nano structure manufacturing method and 3d nano device manufacturing method
Robinson et al. Electron transport in laterally confined phosphorus δ layers in silicon
KR101475732B1 (en) Silicon nanowire device
KR101319612B1 (en) Method of Laterally Growing Carbon Nano Tubes and Field Effect Transistor Using The Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees