JP4555807B2 - Presser foot embankment structure - Google Patents

Presser foot embankment structure Download PDF

Info

Publication number
JP4555807B2
JP4555807B2 JP2006248986A JP2006248986A JP4555807B2 JP 4555807 B2 JP4555807 B2 JP 4555807B2 JP 2006248986 A JP2006248986 A JP 2006248986A JP 2006248986 A JP2006248986 A JP 2006248986A JP 4555807 B2 JP4555807 B2 JP 4555807B2
Authority
JP
Japan
Prior art keywords
embankment
cement
slip
landslide
landslide mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006248986A
Other languages
Japanese (ja)
Other versions
JP2008069553A (en
Inventor
侃彦 藤澤
俊治 笛田
得寿 柳沢
富佐雄 山本
Original Assignee
財団法人ダム技術センター
アイドールエンジニヤリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人ダム技術センター, アイドールエンジニヤリング株式会社 filed Critical 財団法人ダム技術センター
Priority to JP2006248986A priority Critical patent/JP4555807B2/en
Publication of JP2008069553A publication Critical patent/JP2008069553A/en
Application granted granted Critical
Publication of JP4555807B2 publication Critical patent/JP4555807B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Description

本発明は、傾斜面の地すべりを防止するために前記傾斜面の地すべり土塊の末端部に所定厚さの盛土部を形成する押え盛土構造に関する。   The present invention relates to a presser embankment structure in which an embankment portion having a predetermined thickness is formed at an end portion of a landslide mass on the inclined surface in order to prevent landslide on the inclined surface.

山などの傾斜面の地すべりを防止するための工法としては、押え盛土工法が知られている。従来の一般的な押え盛土工法は、傾斜面の地すべり土塊の末端部(下部)に盛土部を形成することによって、地すべり滑動力に対する抵抗力を増加させるようにしている。盛土部は、地すべり土塊の末端部を押えることで、地すべり滑動力に対する抵抗力を増加させているが、盛土量が抵抗力の増加量に大きく関係してくる。そのため、地すべり土塊が大きく滑動力が大きい場合には、大量の盛土を行わなければならない。特に、滑動面が盛土部の上部近傍に位置する場合は、その上側に位置する盛土量が少なく、抵抗力の増加量が小さくなってしまう。そのため、抵抗力を増加させるためには、滑動面の位置での盛土厚を厚くする必要があり、滑動面よりも下側の盛土量は、大幅に増加してしまう。   As a construction method for preventing a landslide on an inclined surface such as a mountain, a presser embankment method is known. In the conventional general embankment embankment method, the resistance to landslide sliding force is increased by forming a embankment part at the end (lower part) of the landslide mass on the inclined surface. The embankment part increases the resistance against the landslide sliding force by pressing the end of the landslide mass, but the embankment amount is greatly related to the increase in the resistance force. Therefore, if the landslide mass is large and the sliding force is large, a large amount of embankment must be performed. In particular, when the sliding surface is located in the vicinity of the upper portion of the embankment portion, the embankment amount located on the upper side is small, and the increase in resistance is reduced. Therefore, in order to increase the resistance force, it is necessary to increase the thickness of the embankment at the position of the sliding surface, and the amount of embankment below the sliding surface is greatly increased.

その対策として、盛土を形成する土砂に短繊維を混合することで、土粒子間の結合力を増して、盛土量を減らすものがあった(例えば、特許文献1参照)。かかる構成によれば、土粒子間に配置される短繊維が適度に絡み合うことによって、盛土の強度が増して、盛土の体積を小さくすることができる。しかし、かかる構成では、盛土の土粒子間での結合力は増加してはいるものの、盛土と地盤面との摩擦力については考慮されておらず、盛土の体積を小さくする余地はまだ残されていた。また、盛土の強度についても、土粒子間の結合力を強める余地は残されている。   As a countermeasure, there has been a technique in which the short fiber is mixed with the earth and sand forming the embankment, thereby increasing the bonding force between the soil particles and reducing the embankment amount (see, for example, Patent Document 1). According to such a configuration, the short fibers arranged between the soil particles are appropriately intertwined, whereby the strength of the embankment is increased and the volume of the embankment can be reduced. However, in this configuration, although the bonding force between the soil particles of the embankment has increased, the frictional force between the embankment and the ground surface has not been considered, and there is still room for reducing the volume of the embankment. It was. In addition, there is still room for increasing the bond strength between soil particles in terms of the strength of the embankment.

そこで、地すべり土塊の末端部での押え部分の体積をさらに小さくするために、盛土に代えてコンクリート製の擁壁を形成することが考えられる。このようにすれば、擁壁は地盤面に一体的に形成されるとともに、擁壁自体も一体的に形成されているので、滑動面より下側も含む擁壁の重量で、地すべり滑動力に抵抗することができ、擁壁(地すべり土塊の末端部での押え部分)の厚さを大幅に薄くすることができる。
特開平7−237747号公報
Therefore, in order to further reduce the volume of the holding portion at the end portion of the landslide mass, it is conceivable to form a concrete retaining wall instead of the embankment. In this way, the retaining wall is integrally formed on the ground surface, and the retaining wall itself is also integrally formed. Therefore, the weight of the retaining wall including the lower side of the sliding surface can be used for landslide sliding force. It is possible to resist, and the thickness of the retaining wall (pressing portion at the end of the landslide block) can be significantly reduced.
JP-A-7-237747

しかしながら、コンクリート製の擁壁を形成するには、大量の骨材が必要となる上に、施工も大変である。コンクリートの骨材は、所定の粒径に揃った土砂などを用いるため、特定の採取場から採取して搬送しなければならない。そのため、骨材の調達と搬送に多くの費用を要し、施工費用の増大を招いてしまう。   However, in order to form a concrete retaining wall, a large amount of aggregate is required and construction is also difficult. Since concrete aggregate uses earth and sand having a predetermined particle size, it must be collected from a specific collection site and transported. Therefore, a large amount of cost is required for the procurement and transportation of the aggregate, resulting in an increase in construction cost.

そこで、本発明は前記の問題を解決すべく案出されたものであって、施工費用の低減を図れるとともに、容積を小さくすることができる押え盛土構造を提供することを課題とする。   Therefore, the present invention has been devised to solve the above-described problems, and an object thereof is to provide a presser embankment structure that can reduce the construction cost and reduce the volume.

前記課題を解決するための請求項1に係る発明は、傾斜面の地すべりを防止するために前記傾斜面の地すべり土塊の末端部に所定厚さの盛土部を形成する押え盛土構造において、施工現場あるいはその近傍で採取可能な現場発生土と水とセメントとを混合して構成されるセメント系材料を積層してなるセメント系盛土部で、前記盛土部の全体を構成し、前記セメント系盛土部は、少なくとも前記傾斜面の下部に繋がる平坦部に接触するように構成するとともに、予め採取した前記現場発生土と前記水と前記セメントとを複数種の配合比率で混合させて形成された複数の試験体を用いて行われた強度試験により求められた前記セメント系盛土部の粘着力、内部摩擦角および単位体積重量を、地山の下部ですべり面が発生する場合を想定した下記の式1および地山の中間部ですべり面が発生する場合を想定した下記の式2に代入して算出されるすべりに対する安全率が、必要な安全率となるように、前記セメント系盛土部の配合比率と盛土量を決定することを特徴とする押え盛土構造である。

Figure 0004555807
Fs:すべりに対する安全率
φ :地すべり土塊の内部摩擦角
:地すべり土塊の重量のうち、すべり面に鉛直な成分
:地すべり土塊の粘着力
:地すべり土塊のすべり面の長さ
φ :セメント系盛土部の内部摩擦角
CN :セメント系盛土部の重量のうち、すべり面に鉛直な成分
:セメント系盛土部の粘着力
C2 :セメント系盛土部と平坦部との接触長さ
:地すべり土塊の重量のうち、すべり面に平行な成分
CS :セメント系盛土部の重量のうち、すべり面に平行な成分
Figure 0004555807
Fs:すべりに対する安全率
φ :地すべり土塊の内部摩擦角
1N :地すべり土塊の重量のうち、すべり面に鉛直な成分
:地すべり土塊の粘着力
:地すべり土塊のすべり面の長さ
φ :セメント系盛土部の内部摩擦角
C1N :地すべり土塊のすべり面の下端部より上部に位置するセメント系盛土部の重量のうち、すべり面に鉛直な成分
:セメント系盛土部の粘着力
C1 :地すべり土塊のすべり面の下端部におけるセメント系盛土部の厚さ
1S :地すべり土塊の重量のうち、すべり面に平行な成分
C1S :地すべり土塊のすべり面の下端部より上部に位置するセメント系盛土部の重量のうち、すべり面に平行な成分 The invention according to claim 1 for solving the above-mentioned problem is the construction site in the presser embankment structure in which the embankment portion having a predetermined thickness is formed at the end portion of the landslide mass on the inclined surface in order to prevent the landslide on the inclined surface. Alternatively, a cement-based embedding portion formed by laminating cement-based materials composed of a mixture of on-site generated soil, water, and cement that can be collected in the vicinity, and the entire embedding portion is configured, and the cement-based embankment portion Is configured to contact at least a flat portion connected to the lower portion of the inclined surface, and a plurality of pre-collected soil, water, and cement mixed at a plurality of blending ratios. The following is based on the assumption that a slip surface is generated at the bottom of the natural ground, based on the adhesive strength, internal friction angle, and unit volume weight of the cement-based embankment determined by a strength test conducted using a test specimen. The above-mentioned cement-based embankment part of the cement-based embankment is set so that the safety factor against the slip calculated by substituting into Equation 1 and Equation 2 below assuming the occurrence of a slip surface in the middle part of Equation 1 and the natural ground is the required safety factor. It is a pressering embankment structure characterized by determining the blending ratio and embankment amount .
Figure 0004555807
Fs: Safety factor against slip
φ 2 : Internal friction angle of landslide mass
W N : The component perpendicular to the slip surface of the landslide mass
C 2 : Adhesive strength of landslide mass
L 2 : Length of slip surface of landslide mass
φ C : Internal friction angle of cement embankment
W CN : The component perpendicular to the sliding surface of the weight of the cement embankment
C C : Adhesive strength of cement-based embankment
L C2 : Contact length between cement-based embankment and flat part
W S : The component of the landslide mass that is parallel to the slip surface
W CS : A component parallel to the sliding surface in the weight of the cement embankment
Figure 0004555807
Fs: Safety factor against slip
φ 1 : Internal friction angle of landslide mass
W 1N : The component perpendicular to the slip surface of the landslide mass
C 1 : Adhesive strength of landslide mass
L 1 : Length of slip surface of landslide mass
φ C : Internal friction angle of cement embankment
W C1N : Of the weight of cement-based embankment located above the lower end of the sliding surface of the landslide mass, the component perpendicular to the sliding surface
C C : Adhesive strength of cement-based embankment
L C1 : thickness of cement-based embankment at the lower end of the sliding surface of the landslide mass
W 1S : The component of the landslide mass that is parallel to the slip surface
W C1S : A component parallel to the slip surface of the weight of the cement embankment located above the lower end of the slide surface of the landslide block.

