JP4554944B2 - Endoscope device - Google Patents

Endoscope device Download PDF

Info

Publication number
JP4554944B2
JP4554944B2 JP2004007475A JP2004007475A JP4554944B2 JP 4554944 B2 JP4554944 B2 JP 4554944B2 JP 2004007475 A JP2004007475 A JP 2004007475A JP 2004007475 A JP2004007475 A JP 2004007475A JP 4554944 B2 JP4554944 B2 JP 4554944B2
Authority
JP
Japan
Prior art keywords
light
light source
source unit
image
image signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004007475A
Other languages
Japanese (ja)
Other versions
JP2005198794A (en
Inventor
浩平 池谷
三文 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2004007475A priority Critical patent/JP4554944B2/en
Publication of JP2005198794A publication Critical patent/JP2005198794A/en
Application granted granted Critical
Publication of JP4554944B2 publication Critical patent/JP4554944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、内視鏡装置に関し、特に、波長帯域幅の異なる2つの光源を用いた内視鏡装置に関する。   The present invention relates to an endoscope apparatus, and more particularly, to an endoscope apparatus using two light sources having different wavelength bandwidths.

体腔内の観察や検査を行う内視鏡装置において、波長の短い光は生体組織表面から浅い領域にまで到達して反射し、波長の長い光は生体組織表面から深い領域にまで到達して反射する特性を使って、波長の異なる光を観察面に照射することのできる光源装置が提案されている。   In an endoscopic device that observes and examines the body cavity, light with a short wavelength reaches the shallow area from the surface of the living tissue and reflects, and light with a long wavelength reaches the deep area from the surface of the living tissue and reflects. There has been proposed a light source device that can irradiate an observation surface with light having different wavelengths by using such characteristics.

特許文献1は、キセノンランプなどの放電ランプによる白色光を、フィルタを使って波長の異なるR、G、Bの三色に分けて照射させ、フィルタの透過度合いを調整することによって生体組織表面から所望する深度の情報を得る装置を開示する。
特開2002−95635号公報
In Patent Document 1, white light from a discharge lamp such as a xenon lamp is irradiated with three colors of R, G, and B having different wavelengths using a filter, and the degree of transmission of the filter is adjusted to adjust the degree of transmission of the filter. An apparatus for obtaining information on a desired depth is disclosed.
JP 2002-95635 A

しかし、この装置において光源となるキセノンランプなどの放電ランプによる白色光は、波長帯域が広く一定の波長分布の広がりを有している。そのため、フィルタを用いたとしても波長帯域を狭めることは困難で、所望の深度以外の領域の画像情報も得られてしまい鮮明な画像を得るまでに至らなかった。   However, white light emitted from a discharge lamp such as a xenon lamp that is a light source in this apparatus has a wide wavelength band and a constant wavelength distribution. Therefore, even if a filter is used, it is difficult to narrow the wavelength band, and image information in a region other than the desired depth is obtained, so that a clear image cannot be obtained.

図1に、一般的なCCDにおけるフィルタの分光特性と、後述する青色レーザー光の波長帯域をグラフで示す。400〜700nm程度の幅広い波長帯域を有する白色光では、フィルタによってBを中心とした分光、Gを中心とした分光、Rを中心とした分光を行うことは可能であるが、フィルタによる分光では、一定の幅以下に波長帯域を抑えることは困難であることが分かる。   FIG. 1 is a graph showing the spectral characteristics of a filter in a general CCD and the wavelength band of blue laser light described later. With white light having a wide wavelength band of about 400 to 700 nm, it is possible to perform spectrum centered on B, spectrum centered on G, and spectrum centered on R with a filter. It can be seen that it is difficult to suppress the wavelength band below a certain width.

また、白色光は、幅広い波長帯域を有するが比較的波長の長い500nm以上の波長帯域の成分が多く、比較的波長の短い500nm以下の波長帯域の成分が少ない。そのため通常観察画像を得ることには問題が生じないが、生体組織表面から浅い領域の画像を鮮明に得るために、フィルタによって波長の短い光だけを分光して照射すると照明光量不足が生じていた。   Further, white light has a wide wavelength band, but has many components in a wavelength band of 500 nm or more with a relatively long wavelength, and few components in a wavelength band of 500 nm or less with a relatively short wavelength. Therefore, there is no problem in obtaining a normal observation image. However, in order to obtain a clear image of a shallow region from the surface of a living tissue, if the light is split and irradiated only with light having a short wavelength, the amount of illumination light is insufficient. .

したがって本発明の目的は、通常観察画像に加えて生体組織表面から浅い領域における鮮明な画像を取得する装置を提供することである。   Accordingly, an object of the present invention is to provide an apparatus for acquiring a clear image in a shallow region from the surface of a living tissue in addition to a normal observation image.

本発明に係る内視鏡装置は、波長帯域の広い光を照射する第1光源部と、波長が短く且つ波長帯域が狭い光を照射する第2光源部と、第1、第2光源部を切り替えて観察面に照射する光源切り替え部と、第1、第2光源部の各光の照射時に撮像により得られた第1、第2画像信号のうち先に照射して得られた画像信号を一時記録する第1画像メモリ部と、第1、第2画像信号を合成する映像信号合成部とを備える内視鏡装置。これにより、白色光照射により得られる生体組織表面から深い領域の画像に加えて、励起光照射により得られる生体組織表面から浅い領域の画像を合成して、観察面の鮮明な画像を取得することが可能になる。   An endoscope apparatus according to the present invention includes a first light source unit that emits light having a wide wavelength band, a second light source unit that emits light having a short wavelength and a narrow wavelength band, and first and second light source units. A light source switching unit that switches and irradiates the observation surface, and an image signal obtained by first irradiating the first and second image signals obtained by imaging at the time of irradiation of each light of the first and second light source units. An endoscope apparatus comprising: a first image memory unit that temporarily records; and a video signal synthesis unit that synthesizes first and second image signals. In this way, in addition to the image of the deep region from the surface of the biological tissue obtained by irradiation with white light, the image of the shallow region from the surface of the biological tissue obtained by irradiation with excitation light is synthesized to obtain a clear image of the observation surface Is possible.

好ましくは、第1、第2画像信号のうち後に照射して得られた画像信号を一時記録する第2画像メモリ部をさらに備える。   Preferably, the image processing apparatus further includes a second image memory unit that temporarily records an image signal obtained by subsequent irradiation of the first and second image signals.

また、好ましくは、第1光源部は、放電ランプによる白色光源を有する。   Preferably, the first light source unit includes a white light source using a discharge lamp.

また、好ましくは、第2光源部は、レーザーによる青色光源を有する。これにより、特定の波長で狭い波長領域を有する光を励起光として照射することが可能となる。   Preferably, the second light source unit has a blue light source using a laser. This makes it possible to irradiate light having a narrow wavelength region at a specific wavelength as excitation light.

また、好ましくは、第2光源部が発する光の波長帯域は、400nmから420nmである。   Preferably, the wavelength band of light emitted from the second light source unit is 400 nm to 420 nm.

また、好ましくは、第2画像信号は、第2光源部の照射時に得られた画像信号のうち高周波成分だけを取り出して得られる。これにより、励起光照射により得られた画像のうち輪郭部分を強調させた第2画像信号を第1画像信号と合成させることができ、生体組織表面から浅い領域の画像をより鮮明に得ることが可能になる。   Preferably, the second image signal is obtained by extracting only a high-frequency component from the image signal obtained when the second light source unit is irradiated. As a result, the second image signal in which the contour portion of the image obtained by the excitation light irradiation is emphasized can be combined with the first image signal, and a shallow region image can be obtained more clearly from the surface of the living tissue. It becomes possible.

さらに好ましくは、第2画像信号を構成する画素信号のそれぞれは、第2光源部の照射時に撮像により得られた画像信号を構成する画素信号のそれぞれにおいて隣接画素との輝度情報の差分値である。これにより、励起光照射により得られた画像の輪郭部分の情報を簡易に得ることが可能になる。   More preferably, each of the pixel signals constituting the second image signal is a difference value of luminance information with the adjacent pixel in each of the pixel signals constituting the image signal obtained by imaging at the time of irradiation of the second light source unit. . Thereby, it becomes possible to easily obtain information on the contour portion of the image obtained by the excitation light irradiation.

以上のように本発明によれば、通常観察画像に加えて生体組織表面から浅い領域における鮮明な画像を取得する装置を提供することができる。   As described above, according to the present invention, it is possible to provide an apparatus that acquires a clear image in a shallow region from the surface of a living tissue in addition to a normal observation image.

以下、本発明の実施形態について、図2〜7を参照して説明する。図2は、内視鏡装置の構成図を示す。本実施形態に係る内視鏡装置は、電子スコープ10と、カラープロセッサ(電子内視鏡用プロセッサ)20と、カラーモニタ40とを備える。電子スコープ10は、カラープロセッサ20の制御により、被写体を撮像する。撮像により得られた画像信号はカラープロセッサ20によってカラーモニタ40で出力(画面表示)が可能な映像信号に変換される。変換された映像信号はアナログ信号でカラーモニタ40に伝達される。伝達された映像信号は、カラーモニタ40によって出力される。使用者は、カラーモニタ40による出力結果により、電子スコープで撮像された被写体映像を観察することができる。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. FIG. 2 shows a configuration diagram of the endoscope apparatus. The endoscope apparatus according to the present embodiment includes an electronic scope 10, a color processor (electronic endoscope processor) 20, and a color monitor 40. The electronic scope 10 images the subject under the control of the color processor 20. The image signal obtained by imaging is converted by the color processor 20 into a video signal that can be output (screen display) on the color monitor 40. The converted video signal is transmitted to the color monitor 40 as an analog signal. The transmitted video signal is output by the color monitor 40. The user can observe the subject image captured by the electronic scope based on the output result from the color monitor 40.

電子スコープ10は、撮像部11と、照明部12とを有し、照明部12が被写体に適度な光量を与えながら撮像部11が被写体を撮像する。   The electronic scope 10 includes an imaging unit 11 and an illumination unit 12, and the imaging unit 11 captures an image of the subject while the illumination unit 12 gives an appropriate amount of light to the subject.

撮像部11は、対物レンズ11a、CCDなどの撮像素子11bとを有する。撮像素子11bの駆動は、後述する制御回路24が出力するクロックパルスに従って行われる。被写体の撮像によって撮像素子11bに蓄積された電荷は、画像信号としてRとGとBに色分離されて、映像信号処理部21に転送される。   The imaging unit 11 includes an objective lens 11a and an imaging element 11b such as a CCD. The image sensor 11b is driven in accordance with a clock pulse output from a control circuit 24 described later. The charges accumulated in the image sensor 11b by imaging the subject are color-separated into R, G, and B as image signals and transferred to the video signal processing unit 21.

照明部12は、白色光を発し、光誘導部材12b、配光レンズ12aを介して生体組織に照射する第1光源部26からの光、及び励起光を発し、光誘導部材12b、配光レンズ12aを介して、生体組織に照射する第2光源部27からの光を照射面に供給する。電子スコープ10と、カラープロセッサ20は、コネクタ部(不図示)で電気的、光学的に接続される。   The illuminating unit 12 emits white light, emits light from the first light source unit 26 that irradiates the living tissue via the light guiding member 12b and the light distribution lens 12a, and excitation light, and the light guiding member 12b and light distribution lens. The light from the 2nd light source part 27 which irradiates a biological tissue is supplied to an irradiation surface via 12a. The electronic scope 10 and the color processor 20 are electrically and optically connected by a connector portion (not shown).

カラープロセッサ20は、映像信号処理部21、制御回路24、第1、第2光源部26、27、及び光源切り替え部30を有しており、電子スコープ10で撮像し電荷転送された画像信号を、カラーモニタ40で出力できる映像信号に変換する。   The color processor 20 includes a video signal processing unit 21, a control circuit 24, first and second light source units 26 and 27, and a light source switching unit 30. The color processor 20 captures an image signal captured by the electronic scope 10 and subjected to charge transfer. Then, it is converted into a video signal that can be output by the color monitor 40.

映像信号処理部21は、電子スコープ10から送られてきた画像信号を前段映像信号処理回路21aでA/D変換、ガンマ補正、輪郭強調、及び増幅し、メモリ切り替え部21bを介して、第1、第2画像メモリ部21c、21dに順次一時記録する。メモリ切り替え部21bは、後述する光源切り替え部30で第1、第2光源部26、27のいずれかに切り替えられた光源に対応して画像信号を一時記録させるメモリを切り替える。第1画像メモリ部21cは、第1光源部26から供給された白色光照射による第1画像信号を一時記録する。第2画像メモリ部21dは、第2光源部27から供給された励起光照射による第2画像信号を一時記録する。第2画像信号は、第2光源部27から供給された励起光による画像信号のうち高周波成分だけを取り出した画像信号である。高周波成分の取り出しについては後述する。第1、第2画像メモリ部21c、21dに一時記録された第1、第2画像信号は、後段映像信号処理回路21eに転送される。後段映像信号処理回路21eは、転送された第1、第2画像信号を合成した後、Videoコンポジット信号、Y/C分離信号などの映像信号に変換し、D/A変換部21fでアナログ信号に変換された後、カラーモニタ40に出力する。   The video signal processing unit 21 performs A / D conversion, gamma correction, contour enhancement, and amplification on the image signal sent from the electronic scope 10 by the preceding video signal processing circuit 21a, and the first signal is sent via the memory switching unit 21b. The second image memory units 21c and 21d are temporarily recorded sequentially. The memory switching unit 21b switches the memory for temporarily recording the image signal corresponding to the light source switched to one of the first and second light source units 26 and 27 by the light source switching unit 30 described later. The first image memory unit 21 c temporarily records the first image signal by the white light irradiation supplied from the first light source unit 26. The second image memory unit 21d temporarily records the second image signal by the excitation light irradiation supplied from the second light source unit 27. The second image signal is an image signal obtained by extracting only a high frequency component from the image signal based on the excitation light supplied from the second light source unit 27. The extraction of the high frequency component will be described later. The first and second image signals temporarily recorded in the first and second image memory units 21c and 21d are transferred to the subsequent video signal processing circuit 21e. The post-stage video signal processing circuit 21e synthesizes the transferred first and second image signals, converts them to video signals such as a video composite signal and a Y / C separation signal, and converts them into analog signals by the D / A converter 21f. After the conversion, the data is output to the color monitor 40.

制御回路24は、図示しないCPUとRAMとを有し、内視鏡装置各部の制御や信号の一時記録を行う。   The control circuit 24 includes a CPU and a RAM (not shown), and controls each part of the endoscope apparatus and temporarily records signals.

第1光源部26は、白色光を発するキセノンランプなど印加された高電圧パルスによって放電を開始し白色光を発光する放電ランプによる白色光源を有する。第2光源部27は、励起光を含む青色レーザー光を発するレーザーダイオード(LD)などの励起光を発するレーザーによる青色光源を有する。発光された白色光、励起光は、光源切り替え部30、光ファイバなどの光誘導部材12b、配光部12aを介して被写体である生体組織(観察面)に照射される。白色光、励起光のいずれを照射させるかは、使用者が選択する。   The first light source unit 26 has a white light source such as a xenon lamp that emits white light and a discharge lamp that starts discharge by emitting high voltage pulses and emits white light. The second light source unit 27 includes a blue light source using a laser that emits excitation light, such as a laser diode (LD) that emits blue laser light including excitation light. The emitted white light and excitation light are irradiated to the living tissue (observation surface) that is the subject through the light source switching unit 30, the light guiding member 12b such as an optical fiber, and the light distribution unit 12a. The user selects whether to irradiate white light or excitation light.

放電ランプによる白色光は、短い波長から長い波長まで波長帯域の広い広帯域光である。レーザーによる青色レーザー光の励起光は、短い波長(400nm〜420nm)で波長帯域の狭い狭帯域光である(図1参照)。   White light from a discharge lamp is broadband light having a wide wavelength band from a short wavelength to a long wavelength. The excitation light of the blue laser light by the laser is narrow-band light with a short wavelength (400 nm to 420 nm) and a narrow wavelength band (see FIG. 1).

光源切り替え部30は、第1、第2シャッタ30a、30bと、ハーフミラー30cと、励起光反射ミラー30dとを有する。第1、第2シャッタ30a、30bは、開閉により白色光や励起光を透過又は遮断させる。使用者によって、白色光を観察面に照射させる選択がされた場合には、第1シャッタ30aはオープン状態にして第1光源部26からの白色光を透過させ、第2シャッタ30bはクローズ状態にして第2光源部27からの励起光を遮断する。透過された白色光はハーフミラー30cを透過して光誘導部材12b、配光部12aを介して観察面に照射される。使用者によって、励起光を観察面に照射させる選択がされた場合には、第1シャッタ30aはクローズ状態にして第1光源部26からの白色光を遮断し、第2シャッタ30bはオープン状態にして第2光源部27からの励起光を透過させる。透過された励起光は、励起光反射ミラー30d、ハーフミラー30cを反射し、光誘導部材12b、配光部12aを介して観察面に照射される。第1、第2シャッタ30a、30bの開閉制御は、使用者の選択に対応する信号を受けた制御回路24が行う。   The light source switching unit 30 includes first and second shutters 30a and 30b, a half mirror 30c, and an excitation light reflecting mirror 30d. The first and second shutters 30a and 30b transmit or block white light and excitation light by opening and closing. When the user selects to irradiate the observation surface with white light, the first shutter 30a is opened to transmit white light from the first light source unit 26, and the second shutter 30b is closed. Then, the excitation light from the second light source unit 27 is blocked. The transmitted white light passes through the half mirror 30c and is irradiated onto the observation surface through the light guiding member 12b and the light distribution unit 12a. When the user selects to irradiate the observation surface with excitation light, the first shutter 30a is closed to block white light from the first light source unit 26, and the second shutter 30b is opened. Then, the excitation light from the second light source unit 27 is transmitted. The transmitted excitation light is reflected by the excitation light reflecting mirror 30d and the half mirror 30c, and is irradiated onto the observation surface via the light guiding member 12b and the light distribution unit 12a. Control of the opening and closing of the first and second shutters 30a and 30b is performed by the control circuit 24 that receives a signal corresponding to the user's selection.

カラーモニタ40は、映像信号を取り込んで表示することが可能な市販のカラーモニタであり、電子スコープ10で撮像され、カラープロセッサ20で変換された映像信号を、出力(画面表示)する。   The color monitor 40 is a commercially available color monitor that can capture and display a video signal, and outputs (screen display) the video signal that is captured by the electronic scope 10 and converted by the color processor 20.

配光レンズ12aを介して白色光が生体組織に照射されると、生体組織で反射されたあるいは散乱した広帯域光が対物レンズ11aで集光され撮像素子11bで受光される。配光レンズ12aを介して励起光が生体組織に照射されると、生体組織で反射されたあるいは散乱した狭帯域光と、励起された生体組織が発する自家蛍光の双方が対物レンズ11aに集光され撮像素子11cで受光される。但し自家蛍光については微弱な光なので撮像結果には大きく影響しない。   When white light is irradiated onto the living tissue via the light distribution lens 12a, the broadband light reflected or scattered by the living tissue is collected by the objective lens 11a and received by the imaging device 11b. When the living tissue is irradiated with the excitation light through the light distribution lens 12a, both the narrow-band light reflected or scattered by the living tissue and the autofluorescence emitted from the excited living tissue are condensed on the objective lens 11a. The image sensor 11c receives the light. However, since autofluorescence is weak light, it does not greatly affect the imaging result.

生体組織に対する光の深さ方向の到達度合いは、その波長に依存する。すなわち短い波長の光は生体組織表面から浅い領域にまでしか光は到達せず、長い波長の光は生体組織表面から深い領域にまで光が到達する(図3参照)。   The degree of light reaching the living tissue in the depth direction depends on the wavelength. That is, light having a short wavelength reaches only a shallow region from the surface of the living tissue, and light having a long wavelength reaches the deep region from the surface of the living tissue (see FIG. 3).

波長帯域が広い放電ランプによる白色光は、生体組織表面から深い領域にまで光が到達し、到達した深さの範囲から反射、散乱した広帯域光によって生体組織表面から深い領域にある太い血管などを映し出すことが可能になる。そのため、生体組織の観察面の全体像を把握し易い。但し、白色光は比較的短い波長成分が多くは含まれないので、生体組織表面から浅い領域にある毛細血管などを映し出すことはできない。図4に、広帯域光による観察画像例を示す。   White light from a discharge lamp with a wide wavelength band reaches the deep region from the surface of the living tissue, and reflects from the reach depth range. It becomes possible to project. Therefore, it is easy to grasp the entire image of the observation surface of the living tissue. However, since white light does not include many relatively short wavelength components, it is not possible to project capillaries or the like in a shallow region from the surface of the living tissue. FIG. 4 shows an example of an observation image using broadband light.

波長が短く波長帯域が狭いレーザーによる青色レーザー光の励起光は、生体組織表面付近までしか光が到達せず、到達した深さの範囲から反射、散乱した狭帯域光によって粘膜表面の毛細血管などの微細構造を映し出すことが可能になる。そのため、生体組織表面から進行が始まる癌などを発見するのに役立つ。但し、生体組織表面から深い領域にある毛細血管よりも太い血管などを映し出すことはできない。図5に、図4と同じ被写体の観察面を撮像した狭帯域光による観察画像例を示す。   The blue laser beam excitation light from a laser with a short wavelength and narrow wavelength band reaches only near the surface of the living tissue, and capillary blood vessels on the mucous membrane surface due to the narrowband light reflected and scattered from the reach depth range. It is possible to project the fine structure of. Therefore, it is useful for finding cancers that begin to progress from the surface of living tissue. However, blood vessels that are thicker than capillaries in a deep region from the surface of the living tissue cannot be projected. FIG. 5 shows an example of an observation image using narrowband light obtained by imaging the same observation surface of the subject as in FIG.

従って、白色光の広帯域光による観察画像に、狭帯域光による観察画像を合成することで、被写体の観察面に関する鮮明な画像を得ることが可能になる。図6は、図4の広帯域光による観察画像に、図5の狭帯域光による観察画像を合成した画像例である。   Therefore, it is possible to obtain a clear image relating to the observation surface of the subject by combining the observation image based on the narrowband light with the observation image based on the broadband light of white light. FIG. 6 is an image example in which the observation image with narrowband light in FIG. 5 is combined with the observation image with broadband light in FIG. 4.

広帯域光による観察画像と狭帯域光による観察画像の合成については、第1画像信号と第2画像信号をそれぞれ第1、第2画像メモリ部21c、21dに一時記録しこれらを合成することによって得られる。第2画像信号は、狭帯域光による観察画像そのままでもよいが、第2画像信号のうち毛細血管など画像を構成する輪郭線に関する情報だけを取り出して合成を行った方がより鮮明な画像を得ることが出来る。   The composition of the observation image using the broadband light and the observation image using the narrow-band light is obtained by temporarily recording the first image signal and the second image signal in the first and second image memory units 21c and 21d, respectively, and combining them. It is done. The second image signal may be an observation image as it is with narrow-band light, but a clearer image can be obtained by extracting only the information related to the contour lines constituting the image such as capillaries from the second image signal. I can do it.

毛細血管などの輪郭線に関する情報の取り出しは、狭帯域光による観察画像のうち高周波(高空間周波数)成分だけを取り出すことによって行う。具体的には、前段映像信号処理回路21aにおける輪郭強調処理で画像信号を構成する画素信号のそれぞれにおいて隣接画素との輝度情報の差分値、すなわちそれぞれの画素の輝度値と隣接画素の輝度の平均値との差分値を求める。各画素信号がこの差分値で構成される画像信号を第2画像信号として第2画像メモリ部21dに一時記録し第1画像信号と合成する。   Extraction of information related to contour lines such as capillaries is performed by extracting only a high-frequency (high spatial frequency) component from an observation image using narrowband light. Specifically, in each of the pixel signals constituting the image signal by the edge enhancement processing in the preceding stage video signal processing circuit 21a, the difference value of the luminance information with the adjacent pixel, that is, the average of the luminance value of each pixel and the luminance of the adjacent pixel The difference value from the value is obtained. An image signal in which each pixel signal is composed of the difference value is temporarily recorded in the second image memory unit 21d as a second image signal and synthesized with the first image signal.

これらの手順を図7のフローチャートで説明する。ステップS11で内視鏡操作が開始されると、ステップS12で第1シャッタ30aがオープン状態にされる。このとき第2シャッタ30bはクローズ状態である。ステップS13で第1光源部26から白色光を観察面に向かって照射する。ステップS14で、照射された白色光の反射による広帯域光を撮像し、第1画像信号を通常観察画像として第1メモリ21cに一時記録する。ステップS15で、第1シャッタ30aをクローズ状態にし、ステップS16で、第2シャッタ30bをオープン状態にする。ステップS17で、第2光源部27から青色レーザー光の励起光を観察面に向かって照射する。ステップS18で、照射された励起光の反射による狭帯域光を撮像し、狭帯域光画像として第2メモリ21dに一時記録する。このとき狭帯域光画像として一時記録するのは、輪郭線に関する情報を強調した第2画像信号である。ステップS19で、第2シャッタ30bをクローズ状態にする。ステップS20で、第1、第2画像メモリ21c、21dに一時記録された第1画像信号及び第2画像信号を合成する。ステップS21で、合成した画像信号を映像信号に変換してカラーモニタ40に表示する。ステップS22で、観察を継続するか否かすなわち映像信号処理を継続させるか否かを判断する。観察を継続する場合は、ステップS12に戻って次のフレームの撮像手順に入る。観察を継続せず終了する場合は、ステップS23で終了する。   These procedures will be described with reference to the flowchart of FIG. When the endoscope operation is started in step S11, the first shutter 30a is opened in step S12. At this time, the second shutter 30b is in a closed state. In step S13, white light is emitted from the first light source unit 26 toward the observation surface. In step S14, broadband light resulting from reflection of the irradiated white light is imaged, and the first image signal is temporarily recorded in the first memory 21c as a normal observation image. In step S15, the first shutter 30a is closed, and in step S16, the second shutter 30b is opened. In step S17, excitation light of blue laser light is emitted from the second light source unit 27 toward the observation surface. In step S18, the narrowband light resulting from the reflection of the irradiated excitation light is imaged and temporarily recorded in the second memory 21d as a narrowband light image. At this time, what is temporarily recorded as a narrow-band optical image is the second image signal in which information about the contour line is emphasized. In step S19, the second shutter 30b is closed. In step S20, the first image signal and the second image signal temporarily recorded in the first and second image memories 21c and 21d are synthesized. In step S21, the combined image signal is converted into a video signal and displayed on the color monitor 40. In step S22, it is determined whether or not to continue observation, that is, whether or not to continue video signal processing. When continuing observation, it returns to step S12 and starts the imaging procedure of the next frame. When ending without continuing observation, the process ends in step S23.

なお、生体組織に照射させる光の光源を白色光と励起光のいずれかに切り替える光源切り替え部30は、第1、第2シャッタ30a、30bを用いるものとして説明したが、これは放電ランプのようにオンオフ信号により瞬時に点灯消灯が行えないものの場合に有効である。白色光の光源をLEDなど瞬時の点灯消灯が行えるものであれば、第1シャッタ30aを使用しなくてもよく、光源切り替え部30は、励起光を発する第2光源部27と白色光を発するLEDなどの光源とを交互にオンオフ切り替え制御ができる機能があればよい。   Note that the light source switching unit 30 that switches the light source for irradiating the living tissue to either white light or excitation light has been described as using the first and second shutters 30a and 30b, but this is like a discharge lamp. This is effective when the light cannot be turned on and off instantaneously by an on / off signal. If the white light source can be turned on and off instantaneously, such as an LED, the first shutter 30a may not be used, and the light source switching unit 30 emits white light with the second light source unit 27 that emits excitation light. It is only necessary to have a function capable of performing on / off switching control alternately with a light source such as an LED.

また、第1、第2画像信号を一時記録するメモリとして第1、第2画像メモリ部21c、21dとを有する形態を説明したが、先に照射する光に対応した画像信号(本実施形態では第1画像信号に相当)だけ一時記録し、後で照射する光に対応した画像信号(本実施形態では第2画像信号に相当)は一時記録せず、直接後段映像信号処理回路21eに転送して先に照射する光に対応した画像信号と合成する形態であってもよい。   Moreover, although the form which has the 1st, 2nd image memory part 21c, 21d as a memory which records a 1st, 2nd image signal temporarily was demonstrated, the image signal (in this embodiment) corresponding to the light irradiated previously. (Corresponding to the first image signal) is temporarily recorded, and the image signal corresponding to the light to be irradiated later (corresponding to the second image signal in this embodiment) is not temporarily recorded, but directly transferred to the subsequent video signal processing circuit 21e. Alternatively, it may be combined with an image signal corresponding to the previously irradiated light.

一般的なCCDにおけるフィルタの分光特性と、青色レーザー光の波長帯域をグラフで示す。A spectral characteristic of a filter in a general CCD and a wavelength band of blue laser light are shown in a graph. 内視鏡装置の構成図を示す。The block diagram of an endoscope apparatus is shown. 照射する光の波長と、光の到達する生体組織表面から深さの関係を示す。The relationship between the wavelength of the irradiated light and the depth from the surface of the living tissue to which the light reaches is shown. 白色光照射による生体組織表面から深い領域を撮像した画像例を示す。The example of an image which imaged the deep area | region from the biological tissue surface by white light irradiation is shown. 励起光照射による生体組織表面から浅い領域を撮像した画像例を示す。The example of an image which imaged the shallow area | region from the biological tissue surface by excitation light irradiation is shown. 白色光照射による画像例と、励起光照射による画像例の合成した画像例を示す。An image example in which an image example by white light irradiation and an image example by excitation light irradiation are combined is shown. 白色光、励起光照射による2つの画像を合成する手順のフローチャートを示す。The flowchart of the procedure which synthesize | combines two images by white light and excitation light irradiation is shown.

符号の説明Explanation of symbols

10 電子スコープ
11 撮像部
12 照明部
20 カラープロセッサ
21 映像信号処理部
24 制御回路
26 第1光源部
27 第2光源部
30 光源切り替え部
40 カラーモニタ

DESCRIPTION OF SYMBOLS 10 Electronic scope 11 Imaging part 12 Illumination part 20 Color processor 21 Video signal processing part 24 Control circuit 26 1st light source part 27 2nd light source part 30 Light source switching part 40 Color monitor

Claims (5)

白色光を照射する第1光源部と、
前記白色光よりも実質的に波長が短く且つ前記白色光よりも波長帯域が狭い光を照射する第2光源部と、
前記第1光源部及び前記第2光源部が照射した光のうち、いずれか一方を観察面に照射する光源切り替え部と、
前記第2光源部が照射した光を用いて撮像した狭帯域光画像信号を構成する画素信号のそれぞれにおいて、それぞれの画素の輝度値と隣接画素の輝度値の平均値との差分値を求め、前記差分値で構成される画像信号を第2画像信号として出力する映像信号処理部と、
前記第1光源部が照射した白色光を用いて撮像した第1画像信号と前記第2画像信号とのうち先に得られた画像信号を一時記録する第1画像メモリ部と、
前記第2画像信号を前記第1画像信号と合成する映像信号合成部とを備え、
前記光源切り替え部は、第1、第2シャッタ、及びハーフミラーを有し、
前記第1シャッタは、オープン状態の時に前記第1光源部からの光を前記ハーフミラーに到達させ、クローズ状態の時に前記第1光源部からの光を遮光し、
前記第2シャッタは、オープン状態の時に前記第2光源部からの光を前記ハーフミラーに到達させ、クローズ状態の時に前記第2光源部からの光を遮光し、
前記第1光源部からの光と、前記第2光源部からの光のいずれか一方は、前記ハーフミラーを透過し、他方は、前記ハーフミラーを反射し、
前記第1光源部からの光と、前記第2光源部からの光は、前記ハーフミラーの同じ側から出射して、前記観察面に照射されることを特徴とする内視鏡装置。
A first light source that emits white light;
A second light source unit that emits light having a wavelength that is substantially shorter than that of the white light and a wavelength band that is narrower than that of the white light ;
One of the first light source unit and the light which the second light source unit irradiates a light source switching section for irradiating the observation surface either,
In each of the pixel signals constituting the narrowband light image signal imaged using the light emitted by the second light source unit, a difference value between the luminance value of each pixel and the average value of the luminance values of adjacent pixels is obtained, A video signal processing unit that outputs an image signal composed of the difference values as a second image signal;
A first image memory unit that temporarily records an image signal obtained first of the first image signal and the second image signal captured using white light emitted by the first light source unit ;
A video signal combining unit that combines the second image signal with the first image signal ;
The light source switching unit includes first and second shutters and a half mirror.
The first shutter causes the light from the first light source unit to reach the half mirror when in the open state, and blocks the light from the first light source unit when in the closed state,
The second shutter causes the light from the second light source unit to reach the half mirror when in the open state, and blocks the light from the second light source unit when in the closed state,
Either one of the light from the first light source unit and the light from the second light source unit transmits the half mirror, and the other reflects the half mirror,
The endoscope apparatus according to claim 1, wherein the light from the first light source unit and the light from the second light source unit are emitted from the same side of the half mirror and irradiated on the observation surface.
前記第1、第2画像信号のうち後に照射して得られた画像信号を一時記録する第2画像メモリ部をさらに備えた請求項1に記載の内視鏡装置。   The endoscope apparatus according to claim 1, further comprising a second image memory unit that temporarily records an image signal obtained by subsequent irradiation of the first and second image signals. 前記第1光源部は、放電ランプによる白色光源を有することを特徴とする請求項1に記載の内視鏡装置。   The endoscope apparatus according to claim 1, wherein the first light source unit includes a white light source using a discharge lamp. 前記第2光源部は、レーザーによる青色光源を有することを特徴とする請求項1に記載の内視鏡装置。   The endoscope apparatus according to claim 1, wherein the second light source unit includes a blue light source using a laser. 前記第2光源部が発する光の波長帯域は、400nmから420nmであることを特徴とする請求項1に記載の内視鏡装置。   The endoscope apparatus according to claim 1, wherein a wavelength band of light emitted from the second light source unit is 400 nm to 420 nm.
JP2004007475A 2004-01-15 2004-01-15 Endoscope device Expired - Lifetime JP4554944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004007475A JP4554944B2 (en) 2004-01-15 2004-01-15 Endoscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004007475A JP4554944B2 (en) 2004-01-15 2004-01-15 Endoscope device

Publications (2)

Publication Number Publication Date
JP2005198794A JP2005198794A (en) 2005-07-28
JP4554944B2 true JP4554944B2 (en) 2010-09-29

Family

ID=34821087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004007475A Expired - Lifetime JP4554944B2 (en) 2004-01-15 2004-01-15 Endoscope device

Country Status (1)

Country Link
JP (1) JP4554944B2 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4694310B2 (en) * 2005-08-22 2011-06-08 Hoya株式会社 Electronic endoscope, endoscope light source device, endoscope processor, and endoscope system
US8451327B2 (en) 2005-08-18 2013-05-28 Hoya Corporation Electronic endoscope, endoscope light unit, endoscope processor, and electronic endoscope system
JP4681981B2 (en) 2005-08-18 2011-05-11 Hoya株式会社 Electronic endoscope device
JP2007202589A (en) * 2006-01-30 2007-08-16 National Cancer Center-Japan Electronic endoscope apparatus
JP4849985B2 (en) 2006-07-21 2012-01-11 富士フイルム株式会社 Electronic endoscope system
KR101071466B1 (en) * 2007-02-22 2011-10-10 올림푸스 가부시키가이샤 Intrasubject introduction system
JP5288775B2 (en) * 2007-11-14 2013-09-11 Hoya株式会社 Endoscope device
JP2009153712A (en) 2007-12-26 2009-07-16 Olympus Corp Light source device and endoscope apparatus comprising the same
JP2009207584A (en) 2008-03-03 2009-09-17 Hoya Corp Endoscope system
JP2009297290A (en) * 2008-06-13 2009-12-24 Fujifilm Corp Endoscope apparatus and image processing method thereof
EP2130484B1 (en) 2008-06-04 2011-04-20 FUJIFILM Corporation Illumination device for use in endoscope
JP5216429B2 (en) 2008-06-13 2013-06-19 富士フイルム株式会社 Light source device and endoscope device
FR2942899B1 (en) * 2009-03-03 2011-09-23 Jose Balbuena DEVICE AND METHOD FOR OPTICALLY ANALYZING DOCUMENTS
WO2010131687A1 (en) * 2009-05-12 2010-11-18 オリンパスメディカルシステムズ株式会社 Subject in-vivo imaging system and subject in-vivo introducing device
JP5767775B2 (en) 2009-07-06 2015-08-19 富士フイルム株式会社 Endoscope device
JP5677555B2 (en) * 2009-09-24 2015-02-25 富士フイルム株式会社 Endoscope device
JP5460507B2 (en) 2009-09-24 2014-04-02 富士フイルム株式会社 Endoscope apparatus operating method and endoscope apparatus
JP5460506B2 (en) 2009-09-24 2014-04-02 富士フイルム株式会社 Endoscope apparatus operating method and endoscope apparatus
JP5389612B2 (en) * 2009-11-06 2014-01-15 富士フイルム株式会社 Electronic endoscope system, processor device for electronic endoscope, and method for operating electronic endoscope system
JP5570798B2 (en) * 2009-12-15 2014-08-13 オリンパス株式会社 Optical scanning endoscope device
JP5541914B2 (en) * 2009-12-28 2014-07-09 オリンパス株式会社 Image processing apparatus, electronic apparatus, program, and operation method of endoscope apparatus
JP5334952B2 (en) * 2010-12-16 2013-11-06 富士フイルム株式会社 Image processing device
JP5623266B2 (en) * 2010-12-17 2014-11-12 富士フイルム株式会社 Endoscope light source device and endoscope system
JP5159904B2 (en) * 2011-01-11 2013-03-13 富士フイルム株式会社 Endoscopic diagnosis device
JP5485215B2 (en) * 2011-04-01 2014-05-07 富士フイルム株式会社 Endoscope device
EP2581030B1 (en) * 2011-04-11 2015-04-29 Olympus Medical Systems Corp. Endoscope apparatus
JP5623348B2 (en) * 2011-07-06 2014-11-12 富士フイルム株式会社 Endoscope system, processor device for endoscope system, and method for operating endoscope system
JP5450527B2 (en) 2011-08-10 2014-03-26 富士フイルム株式会社 Endoscope device
JP5698779B2 (en) * 2013-03-18 2015-04-08 オリンパス株式会社 Endoscope apparatus having light source device
JP5718398B2 (en) * 2013-03-18 2015-05-13 オリンパス株式会社 Endoscope device
JP5698782B2 (en) * 2013-03-18 2015-04-08 オリンパス株式会社 LIGHT SOURCE DEVICE AND ENDOSCOPE DEVICE EQUIPPED WITH THE SAME
JP5698780B2 (en) * 2013-03-18 2015-04-08 オリンパス株式会社 LIGHT SOURCE DEVICE AND ENDOSCOPE DEVICE EQUIPPED WITH THE SAME
JP5698781B2 (en) * 2013-03-18 2015-04-08 オリンパス株式会社 LIGHT SOURCE DEVICE AND ENDOSCOPE DEVICE EQUIPPED WITH THE SAME
JP2014121630A (en) * 2014-02-10 2014-07-03 Fujifilm Corp Endoscope device
JP6516772B2 (en) * 2015-01-23 2019-05-22 オリンパス株式会社 Image processing apparatus, operation method of image processing apparatus, and image processing program
WO2016185733A1 (en) * 2015-05-21 2016-11-24 オリンパス株式会社 Image processing device, image processing method, and image processing program
JP2016105824A (en) * 2016-02-08 2016-06-16 富士フイルム株式会社 Endoscope apparatus
WO2018105089A1 (en) * 2016-12-08 2018-06-14 オリンパス株式会社 Image processing device, image processing method and program
JP6379260B2 (en) * 2017-07-04 2018-08-22 富士フイルム株式会社 Endoscope device
JP7352411B2 (en) * 2019-08-22 2023-09-28 キヤノン株式会社 Imaging device
JP2022031393A (en) * 2020-02-28 2022-02-18 富士フイルム株式会社 Endoscope apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155290A (en) * 1993-12-03 1995-06-20 Olympus Optical Co Ltd Endoscope apparatus
JPH0924023A (en) * 1995-07-12 1997-01-28 Fuji Photo Film Co Ltd Fluorescent endoscope
JPH09154812A (en) * 1995-12-06 1997-06-17 Matsushita Electric Ind Co Ltd Light diagnosing device
JP2002017667A (en) * 1991-03-11 2002-01-22 Olympus Optical Co Ltd Image processor
JP2002143079A (en) * 2000-11-10 2002-05-21 Asahi Optical Co Ltd Electronic endoscope device
JP2003164417A (en) * 2001-12-04 2003-06-10 Pentax Corp Electronic endoscope
JP2004237081A (en) * 2003-01-14 2004-08-26 Morita Mfg Co Ltd Diagnostic imaging apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002017667A (en) * 1991-03-11 2002-01-22 Olympus Optical Co Ltd Image processor
JPH07155290A (en) * 1993-12-03 1995-06-20 Olympus Optical Co Ltd Endoscope apparatus
JPH0924023A (en) * 1995-07-12 1997-01-28 Fuji Photo Film Co Ltd Fluorescent endoscope
JPH09154812A (en) * 1995-12-06 1997-06-17 Matsushita Electric Ind Co Ltd Light diagnosing device
JP2002143079A (en) * 2000-11-10 2002-05-21 Asahi Optical Co Ltd Electronic endoscope device
JP2003164417A (en) * 2001-12-04 2003-06-10 Pentax Corp Electronic endoscope
JP2004237081A (en) * 2003-01-14 2004-08-26 Morita Mfg Co Ltd Diagnostic imaging apparatus

Also Published As

Publication number Publication date
JP2005198794A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
JP4554944B2 (en) Endoscope device
JP5426620B2 (en) Endoscope system and method for operating endoscope system
KR101184841B1 (en) Endoscopic device and its processing method
JP5331904B2 (en) Endoscope system and method for operating endoscope system
JP3869324B2 (en) Image processing device for fluorescence observation
JP5191090B2 (en) Endoscope device
JP5502812B2 (en) Biological information acquisition system and method of operating biological information acquisition system
US8451328B2 (en) Image processing device, imaging device, computer-readable device, and image processing method for processing a fluorescence image
JP5501210B2 (en) Image processing device
JP5110702B2 (en) Fluorescence image acquisition device
JP5757891B2 (en) Electronic endoscope system, image processing apparatus, operation method of image processing apparatus, and image processing program
JP2009095566A (en) Endoscope apparatus
JP5948203B2 (en) Endoscope system and operating method thereof
JP2022162028A (en) Endoscope image processing device, endoscope system, operation method of endoscope image processing device, endoscope image processing program, and storage medium
JP5766773B2 (en) Endoscope system and method for operating endoscope system
JP5371702B2 (en) Electronic endoscope system, processor device for electronic endoscope, and method for operating electronic endoscope system
WO2016059906A1 (en) Endoscope device
JP2002045328A (en) Device displaying fluorescent diagnostic image
JP5331863B2 (en) Endoscope device
JP7234320B2 (en) Image processing device and method of operating the image processing device
JP2021149558A (en) Medical image processing device, medical observation system, and image processing method
JP2021132695A (en) Medical image processing device, medical observation system, and image processing method
JP5152795B2 (en) Fluorescence image acquisition device and method of operating fluorescence image acquisition device
JP2006187322A (en) Fluorescence observation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4554944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term