JP4555693B2 - High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof - Google Patents

High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof Download PDF

Info

Publication number
JP4555693B2
JP4555693B2 JP2005009374A JP2005009374A JP4555693B2 JP 4555693 B2 JP4555693 B2 JP 4555693B2 JP 2005009374 A JP2005009374 A JP 2005009374A JP 2005009374 A JP2005009374 A JP 2005009374A JP 4555693 B2 JP4555693 B2 JP 4555693B2
Authority
JP
Japan
Prior art keywords
less
rolling
steel sheet
hot
deep drawability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005009374A
Other languages
Japanese (ja)
Other versions
JP2006193819A (en
Inventor
夏子 杉浦
直紀 丸山
直樹 吉永
学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005009374A priority Critical patent/JP4555693B2/en
Publication of JP2006193819A publication Critical patent/JP2006193819A/en
Application granted granted Critical
Publication of JP4555693B2 publication Critical patent/JP4555693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、主に自動車のパネル類、足廻り、メンバーフレームなどの部品に用いられる鋼板およびその製造方法に関するものである。本発明の鋼板は表面処理をしない冷延鋼板と、防錆の目的で溶融亜鉛めっき、電気めっきなどの表面処理を施しためっき鋼板の両方を含む。また、めっきの種類としては純亜鉛、主成分が亜鉛である合金、さらにはAlやAl−Mgを主体としたものも含む。   The present invention relates to a steel plate used mainly for parts such as automobile panels, undercarriages, and member frames, and a method for manufacturing the same. The steel sheet of the present invention includes both cold-rolled steel sheets that are not subjected to surface treatment and plated steel sheets that have been subjected to surface treatment such as hot dip galvanizing and electroplating for the purpose of rust prevention. In addition, the types of plating include pure zinc, alloys whose main component is zinc, and those mainly composed of Al or Al-Mg.

近年の自動車軽量化の動きに伴い、高強度鋼板の自動車部材への適用ニーズが高まっている。これは高強度化することで板厚減少による軽量化や衝突時の安全性向上が期待できるためである。しかしながら、自動車の車体用部品の多くはプレス加工により成形されるために使用される高強度鋼板には優れたプレス成形性が要求される。成形性、特に深絞り性が優れた鋼板を得るためにはC量を著しく低減する事が有効であることは良く知られている。   With the recent trend of reducing the weight of automobiles, there is an increasing need for application of high-strength steel sheets to automobile members. This is because by increasing the strength, it is possible to expect weight reduction by reducing the plate thickness and safety improvement at the time of collision. However, many press parts for automobile body parts are required to have excellent press formability because they are formed by press working. It is well known that it is effective to significantly reduce the amount of C in order to obtain a steel sheet having excellent formability, particularly deep drawability.

そこで高強度鋼の深絞り性向上のために、特開昭56−139654号公報(特許文献1)に開示されているように、C量を著しく減じた極低炭素鋼にSi,Mn,Pなどを添加して強化する鋼板が多く開発された。しかしながら、C量を低減するためには製鋼工程で真空脱ガスを行わなければならず、製造工程でCO2 を多量に発生することになり、コストの観点からも地球環境保全の観点からも最良とはいえない。また、C量が低いと残留γ鋼のような強度延性バランスに優れた複合組織鋼を作ることが出来ない。 Therefore, in order to improve the deep drawability of high strength steel, as disclosed in JP-A-56-139654 (Patent Document 1), an ultra-low carbon steel with a significantly reduced amount of C is added to Si, Mn, P Many steel sheets have been developed that are reinforced with the addition of the above. However, in order to reduce the amount of C, vacuum degassing must be performed in the steel making process, and a large amount of CO 2 is generated in the manufacturing process, which is the best from the viewpoint of cost and global environmental conservation. That's not true. Moreover, when the amount of C is low, it is not possible to make a composite structure steel having an excellent balance of strength and ductility such as residual γ steel.

これに対し、C量が比較的高く、かつ深絞り性の良好な鋼板についても、特公昭57−47746号公報(特許文献2)、特公平2−20695号公報(特許文献3)などに開示されている。しかしながら、これらは箱焼鈍が前提となっており、連続焼鈍に比較すると生産性に劣る。また、高温昇温、急速冷却が困難なことから残留オーステナイト相やマルテンサイト相を得ることが難しく、組織強化が活用しにくい。   On the other hand, steel sheets with a relatively high C content and good deep drawability are disclosed in Japanese Patent Publication No. 57-47746 (Patent Document 2), Japanese Patent Publication No. 2-20695 (Patent Document 3), and the like. Has been. However, these are premised on box annealing, and are inferior in productivity as compared with continuous annealing. Moreover, since it is difficult to raise the temperature and rapidly cool, it is difficult to obtain a retained austenite phase or a martensite phase, and it is difficult to utilize the strengthening of the structure.

この問題を解決するために、例えば特公昭55−10650号公報(特許文献4)や特開昭55−100934号公報(特許文献5)では箱焼鈍の後に連続焼鈍を行うような技術が開示されているが、生産性の問題は回避することが出来ない。また、特開2003−64443号公報(特許文献6)、特開2003−193191号公報(特許文献7)、特開2003−321733号公報(特許文献8)、特開2003−42643号公報(特許文献9)には連続焼鈍工程で深絞り性に優れた高強度冷延鋼板を製造する技術が開示されているが、いずれも熱延板の金属組織や固溶C量を規定することで冷延中の{111}方位の発達を促すことを目的としており、本発明とはまったく異なるものである。   In order to solve this problem, for example, Japanese Patent Publication No. 55-10650 (Patent Document 4) and Japanese Patent Application Laid-Open No. 55-1000093 (Patent Document 5) disclose a technique of performing continuous annealing after box annealing. However, productivity problems cannot be avoided. JP 2003-64443 A (Patent Document 6), JP 2003-193191 A (Patent Document 7), JP 2003-321733 A (Patent Document 8), JP 2003-42643 A (Patent Document 6). Reference 9) discloses a technique for producing a high-strength cold-rolled steel sheet excellent in deep drawability in a continuous annealing process. The purpose is to promote the development of the {111} orientation, which is completely different from the present invention.

特開昭56−139654号公報JP-A-56-139654 特公昭57−47746号公報Japanese Patent Publication No.57-47746 特公平2−20695号公報Japanese Examined Patent Publication No. 2-20695 特公昭55−10650号公報Japanese Patent Publication No.55-10650 特開昭55−100934号公報JP-A-55-100934 特開2003−64443号公報JP 2003-64443 A 特開2003−193191号公報JP 2003-193191 A 特開2003−321733号公報JP 2003-321733 A 特開2003−42643号公報JP 2003-42643 A

本発明はC量の比較的多い鋼において成形性、特に深絞り性の良好な高強度鋼板を、連続焼鈍工程を前提とした通常の製造ラインにおいて製造し、提供することを目的とする。   An object of the present invention is to manufacture and provide a high strength steel plate having good formability, particularly deep drawability in a steel having a relatively large amount of C, in a normal production line based on a continuous annealing process.

本発明者らが上記のような課題を解決すべく鋭意検討を進めたところ、熱延板の集合組織、冷延率、焼鈍時の加熱速度を制御することによってC量が比較的多くても深絞り性の良好な鋼板を連続焼鈍で製造することが可能であることを見出した。すなわち、Nb,Mo,Ti,Mn,B等の成分、及び熱延条件を最適化することで、熱延板中にr値を高める方位である{332}<113>が極めて高くなり、かつr値を下げる方位である{100}<011>方位の強度が低下することを見出したものである。そして、この熱延板集合組織を冷延・焼鈍後まで保存することで高い深絞り性を確保するという、今までにない考え方によって高深絞り性鋼板を製造するものである。   When the present inventors have intensively studied to solve the above problems, even if the amount of C is relatively large by controlling the texture of the hot rolled sheet, the cold rolling rate, and the heating rate during annealing. It has been found that a steel sheet with good deep drawability can be produced by continuous annealing. That is, by optimizing components such as Nb, Mo, Ti, Mn, B, and hot rolling conditions, {332} <113>, which is an orientation for increasing the r value in the hot rolled sheet, becomes extremely high, and It has been found that the strength of the {100} <011> orientation, which is the orientation that lowers the r value, decreases. Then, a high deep drawability steel sheet is manufactured by an unprecedented concept of ensuring high deep drawability by preserving this hot rolled sheet texture until after cold rolling and annealing.

本発明の要旨とするところは
(1)質量%で、C:0.01〜0.3%、Si:2.5%以下、Mn:0.1〜3.0%、P:0.15%以下、S:0.015%以下、Mo:0.1〜1.5%、B:0.0006〜0.01%、Al:0.15%以下、Nb:0.01〜0.20%、N:0.01%以下、Ti:48/14×N(質量%)以上、0.2%以下を含有し、残部鉄及び不可避的不純物からなり、板厚1/2層における{332}<113>の極密度が4.5以上でかつ{100}<011>の極密度が3以下、更に圧延方向と45度方向と幅方向のr値の最小値が1.0以上で、かつ圧延方向と45度方向と幅方向の平均r値が1.3以上であることを特徴とする深絞り性に優れた高強度冷延鋼板。
The gist of the present invention is (1)% by mass, C: 0.01 to 0.3%, Si: 2.5% or less, Mn: 0.1 to 3.0%, P: 0.15. %: S: 0.015% or less, Mo: 0.1-1.5%, B: 0.0006-0.01%, Al: 0.15% or less, Nb: 0.01-0.20 %, N: 0.01% or less, Ti: 48/14 × N (mass%) or more and 0.2% or less, consisting of the balance iron and unavoidable impurities, {332 in thickness 1/2 layer } <113> has a pole density of 4.5 or more and {100} <011> has a pole density of 3 or less, and the minimum r value in the rolling direction, 45 degree direction and width direction is 1.0 or more, A high-strength cold-rolled steel sheet excellent in deep drawability, characterized in that the average r value in the rolling direction, 45 ° direction and width direction is 1.3 or more.

(2)板厚1/8層における{110}<223>及び/又は{110}<111>の極密度が4以下であることを特徴とする前記(1)に記載の深絞り性に優れた高強度冷延鋼板。
(3)Ca:0.0005〜0.01質量%を含むことを特徴とする前記(1)又は(2)に記載の深絞り性に優れた高強度冷延鋼板。
(2) The deep density of {110} <223> and / or {110} <111> in the plate thickness 1/8 layer is excellent in deep drawability as described in (1) above, which is 4 or less High strength cold rolled steel sheet.
(3) The high-strength cold-rolled steel sheet having excellent deep drawability as described in (1) or (2) above, containing Ca: 0.0005 to 0.01% by mass.

(4)Sn,Co,Zn,W,Zr,V,Mg,Remの1種又は2種以上を合計で0.001〜1.0質量%含むことを特徴とする前記(1)〜(3)のいずれか1項に記載の深絞り性に優れた高強度冷延鋼板。
(5)Ni,Cu,Crの1種又は2種以上を合計で0.001〜4.0質量%含むことを特徴とする前記(1)〜(4)のいずれか1項に記載の深絞り性に優れた高強度冷延鋼板。
(4) The above (1) to (3) characterized by containing 0.001 to 1.0 mass% in total of one or more of Sn, Co, Zn, W, Zr, V, Mg, and Rem. The high-strength cold-rolled steel sheet excellent in deep drawability according to any one of items 1).
(5) The depth according to any one of (1) to (4) above, wherein 0.001 to 4.0 mass% in total of one or more of Ni, Cu, and Cr is included. A high-strength cold-rolled steel sheet with excellent drawability.

(6)前記(1)および(3)〜(5)のいずれか1項に記載の化学成分を有するスラブを1100℃以上の温度に加熱し、熱間圧延をする際、(1)式で計算される有効ひずみ量ε* が0.4以上、かつ圧下率の合計が50%以上となるように圧延を行い、Ar3 変態点以上900℃以下の温度で熱間圧延を終了した後、700℃以下で巻取り、圧下率30%超、70%以下の冷間圧延を施した後、3〜50℃/sの加熱速度で最高到達温度500℃以上950℃以下の温度範囲となるように焼鈍することを特徴とする(1)〜(5)の何れか1項に記載の深絞り性に優れた高強度冷延鋼板の製造方法。 (6) When the slab having the chemical component according to any one of (1) and (3) to (5) is heated to a temperature of 1100 ° C. or higher and hot rolled, Rolling is performed so that the calculated effective strain amount ε * is 0.4 or more and the total reduction ratio is 50% or more, and after the hot rolling is completed at a temperature of Ar 3 transformation point or more and 900 ° C. or less, After winding at 700 ° C. or less, cold rolling with a rolling reduction of more than 30% and 70% or less, at a heating rate of 3 to 50 ° C./s, a maximum temperature of 500 ° C. to 950 ° C. is reached. The method for producing a high-strength cold-rolled steel sheet excellent in deep drawability according to any one of (1) to (5), wherein the steel sheet is annealed.

Figure 0004555693
ここで、nは仕上げ熱延の圧延スタンド数、εiはi番目のスタンドで加えられたひずみ、tiはi〜i+1番目のスタンド間の走行時間(秒)、τiは気体常数R(=1.987)とi番目のスタンドの圧延温度Ti(K)によって下式で計算できる。
τi=8.46×10-9・exp{43800/R/Ti}
Figure 0004555693
Here, n is the number of rolling stands for finish hot rolling, εi is the strain applied at the i-th stand, ti is the travel time (seconds) between i to i + 1th stands, and τi is the gas constant R (= 1. 987) and the rolling temperature Ti (K) of the i-th stand can be calculated by the following equation.
τi = 8.46 × 10 −9 · exp {43800 / R / Ti}

(7)熱間圧延において、少なくとも1パス以上を摩擦係数が0.2以下となるように仕上げ圧延することを特徴とする前記(6)に記載の深絞り性に優れた高強度冷延鋼板の製造方法。
(8)焼鈍した後、溶融亜鉛めっきを施すことを特徴とする前記(6)又は(7)記載の溶融亜鉛めっき鋼板の製造方法。
(9)溶融亜鉛めっきを施した後、450〜600℃までの温度範囲で10s以上の熱処理を行うことを特徴とする前記(8)記載の合金化溶融亜鉛めっき鋼板の製造方法にある。
(7) In hot rolling, at least one pass or more is finish-rolled so that the friction coefficient is 0.2 or less, and the high-strength cold-rolled steel sheet having excellent deep drawability as described in (6) above Manufacturing method.
(8) The method for producing a hot-dip galvanized steel sheet according to (6) or (7), wherein hot-dip galvanizing is performed after annealing.
(9) In the method for producing an galvannealed steel sheet according to (8), heat treatment is performed for 10 s or more in a temperature range from 450 to 600 ° C. after galvanizing.

以上述べたように、本発明によれば成形性に優れた高強度冷延鋼板を製造することができるために、従来高強度鋼では成形が難しかった部材への適用が可能になり、例えば自動車の軽量化による燃費向上、それに伴うCO2 排出量削減等を通して地球環境保全に貢献するものである。 As described above, according to the present invention, a high-strength cold-rolled steel sheet having excellent formability can be produced. Therefore, it can be applied to members that have been difficult to form with conventional high-strength steel. This contributes to the conservation of the global environment through the improvement of fuel consumption and the reduction of CO 2 emissions.

ここに、本発明において鋼組成および製造条件を上述のように限定する理由についてさらに説明する。
Cは、安価に引張強度を増加させる元素であるので、積極的に添加する。その添加量は狙いとする強度レベルに応じて変化するが、0.01%未満にすることはコストアップとなるだけでなく、組織制御の自由度が下がることからその下限を0.01%とする。この観点からは0.02%とすることが望ましい。一方、C量が0.3%を超えると成形性の劣化を招いたり、溶接性を損なったりするのでこれを上限とする。
Here, the reason why the steel composition and production conditions are limited as described above in the present invention will be further described.
Since C is an element that increases the tensile strength at a low cost, it is positively added. The amount of addition varies depending on the target strength level, but if it is less than 0.01%, not only will the cost be increased, but the degree of freedom in tissue control will be reduced, so the lower limit is 0.01%. To do. From this viewpoint, the content is preferably 0.02%. On the other hand, if the amount of C exceeds 0.3%, the formability is deteriorated or the weldability is impaired.

Siは、固溶体強化元素として強度を増加させる働きがあることの他、マルテンサイトやベイナイトさらには残留γ等を含む組織を得るためにも有効であり、その添加量は狙いとする強度レベルに応じて変化するが、添加量が2.5%超となるとプレス成形性が劣悪となったり、化成処理性の低下を招いたりするのでこれを上限とする。
溶融亜鉛めっきを施す場合には、めっき密着性の低下、合金化反応の遅延による生産性の低下などの問題が生ずるので1.2%以下とすることが好ましい。下限は特に設けないが、0.001%以下とするのは製造コストが高くなるのでこれが実質的な下限である。
Si has a function of increasing strength as a solid solution strengthening element, and is also effective for obtaining a structure containing martensite, bainite, and residual γ. The amount of addition depends on the target strength level. However, if the added amount exceeds 2.5%, the press formability is deteriorated or the chemical conversion treatment property is deteriorated.
When hot dip galvanizing is performed, problems such as a decrease in plating adhesion and a decrease in productivity due to a delay in the alloying reaction occur, so 1.2% or less is preferable. Although there is no particular lower limit, setting it to 0.001% or less is a practical lower limit because the manufacturing cost increases.

Mnは、γ相を安定化し、γ域を低温まで拡張するのでγ域低温圧延を容易にすることから積極的に添加する。ただし、3.0%を超えて添加すると強度が高くなりすぎて延性が低下したり、亜鉛めっきの密着性が阻害されたりするのでこれを上限とする。好ましくは2.0%以下とする。Mnが0.1%未満になると強度不足になると共に、固溶S起因の熱間圧延割れを誘発することから0.1%を下限とする。強度確保の観点からは0.3%以上添加することが望ましい。   Mn is positively added because it stabilizes the γ phase and expands the γ region to a low temperature, facilitating γ region low temperature rolling. However, if added over 3.0%, the strength becomes too high and the ductility is lowered or the adhesion of galvanizing is inhibited, so this is the upper limit. Preferably it is 2.0% or less. If Mn is less than 0.1%, the strength is insufficient, and hot rolling cracks due to solute S are induced, so 0.1% is made the lower limit. From the viewpoint of securing strength, it is desirable to add 0.3% or more.

Pは、不純物であるが、Siと同様に安価に強度を高める元素として知られており強度を増加する必要がある場合にはさらに積極的に添加する。また、Pは熱延組織を微細にし、加工性を向上する効果も有する。ただし、添加量が0.15%を超えると、スポット溶接後の疲労強度が劣悪となったり、降伏強度が増加し過ぎたりしてプレス時に面形状不良を引き起こす。さらに、連続溶融亜鉛めっき時に合金化反応が極めて遅くなり、生産性が低下する。また、2次加工性も劣化する。したがって、その上限値を0.15%とする。   Although P is an impurity, it is known as an element that increases the strength at a low cost similarly to Si, and is more actively added when it is necessary to increase the strength. P also has the effect of making the hot-rolled structure fine and improving workability. However, if the addition amount exceeds 0.15%, the fatigue strength after spot welding becomes poor, or the yield strength increases excessively, causing surface shape defects during pressing. Furthermore, the alloying reaction becomes extremely slow during continuous hot dip galvanizing, and productivity is lowered. Also, the secondary workability is deteriorated. Therefore, the upper limit is set to 0.15%.

Sは、不純物であり少ないほど好ましく、0.015%超では熱間割れの原因となったり、加工性を劣化させるので、これを上限とする。
Mo,NbおよびBは本発明において重要である。これらの元素の添加によって初めて圧延方向のヤング率を高めることが可能となる。この理由は必ずしも明らかではないが、Mo、Nb,Bの複合添加の効果によって、熱延中の再結晶が抑制され、γ相の加工集合組織が先鋭化することで、加工γからの変態集合組織であり、r値に有利な{332}<113>方位が先鋭化すると考えられる。
S is preferably as small as possible, and if it exceeds 0.015%, it causes hot cracking and deteriorates workability, so this is the upper limit.
Mo, Nb and B are important in the present invention. Only when these elements are added can the Young's modulus in the rolling direction be increased. The reason for this is not necessarily clear, but the effect of combined addition of Mo, Nb, and B suppresses recrystallization during hot rolling and sharpens the working texture of the γ phase. It is considered that the {332} <113> orientation which is a texture and advantageous for the r value is sharpened.

また、その後の焼鈍中の再結晶も抑制されることから、熱延での集合組織を破壊することなく焼鈍後まで持ちきたすことにも効果を発揮する。加えてこれらの元素はγ→α変態時の焼入れ性を向上させることから、二相域又はγ域単相で焼鈍を行って、α→γ→α変態を経ても集合組織が崩れない集合組織遺伝が発現する要因にもなっている。Mo,NbおよびB量の下限は、それぞれ、0.1%、0.01%、0.0006%とする。これより少ない量の添加では、上述の3つの効果が十分得られず、最終的に得られる集合組織がランダムになってしまうからである。一方、Mo,Nb,Bをそれぞれ1.5%超、0.2%超、0.01%超添加してもr値向上効果は飽和し、コストアップとなるので、これを上限とする。   In addition, since recrystallization during the subsequent annealing is also suppressed, it is effective to bring the texture after annealing without breaking the texture in hot rolling. In addition, these elements improve the hardenability during the γ → α transformation, so annealing in the two-phase region or single phase of the γ region, and the texture does not collapse even after going through the α → γ → α transformation It is also a factor in inheritance. The lower limits of the amounts of Mo, Nb, and B are 0.1%, 0.01%, and 0.0006%, respectively. This is because if the amount is less than this, the above three effects cannot be sufficiently obtained, and the finally obtained texture becomes random. On the other hand, even if Mo, Nb, and B are added in excess of 1.5%, 0.2%, and 0.01%, respectively, the effect of improving the r value is saturated and the cost is increased.

Alは、脱酸調製剤として使用しても良い。ただし、Alは変態点を著しく高めるので低温γ域での圧延が困難となるので、上限を0.15%とする。下限は特に定めないが、脱酸の観点から、0.01%以上とすることが好ましい。
Nは、Bと窒化物を形成し、Bの再結晶抑制効果を低減させることから0.01%以下に抑える。この観点から望ましくは0.005%、更に望ましくは0.002%以下とする。Nの下限は特に設定しないが0.0005%未満とすることにはコストがかかるばかりでそれほどの効果が得られないことから0.0005%以上とすることが望ましい。
Al may be used as a deoxidation preparation agent. However, since Al significantly raises the transformation point, rolling in the low temperature γ region becomes difficult, so the upper limit is made 0.15%. The lower limit is not particularly defined, but is preferably 0.01% or more from the viewpoint of deoxidation.
N forms nitrides with B and reduces the recrystallization suppressing effect of B, so it is suppressed to 0.01% or less. From this viewpoint, it is preferably 0.005%, and more preferably 0.002% or less. The lower limit of N is not particularly set, but if it is less than 0.0005%, it is not only costly, but not so much effect is obtained, so 0.0005% or more is desirable.

Tiは、γ高温域でNと窒化物を形成し、BNの生成を抑制する。また、熱延中の再結晶抑制効果も期待できることから48/14×N(mass%)以上添加する。ただし、0.2%超添加しても特段の効果が得られないばかりか、加工性が劣化することからこの値を上限とする。好ましくは、0.09%以下である。
Caは、脱酸元素として有用であるほか、硫化物の形態制御にも効果を奏するので、0.0005〜0.01%の範囲で添加しても良い。0.0005%未満では効果が十分でなく、0.01%超添加すると加工性が劣化するのでこの範囲とする。
Ti forms nitrides with N in the γ high temperature region and suppresses the generation of BN. Further, since the effect of suppressing recrystallization during hot rolling can be expected, 48/14 × N (mass%) or more is added. However, even if adding over 0.2%, not only a special effect is not obtained, but also workability deteriorates, so this value is made the upper limit. Preferably, it is 0.09% or less.
Ca is useful as a deoxidizing element and also has an effect on controlling the form of sulfide, so Ca may be added in the range of 0.0005 to 0.01%. If it is less than 0.0005%, the effect is not sufficient, and if it exceeds 0.01%, the workability deteriorates, so this range is set.

これらを主成分とする鋼に、機械的強度を高めたり材質を改善する目的で、Sn,Co,Zn,W,Zr,Mg,Remの1種又は2種以上を合計で0.001〜1%以下含有しても構わない。しかしながら、ZrはZrNを形成するため固溶Nが減少するので0.01%以下とすることが好ましい。
Ni,Cu,Crは低温γ域圧延を行うためには有利な元素であるので、これらの1種又は2種以上を合計で0.001〜4.0%の範囲で添加しても良い。0.001%未満では顕著な効果が得られず、4.0%超添加すると加工性が劣化する。
In order to increase the mechanical strength or improve the material of these steels as the main component, one or more of Sn, Co, Zn, W, Zr, Mg, and Rem are added in a total amount of 0.001-1. % Or less may be contained. However, since Zr forms ZrN and solid solution N decreases, it is preferably made 0.01% or less.
Since Ni, Cu, and Cr are elements that are advantageous for performing low-temperature γ region rolling, one or more of these may be added in a range of 0.001 to 4.0% in total. If it is less than 0.001%, a remarkable effect cannot be obtained, and if it exceeds 4.0%, workability deteriorates.

次に集合組織について説明する。
板厚1/2層における{332}<113>方位の極密度は4.5以上とする。これによってr値、特に圧延方向および幅方向のr値を高めることが可能となる。この観点から極密度は6以上とすることが望ましく、更に望ましくは8以上とする。一方、板厚1/2層における{100}<011>方位の極密度は3以下とする。この方位はr値を下げる方位のため、出来る限り低減することが望ましい。この観点から好ましくは1.5以下とする。
Next, the texture will be described.
The pole density in the {332} <113> orientation in the ½ layer thickness is 4.5 or more. This makes it possible to increase the r value, particularly the r value in the rolling direction and the width direction. From this viewpoint, the pole density is desirably 6 or more, and more desirably 8 or more. On the other hand, the pole density in the {100} <011> orientation in the 1/2 layer thickness is 3 or less. Since this orientation is an orientation that lowers the r value, it is desirable to reduce it as much as possible. From this viewpoint, it is preferably 1.5 or less.

板厚1/8層における{110}<223>及び/又は{110}<111>の極密度は4以下とすることが望ましい。この結晶方位は熱延板の表層にできる剪断集合組織の主方位で圧延方向および幅方向のr値を下げる。したがって、この観点から望ましくは上記の極密度の上限は3以下とする。これらの方位の極密度(X線ランダム強度比)は、X線回折によって測定される{110},{100},{211},{310}極点図のうち複数の極点図を基に級数展開法で計算した3次元集合組織(ODF)から求めればよい。すなわち、各結晶方位の極密度を求めるには、3次元集合組織のφ2=45°断面における(332)[−1−13]、(001)[1−10]の強度で代表させる。上記の1/2板厚での極密度に関する限定は少なくとも板厚1/2層については満足し、実際には1/2層のみならず、板厚表層までの広い範囲で成り立つことが好ましいことは言うまでもない。   The pole density of {110} <223> and / or {110} <111> in the plate thickness 1/8 layer is preferably 4 or less. This crystal orientation is the main orientation of the shear texture formed on the surface layer of the hot-rolled sheet, and lowers the r value in the rolling direction and the width direction. Therefore, the upper limit of the above-mentioned pole density is desirably 3 or less from this viewpoint. The pole density (X-ray random intensity ratio) of these orientations is developed in series based on a plurality of pole figures among {110}, {100}, {211}, {310} pole figures measured by X-ray diffraction. What is necessary is just to obtain | require from the three-dimensional texture (ODF) calculated by the method. That is, in order to obtain the pole density of each crystal orientation, it is represented by the intensity of (332) [-1-13] and (001) [1-10] in the φ2 = 45 ° cross section of the three-dimensional texture. The above-mentioned limitation regarding the pole density at 1/2 plate thickness is satisfied for at least 1/2 layer thickness, and in fact, it is preferable to hold not only 1/2 layer but also a wide range up to the plate thickness surface layer. Needless to say.

X線回折用試料の作製は次のようにして行う。
鋼板を機械研磨や化学研磨などによって板厚方向に所定の位置まで研磨し、バフ研磨によって鏡面に仕上げた後、電解研磨や化学研磨によって歪みを除去すると同時に板厚1/8層または1/2層が測定面となるように調整する。なお、正確に板厚1/8層や1/2層を測定面とすることは困難であるので、これら目標とする層を中心として板厚に対して±3%の範囲が測定面となるように試料を作製すればよい。また、鋼板の板厚中心層に偏析帯が認められる場合には、板厚の3/8〜5/8の範囲で偏析帯のない場所について測定すればよい。さらにX線測定が困難な場合には、EBSP法やECP法により統計的に十分な数の測定を行う。
The sample for X-ray diffraction is manufactured as follows.
The steel plate is polished to a predetermined position in the plate thickness direction by mechanical polishing or chemical polishing, and finished to a mirror surface by buffing, and then the strain is removed by electrolytic polishing or chemical polishing, and at the same time the plate thickness is 1/8 layer or 1/2 Adjust the layer to be the measurement surface. In addition, since it is difficult to accurately set the plate thickness 1/8 layer or 1/2 layer as the measurement surface, the measurement surface has a range of ± 3% with respect to the plate thickness centering on these target layers. A sample may be prepared as described above. Moreover, when a segregation band is recognized in the plate thickness center layer of the steel sheet, it may be measured in a place where there is no segregation band in the range of 3/8 to 5/8 of the plate thickness. Further, when X-ray measurement is difficult, a statistically sufficient number of measurements are performed by the EBSP method or the ECP method.

なお、{hkl}<uvw>とは上述の方法でX線用試料を採取したとき、板面に垂直な結晶方位が<hkl>で圧延方向に平行な方位が<uvw>であることを意味する。
最終的に得られた鋼板のr値の下限値は1.0とする。r値が1.0未満の方向があると平均r値が高くても良好な成形性が確保できない。この観点から望ましくは1.1以上とする。また、平均r値の下限値は1.3とする。平均r値が1.3未満では良好な成形性を発揮することが出来ない。この観点から平均r値は1.4以上とすることが望ましい。
Note that {hkl} <uvw> means that when an X-ray sample is collected by the above method, the crystal orientation perpendicular to the plate surface is <hkl> and the orientation parallel to the rolling direction is <uvw>. To do.
The lower limit of the r value of the finally obtained steel sheet is 1.0. If the r value is less than 1.0, good moldability cannot be ensured even if the average r value is high. From this viewpoint, it is desirably 1.1 or more. The lower limit value of the average r value is 1.3. If the average r value is less than 1.3, good moldability cannot be exhibited. From this viewpoint, the average r value is desirably 1.4 or more.

r値はJIS5号引張試験片を用いた引張試験により評価する。引張歪みは通常15%であるが、均一伸びが15%を下回る場合には、均一伸びの範囲でできるだけ15%に近い歪みで評価すればよい。
r値の下限値は圧延方向、圧延45°方向、幅方向から切り出した試験片で測定した値のうち最低の値で代表してもよいし、更に任意の方向から切り出した試験片での測定結果を加えて評価してもよい。また、集合組織の測定結果からの計算値で求めてもよい。
r値の平均値は圧延方向のr値(rL)、45°方向のr値(rX)、幅方向のr値(rC)より次のように求める。
平均r値=(rL+2×rX+rC)/4
The r value is evaluated by a tensile test using a JIS No. 5 tensile test piece. The tensile strain is usually 15%, but when the uniform elongation is less than 15%, the strain may be evaluated as close to 15% as possible within the range of uniform elongation.
The lower limit of the r value may be represented by the lowest value among the values measured with the test piece cut from the rolling direction, the 45 ° direction, and the width direction, and further measured with a test piece cut from any direction. You may evaluate by adding a result. Moreover, you may obtain | require by the calculated value from the measurement result of a texture.
The average value of the r values is determined as follows from the r value (rL) in the rolling direction, the r value (rX) in the 45 ° direction, and the r value (rC) in the width direction.
Average r value = (rL + 2 × rX + rC) / 4

次に、製造条件の限定理由について述べる。
熱間圧延に供するスラブは本発明に規定する成分からなるものであれば、特に限定するものではない。すなわち、連続鋳造スラブや薄スラブキャスターなどで製造したものであればよい。また、鋳造後に直ちに熱間圧延を行う連続鋳造−直接圧延(CC−DR)のようなプロセスにも適合する。
熱延加熱温度は1100℃以上とする。これは、炭化物を際溶解するのに必要な温度である。この観点から望ましくは1150℃、更に望ましくは1200℃以上で加熱をする。熱間圧延を行う際には(1)式で計算される有効ひずみ量ε* が0.4以上かつ圧下率の合計が50%以上となるようにする。
Next, the reasons for limiting the manufacturing conditions will be described.
The slab to be subjected to hot rolling is not particularly limited as long as it is composed of the components specified in the present invention. That is, what was manufactured with the continuous casting slab, the thin slab caster, etc. should just be used. It is also compatible with processes such as continuous casting-direct rolling (CC-DR) in which hot rolling is performed immediately after casting.
The hot rolling heating temperature is 1100 ° C. or higher. This is the temperature necessary to dissolve the carbide. From this viewpoint, the heating is preferably performed at 1150 ° C., more preferably 1200 ° C. or more. When performing hot rolling, the effective strain amount ε * calculated by the equation (1) is 0.4 or more and the total rolling reduction is 50% or more.

Figure 0004555693
Figure 0004555693

ここで、nは仕上げ熱延の圧延スタンド数、εiはi番目のスタンドで加えられたひずみ、tiはi〜i+1番目のスタンド間の走行時間(秒)、τiは気体常数R(=1.987)とi番目のスタンドの圧延温度Ti(K)によって下式で計算できる。
τi=8.46×10-9・exp{43800/R/Ti}
有効ひずみε* は0.5以上が好ましく、0.6以上であればより好ましい。圧下率の合計は70%以上がより好ましい。圧下率の合計とは、nパスの圧延の場合、1パス目〜nパス目までの各圧下率をR1 (%)〜Rn(%)とすると、R1 +R2 +‥‥+Rnと定義する。Rn={(n−1)パス後の板厚−nパス後の板厚}/(n−1)パス後の板厚×100(%)である。
Here, n is the number of rolling stands for finish hot rolling, εi is the strain applied at the i-th stand, ti is the travel time (seconds) between i to i + 1th stands, and τi is the gas constant R (= 1. 987) and the rolling temperature Ti (K) of the i-th stand can be calculated by the following equation.
τi = 8.46 × 10 −9 · exp {43800 / R / Ti}
The effective strain ε * is preferably 0.5 or more, more preferably 0.6 or more. The total rolling reduction is more preferably 70% or more. The total reduction ratio is defined as R 1 + R 2 +... + Rn, where each reduction ratio from the 1st pass to the nth pass is R 1 (%) to Rn (%) in the case of n-pass rolling. To do. Rn = {plate thickness after (n−1) pass−plate thickness after n pass} / (n−1) plate thickness after pass × 100 (%).

熱延の仕上温度は、Ar3 変態点以上とする。Ar3 変態点未満では、表層、板厚中心共にr値にとって好ましくない集合組織が発達してしまう。また仕上温度は900℃以下とする。900℃超では、熱延中に加工ひずみが蓄積出来ず、r値に好ましい集合組織を発達させることが困難である。この観点から好ましくは850℃以下、更に好ましくは800℃以下とする。 The finishing temperature of hot rolling is not less than the Ar 3 transformation point. Below the Ar 3 transformation point, a texture unfavorable for the r value develops at both the surface layer and the thickness center. The finishing temperature is 900 ° C. or lower. If it exceeds 900 ° C., processing strain cannot be accumulated during hot rolling, and it is difficult to develop a texture suitable for the r value. From this viewpoint, the temperature is preferably 850 ° C. or lower, more preferably 800 ° C. or lower.

熱延後の巻き取り温度が700℃超になると熱延中に形成された集合組織が弱くなりr値が低下することからこの温度を上限とする。下限は特に限定しないが400℃未満で巻き取ると熱延板の強度が高くなりすぎ、冷延の負荷が高くなることから400℃以上で巻き取ることが好ましい。
本発明の温度範囲での熱間圧延は通常の条件で行われても最終的な鋼板のr値は向上するが、この温度範囲で行われる熱間圧延の少なくとも1パス以上においてその摩擦係数が0.2以下となるように制御した場合には更にr値が向上する。この観点からは2パス以上の圧延で摩擦係数が0.2以下になることが望ましい。
When the coiling temperature after hot rolling exceeds 700 ° C., the texture formed during hot rolling becomes weak and the r value decreases, so this temperature is made the upper limit. Although the lower limit is not particularly limited, it is preferable to wind at 400 ° C. or higher because the strength of the hot rolled sheet becomes too high when it is wound at less than 400 ° C., and the cold rolling load increases.
The hot rolling in the temperature range of the present invention improves the r value of the final steel sheet even if it is performed under normal conditions, but the friction coefficient is at least one pass or more of the hot rolling performed in this temperature range. When it is controlled to be 0.2 or less, the r value is further improved. From this point of view, it is desirable that the friction coefficient be 0.2 or less in rolling of 2 passes or more.

熱延鋼板は酸洗後、冷間圧延を行う。冷間圧延率の下限は30%超とする。圧延率を30%以下にすると、熱延板の表層に形成されている剪断集合組織が冷延・焼鈍後まで残存し、r値を低下させることからこの値を下限とする。一方、圧延率が70%超となると、r値を低下させる{100}<011>方位が発達し、最終的に得られるr値が低下する。この観点から圧延率の上限は好ましくは60%以下、更に、望ましくは50%以下とする。   The hot-rolled steel sheet is cold-rolled after pickling. The lower limit of the cold rolling rate is over 30%. If the rolling rate is 30% or less, the shear texture formed on the surface layer of the hot-rolled sheet remains until after cold rolling and annealing, and the r value is lowered, so this value is set as the lower limit. On the other hand, when the rolling ratio exceeds 70%, the {100} <011> orientation that lowers the r value develops and the finally obtained r value decreases. From this viewpoint, the upper limit of the rolling rate is preferably 60% or less, and more preferably 50% or less.

冷延後の連続焼鈍の加熱速度の下限は3℃/sとする。加熱速度が3℃/s未満となると加熱中に再結晶が進行し、集合組織が劣化する。この観点から望ましくは5℃/s以上する。10℃/s以上とすることが更に望ましい。一方、加熱速度の上限は50℃/sとする。加熱速度を50℃/s超としても特段の効果が得られないばかりでなく、設備への負荷が高くなりすぎるためこの値を上限とする。   The lower limit of the heating rate of continuous annealing after cold rolling is 3 ° C./s. When the heating rate is less than 3 ° C./s, recrystallization proceeds during heating and the texture deteriorates. From this viewpoint, it is preferably 5 ° C./s or more. It is more desirable to set it as 10 degree-C / s or more. On the other hand, the upper limit of the heating rate is 50 ° C./s. Even if the heating rate exceeds 50 ° C./s, not only a special effect cannot be obtained, but the load on the equipment becomes too high, so this value is made the upper limit.

最高到達温度は500〜950℃の範囲とする。最高到達温度が500℃未満では加工フェライトが残存し、成形性が劣化するため、これを下限とする。この観点から望ましくは600℃以上とする。また、変態組織強化を利用する場合にはAc1 点を最高到達温度の下限とする。一方で、熱処理温度を950℃超とするとγ相中での粒成長が進行し、集合組織がランダムかするため、この温度を上限とする。この観点から望ましくはAc3 +50℃以下とすることが望ましい。 The maximum temperature reached is in the range of 500 to 950 ° C. If the maximum temperature reached is less than 500 ° C., the processed ferrite remains and the formability deteriorates, so this is the lower limit. From this viewpoint, the temperature is desirably 600 ° C. or higher. Further, when utilizing transformation structure strengthening, Ac 1 point is set as the lower limit of the maximum temperature reached. On the other hand, if the heat treatment temperature exceeds 950 ° C., grain growth proceeds in the γ phase and the texture becomes random, so this temperature is set as the upper limit. From this point of view, it is desirable to set Ac 3 + 50 ° C. or lower.

同熱処理後に一旦550℃以下まで冷却し、さらに150〜550℃の温度で熱処理を施すことも可能である。これは、固溶C量の制御やマルテンサイトの焼き戻し、ベイナイト変態の促進等の組織制御など、種々の目的に応じて適当な条件を選択して行えば良い。熱処理後には溶融亜鉛めっき、または合金化溶融亜鉛めっきを施してもよい。亜鉛めっきの組成は特に限定するものではなく、亜鉛のほか、Fe、Al、Mn、Cr、Mg、Pb、Sn、Niなどを必要に応じて添加しても構わない。合金化処理は450〜600℃の範囲内で行う。450℃未満では合金化が十分に進行せず、また、600℃超では過度に合金化が進行し、めっき層が脆化するため、プレス等の加工によってめっきが剥離するなどの問題を誘発する。合金化処理の時間は、10s以上とする。10s未満では合金化が十分に進行しない。   After the heat treatment, it can be once cooled to 550 ° C. or lower and further subjected to heat treatment at a temperature of 150 to 550 ° C. This may be done by selecting appropriate conditions according to various purposes such as control of the amount of dissolved C, tempering of martensite, and structure control such as promotion of bainite transformation. After the heat treatment, hot dip galvanizing or alloying hot dip galvanizing may be performed. The composition of the galvanizing is not particularly limited, and besides zinc, Fe, Al, Mn, Cr, Mg, Pb, Sn, Ni, etc. may be added as necessary. The alloying treatment is performed within a range of 450 to 600 ° C. If it is less than 450 ° C, alloying does not proceed sufficiently, and if it exceeds 600 ° C, alloying proceeds excessively and the plating layer becomes brittle, which causes problems such as peeling of the plating by processing such as pressing. . The alloying treatment time is 10 s or longer. If it is less than 10 s, alloying does not proceed sufficiently.

本発明によって得られる鋼板の組織は、フェライトまたはベイナイトを主相とするが、両相が混在していても構わないし、これらにマルテンサイト、オーステナイト、炭化物、窒化物を初めとする化合物が存在していても良い。すなわち、要求特性に応じて組織を作り分ければ良い。また、上記の冷延鋼板にはAl系めっきや各種電気めっきを施しても構わない。
次に本発明を実施例にて説明する。
The structure of the steel sheet obtained by the present invention has ferrite or bainite as a main phase, but both phases may be mixed, and these include compounds such as martensite, austenite, carbide, and nitride. May be. That is, it is only necessary to create an organization according to required characteristics. Moreover, you may give Al type plating and various electroplating to said cold-rolled steel plate.
Next, the present invention will be described with reference to examples.

表1に示す組成を有する鋼を溶製し、表2に示す条件で熱間圧延、冷間圧延、焼鈍を施した。このとき熱延の加熱温度は全て1230℃とした。また、焼鈍熱延調質圧延圧下率はすべて0.5%とした。r値はJIS5号引張試験片を採取して評価した。また、板厚1/8層および板厚7/16層における集合組織をX線で測定した。表3より明らかなとおり、本発明の化学成分を有する鋼を適正な条件で製造した場合には、r値の下限値が1.0以上、平均r値が1.3以上の深絞り性に優れた鋼板が得られることがわかる。   Steel having the composition shown in Table 1 was melted and subjected to hot rolling, cold rolling, and annealing under the conditions shown in Table 2. At this time, the heating temperature of hot rolling was all set to 1230 ° C. Moreover, all the annealing hot rolling temper rolling reduction ratios were 0.5%. The r value was evaluated by collecting a JIS No. 5 tensile test piece. Further, the texture in the plate thickness 1/8 layer and the plate thickness 7/16 layer was measured by X-ray. As is apparent from Table 3, when the steel having the chemical composition of the present invention is produced under appropriate conditions, the lower limit value of the r value is 1.0 or more, and the average r value is 1.3 or more. It can be seen that an excellent steel sheet can be obtained.

Figure 0004555693
Figure 0004555693

Figure 0004555693
Figure 0004555693

Figure 0004555693
特許出願人 新日本製鐵株式会社
代理人 弁理士 椎 名 彊 他1
Figure 0004555693
Patent applicant: Nippon Steel Corporation
Attorney Attorney Shiina and others 1

Claims (9)

質量%で、
C:0.01〜0.3%、
Si:2.5%以下、
Mn:0.1〜3.0%、
P:0.15%以下、
S:0.015%以下、
Mo:0.1〜1.5%、
B:0.0006〜0.01%、
Al:0.15%以下、
Nb:0.01〜0.20%、
N:0.01%以下、
Ti:48/14×N(質量%)以上、0.2%以下
を含有し、残部鉄及び不可避的不純物からなり、板厚1/2層における{332}<113>の極密度が4.5以上でかつ{100}<011>の極密度が3以下、更に圧延方向と45度方向と幅方向のr値の最小値が1.0以上で、かつ圧延方向と45度方向と幅方向の平均r値が1.3以上であることを特徴とする深絞り性に優れた高強度冷延鋼板。
% By mass
C: 0.01 to 0.3%,
Si: 2.5% or less,
Mn: 0.1 to 3.0%
P: 0.15% or less,
S: 0.015% or less,
Mo: 0.1 to 1.5%,
B: 0.0006 to 0.01%
Al: 0.15% or less,
Nb: 0.01-0.20%,
N: 0.01% or less,
Ti: 48/14 × N (mass%) or more and 0.2% or less, consisting of the balance iron and unavoidable impurities, the pole density of {332} <113> in the 1/2 layer thickness is 4. 5 or more and {100} <011> pole density of 3 or less, and the minimum r value in the rolling direction, 45 degree direction and width direction is 1.0 or more, and the rolling direction, 45 degree direction and width direction. A high-strength cold-rolled steel sheet excellent in deep drawability, characterized by having an average r value of 1.3 or more.
板厚1/8層における{110}<223>及び/又は{110}<111>の極密度が4以下であることを特徴とする請求項1に記載の深絞り性に優れた高強度冷延鋼板。   2. The high-strength cooling excellent in deep drawability according to claim 1, wherein the pole density of {110} <223> and / or {110} <111> in the 1/8 layer thickness is 4 or less. Rolled steel sheet. Ca:0.0005〜0.01質量%を含むことを特徴とする請求項1又は2に記載の深絞り性に優れた高強度冷延鋼板。   The high-strength cold-rolled steel sheet excellent in deep drawability according to claim 1 or 2, characterized by containing Ca: 0.0005 to 0.01 mass%. Sn,Co,Zn,W,Zr,V,Mg,Remの1種又は2種以上を合計で0.001〜1.0質量%含むことを特徴とする請求項1〜3のいずれか1項に記載の深絞り性に優れた高強度冷延鋼板。   4. The composition according to claim 1, comprising one or more of Sn, Co, Zn, W, Zr, V, Mg, and Rem in a total amount of 0.001 to 1.0 mass%. A high-strength cold-rolled steel sheet with excellent deep drawability as described in 1. Ni,Cu,Crの1種又は2種以上を合計で0.001〜4.0質量%含むことを特徴とする請求項1〜4のいずれか1項に記載の深絞り性に優れた高強度冷延鋼板。   The high excellent deep drawability according to any one of claims 1 to 4, characterized by containing 0.001 to 4.0 mass% in total of one or more of Ni, Cu and Cr. Strength cold-rolled steel sheet. 請求項1および請求項3〜5のいずれか1項に記載の化学成分を有するスラブを1100℃以上の温度に加熱し、熱間圧延をする際、(1)式で計算される有効ひずみ量ε* が0.4以上、かつ圧下率の合計が50%以上となるように圧延を行い、Ar3 変態点以上900℃以下の温度で熱間圧延を終了した後、700℃以下で巻取り、圧下率30%超、70%以下の冷間圧延を施した後、3〜50℃/sの加熱速度で最高到達温度500℃以上950℃以下の温度範囲となるように焼鈍することを特徴とする請求項1〜5の何れか1項に記載の深絞り性に優れた高強度冷延鋼板の製造方法。
Figure 0004555693
ここで、nは仕上げ熱延の圧延スタンド数、εiはi番目のスタンドで加えられたひずみ、tiはi〜i+1番目のスタンド間の走行時間(秒)、τiは気体常数R(=1.987)とi番目のスタンドの圧延温度Ti(K)によって下式で計算できる。
τi=8.46×10−9・exp{43800/R/Ti}
When the slab having the chemical component according to any one of claims 1 and 3 to 5 is heated to a temperature of 1100 ° C or higher and hot-rolled, the effective strain amount calculated by the formula (1) Rolling is performed so that ε * is 0.4 or more and the total reduction ratio is 50% or more. After hot rolling is completed at a temperature of Ar 3 transformation point to 900 ° C., winding is performed at 700 ° C. or less. In addition, after performing cold rolling with a rolling reduction of more than 30% and 70% or less, annealing is performed at a heating rate of 3 to 50 ° C./s so that the temperature reaches a maximum temperature of 500 ° C. or more and 950 ° C. or less. The manufacturing method of the high intensity | strength cold-rolled steel plate excellent in the deep drawability of any one of Claims 1-5.
Figure 0004555693
Here, n is the number of rolling stands for finish hot rolling, εi is the strain applied at the i-th stand, ti is the travel time (seconds) between i to i + 1th stands, and τi is the gas constant R (= 1. 987) and the rolling temperature Ti (K) of the i-th stand can be calculated by the following equation.
τi = 8.46 × 10 −9 · exp {43800 / R / Ti}
熱間圧延において、少なくとも1パス以上を摩擦係数が0.2以下となるように仕上げ圧延することを特徴とする請求項6に記載の深絞り性に優れた高強度冷延鋼板の製造方法。 The method for producing a high-strength cold-rolled steel sheet excellent in deep drawability according to claim 6, wherein in hot rolling, at least one pass or more is finish-rolled so that the friction coefficient is 0.2 or less. 焼鈍した後、溶融亜鉛めっきを施すことを特徴とする請求項6又は7記載の溶融亜鉛めっき鋼板の製造方法。 The method for producing a hot dip galvanized steel sheet according to claim 6 or 7, wherein hot dip galvanizing is performed after annealing. 溶融亜鉛めっきを施した後、450〜600℃までの温度範囲で10s以上の熱処理を行うことを特徴とする請求項8記載の合金化溶融亜鉛めっき鋼板の製造方法。
The method for producing an alloyed hot-dip galvanized steel sheet according to claim 8, wherein after the hot-dip galvanizing, heat treatment is performed for 10 seconds or more in a temperature range from 450 to 600 ° C.
JP2005009374A 2005-01-17 2005-01-17 High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof Active JP4555693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005009374A JP4555693B2 (en) 2005-01-17 2005-01-17 High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005009374A JP4555693B2 (en) 2005-01-17 2005-01-17 High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006193819A JP2006193819A (en) 2006-07-27
JP4555693B2 true JP4555693B2 (en) 2010-10-06

Family

ID=36800122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005009374A Active JP4555693B2 (en) 2005-01-17 2005-01-17 High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4555693B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI629363B (en) * 2017-02-02 2018-07-11 新日鐵住金股份有限公司 Steel plate

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100392133C (en) * 2006-07-31 2008-06-04 武汉钢铁(集团)公司 Production method of 350 MPa grade cold rolled magnetic pole steel
JP5071125B2 (en) * 2008-01-29 2012-11-14 Jfeスチール株式会社 High-strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezing property, manufacturing method thereof, and automotive parts excellent in product shape
CN101871076B (en) * 2009-04-22 2011-11-23 宝山钢铁股份有限公司 Manufacturing method of 500Mpa-grade cold-rolled magnetic steel
JP5807368B2 (en) * 2010-06-16 2015-11-10 新日鐵住金株式会社 High-strength cold-rolled steel sheet having a very high uniform elongation in the direction of 45 ° with respect to the rolling direction and a method for producing the same
TWI453286B (en) * 2011-04-13 2014-09-21 Nippon Steel & Sumitomo Metal Corp Hot rolled steel sheet and manufacturing method thereof
RU2551726C1 (en) * 2011-04-13 2015-05-27 Ниппон Стил Энд Сумитомо Метал Корпорейшн High-strength cold-rolled steel plate with improved ability for local deformation, and its manufacturing method
MX358644B (en) 2011-04-13 2018-08-30 Nippon Steel & Sumitomo Metal Corp Hot-rolled steel for gaseous nitrocarburizing and manufacturing method thereof.
MX361690B (en) 2011-05-25 2018-12-13 Nippon Steel & Sumitomo Metal Corp Cold-rolled steel sheet and method for producing same.
ES2714302T3 (en) 2011-07-27 2019-05-28 Nippon Steel & Sumitomo Metal Corp High strength cold rolled steel sheet that has excellent flawlessness and precision drivability, and a manufacturing method of said sheet
TWI479028B (en) * 2011-09-30 2015-04-01 Nippon Steel & Sumitomo Metal Corp High-strength galvanized steel sheet having high tensile strength at a maximum tensile strength of 980 MPa and excellent in formability, high-strength alloyed hot-dip galvanized steel sheet and method of manufacturing the same
JP5408314B2 (en) 2011-10-13 2014-02-05 Jfeスチール株式会社 High-strength cold-rolled steel sheet excellent in deep drawability and material uniformity in the coil and method for producing the same
FI20125379L (en) * 2012-04-03 2013-10-04 Rautaruukki Oyj Method for making high strength malleable continuous annealed steel strip and high strength malleable continuously annealed steel strip
CN104313512B (en) * 2014-11-07 2016-06-22 江苏天舜金属材料集团有限公司 A kind of armored concrete high strength cast iron and manufacture method thereof
CN105349885A (en) * 2015-10-15 2016-02-24 芜湖市宝艺游乐科技设备有限公司 Pre-hardened plastic die steel high in thermal conductivity and easy to cut and polish and preparation method of pre-hardened plastic die steel
CN105349893A (en) * 2015-10-15 2016-02-24 芜湖市宝艺游乐科技设备有限公司 Pre-hardened plastic die steel with oxidation corrosion resistance and high thermal stability and preparation method of pre-hardened plastic die steel
CN105200331A (en) * 2015-10-15 2015-12-30 芜湖市宝艺游乐科技设备有限公司 High-temperature steam corrosion resistant pre-hardened plastic die steel and preparation method thereof
CN105349890A (en) * 2015-10-15 2016-02-24 芜湖市宝艺游乐科技设备有限公司 High temperature resisting and oxidation resisting pre-hardened plastic die steel and preparation method thereof
CN105200347A (en) * 2015-10-15 2015-12-30 芜湖市宝艺游乐科技设备有限公司 Pre-hardened plastic die steel having high strength, easy plasticity and corrosion resistance and preparation method thereof
CN105349891A (en) * 2015-10-15 2016-02-24 芜湖市宝艺游乐科技设备有限公司 High-temperature-abrasion resisting and corrosion resisting pre-hardened plastic die steel and preparation method thereof
CN105349907A (en) * 2015-10-15 2016-02-24 芜湖市宝艺游乐科技设备有限公司 High-hardness homogeneous pre-hardened plastic die steel and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183057A (en) * 2002-12-04 2004-07-02 Nippon Steel Corp Steel sheet having excellent shape-fixability, and production method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183057A (en) * 2002-12-04 2004-07-02 Nippon Steel Corp Steel sheet having excellent shape-fixability, and production method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI629363B (en) * 2017-02-02 2018-07-11 新日鐵住金股份有限公司 Steel plate

Also Published As

Publication number Publication date
JP2006193819A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
JP4555693B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP6443593B1 (en) High strength steel sheet
JP6443592B1 (en) High strength steel sheet
JP5228447B2 (en) High Young&#39;s modulus steel plate and method for producing the same
JP5273324B1 (en) High-strength galvanized steel sheet with excellent bendability and manufacturing method thereof
JP5058508B2 (en) Low yield ratio type high Young&#39;s modulus steel plate, hot dip galvanized steel plate, alloyed hot dip galvanized steel plate and steel pipe, and production method thereof
JP5780171B2 (en) High-strength cold-rolled steel sheet with excellent bendability, high-strength galvanized steel sheet, high-strength galvannealed steel sheet, and manufacturing method thereof
JP5786316B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same
JP5053157B2 (en) High strength high Young&#39;s modulus steel plate with good press formability, hot dip galvanized steel plate, alloyed hot dip galvanized steel plate and steel pipe, and production method thereof
WO2019186989A1 (en) Steel sheet
JP5582274B2 (en) Cold-rolled steel sheet, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof
JP4041296B2 (en) High strength steel plate with excellent deep drawability and manufacturing method
JP4665692B2 (en) High-strength steel sheet with excellent bending rigidity and method for producing the same
KR20200123473A (en) High-strength steel sheet and its manufacturing method
WO2018092817A1 (en) High-strength steel sheet and method for producing same
JP5037413B2 (en) Low yield ratio high Young&#39;s modulus steel sheet, hot dip galvanized steel sheet, alloyed hot dip galvanized steel sheet, steel pipe, and production method thereof
JP2008255442A (en) High-tensile-strength hot-dip galvanized steel sheet and manufacturing method therefor
JP2012219341A (en) Cold-rolled steel sheet and manufacturing method thereof
JP4280078B2 (en) High-strength cold-rolled steel sheet and plated steel sheet excellent in deep drawability, steel pipes excellent in workability, and production methods thereof
JP5978838B2 (en) Cold-rolled steel sheet excellent in deep drawability, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof
JP6264861B2 (en) High Young&#39;s modulus cold-rolled steel sheet excellent in workability, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof
JP5088021B2 (en) High-rigidity, high-strength cold-rolled steel sheet and manufacturing method thereof
EP3498876A1 (en) High-strength steel sheet, and production method therefor
JP6252709B2 (en) High-strength steel sheet for warm working and manufacturing method thereof
JP2006219737A (en) High-strength cold-rolled steel sheet excellent in deep drawability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4555693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350