前記構成によれば、現場発生土を利用したセメント系材料を用いて、セメント系盛土部を形成しているので、骨材の調達費用および搬送費用を大幅に低減できる。また、セメント系盛土部は、セメントによって一体型に形成することができ、滑動面の延長線部分より下側も含む盛土の重量で、地すべり滑動力に抵抗することができるので、盛土部全体の厚さを大幅に薄くすることができる。さらに、セメント系盛土部は、セメントによって、少なくとも平坦部の地盤表面と岩着するので、地すべり滑動力に対する抵抗力を増大することができ、これによっても盛土量を低減させることができる。   According to the said structure, since the cement-type embankment part is formed using the cement-type material using on-site generated soil, the procurement cost and transport cost of aggregate can be reduced significantly. In addition, the cement-based embankment part can be formed integrally with cement, and can resist landslide sliding force with the weight of the embankment including the lower side of the extended line part of the sliding surface. The thickness can be greatly reduced. Furthermore, since the cement-type embankment is rocked to at least the ground surface of the flat portion by cement, the resistance to landslide sliding force can be increased, and the amount of embankment can also be reduced.

請求項2に係る発明は、傾斜面の地すべりを防止するために前記傾斜面の地すべり土塊の末端部に所定厚さの盛土部を形成する押え盛土構造において、施工現場あるいはその近傍で採取可能な現場発生土と水とセメントとを混合して構成されるセメント系材料を積層してなるセメント系盛土部と、前記セメント系盛土部と前記傾斜面との間に前記現場発生土を積層してなる普通盛土部とで、前記盛土部を構成し、前記セメント系盛土部は、少なくとも前記傾斜面の下部に繋がる平坦部に接触するように構成するとともに、予め採取した前記現場発生土と前記水と前記セメントとを複数種の配合比率で混合させて形成された複数の試験体を用いて行われた強度試験により求められた前記セメント系盛土部の粘着力、内部摩擦角および単位体積重量を、地山の中間部ですべり面が発生する場合を想定した下記の式4に代入して算出されるすべりに対する安全率が、必要な安全率となるように、前記セメント系盛土部の配合比率と盛土量を決定することを特徴とする押え盛土構造である。

Figure 0004555807
Fs:すべりに対する安全率
φ :地すべり土塊の内部摩擦角
1N :地すべり土塊の重量のうち、すべり面に鉛直な成分
:地すべり土塊の粘着力
:地すべり土塊のすべり面の長さ
φ :普通盛土部の内部摩擦角
W´ BN :普通盛土部の重量のうち、すべり面に鉛直な成分
φ :セメント系盛土部の内部摩擦角
W´ C1N :セメント系盛土部の重量のうち、すべり面に鉛直な成分
:セメント系盛土部の粘着力
L´ C1 :地すべり土塊のすべり面の下端部におけるセメント系盛土部の厚さ
1S :地すべり土塊の重量のうち、すべり面に平行な成分
W´ BS :地すべり土塊のすべり面の下端部より上部に位置する普通盛土部の重量のうち、すべり面に平行な成分
W´ C1S :地すべり土塊のすべり面の下端部より上部に位置するセメント系盛土部の重量のうち、すべり面に平行な成分 The invention according to claim 2 can be collected at a construction site or in the vicinity thereof in a presser embankment structure in which an embankment portion having a predetermined thickness is formed at a terminal portion of the landslide mass on the inclined surface in order to prevent a landslide on the inclined surface. A cement-based embankment formed by laminating a cement-based material composed of a mixture of on-site generated soil, water, and cement; and the on-site generated soil is stacked between the cement-based embankment and the inclined surface. The above-mentioned normal embankment portion constitutes the embankment portion, and the cement-based embankment portion is configured to contact at least a flat portion connected to the lower portion of the inclined surface, and the on-site generated soil and the water sampled in advance are collected. Adhesive strength, internal friction angle and unit volume weight determined by a strength test performed using a plurality of test bodies formed by mixing the cement with the cement at a plurality of blending ratios. Of the cement-based embankment so that the safety factor for the slip calculated by substituting into the following equation 4 assuming that a slip surface occurs in the middle part of the natural ground is the required safety factor It is a presser embankment structure characterized by determining the ratio and the amount of embankment .
Figure 0004555807
Fs: Safety factor against slip
φ 1 : Internal friction angle of landslide mass
W 1N : The component perpendicular to the slip surface of the landslide mass
C 1 : Adhesive strength of landslide mass
L 1 : Length of slip surface of landslide mass
φ B: internal friction angle of the ordinary banking unit
W ' BN : The component perpendicular to the slip surface of the normal embankment weight
φ C : Internal friction angle of cement embankment
W ' C1N : The component perpendicular to the sliding surface among the weight of the cement embankment
C C : Adhesive strength of cement-based embankment
L ' C1 : Thickness of the cement-based embankment at the lower end of the sliding surface of the landslide mass
W 1S : The component of the landslide mass that is parallel to the slip surface
W'BS: out of the weight of the plain embankment portion located above the lower end of the sliding surface of the landslide mass, parallel to the sliding surface component
W'C1S: out of the weight of the cementitious fill portion located above the lower end of the sliding surface of the landslide mass, parallel to the sliding surface component

前記構成によれば、セメントの混合量を減らすことができるとともに、普通盛土部の重量も地すべり滑動力に対する抵抗力に有効に作用する。したがって、合理的な押え盛土構造とすることができ、必要最小限の施工費用で盛土部を形成できる。   According to the said structure, while the mixing amount of cement can be reduced, the weight of a normal embankment part acts effectively on the resistance with respect to landslide sliding power. Therefore, it can be set as a rational presser embankment structure, and the embankment part can be formed with the minimum necessary construction cost.

請求項3に係る発明は、前記セメント系盛土部が接触する山の傾斜部および平坦部の地盤表面の岩盤を露出させて、前記セメント系盛土部と地盤表面との粘着力を高めるように構成したことを特徴とする請求項1に記載の押え盛土構造である。
The invention according to claim 3, the cement embankment portion to expose the bedrock of the ground table surface of the inclined portion and the flat portion of the mountain in contact, so as to enhance the adhesion between the cementitious fill portion and the ground surface The presser embankment structure according to claim 1, wherein the presser embankment is constructed.

前記構成によれば、セメント系盛土部と地盤表面とが互いに噛み合い、岩着性が高まる。したがって、セメント系盛土部と地盤表面との粘着力を大幅に高めることができるので、地すべり滑動力に対する抵抗力を増大させることができ、盛土量をさらに低減させることができる。   According to the said structure, a cement-type embankment part and a ground surface mutually mesh | engage, and a rocking property improves. Therefore, since the adhesive force between the cement-based embankment and the ground surface can be significantly increased, the resistance to landslide sliding force can be increased, and the amount of embankment can be further reduced.

本発明によれば、押え盛土を、低コストで構築できるとともに、その容積を小さくすることができるといった優れた効果を発揮する。   According to the present invention, it is possible to construct a presser embankment at a low cost and to exhibit an excellent effect that the volume can be reduced.

次に、本発明を実施するための最良の形態について、添付図面を参照しながら詳細に説明する。   Next, the best mode for carrying out the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明に係る押え盛土構造を実施するための最良の形態を示した断面図であって、地山の下部ですべり面が発生する場合を想定した、すべりに対する安全率を説明するための図、図2は本発明に係る押え盛土構造を実施するための最良の形態を示した断面図であって、地山の中間部ですべり面が発生する場合を想定した、すべりに対する安全率を説明するための図である。   FIG. 1 is a cross-sectional view showing the best mode for carrying out a presser embankment structure according to the present invention, for explaining a safety factor against slip assuming that a slip surface is generated at the bottom of a natural ground. FIG. 2 and FIG. 2 are cross-sectional views showing the best mode for carrying out the presser embankment structure according to the present invention, and the safety factor against slip assuming the occurrence of a slip surface in the middle part of the natural ground. It is a figure for demonstrating.

まず、本実施の形態に係る押え盛土構造の構成について説明する。   First, the structure of the presser embankment structure according to the present embodiment will be described.

図1および図2に示すように、押え盛土1は、山2などの傾斜面3の地すべりを防止するために傾斜面3の地すべり土塊4の末端部5に所定厚さで形成されている。ところで、本発明は、施工現場あるいはその近傍で採取可能な現場発生土と水とセメントとを混合して構成されるセメント系材料を積層してなるセメント系盛土部7を、盛土部6の少なくとも一部に形成し、セメント系盛土部7は、少なくとも傾斜面3の下部に繋がる平坦部9に接触するようにしたことを特徴とする。   As shown in FIGS. 1 and 2, the presser embankment 1 is formed with a predetermined thickness at the end portion 5 of the landslide lump 4 of the inclined surface 3 in order to prevent the landslide of the inclined surface 3 such as the mountain 2. By the way, the present invention provides a cement-based embankment portion 7 formed by laminating a cement-based material composed of a mixture of on-site generated soil that can be collected at or near the construction site, water, and cement. The cement-based embankment portion 7 is formed in part and is in contact with at least a flat portion 9 connected to the lower portion of the inclined surface 3.

セメント系材料は、施工現場あるいはその近傍で採取可能な現場発生土(例えば、河床砂礫や風化岩(横坑掘削ズリなど))に、水とセメントとを混合して構成されている。施工にかかる費用を低減させるために、現場発生土の分級などの調整は、基本的には行わない。以上のようなセメント系材料は、CSG(Cemented Sand and Gravel)材料と称され、1992年以降、台形ダムの堤体などの施工に用いられ、実績を積み重ねている。   The cement-based material is configured by mixing water and cement with on-site generated soil (for example, riverbed gravel or weathered rock (horizontal excavation sludge, etc.)) that can be collected at or near the construction site. In order to reduce construction costs, basically no adjustments such as classification of soil generated on site are performed. The cementitious material as described above is called CSG (Cented Sand and Gravel) material, and has been used since 1992 for construction of trapezoidal dams and the like.

本実施の形態では、盛土部6は、全体がセメント系盛土部7にて構成されており、セメント系盛土部7は、傾斜面3およびその下部に繋がる平坦部9に接触するように構成されている。平坦部9は、表面が水平となっている部分以外にも、地すべりのおそれのない緩やかな傾斜部分も含むものとする。セメント系盛土部7が接触する地盤表面11(本実施の形態では、傾斜面3の下部および平坦部9)は、バックホウで削るなどして目荒らしされて地山が露出されて、セメント系盛土部7と地盤表面11との粘着力を高めるように構成されている。セメント系盛土部7は、下部から順次、締め固めながら積層することで構築される。   In the present embodiment, the embankment portion 6 is entirely configured by a cement-based embankment portion 7, and the cement-based embankment portion 7 is configured to contact the inclined surface 3 and the flat portion 9 connected to the lower portion thereof. ing. The flat portion 9 includes a gently inclined portion that does not cause a landslide in addition to a portion having a horizontal surface. The ground surface 11 (in this embodiment, the lower portion of the inclined surface 3 and the flat portion 9 in the present embodiment) with which the cement-based embankment 7 comes into contact is roughened by cutting with a backhoe or the like, and the ground is exposed, and the cement-based embankment is exposed. It is comprised so that the adhesive force of the part 7 and the ground surface 11 may be raised. The cement-based embankment 7 is constructed by laminating while compacting sequentially from the bottom.

セメント系材料の現場発生土と水とセメントとの配合比率は、予め採取した現場発生土と水とセメントとを複数種の配合比率で混合させて複数の強度試験体を形成して強度試験を行い、その強度試験の結果に応じて決定される。具体的には、複数の強度試験体を用いて行った強度試験より、各強度試験体の配合比率を採用した場合のセメント系材料の粘着力を求め、その粘着力が、地すべり防止のために必要なセメント系盛土部7の粘着力であるかどうかを検討する。   The mixing ratio of the soil generated in the cement-based material, water, and cement is determined by mixing the field generated soil, water, and cement collected in advance at multiple mixing ratios to form multiple strength specimens. Determined according to the result of the strength test. Specifically, from the strength test conducted using multiple strength test specimens, the adhesive strength of the cement-based material when the blending ratio of each strength test specimen is adopted is determined, and the adhesive strength is used to prevent landslides. It is examined whether or not the necessary adhesive strength of the cement-based embankment 7 is present.

以下に、セメント系材料の強度試験について説明する。   Below, the strength test of cementitious material is demonstrated.

本実施の形態では、施工現場で実際に採取された2種類の現場発生土(河床砂礫および風化岩(横坑掘削ズリ))について強度試験を行った。以下、河床砂礫を「母材A」、風化岩を「母材B」と称する場合がある。なお、本実施の形態では、現場発生土の例として、河床砂礫と風化岩(横坑掘削ズリ)を挙げているが、これに限られるものではなく、施工現場あるいはその近傍で採取できる土砂であれば、何であってもよいのは勿論である。   In the present embodiment, strength tests were performed on two types of soil generated on the construction site (river bed gravel and weathered rock (horizontal excavation sludge)) actually collected at the construction site. Hereinafter, riverbed gravel may be referred to as “base material A” and weathered rock may be referred to as “base material B”. In this embodiment, riverbed gravel and weathered rock (horizontal excavation sludge) are listed as examples of the soil generated at the site. However, the present invention is not limited to this, and soil that can be collected at or near the construction site is used. Of course, anything can be used.

現地で採取される母材Aおよび母材Bの粒度は、一定ではなく、バラツキを有しているため、母材Aおよび母材Bについて、それぞれ複数の採取箇所を選定し、それら採取箇所ごとの粒度を調査した。その上で、想定される母材Aおよび母材Bの粒度の変動幅を設定し、最も荒い粒度(以下、「粗粒度」という)、平均的な粒度(以下、「平均粒度」という)、最も細かい粒度(以下、「細粒度」という)の3種類を試験粒度として設定した(図3参照)。   Since the particle sizes of base material A and base material B collected at the site are not constant and have variations, a plurality of sampling points are selected for base material A and base material B, respectively. The particle size of was investigated. Then, the variation range of the assumed particle size of the base material A and the base material B is set, the coarsest particle size (hereinafter referred to as “coarse particle size”), the average particle size (hereinafter referred to as “average particle size”), Three kinds of finest particle sizes (hereinafter referred to as “fine particle size”) were set as test particle sizes (see FIG. 3).

ここで、試験条件を、単位セメント量が60,80kg/mの2種、単位水量が60〜150kg/mの範囲で15毎の7種、粒度が粗粒度、平均粒度、細粒度の3種、に設定し、これらの条件で作成した供試体について、圧縮強度試験および引張強度試験を行った。供試体は、各試験条件ごとに6体ずつ作成した。 Here, the test conditions are 2 types of unit cement amount of 60,80 kg / m 3 , 7 types of 15 units in the range of unit water amount of 60 to 150 kg / m 3 , the particle size is coarse particle size, average particle size, fine particle size The compression strength test and the tensile strength test were performed on the specimens set to three types and prepared under these conditions. Six specimens were prepared for each test condition.

強度試験に使用する母材Aおよび母材Bは、原材料を0〜5mm、5〜10mm、10〜20mm、20〜40mm、40〜80mmに5分級にふるい分けしたものを、設定した粗粒度、平均粒度、細粒度の3粒度に適合するように再混合したものを用いる。使用セメントは普通ポルトランドセメントであり混和剤は使用していない。母材A,Bと水とセメントとを傾動式ミキサに全量投入後、3分間混合する。混合後のセメント系材料は、40mmのふるいでウェットスクリーニングし、各試験に用いた。   Base material A and base material B used for the strength test are the coarse particle sizes and averages obtained by sieving the raw materials into 0 to 5 mm, 5 to 10 mm, 10 to 20 mm, 20 to 40 mm, and 40 to 80 mm in 5 classes. Remixed so as to conform to the three particle sizes of particle size and fine particle size. The cement used is usually Portland cement and no admixture is used. The base materials A and B, water, and cement are all added to the tilting mixer, and then mixed for 3 minutes. The cementitious material after mixing was wet-screened with a 40 mm sieve and used for each test.

供試体は、直径150mm、高さ300mmの円柱体形状に作成したものを用いた。供試体は、混合後のセメント系材料を3層に分けて型枠に詰め、各層をボッシュタンパーで30秒締め固め、その後、脱型を行わず、型枠ごとに供試体をラップで密封して、20℃の恒温室にて封緘養生を行って形成した。そして、所定の材齢まで養生を行った後、キャッピング・脱型を行い、密度計測を行ってから圧縮強度試験および引張強度試験を実施した。   A specimen prepared in a cylindrical shape having a diameter of 150 mm and a height of 300 mm was used. The specimen is divided into three layers of cement-based material after mixing and packed in a mold. Each layer is compacted with a Bosch tamper for 30 seconds, and then the specimen is sealed with a wrap for each mold without demolding. Then, it was formed by performing sealing curing in a constant temperature room at 20 ° C. Then, after curing to a predetermined age, capping and demolding were performed, density measurement was performed, and then a compressive strength test and a tensile strength test were performed.

圧縮強度試験は、材齢28日、91日で、JIS A 1108−1999「コンクリートの圧縮強度試験方法」に従い実施した。圧縮強度試験では、載荷盤に変位計を設置し、供試体全体の変位量と、載荷荷重を計測した。応力ひずみ曲線の直線区間を弾性領域とし、その弾性領域の中で応力が最大となる点を弾性領域強度とし、応力ひずみ曲線の最大値をピーク強度とした。また、弾性領域における応力ひずみ曲線の傾きから弾性係数を算出した。なお、各試験条件における試験値は、供試体6体の試験結果の平均値を出して整理している。   The compressive strength test was carried out according to JIS A 1108-1999 “Compressive strength test method for concrete” at ages 28 days and 91 days. In the compressive strength test, a displacement meter was installed on the loading board, and the displacement amount and loading load of the entire specimen were measured. The straight section of the stress-strain curve was defined as the elastic region, the point where the stress was maximum in the elastic region was defined as the elastic region strength, and the maximum value of the stress-strain curve was defined as the peak strength. The elastic modulus was calculated from the slope of the stress strain curve in the elastic region. In addition, the test value in each test condition has arranged and arranged the average value of the test result of six specimens.

ここで、単位水量とピーク強度との関係を示したグラフを図4に示す。図4(a)に示すように、母材A(河床砂礫)におけるピーク強度は、単位セメント量(C)が、60kg/mのケースで、2〜6N/mm、単位セメント量(C)が、80kg/mのケースで、4〜11N/mmである。図4(b)に示すように、母材B(風化岩)におけるピーク強度は、単位セメント量(C)が、60kg/mのケースで、2〜3N/mm、単位セメント量(C)が、80kg/mのケースで、3〜6N/mmである。 Here, the graph which showed the relationship between unit water quantity and peak intensity is shown in FIG. As shown in FIG. 4A, the peak strength in the base material A (river bed gravel) is 2 to 6 N / mm 2 in the case where the unit cement amount (C) is 60 kg / m 3 , and the unit cement amount (C ) Is 4 to 11 N / mm 2 in the case of 80 kg / m 3 . As shown in FIG. 4 (b), the peak strength in the base material B (weathered rock) is 2 to 3 N / mm 2 in the case where the unit cement amount (C) is 60 kg / m 3 , and the unit cement amount (C ) Is 3-6 N / mm 2 in the case of 80 kg / m 3 .

母材A、母材Bともに、単位セメント量が80kg/mのケースの方が、60kg/mのケースに比べてピーク強度が大きい結果となった。また、母材A、母材Bの粒度分布とピーク強度との関係は、単位水量が小さい領域では、粗粒度ほどピーク強度が大きい傾向を示し、単位水量が大きい領域では、粒度分布の影響は見られなかった。 For both the base material A and base material B, the case where the unit cement amount was 80 kg / m 3 resulted in a higher peak strength than the case of 60 kg / m 3 . In addition, the relationship between the particle size distribution of the base material A and the base material B and the peak intensity shows that the peak intensity tends to be larger as the coarser particle size in the region where the unit water amount is small, and the influence of the particle size distribution is large in the region where the unit water amount is large. I couldn't see it.

次に、単位水量と弾性領域強度との関係を示したグラフを図5に示す。図5(a)に示すように、母材A(河床砂礫)における弾性領域強度は、単位セメント量(C)が、60kg/mのケースで、1.5〜4N/mm、単位セメント量(C)が、80kg/mのケースで、2〜8N/mmである。図5(b)に示すように、母材B(風化岩)における弾性領域強度は、単位セメント量(C)が、60kg/mのケースで、1〜2N/mm、単位セメント量(C)が、80kg/mのケースで、2〜4N/mmである。 Next, a graph showing the relationship between the unit water amount and the elastic region strength is shown in FIG. As shown in FIG. 5 (a), the elastic region strength of the base material A (river bed gravel) is 1.5-4 N / mm 2 per unit cement when the unit cement amount (C) is 60 kg / m 3. The amount (C) is 2 to 8 N / mm 2 in the case of 80 kg / m 3 . As shown in FIG. 5 (b), the elastic region strength of the base material B (weathered rock) is 1 to 2 N / mm 2 in the case where the unit cement amount (C) is 60 kg / m 3 , and the unit cement amount ( C) is 2-4 N / mm 2 in the case of 80 kg / m 3 .

母材A、母材Bともに、単位セメント量が80kg/mのケースの方が、60kg/mのケースに比べて弾性領域強度が大きい結果となった。また、母材A、母材Bの粒度分布と弾性領域強度との関係は、単位水量が小さい領域では、粗粒度ほど弾性領域強度が大きい傾向を示し、単位水量が大きい領域では、粒度分布の影響は見られなかった。この傾向は、図4に示した単位水量とピーク強度との関係の傾向と同様である。 For both the base material A and base material B, the case where the unit cement amount was 80 kg / m 3 resulted in higher elastic region strength than the case of 60 kg / m 3 . In addition, the relationship between the particle size distributions of the base material A and the base material B and the elastic region strength shows that the elastic region strength tends to increase as the coarse particle size decreases in the region where the unit water amount is small, and the particle size distribution of the region where the unit water amount is large. No effect was seen. This tendency is the same as the tendency of the relationship between the unit water amount and the peak intensity shown in FIG.

次に、ピーク強度と弾性領域強度との関係を示したグラフを図6に示す。図6(a)および(b)に示すように、粒度分布や単位水量、単位セメント量の変動によらず、弾性領域強度はピーク強度の6〜7割程度である。   Next, a graph showing the relationship between the peak strength and the elastic region strength is shown in FIG. As shown in FIGS. 6A and 6B, the elastic region strength is about 60 to 70% of the peak strength regardless of the particle size distribution, unit water amount, and unit cement amount.

引張強度試験は、材齢91日で、JIS A 1113−1999「コンクリートの割裂引張強度試験方法」に従い実施した。   The tensile strength test was performed at 91 days of age according to JIS A 1113-1999 “Concrete split tensile strength test method”.

単位水量と引張強度との関係を示したグラフを図7に示す。図7(a)に示すように、平均粒度における母材Aの引張強度は、単位セメント量が、60kg/mのケースで、0.3〜0.8N/mm、単位セメント量(C)が、80kg/mのケースで、0.6〜1.0N/mmである。図7(b)に示すように、平均粒度における母材B(風化岩)の引張強度は、試験ケースが少ないが、単位セメント量(C)が、80kg/mのケースで、0.6〜0.7N/mmである。 A graph showing the relationship between the unit water amount and the tensile strength is shown in FIG. As shown in FIG. 7A, the tensile strength of the base material A at the average grain size is 0.3 to 0.8 N / mm 2 in the case where the unit cement amount is 60 kg / m 3 , and the unit cement amount (C ) Is 0.6 to 1.0 N / mm 2 in the case of 80 kg / m 3 . As shown in FIG. 7B, the tensile strength of the base material B (weathered rock) at the average grain size is 0.6 in the case where the unit cement amount (C) is 80 kg / m 3 although there are few test cases. ~ 0.7 N / mm 2 .

これらの結果をまとめて、弾性領域強度と引張強度との関係を示したグラフを図8に示す。図8(a)に示すように、弾性領域強度と引張強度には相関関係が確認でき、引張強度は、弾性領域強度の1/5程度であることが判明した。この結果と図6の結果をまとめると、引張強度はピーク強度の1/7〜1/8であることが分かった。   FIG. 8 shows a graph summarizing these results and showing the relationship between the elastic region strength and the tensile strength. As shown in FIG. 8A, a correlation can be confirmed between the elastic region strength and the tensile strength, and it was found that the tensile strength is about 1/5 of the elastic region strength. When this result and the result of FIG. 6 were put together, it was found that the tensile strength was 1/7 to 1/8 of the peak strength.

ここで、CSG材料の圧縮強度は、セメント水比と比例することが分かっているため、風化岩(母材B)を例に挙げて、単位水量110kg/mの場合の単位セメント量60,80kg/mの結果を用いて、セメント水比と圧縮強度の関係を示すと、図9に示すグラフのようになる。 Here, since it is known that the compressive strength of the CSG material is proportional to the cement water ratio, taking a weathered rock (base material B) as an example, the unit cement amount 60 in the case where the unit water amount is 110 kg / m 3 , When the relationship between the cement water ratio and the compressive strength is shown using the result of 80 kg / m 3, the graph shown in FIG. 9 is obtained.

一方、CSG材料の粘着力と、一軸圧縮強度との関係は、理論上、図10に示すようになる。図10中、Fcは圧縮強度、Ftは引張強度、φは内部摩擦角、σは一軸圧縮強度、τはせん断力、Cは粘着力を示す。この結果を基に、引張強度はピーク強度の1/8として、一軸圧縮強度と粘着力との関係を示すと、図11のグラフのようになる。   On the other hand, the relationship between the adhesive strength of the CSG material and the uniaxial compressive strength is theoretically as shown in FIG. In FIG. 10, Fc is the compressive strength, Ft is the tensile strength, φ is the internal friction angle, σ is the uniaxial compressive strength, τ is the shearing force, and C is the adhesive strength. Based on this result, the tensile strength is 1/8 of the peak strength, and the relationship between uniaxial compressive strength and adhesive strength is shown in the graph of FIG.

以上の試験事例より、単位セメント量とピーク強度相当の粘着力との関係を推定したものを以下の表1に示す。   Table 1 below shows the estimated relationship between the unit cement amount and the adhesive strength equivalent to the peak strength from the above test examples.

Figure 0004555807
Figure 0004555807

また、参考として、単位セメント量と弾性領域強度相当の粘着力との関係を推定したものを以下の表2に示す。   For reference, Table 2 below shows the estimated relationship between the unit cement amount and the adhesive strength equivalent to the elastic region strength.

Figure 0004555807
Figure 0004555807

表1に示すように、CSGの粘着力は、最低セメント量60kg/mとして、ピーク強度で、440kN/m程度確保できると考えられるが、試験事例の結果を考慮し、設計に用いる粘着力は、300kN/mを基本として、必要に応じて単位セメント量の増量を考慮して、変化させるものとする。内部摩擦角は、図10より51度となるが、試験事例を考慮して48度とする。 As shown in Table 1, it is considered that the adhesive strength of CSG can be secured at a peak strength of about 440 kN / m 2 with a minimum cement amount of 60 kg / m 3. The force is changed on the basis of 300 kN / m 2 in consideration of the increase in the unit cement amount as necessary. The internal friction angle is 51 degrees from FIG. 10, but is set to 48 degrees in consideration of test cases.

一方、母材Bの場合のCSGの単位体積重量は、下記の表3に示すように、単位セメント量60kg/m、単位水量110kg/mとした場合、22kN/mとなる。 On the other hand, the unit volume weight of CSG in the case of the base material B is 22 kN / m 3 when the unit cement amount is 60 kg / m 3 and the unit water amount is 110 kg / m 3 as shown in Table 3 below.

Figure 0004555807
Figure 0004555807

以上のように強度試験の結果より考察を行うことで、他の各試験条件についても粘着力(表1および表2参照)と、内部摩擦核と、単位体積重量(表3参照)が求められる。   By considering from the results of the strength test as described above, the adhesive strength (see Table 1 and Table 2), the internal friction core, and the unit volume weight (see Table 3) are also obtained for other test conditions. .

ところで、図1に示すように、地山の下部ですべり面(深い地すべり土塊のすべり面)が発生する場合を想定した場合、以下の数1に示す(式1)によって、すべりに対する安全率が示される。   By the way, as shown in FIG. 1, assuming that a slip surface (slip surface of a deep landslide mass) occurs at the bottom of the natural ground, the safety factor against the slip is shown by the following equation (1). It is.

Figure 0004555807
Figure 0004555807

(式1)において、Fsはすべりに対する安全率=抵抗力/滑動力を示す。抵抗力を示す分子部分では、φは深い地すべり土塊の内部摩擦角を示し、Wは深い地すべり土塊の重量のうち、すべり面に鉛直な成分を示し、Cは深い地すべり土塊の粘着力を示し、Lは深い地すべり土塊のすべり面の長さを示し、φはセメント系盛土部7の内部摩擦角を示し、WCNはセメント系盛土部7の重量のうち、すべり面に鉛直な成分を示し、Cはセメント系盛土部7の粘着力を示し、LC2はセメント系盛土部7と平坦部9との接触長さを示す。滑動力を示す分母部分では、Wは深い地すべり土塊の重量のうち、すべり面に平行な成分を示し、WCSはセメント系盛土部7の重量のうち、すべり面に平行な成分を示す。 In (Expression 1), Fs represents a safety factor against slippage = resistance force / sliding power. In the molecular part indicating resistance, φ 2 indicates the internal friction angle of the deep landslide mass, W N indicates the component perpendicular to the slip surface of the weight of the deep landslide mass, and C 2 indicates the adhesive strength of the deep landslide mass. L 2 indicates the length of the slip surface of the deep landslide mass, φ C indicates the internal friction angle of the cement-based embankment portion 7, and W CN is perpendicular to the slip surface of the weight of the cement-based embankment portion 7. indicates a component, C C represents the adhesion of cementitious fill unit 7, L C2 represents a contact length of the flat portion 9 and the cementitious fill unit 7. In the denominator indicating the sliding force, W S among the weight of the deep landslide, shows a component parallel to the sliding surface, W CS among the weight of the cementitious fill unit 7, show a component parallel to the sliding surface.

ここで、前記強度試験によって求められたセメント系盛土部7の粘着力、内部摩擦核および単位体積重量を(式1)に代入して計算することで、必要な安全率に応じた盛土量が求められる。この場合、単位セメント量を多くすると、盛土量を減らすことができ、逆に、盛土量を多くすると、単位セメント量を減らすことができる。現場発生土の採取状態やトータルでの施工コストを考慮して計算することによって、現場発生土と水とセメントとの配合比率を合理的に決定することができる。このとき、配合比率は、粒度のバラツキも考慮して、必要な安全率を得られるように決定する。   Here, the amount of embankment in accordance with the required safety factor can be calculated by substituting the adhesive strength, internal friction core and unit volume weight of the cement-based embankment portion 7 determined by the strength test into (Equation 1). Desired. In this case, if the amount of unit cement is increased, the amount of embankment can be reduced, and conversely, if the amount of embankment is increased, the amount of unit cement can be reduced. By calculating in consideration of the sampling state of the site-generated soil and the total construction cost, the mixing ratio of the site-generated soil, water, and cement can be reasonably determined. At this time, the blending ratio is determined so as to obtain a necessary safety factor in consideration of variation in particle size.

一方、図2に示すように、地山の中間部ですべり面(浅い地すべり土塊のすべり面)が発生する場合を想定した場合、以下の数2に示す(式2)によって、すべりに対する安全率が示される。   On the other hand, as shown in Fig. 2, assuming that a slip surface (slip surface of a shallow landslide mass) occurs in the middle part of the natural ground, the safety factor against the slip is shown by the following equation (2). Is shown.

Figure 0004555807
Figure 0004555807

(式2)において、Fsはすべりに対する安全率=抵抗力/滑動力を示す。抵抗力を示す分子部分では、φは浅い地すべり土塊の内部摩擦角を示し、W1Nは浅い地すべり土塊の重量のうち、すべり面に鉛直な成分を示し、Cは浅い地すべり土塊の粘着力を示し、Lは浅い地すべり土塊のすべり面の長さを示し、φはセメント系盛土部7の内部摩擦角を示し、WC1Nは浅い地すべり土塊のすべり面の下端部より上部に位置するセメント系盛土部7の重量のうち、すべり面に鉛直な成分を示し、Cはセメント系盛土部7の粘着力を示し、LC1は浅い地すべり土塊のすべり面の下端部におけるセメント系盛土部7の厚さを示す。滑動力を示す分母部分では、W1Sは浅い地すべり土塊の重量のうち、すべり面に平行な成分を示し、WC1Sは浅い地すべり土塊のすべり面の下端部より上部に位置するセメント系盛土部7の重量のうち、すべり面に平行な成分を示す。 In (Expression 2), Fs represents a safety factor against slippage = resistance force / sliding power. In the molecular part indicating resistance, φ 1 indicates the internal friction angle of the shallow landslide mass, W 1N indicates a component perpendicular to the slip surface of the weight of the shallow landslide mass, and C 1 indicates the adhesive strength of the shallow landslide mass. L 1 indicates the length of the sliding surface of the shallow landslide block, φ C indicates the internal friction angle of the cement-based embankment 7, and W C1N is located above the lower end of the sliding surface of the shallow landslide block. of the weight of the cementitious fill unit 7, show the vertical component sliding surface, C C represents the adhesion of cementitious fill unit 7, L C1 cementitious fill unit at the lower end of the sliding surface of the shallow landslide A thickness of 7 is shown. In the denominator portion indicating the sliding force, W 1S represents a component parallel to the sliding surface of the weight of the shallow landslide mass, and W C1S is a cement-based embankment portion 7 located above the lower end of the sliding surface of the shallow landslide mass. The component parallel to the slip surface is shown.

ここで、前記強度試験によって求められたセメント系盛土部7の粘着力、内部摩擦核および単位体積重量を(式2)に代入して計算することで、必要な安全率に応じた盛土量が求められる。この場合、単位セメント量を多くすると、盛土量を減らすことができ、逆に、盛土量を多くすると、単位セメント量を減らすことができる。現場発生土の採取状態、トータルでの施工コストおよび現場発生土の粒度のバラツキ状態を考慮して計算することによって、現場発生土と水とセメントとの配合比率を合理的に決定することができる。   Here, the amount of embankment in accordance with the required safety factor can be calculated by substituting the adhesive strength, internal friction core and unit volume weight of the cement-based embankment portion 7 determined by the strength test into (Equation 2). Desired. In this case, if the amount of unit cement is increased, the amount of embankment can be reduced, and conversely, if the amount of embankment is increased, the amount of unit cement can be reduced. It is possible to rationally determine the mixing ratio of on-site generated soil, water, and cement by calculating taking into account the on-site generated soil sampling condition, total construction cost, and on-site generated grain size variation. .

配合比率および盛土量は、図1のケースと図2のケースの両方の安全率の条件を満たすように決定される。   The blending ratio and the embankment amount are determined so as to satisfy the safety factor conditions of both the case of FIG. 1 and the case of FIG.

なお、前記強度試験では、供試体は、直径150mm、高さ300mmの円柱体形状に作成したものを用いており、その試験結果に基づいて配合比率および盛土量を決定(設計段階)するようにしているが、実際の施工前には、直径300mm、高さ600mmの円柱体形状の大型供試体を作成し、同様の強度試験を行う。これによって、強度試験の精度向上が達成され、配合比率および盛土量の適合性が高められる。   In the strength test, the specimen used was a cylindrical body having a diameter of 150 mm and a height of 300 mm, and the blending ratio and embankment amount were determined (design stage) based on the test results. However, before actual construction, a large-sized specimen having a cylindrical shape with a diameter of 300 mm and a height of 600 mm is prepared, and the same strength test is performed. Thereby, the precision improvement of a strength test is achieved and the compatibility of a compounding ratio and the amount of embankments is improved.

以下に、本実施の形態の作用を説明する。   The operation of the present embodiment will be described below.

本実施の形態によれば、現場発生土を利用したセメント系材料を用いて、セメント系盛土部7を形成しているので、コンクリート製の擁壁を構築する場合と比較して、骨材の調達費用および搬送費用を大幅に低減できる。特に、施工現場が交通不便な山奥にある場合では、搬送費用の低減効果は大きい。また、セメント系盛土部7は、セメント系材料をバックホウなどで締め固めながら積層していくだけで構築できるので、型枠を形成して行うコンクリート擁壁の施工と比較して、施工手間が少なく、施工費用を大幅に低減することができる。さらに、従来は産業廃棄物となっていた現場発生土を有効利用できるので、産業廃棄物の処理費用を低減させることもできる。   According to the present embodiment, since the cement-based embankment portion 7 is formed using the cement-based material using the soil generated in the field, compared to the case where the concrete retaining wall is constructed, Procurement and transportation costs can be greatly reduced. In particular, when the construction site is in the mountains where traffic is inconvenient, the effect of reducing the transportation cost is great. In addition, the cement-based embankment part 7 can be constructed by simply laminating cement-based materials while compacting them with a backhoe, etc., so compared to the construction of a concrete retaining wall formed by forming a formwork, Construction costs can be greatly reduced. Furthermore, since the soil generated in the field, which has conventionally been industrial waste, can be used effectively, the cost of processing industrial waste can be reduced.

また、セメント系盛土部7は、セメントによって一体型に形成されており、従来の短繊維混合土砂と比較して粘着力が格段に大きい。したがって、滑動面(すべり面)の延長線部分より下側も含む盛土の重量で、地すべり滑動力に抵抗することができるので、盛土部6全体の厚さを大幅に薄くすることができる。具体的には、セメント系盛土部7の重量の他に、セメント系盛土部7の粘着力による抵抗力((式2)のCC1に相当)の増加が得られるので、盛土量を低減することができる。すなわち、盛土の重量が少なく、その重量のすべり面に鉛直な成分(WC1N)が小さくても、セメント系盛土部7の粘着力による抵抗力(CC1)が増加するので、必要な抵抗力を得ることができる。 Moreover, the cement-type embankment part 7 is integrally formed with the cement, and its adhesive strength is remarkably large compared with the conventional short fiber mixed earth and sand. Therefore, since the landslide sliding force can be resisted by the weight of the embankment including the part below the extended line portion of the sliding surface (sliding surface), the thickness of the embankment portion 6 as a whole can be significantly reduced. Specifically, in addition to the weight of the cement-based embankment portion 7, an increase in the resistance force (corresponding to C C L C1 in (Equation 2)) due to the adhesive strength of the cement-based embankment portion 7 can be obtained. Can be reduced. That is, even if the weight of the embankment is small and the component perpendicular to the sliding surface of the weight (W C1N ) is small, the resistance force (C C L C1 ) due to the adhesive force of the cement-based embankment portion 7 is increased, which is necessary. Resistance can be obtained.

一方、セメント系盛土部7は、セメントによって、少なくとも平坦部9の地盤表面と岩着するので、セメント系盛土部7の重量の他に、地すべり滑動力に対する抵抗力((式1)のCC2に相当)を増大させることができ、これによっても盛土量を低減させることができる。すなわち、盛土の重量のうち、すべり面に鉛直な成分(WCN)が小さくても、セメント系盛土部7と平坦部9の地盤表面との粘着力による抵抗力(CC2)が増加するので、必要な抵抗力を得ることができる。 On the other hand, C C cementitious fill unit 7, the cement, since the Iwagi the ground surface of at least the flat portion 9, in addition to the weight of the cementitious fill unit 7, resistance to landslides sliding force ((Equation 1) (Corresponding to L C2 ) can be increased, and this can also reduce the amount of embankment. That is, even if the component perpendicular to the sliding surface (W CN ) is small in the weight of the embankment, the resistance force (C C L C2 ) due to the adhesion between the cement embankment portion 7 and the ground surface of the flat portion 9 increases. Therefore, necessary resistance can be obtained.

さらに、セメント系盛土部7が接触する地盤表面11(平坦部9や傾斜面3など)を、目荒らしして地山を露出させているので、セメント系盛土部7と地盤表面11とが互いに噛み合うこととなり、セメント系盛土部7と地盤表面11との粘着力(岩着性)を大幅に高めることができる。これによって、すべりに対する抵抗力をさらに増加させることができ、盛土量を減らすことができる。   Furthermore, since the ground surface 11 (the flat part 9 and the inclined surface 3 etc.) which the cement-type embankment part 7 contacts is roughened and the natural ground is exposed, the cement-type embankment part 7 and the ground surface 11 mutually It will mesh, and the adhesive force (rocking property) of the cement-type embankment part 7 and the ground surface 11 can be improved significantly. Thereby, the resistance to sliding can be further increased, and the amount of embankment can be reduced.

また、セメント系材料の現場発生土と水とセメントとの配合比率は、予め採取した現場発生土と水とセメントとを複数種の配合比率で混合させて複数の強度試験体を形成して強度試験を行い、その強度試験の結果に応じて決定されるようにしたので、現場ごとに異なる現場発生土の特性に合わせて、配合比率を決定できる。これによって、常に必要な強度を発現させることができる最適な配合とすることができる。   In addition, the mixing ratio of cement-based material on-site generated soil, water, and cement is the strength obtained by mixing the on-site generated soil, water, and cement collected in advance at multiple mixing ratios to form multiple strength test specimens. Since the test was carried out and determined according to the result of the strength test, the blending ratio can be determined in accordance with the characteristics of the soil generated on the site that differs from site to site. Thereby, it can be set as the optimal mixture which can always express required intensity | strength.

ここで、セメント量を増やすと、現場発生土の量を減らすことができるので、盛土の容積を減らすことができる。一方、現場発生土を増やすと、セメント量を減らすことができるので、コスト削減を図れる。これらを考慮することで、容積およびコスト面でバランスのとれた、つまり施工現場の形状に応じた配合比率を決定することができる。   Here, if the amount of cement is increased, the amount of soil generated in the field can be reduced, so that the volume of the embankment can be reduced. On the other hand, increasing the amount of soil generated at the site can reduce the amount of cement, thus reducing costs. By considering these, it is possible to determine a blending ratio that is balanced in terms of volume and cost, that is, according to the shape of the construction site.

図12は本発明に係る押え盛土構造を実施するための最良の第二の形態を示した断面図であって、地山の下部ですべり面が発生する場合を想定した、すべりに対する安全率を説明するための図である。   FIG. 12 is a cross-sectional view showing the best second embodiment for carrying out the presser embankment structure according to the present invention, and explains the safety factor against slip assuming that a slip surface is generated at the bottom of the natural ground. It is a figure for doing.

かかる実施の形態は、傾斜面3の下部に繋がる平坦部9と、この平坦部9に接触するセメント系盛土部7との粘着力(岩着性)が弱い場合の形態である。なお、セメント系盛土部7や傾斜面3などの構成は、基本的に図1の実施の形態と同様であるので、同じ符号を付して、その説明を省略する。   This embodiment is a form in the case where the adhesive force (rocking property) between the flat portion 9 connected to the lower portion of the inclined surface 3 and the cement-based embankment portion 7 in contact with the flat portion 9 is weak. In addition, since structures, such as the cement type embankment part 7 and the inclined surface 3, are the same as that of embodiment of FIG. 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

本実施の形態において、地山の下部ですべり面(深い地すべり土塊のすべり面)が発生する場合を想定した場合、以下の数3に示す(式3)によって、すべりに対する安全率が示される。   In this embodiment, when it is assumed that a slip surface (slip surface of a deep landslide mass) is generated at the lower part of the natural ground, the safety factor against the slip is expressed by the following equation (3).

Figure 0004555807
Figure 0004555807

(式3)において、Fsはすべりに対する安全率=抵抗力/滑動力を示す。抵抗力を示す分子部分では、φは深い地すべり土塊の内部摩擦角を示し、Wは深い地すべり土塊の重量のうち、すべり面に鉛直な成分を示し、Cは深い地すべり土塊の粘着力を示し、Lは深い地すべり土塊のすべり面の長さを示し、φはセメント系盛土部7と平坦部9間の内部摩擦角を示し、WCNはセメント系盛土部7の重量のうち、すべり面に鉛直な成分を示す。滑動力を示す分母部分では、Wは深い地すべり土塊の重量のうち、すべり面に平行な成分を示し、WCSはセメント系盛土部7の重量のうち、すべり面に平行な成分を示す。 In (Expression 3), Fs represents a safety factor against slippage = resistance force / sliding power. In the molecular part indicating resistance, φ 2 indicates the internal friction angle of the deep landslide mass, W N indicates the component perpendicular to the slip surface of the weight of the deep landslide mass, and C 2 indicates the adhesive strength of the deep landslide mass. L 2 indicates the length of the slip surface of the deep landslide mass, φ D indicates the internal friction angle between the cement-based embankment portion 7 and the flat portion 9, and W CN is the weight of the cement-based embankment portion 7 The component perpendicular to the slip surface is shown. In the denominator indicating the sliding force, W S among the weight of the deep landslide, shows a component parallel to the sliding surface, W CS among the weight of the cementitious fill unit 7, show a component parallel to the sliding surface.

ここで、前記強度試験によって求められたセメント系盛土部7の粘着力、内部摩擦核および単位体積重量を(式3)に代入して計算することで、必要な安全率に応じた盛土量が求められる。この場合、単位セメント量を多くすると、盛土量を減らすことができ、逆に、盛土量を多くすると、単位セメント量を減らすことができる。以上のように、計算することによって、現場発生土の採取状態やトータルでの施工コストを考慮して、現場発生土と水とセメントとの配合比率を合理的に決定することができる。   Here, the amount of embankment in accordance with the required safety factor can be calculated by substituting the adhesive strength, internal friction core and unit volume weight of the cement-based embankment portion 7 determined by the strength test into (Equation 3). Desired. In this case, if the amount of unit cement is increased, the amount of embankment can be reduced, and conversely, if the amount of embankment is increased, the amount of unit cement can be reduced. As described above, by calculation, it is possible to rationally determine the mixing ratio of the on-site generated soil, water, and cement in consideration of the sampling state of the on-site generated soil and the total construction cost.

本実施の形態では、図1に示した実施の形態と比較してセメント系盛土部7と平坦部9との粘着力が弱い分、抵抗力が小さいが、セメント系盛土部7は一体化されているので、地山の中間部ですべり面(浅い地すべり土塊のすべり面)が発生する場合を想定した場合は、セメント系盛土部7の粘着力による抵抗力を得ることができ、全体として盛土量を減らすことができる。   In this embodiment, although the adhesive force between the cement-based embankment portion 7 and the flat portion 9 is weaker than that in the embodiment shown in FIG. 1, the resistance force is small, but the cement-based embankment portion 7 is integrated. Therefore, when it is assumed that a slip surface (slip surface of a shallow landslide mass) occurs in the middle part of the natural ground, the resistance due to the adhesive strength of the cement-based embankment 7 can be obtained, and the embankment as a whole The amount can be reduced.

図13は本発明に係る押え盛土構造を実施するための最良の第三の形態を示した断面図であって、地山の中間部ですべり面が発生する場合を想定した、すべりに対する安全率を説明するための図である。   FIG. 13 is a cross-sectional view showing the best third mode for carrying out the presser embankment structure according to the present invention, and a safety factor against slip assuming that a slip surface is generated in the middle part of the natural ground. It is a figure for demonstrating.

かかる実施の形態は、セメント系盛土部7と傾斜面3との間に、現場発生土がそのまま積層されて構成される普通盛土部12が形成されている。セメント系盛土部7と普通盛土部12とで盛土部6が構成されている。セメント系盛土部7は、その底面が傾斜面3の下部に繋がる平坦部9に接触するように配置されている。セメント系盛土部7は、上部に向かうに連れて厚さが小さくなる断面台形状に形成されている。普通盛土部12は、上部に向かうに連れて厚さが大きくなる断面逆三角形状に形成されている。なお、セメント系盛土部7と普通盛土部12の形状は、前記の形状に限られるものではなく、セメント系盛土部7と普通盛土部12の厚さが、下部から上部まで一定の厚さとなるように形成してもよい。盛土部6は、傾斜面3側に現場発生土を積層するとともに、その表面側にセメント系材料を積層して構築されている。つまり、セメント系盛土部7と普通盛土部12とは、下部から上部に順次、同時施工される。なお、セメント系盛土部7と普通盛土部12以外の構成については、図1の実施の形態と同様であるので、同じ符号を付して、その説明を省略する。   In this embodiment, a normal embankment portion 12 is formed between the cement-based embankment portion 7 and the inclined surface 3, and the on-site generated soil is laminated as it is. The cement-based embankment portion 7 and the ordinary embankment portion 12 constitute the embankment portion 6. The cement-based embankment portion 7 is disposed so that the bottom surface thereof is in contact with the flat portion 9 connected to the lower portion of the inclined surface 3. The cement-based embankment portion 7 is formed in a trapezoidal cross-sectional shape with a thickness that decreases toward the top. The normal embankment portion 12 is formed in an inverted triangular shape having a thickness that increases toward the top. In addition, the shape of the cement-type embankment part 7 and the normal embankment part 12 is not restricted to the said shape, The thickness of the cement-type embankment part 7 and the ordinary embankment part 12 becomes fixed thickness from the lower part to the upper part. You may form as follows. The embankment portion 6 is constructed by laminating a field-generated soil on the inclined surface 3 side and laminating a cement-based material on the surface side. That is, the cement-based embankment portion 7 and the ordinary embankment portion 12 are simultaneously applied sequentially from the lower portion to the upper portion. In addition, since it is the same as that of embodiment of FIG. 1 about structures other than the cement type embankment part 7 and the normal embankment part 12, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

本実施の形態において、地山の中間部ですべり面(浅い地すべり土塊のすべり面)が発生する場合を想定した場合、以下の数4に示す(式4)によって、すべりに対する安全率が示される。   In the present embodiment, assuming a case where a slip surface (slip surface of a shallow landslide soil block) occurs in the middle part of the natural ground, the safety factor against the slip is shown by the following equation (4). .

Figure 0004555807
Figure 0004555807

(式4)において、Fsはすべりに対する安全率=抵抗力/滑動力を示す。抵抗力を示す分子部分では、φは浅い地すべり土塊の内部摩擦角を示し、W1Nは浅い地すべり土塊の重量のうち、すべり面に鉛直な成分を示し、Cは浅い地すべり土塊の粘着力を示し、Lは浅い地すべり土塊のすべり面の長さを示し、φは普通盛土部12の内部摩擦角を示し、W´BNは普通盛土部12の重量のうち、すべり面に鉛直な成分を示し、φはセメント系盛土部7の内部摩擦角を示し、W´C1Nはセメント系盛土部7の重量のうち、すべり面に鉛直な成分を示し、Cはセメント系盛土部7の粘着力を示し、L´C1は浅い地すべり土塊のすべり面の下端部におけるセメント系盛土部7の厚さを示す。滑動力を示す分母部分では、W1Sは浅い地すべり土塊の重量のうち、すべり面に平行な成分を示し、W´BSは浅い地すべり土塊のすべり面の下端部より上部に位置する普通盛土部12の重量のうち、すべり面に平行な成分を示し、W´C1Sは浅い地すべり土塊のすべり面の下端部より上部に位置するセメント系盛土部7の重量のうち、すべり面に平行な成分を示す。 In (Expression 4), Fs represents a safety factor against slippage = resistance force / sliding power. In the molecular part indicating resistance, φ 1 indicates the internal friction angle of the shallow landslide mass, W 1N indicates a component perpendicular to the slip surface of the weight of the shallow landslide mass, and C 1 indicates the adhesive strength of the shallow landslide mass. L 1 indicates the length of the slip surface of the shallow landslide block, φ B indicates the internal friction angle of the normal embankment portion 12, and W ′ BN is perpendicular to the slip surface of the normal embankment portion 12. Φ C indicates the internal friction angle of the cement-based embankment portion 7, W ′ C1N indicates a component perpendicular to the sliding surface of the weight of the cement-based embankment portion 7, and C C indicates the cement-based embankment portion 7. L ′ C1 indicates the thickness of the cement-based embankment portion 7 at the lower end of the sliding surface of the shallow landslide mass. In the denominator portion indicating the sliding force, W 1S indicates a component parallel to the sliding surface of the weight of the shallow landslide block, and W ′ BS indicates the normal embankment portion 12 located above the lower end of the sliding surface of the shallow landslide block. among weight, showed a component parallel to the sliding surface, W'C1S indicates shallow of the weight of the cementitious fill unit 7 located above the lower end of the sliding surface of the landslide mass, the component parallel to the sliding surface .

ここで、前記強度試験によって求められたセメント系盛土部7の粘着力、内部摩擦核および単位体積重量を(式4)に代入して計算することで、必要な安全率に応じた盛土量が求められる。この場合、単位セメント量を多くすると、盛土量を減らすことができ、逆に、盛土量を多くすると、単位セメント量を減らすことができる。以上のように、計算することによって、現場発生土の採取状態やトータルでの施工コストを考慮して、現場発生土と水とセメントとの配合比率を合理的に決定することができる。   Here, the amount of embankment corresponding to the required safety factor can be calculated by substituting and calculating the adhesive strength, internal friction core and unit volume weight of the cement-based embankment portion 7 determined by the strength test in (Equation 4). Desired. In this case, if the amount of unit cement is increased, the amount of embankment can be reduced, and conversely, if the amount of embankment is increased, the amount of unit cement can be reduced. As described above, by calculation, it is possible to rationally determine the mixing ratio of the on-site generated soil, water, and cement in consideration of the sampling state of the on-site generated soil and the total construction cost.

本実施の形態では、盛土部6をセメント系盛土部7と普通盛土部12とで構成しているので、図1に示した実施の形態と比較してセメントの混合量を低減することができる。すなわち、普通盛土部12で盛土部6の重量を確保しつつ、セメント系盛土部7で粘着力を得ることで、効率的にすべりに対する抵抗力を増加させることができる。よって施工コストのさらなる低減が達成される。   In the present embodiment, since the embankment portion 6 is composed of the cement embankment portion 7 and the ordinary embankment portion 12, the amount of cement mixed can be reduced as compared with the embodiment shown in FIG. . That is, by securing the weight of the embankment portion 6 with the ordinary embankment portion 12 and obtaining the adhesive strength with the cement-based embankment portion 7, the resistance to slip can be increased efficiently. Therefore, further reduction in construction cost is achieved.

以上、本発明を実施するための形態について説明したが、本発明は前記実施の形態に限定されず、本発明の趣旨を逸脱しない範囲で適宜設計変更が可能である。例えば、現場発生土は、基本的には分級しないが、分級する場合も本発明の技術範囲に含まれるのは言うまでもない。   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to the said embodiment, In the range which does not deviate from the meaning of this invention, a design change is possible suitably. For example, on-site generated soil is basically not classified, but it goes without saying that classification is also included in the technical scope of the present invention.

また、本発明に係る押え盛土構造は、単独で形成されることに限られるものではなく、地下水排除工と併用してもよいのは勿論である。このようにすれば、地下水の変動による滑動力の変動を抑えることができる。   In addition, the presser embankment structure according to the present invention is not limited to being formed alone, and may be used together with a groundwater drainer. If it does in this way, the fluctuation | variation of the sliding power by the fluctuation | variation of groundwater can be suppressed.

本発明に係る押え盛土構造を実施するための最良の形態を示した断面図であって、地山の下部ですべり面が発生する場合を想定した、すべりに対する安全率を説明するための図である。It is sectional drawing which showed the best form for implementing the presser embankment structure which concerns on this invention, Comprising: It is a figure for demonstrating the safety factor with respect to a slip supposing the case where a slip surface generate | occur | produces in the lower part of a natural ground. . 本発明に係る押え盛土構造を実施するための最良の形態を示した断面図であって、地山の中間部ですべり面が発生する場合を想定した、すべりに対する安全率を説明するための図である。It is sectional drawing which showed the best form for implementing the presser embankment structure which concerns on this invention, Comprising: The figure for demonstrating the safety factor with respect to a slip supposing the case where a slip surface generate | occur | produces in the intermediate part of a natural ground It is. (a)は河床砂礫の試験粒度を示したグラフ、(b)は風化岩(横坑掘削ズリ)の試験粒度を示したグラフである。(A) is a graph showing the test particle size of river bed gravel, (b) is a graph showing the test particle size of weathered rock (horizontal excavation sludge). (a)は河床砂礫の単位水量とピーク強度との関係を示したグラフ、(b)は風化岩(横坑掘削ズリ)の単位水量とピーク強度との関係を示したグラフである。(A) is the graph which showed the relationship between the unit water amount of riverbed gravel, and peak intensity, (b) is the graph which showed the relationship between the unit water amount and peak intensity of weathered rock (horizontal excavation sludge). (a)は河床砂礫の単位水量と弾性領域強度との関係を示したグラフ、(b)は風化岩(横坑掘削ズリ)の単位水量と弾性領域強度との関係を示したグラフである。(A) is a graph showing the relationship between the unit water amount of riverbed gravel and the elastic region strength, (b) is a graph showing the relationship between the unit water amount of weathered rock (horizontal excavation sludge) and the elastic region strength. (a)は河床砂礫のピーク強度と弾性領域強度との関係を示したグラフ、(b)は風化岩(横坑掘削ズリ)のピーク強度と弾性領域強度との関係を示したグラフである。(A) is a graph showing the relationship between the peak strength of riverbed gravel and the elastic region strength, (b) is a graph showing the relationship between the peak strength of weathered rock (horizontal excavation sludge) and the elastic region strength. (a)は河床砂礫の単位水量と引張強度との関係を示したグラフ、(b)は風化岩(横坑掘削ズリ)の単位水量と引張強度との関係を示したグラフである。(A) is the graph which showed the relationship between the unit water amount of riverbed gravel, and tensile strength, (b) is the graph which showed the relationship between the unit water amount and tensile strength of weathered rock (horizontal excavation sludge). (a)は河床砂礫の弾性領域強度と引張強度との関係を示したグラフ、(b)は風化岩(横坑掘削ズリ)の弾性領域強度と引張強度との関係を示したグラフである。(A) is the graph which showed the relationship between the elastic region strength of riverbed gravel, and tensile strength, (b) is the graph which showed the relationship between the elastic region strength and tensile strength of weathered rock (horizontal excavation sludge). セメント水比と圧縮強度との関係を示したグラフである。It is the graph which showed the relationship between cement water ratio and compressive strength. 一軸圧縮強度と粘着力との関係を示した理論図である。It is the theoretical figure which showed the relationship between uniaxial compressive strength and adhesive force. 一軸圧縮強度と粘着力との関係を示したグラフである。It is the graph which showed the relationship between uniaxial compressive strength and adhesive force. 本発明に係る押え盛土構造を実施するための最良の第二の形態を示した断面図であって、地山の下部ですべり面が発生する場合を想定した、すべりに対する安全率を説明するための図である。It is sectional drawing which showed the best 2nd form for implementing the presser embankment structure concerning this invention, Comprising: In order to explain the safety factor with respect to a slip supposing the case where a slip surface generate | occur | produces in the lower part of a natural ground FIG. 本発明に係る押え盛土構造を実施するための最良の第三の形態を示した断面図であって、地山の中間部ですべり面が発生する場合を想定した、すべりに対する安全率を説明するための図である。It is sectional drawing which showed the best 3rd form for implementing the presser embankment structure concerning this invention, Comprising: The safety factor with respect to a slip supposing the case where a slip surface generate | occur | produces in the intermediate part of a natural ground is demonstrated. FIG.

符号の説明Explanation of symbols

2 山
3 傾斜面
4 地すべり土塊
5 末端部
6 盛土部
7 セメント系盛土部
9 平坦部
12 普通盛土部
2 Mountain 3 Inclined surface 4 Landslide block 5 Terminal part 6 Embankment part 7 Cement-based embankment part 9 Flat part 12 Normal embankment part

Claims (3)

傾斜面の地すべりを防止するために前記傾斜面の地すべり土塊の末端部に所定厚さの盛土部を形成する押え盛土構造において、
施工現場あるいはその近傍で採取可能な現場発生土と水とセメントとを混合して構成されるセメント系材料を積層してなるセメント系盛土部で、前記盛土部の全体を構成し、
前記セメント系盛土部は、少なくとも前記傾斜面の下部に繋がる平坦部に接触するように構成するとともに、
予め採取した前記現場発生土と前記水と前記セメントとを複数種の配合比率で混合させて形成された複数の試験体を用いて行われた強度試験により求められた前記セメント系盛土部の粘着力、内部摩擦角および単位体積重量を、地山の下部ですべり面が発生する場合を想定した下記の式1および地山の中間部ですべり面が発生する場合を想定した下記の式2に代入して算出されるすべりに対する安全率が、必要な安全率となるように、前記セメント系盛土部の配合比率と盛土量を決定する
ことを特徴とする押え盛土構造。
Figure 0004555807
Fs:すべりに対する安全率
φ :地すべり土塊の内部摩擦角
:地すべり土塊の重量のうち、すべり面に鉛直な成分
:地すべり土塊の粘着力
:地すべり土塊のすべり面の長さ
φ :セメント系盛土部の内部摩擦角
CN :セメント系盛土部の重量のうち、すべり面に鉛直な成分
:セメント系盛土部の粘着力
C2 :セメント系盛土部と平坦部との接触長さ
:地すべり土塊の重量のうち、すべり面に平行な成分
CS :セメント系盛土部の重量のうち、すべり面に平行な成分
Figure 0004555807
Fs:すべりに対する安全率
φ :地すべり土塊の内部摩擦角
1N :地すべり土塊の重量のうち、すべり面に鉛直な成分
:地すべり土塊の粘着力
:地すべり土塊のすべり面の長さ
φ :セメント系盛土部の内部摩擦角
C1N :地すべり土塊のすべり面の下端部より上部に位置するセメント系盛土部の重量のうち、すべり面に鉛直な成分
:セメント系盛土部の粘着力
C1 :地すべり土塊のすべり面の下端部におけるセメント系盛土部の厚さ
1S :地すべり土塊の重量のうち、すべり面に平行な成分
C1S :地すべり土塊のすべり面の下端部より上部に位置するセメント系盛土部の重量のうち、すべり面に平行な成分
In a presser embankment structure that forms a bank with a predetermined thickness at the end of the landslide mass of the inclined surface in order to prevent a landslide on the inclined surface,
In the cement-based embankment formed by laminating cement-based materials composed of a mixture of on-site generated soil, water and cement that can be collected at or near the construction site, the entire embankment is configured,
The cement-based embankment is configured to contact at least a flat portion connected to the lower portion of the inclined surface,
Adhesion of the cement-based embankment determined by a strength test performed using a plurality of specimens formed by mixing the field-generated soil, water, and cement collected in advance at a plurality of blending ratios. Substitute the force, internal friction angle and unit volume weight into the following equation 1 assuming the occurrence of a slip surface at the bottom of the natural ground and the following equation 2 assuming the occurrence of a slip at the middle of the natural ground A holding embankment structure , wherein the blending ratio and the embankment amount of the cement-based embedding part are determined so that the safety factor for the slip calculated as described above becomes a necessary safety factor .
Figure 0004555807
Fs: Safety factor against slip
φ 2 : Internal friction angle of landslide mass
W N : The component perpendicular to the slip surface of the landslide mass
C 2 : Adhesive strength of landslide mass
L 2 : Length of slip surface of landslide mass
φ C : Internal friction angle of cement embankment
W CN : The component perpendicular to the sliding surface of the weight of the cement embankment
C C : Adhesive strength of cement-based embankment
L C2 : Contact length between cement-based embankment and flat part
W S : The component of the landslide mass that is parallel to the slip surface
W CS : A component parallel to the sliding surface in the weight of the cement embankment
Figure 0004555807
Fs: Safety factor against slip
φ 1 : Internal friction angle of landslide mass
W 1N : The component perpendicular to the slip surface of the landslide mass
C 1 : Adhesive strength of landslide mass
L 1 : Length of slip surface of landslide mass
φ C : Internal friction angle of cement embankment
W C1N : Of the weight of cement-based embankment located above the lower end of the sliding surface of the landslide mass, the component perpendicular to the sliding surface
C C : Adhesive strength of cement-based embankment
L C1 : thickness of cement-based embankment at the lower end of the sliding surface of the landslide mass
W 1S : The component of the landslide mass that is parallel to the slip surface
W C1S : A component parallel to the slip surface of the weight of the cement embankment located above the lower end of the slide surface of the landslide block.
傾斜面の地すべりを防止するために前記傾斜面の地すべり土塊の末端部に所定厚さの盛土部を形成する押え盛土構造において、
施工現場あるいはその近傍で採取可能な現場発生土と水とセメントとを混合して構成されるセメント系材料を積層してなるセメント系盛土部と、前記セメント系盛土部と前記傾斜面との間に前記現場発生土を積層してなる普通盛土部とで、前記盛土部を構成し、
前記セメント系盛土部は、少なくとも前記傾斜面の下部に繋がる平坦部に接触するように構成するとともに、
予め採取した前記現場発生土と前記水と前記セメントとを複数種の配合比率で混合させて形成された複数の試験体を用いて行われた強度試験により求められた前記セメント系盛土部の粘着力、内部摩擦角および単位体積重量を、地山の中間部ですべり面が発生する場合を想定した下記の式4に代入して算出されるすべりに対する安全率が、必要な安全率となるように、前記セメント系盛土部の配合比率と盛土量を決定する
ことを特徴とする押え盛土構造。
Figure 0004555807
Fs:すべりに対する安全率
φ :地すべり土塊の内部摩擦角
1N :地すべり土塊の重量のうち、すべり面に鉛直な成分
:地すべり土塊の粘着力
:地すべり土塊のすべり面の長さ
φ :普通盛土部の内部摩擦角
W´ BN :普通盛土部の重量のうち、すべり面に鉛直な成分
φ :セメント系盛土部の内部摩擦角
W´ C1N :セメント系盛土部の重量のうち、すべり面に鉛直な成分
:セメント系盛土部の粘着力
L´ C1 :地すべり土塊のすべり面の下端部におけるセメント系盛土部の厚さ
1S :地すべり土塊の重量のうち、すべり面に平行な成分
W´ BS :地すべり土塊のすべり面の下端部より上部に位置する普通盛土部の重量のうち、すべり面に平行な成分
W´ C1S :地すべり土塊のすべり面の下端部より上部に位置するセメント系盛土部の重量のうち、すべり面に平行な成分
In a presser embankment structure that forms a bank with a predetermined thickness at the end of the landslide mass of the inclined surface in order to prevent a landslide on the inclined surface,
A cement-based embankment made by laminating cement-based materials composed of a mixture of site-generated soil, water, and cement that can be collected at or near the construction site, and between the cement-based embankment and the inclined surface The above- mentioned embedding part is constituted with a normal embedding part formed by laminating the on-site generated soil ,
The cement-based embankment is configured to contact at least a flat portion connected to the lower portion of the inclined surface,
Adhesion of the cement-based embankment portion obtained by a strength test performed using a plurality of specimens formed by mixing the field-generated soil, water, and cement collected in advance at a plurality of blending ratios. The safety factor for slip calculated by substituting force, internal friction angle and unit volume weight into the following formula 4 assuming the occurrence of a slip surface in the middle part of the ground is the required safety factor. Next, the mixing ratio and amount of the cement-based embankment are determined.
The presser foot embankment structure characterized by that.
Figure 0004555807
Fs: Safety factor against slip
φ 1 : Internal friction angle of landslide mass
W 1N : The component perpendicular to the slip surface of the landslide mass
C 1 : Adhesive strength of landslide mass
L 1 : Length of slip surface of landslide mass
φ B: internal friction angle of the ordinary banking unit
W ' BN : The component perpendicular to the slip surface of the normal embankment weight
φ C : Internal friction angle of cement embankment
W ' C1N : The component perpendicular to the sliding surface among the weight of the cement embankment
C C : Adhesive strength of cement-based embankment
L ' C1 : Thickness of the cement-based embankment at the lower end of the sliding surface of the landslide mass
W 1S : The component of the landslide mass that is parallel to the slip surface
W'BS: out of the weight of the plain embankment portion located above the lower end of the sliding surface of the landslide mass, parallel to the sliding surface component
W'C1S: out of the weight of the cementitious fill portion located above the lower end of the sliding surface of the landslide mass, parallel to the sliding surface component
前記セメント系盛土部が接触する山の傾斜部および平坦部の地盤表面の岩盤を露出させて、前記セメント系盛土部と地盤表面との粘着力を高めるように構成した
ことを特徴とする請求項1に記載の押え盛土構造。
Claims wherein the cementitious embankment portion to expose the bedrock of the ground table surface of the inclined portion and the flat portion of the mountain which is in contact, characterized by being configured to enhance adhesion between the cementitious fill portion and the ground surface Item 1. The presser embankment structure according to item 1 .
JP2006248986A 2006-09-14 2006-09-14 Presser foot embankment structure Expired - Fee Related JP4555807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006248986A JP4555807B2 (en) 2006-09-14 2006-09-14 Presser foot embankment structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006248986A JP4555807B2 (en) 2006-09-14 2006-09-14 Presser foot embankment structure

Publications (2)

Publication Number Publication Date
JP2008069553A JP2008069553A (en) 2008-03-27
JP4555807B2 true JP4555807B2 (en) 2010-10-06

Family

ID=39291377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006248986A Expired - Fee Related JP4555807B2 (en) 2006-09-14 2006-09-14 Presser foot embankment structure

Country Status (1)

Country Link
JP (1) JP4555807B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109235458A (en) * 2018-10-17 2019-01-18 贵州省水利水电勘测设计研究院 A method of rush cunning is filled the water using accumulation body and forms dam

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07237747A (en) * 1994-02-28 1995-09-12 Kuraray Co Ltd Manufacture and conveyance of short-fiber-mixed soil and sand and system therefor
JP2000248538A (en) * 1999-03-02 2000-09-12 Natl Res Inst Of Agricultural Engineering Manufacture of banking material using bottom mud of reservoir and repairing/reinforcing method of bank body of reservoir and crusher
JP2003020625A (en) * 2001-07-11 2003-01-24 National Institute For Rural Engineering Method for reinforcing soil structure bank body
JP2003055948A (en) * 2001-08-10 2003-02-26 Ohbayashi Corp Improved soil, and producing method and construction method thereof
JP2003082666A (en) * 2001-09-10 2003-03-19 Dai Nippon Construction Reclaiming method for steeply sloped filling
JP2005076333A (en) * 2003-09-02 2005-03-24 Shinwa Kensetsu Kogyo:Kk Banking construction method of slope face using on-site excessive soil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07237747A (en) * 1994-02-28 1995-09-12 Kuraray Co Ltd Manufacture and conveyance of short-fiber-mixed soil and sand and system therefor
JP2000248538A (en) * 1999-03-02 2000-09-12 Natl Res Inst Of Agricultural Engineering Manufacture of banking material using bottom mud of reservoir and repairing/reinforcing method of bank body of reservoir and crusher
JP2003020625A (en) * 2001-07-11 2003-01-24 National Institute For Rural Engineering Method for reinforcing soil structure bank body
JP2003055948A (en) * 2001-08-10 2003-02-26 Ohbayashi Corp Improved soil, and producing method and construction method thereof
JP2003082666A (en) * 2001-09-10 2003-03-19 Dai Nippon Construction Reclaiming method for steeply sloped filling
JP2005076333A (en) * 2003-09-02 2005-03-24 Shinwa Kensetsu Kogyo:Kk Banking construction method of slope face using on-site excessive soil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109235458A (en) * 2018-10-17 2019-01-18 贵州省水利水电勘测设计研究院 A method of rush cunning is filled the water using accumulation body and forms dam

Also Published As

Publication number Publication date
JP2008069553A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
Consoli et al. Behavior of plate load tests on soil layers improved with cement and fiber
Yıldırım et al. Modulus of elasticity of substandard and normal concretes
Tatlisoz et al. Interaction between reinforcing geosynthetics and soil-tire chip mixtures
Deluzarche et al. Discrete numerical modelling of rockfill dams
Jansson et al. Bond of reinforcement in self-compacting steel-fibre-reinforced concrete
Noorzad et al. Comparison of Mechanical Properties ofFiber-Reinforced Sand under Triaxial Compressionand Direct Shear
Islam et al. Earthquake resistance of adobe reinforced by low cost traditional materials
Golait et al. Analytical and experimental studies on cemented stone columns for soft clay ground improvement
Meimaroglou et al. Mechanical properties of three-leaf masonry walls constructed with natural stones and mud mortar
Jayawardane et al. Strength enhancement of geotextile-reinforced fly-ash-based geopolymer stabilized residual soil
Tsoi et al. Mechanical properties of cemented scrap rubber tyre chips
McAffee et al. Geotechnical properties of compressible materials used for induced trench construction
Consoli et al. Cement-enhancing mechanical behavior of tailings behind upstream tailings dam for safe decommissioning
JP4555807B2 (en) Presser foot embankment structure
Sunayana et al. Shear behavior of fly-ash-incorporated recycled aggregate concrete beams
Windapo et al. Assessing the structural properties of the sandbag wall for alternative housing construction
Muktinutalapati et al. Earth pressures on retaining walls backfilled with sand admixed with building derived materials: laboratory scale study
Tatiannikov et al. Investigation of the interaction of geosynthetics with ground on the example of shear test and pull-out test
Kesharwani et al. CBR value of sandy subgrade blended with coarse aggregate
Jeon Pull-out tests and slope stability analyses of nailing systems comprising single and multi rebars with grouted cement
Ghaaowd et al. Shearing behavior of interfaces between tire-derived aggregate and three soil materials
Verma et al. Effect of grouted granular column on the load carrying capacity of the expansive soil
Mallick et al. Geotechnical characterization of clinker-stabilized fly ash-coal mine overburden mixes for subbase of mine haul road
Kim Characterization of self-consolidating concrete for the design of precast, pretensioned bridge superstructure elements
Li et al. Mechanical behavior of reinforced embankment with different recycling waste fillers

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4555807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees