JP4554527B2 - Energy-saving equipment using waste heat - Google Patents

Energy-saving equipment using waste heat Download PDF

Info

Publication number
JP4554527B2
JP4554527B2 JP2006022214A JP2006022214A JP4554527B2 JP 4554527 B2 JP4554527 B2 JP 4554527B2 JP 2006022214 A JP2006022214 A JP 2006022214A JP 2006022214 A JP2006022214 A JP 2006022214A JP 4554527 B2 JP4554527 B2 JP 4554527B2
Authority
JP
Japan
Prior art keywords
boiler
heat
steam
temperature
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006022214A
Other languages
Japanese (ja)
Other versions
JP2007205188A (en
Inventor
央 荒瀬
謙二 假屋
聖子 磯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering and Services Co Ltd
Original Assignee
Hitachi Engineering and Services Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering and Services Co Ltd filed Critical Hitachi Engineering and Services Co Ltd
Priority to JP2006022214A priority Critical patent/JP4554527B2/en
Publication of JP2007205188A publication Critical patent/JP2007205188A/en
Application granted granted Critical
Publication of JP4554527B2 publication Critical patent/JP4554527B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Air Supply (AREA)

Description

本発明は、ヒートポンプを用いたボイラ−蒸気タービン設備、例えば発電プラントの廃熱利用省エネルギー設備および省エネルギー運転方法に関する。   The present invention relates to a boiler-steam turbine facility using a heat pump, for example, an energy-saving facility for utilizing waste heat of a power plant and an energy-saving operation method.

ヒートポンプにより未利用熱エネルギーを回収している例としては、特許文献1で公知されている従来技術がある。この従来技術では、低圧給水加熱器の上流側に設置の蒸気吸収式ヒートポンプで低圧給水加熱器の入口給水を加熱するようにしている。   As an example of recovering unused thermal energy by a heat pump, there is a conventional technique known in Patent Document 1. In this prior art, the inlet feed water of the low pressure feed water heater is heated by a steam absorption heat pump installed upstream of the low pressure feed water heater.

特開平3−906公報JP-A-3-906

特許文献1の場合、ヒートポンプでの加温により、直接的に使用蒸気量が減少するのは、これらヒートポンプに蒸気を供給している抽気源の直ぐ高圧側の脱気器または給水加熱器への蒸気量である。これらの蒸気は一般的には蒸気タービン抽気蒸気が使用されているので、その抽気蒸気量が減少しても、減少の効果は、その抽気蒸気取り出し後の蒸気タービン段落以降の仕事量に限られてしまうという課題がある。   In the case of Patent Document 1, the amount of steam used directly decreases due to heating by the heat pump because it is applied to the deaerator or feed water heater on the high-pressure side of the extraction source that supplies steam to these heat pumps. The amount of steam. Since these steams generally use steam turbine bleed steam, even if the amount of bleed steam is reduced, the effect of the reduction is limited to the work after the steam turbine stage after the extraction steam is taken out. There is a problem that it ends up.

本発明の目的は、ヒートポンプを用いて廃熱回収する際に、従来技術に比べて回収した未利用エネルギーの利用効率を高め、ボイラ燃料低減または蒸発量増加及び蒸気タービン出力増加を可能とする廃熱利用の省エネルギー設備を提供することにある。   The object of the present invention is to improve the utilization efficiency of unused energy recovered compared with the prior art when recovering waste heat using a heat pump, and to reduce the boiler fuel or increase the evaporation amount and increase the steam turbine output. It is to provide energy-saving equipment for heat utilization.

本発明は、ボイラ、空気予熱器を備えたボイラ燃焼用空気系統、ボイラで発生した蒸気で駆動される蒸気タービンを備えた蒸気作動系統、前記蒸気タービンで作動した蒸気を復水して前記ボイラに循環する復水循環系統および該循環系統に付属させたヒートポンプを備えた蒸気を熱源とするボイラ−蒸気タービン設備に設ける省エネルギー設備において、
前記蒸気作動系統から抽気した蒸気を動力源とし、低温熱源から熱を吸収し、熱媒流体に熱回収させ、熱媒流体循環系統を備えて前記ヒートポンプを構成し、
前記ヒートポンプで熱回収された熱煤流体が前記熱媒流体循環系統を介して前記空気予熱器の入口側の前記ボイラ燃焼用空気系統に設けたボイラ燃焼用空気加熱用熱交換器に導入されてボイラ燃焼用空気が加熱されること
を特徴とするボイラ−蒸気タービン設備に設ける省エネルギー設備を提供する。
The present invention relates to a boiler, an air system for combustion with a boiler equipped with an air preheater, a steam operation system including a steam turbine driven by steam generated in the boiler, and condensing steam operated by the steam turbine to form the boiler In an energy-saving facility provided in a boiler-steam turbine facility using steam as a heat source with a condensate circulation system circulating in the steam system and a heat pump attached to the circulation system,
Steam extracted from the steam operating system is used as a power source, heat is absorbed from a low-temperature heat source, heat is recovered in a heat transfer fluid, and the heat pump is provided with a heat transfer fluid circulation system,
The hot fluid recovered by the heat pump is introduced into the boiler combustion air heating heat exchanger provided in the boiler combustion air system on the inlet side of the air preheater through the heat medium fluid circulation system. Provided is an energy saving facility provided in a boiler-steam turbine facility characterized in that boiler combustion air is heated.

また、本発明は、復水循環系統から復水が分岐して、前記空気予熱器から排出されてボイラ廃熱回収用熱交換器に導入されたボイラ廃ガスと熱交換され、昇温した復水が前記復水循環系統に戻されることを特徴とするボイラ−蒸気タービン設備に設ける省エネルギー設備を提供する。   Further, the present invention provides a condensate whose temperature is raised by condensing the condensate from the condensate circulation system, exchanging heat with the boiler waste gas discharged from the air preheater and introduced into the heat exchanger for recovering boiler waste heat. Is returned to the condensate circulation system, and an energy saving facility provided in a boiler-steam turbine facility is provided.

また、本発明は、熱媒流体循環系統から熱煤流体が分岐されて、前記空気予熱器から排出されてボイラ廃熱回収用熱交換器に導入されたボイラ廃ガスと熱交換され、昇温した熱煤流体が前記熱煤流体循環系統に戻されることを特徴とするボイラ−蒸気タービン設備に設ける省エネルギー設備を提供する。   Further, the present invention is a method in which a hot metal fluid is branched from a heat medium fluid circulation system, is heat-exchanged with boiler waste gas discharged from the air preheater and introduced into a boiler heat recovery heat exchanger, The present invention provides an energy saving facility provided in a boiler-steam turbine facility, wherein the heated hot fluid is returned to the hot fluid circulation system.

また、本発明は、熱煤流体循環系統からの熱煤流体の分岐は、前記ボイラ燃焼用空気加熱用熱交換器の入口側もしくは出口側で行われ、昇温された熱煤流体は、前記ボイラ燃焼用空気加熱用熱交換器の出口側もしくは入口側に戻されることを特徴とするボイラ−蒸気タービン設備に設ける省エネルギー設備を提供する。   Further, according to the present invention, the hot-steam fluid from the hot-steam fluid circulation system is branched on the inlet side or the outlet side of the boiler combustion air heating heat exchanger. Provided is an energy saving facility provided in a boiler-steam turbine facility which is returned to an outlet side or an inlet side of a heat exchanger for heating air for boiler combustion.

また、本発明は、空気予熱器と前記ボイラ廃熱回収用熱交換器との間の系統に脱硫装置を設けたことを特徴とするボイラ−蒸気タービン設備に設ける省エネルギー設備を提供する。   In addition, the present invention provides an energy saving facility provided in a boiler-steam turbine facility, characterized in that a desulfurization device is provided in a system between an air preheater and the boiler waste heat recovery heat exchanger.

更に、本発明は、ボイラ、空気予熱器を備えたボイラ燃焼用空気系統、ボイラで発生した蒸気で駆動される蒸気タービンを備えた蒸気作動系統、前記蒸気タービンで作動した蒸気を復水して前記ボイラに循環する復水循環系統および該循環系統に付属され、前記蒸気作動系統から抽気した蒸気を動力源とし、低温熱源から熱を吸収し、熱煤流体に熱回収させるようにしたヒートポンプを備えた、蒸気を熱源とするボイラ−蒸気タービン設備に設ける省エネルギー設備による省エネルギー運転方法において、
前記ヒートポンプで熱回収された熱媒流体を熱源として、前記空気予熱気の入口側の前記ボイラ燃焼用空気系統に設けたボイラ燃焼用空気加熱用熱交換器に導入してボイラ燃焼用空気を加熱するようにしたこと
を特徴とするボイラ−蒸気タービン設備に設ける省エネルギー設備による省エネルギー運転方法を提供する。
Furthermore, the present invention provides a boiler, an air system for combustion with a boiler equipped with an air preheater, a steam operating system having a steam turbine driven by steam generated by the boiler, and condensing steam operated by the steam turbine. A condensate circulation system that circulates to the boiler, and a heat pump that is attached to the circulation system, uses steam extracted from the steam operation system as a power source, absorbs heat from a low-temperature heat source, and recovers heat to a hot fluid. In the energy saving operation method by the energy saving equipment provided in the boiler-steam turbine equipment using steam as a heat source,
Using the heat transfer fluid recovered by the heat pump as a heat source, it is introduced into the boiler combustion air heating heat exchanger provided in the boiler combustion air system on the inlet side of the air preheated air to heat the boiler combustion air The present invention provides an energy saving operation method using an energy saving facility provided in a boiler-steam turbine facility.

本発明では、ヒートポンプを使用して復水器への廃熱を汲み上げ、それをボイラ燃焼用空気の加熱に使用しており、これによって、従来技術に比べて回収した未利用エネルギーの利用効率を高め、ボイラ燃焼低減または蒸発量増加及び蒸気タービン出力増加を可能とする廃熱利用の省エネルギー設備を提供することができる。   In the present invention, a heat pump is used to pump waste heat to the condenser, which is used to heat boiler combustion air, thereby improving the utilization efficiency of the recovered unused energy compared to the prior art. It is possible to provide an energy saving facility using waste heat that can increase boiler combustion reduction, increase evaporation, and increase steam turbine output.

上記目的を達成するための第1の実施例は、蒸気タービンの軸受け冷却設備や復水器冷却水系統等、エネルギー供給設備の廃熱を熱源とするヒートポンプを備え、このヒートポンプが汲み上げた熱を熱媒流体として直接的にまたは間接的にボイラ燃焼用空気に熱回収するボイラ燃焼用空気加温用熱交換器を設け、その熱交換器をボイラ吸気系統において空気予熱器の入口側に設置することにある。   The first embodiment for achieving the above object includes a heat pump that uses waste heat of an energy supply facility such as a bearing cooling facility of a steam turbine and a condenser cooling water system, and the heat pumped up by this heat pump. A heat exchanger for heating air for boiler combustion that directly or indirectly recovers heat to the boiler combustion air as a heat transfer fluid is installed, and the heat exchanger is installed on the inlet side of the air preheater in the boiler intake system There is.

すなわち、例えば前記のボイラ燃焼用空気との熱交換器に蒸気タービンの復水器廃熱を蒸気吸収式ヒートポンプで汲み上げた90℃の温水を供給し、ボイラへの取入れ空気温度を20℃から50℃に上昇させると、燃焼用空気温度が30℃上昇した分、ボイラへの持ち込み熱量が増加する。その結果、同一の蒸気量を発生するのに要するボイラ燃料を節約したり、もしくは同一のボイラ燃料使用量に対するボイラ発生蒸気量を増加することができる。   That is, for example, 90 ° C hot water pumped up from the steam turbine condenser heat pump by a steam absorption heat pump is supplied to the heat exchanger with the boiler combustion air, and the intake air temperature into the boiler is changed from 20 ° C to 50 ° C. When the temperature is raised to 0 ° C., the amount of heat brought into the boiler increases by the amount of 30 ° C. increase in the combustion air temperature. As a result, it is possible to save boiler fuel required to generate the same amount of steam, or to increase the amount of boiler-generated steam with respect to the same amount of boiler fuel used.

なおこれだけでは、ボイラ吸気側の空気予熱器入口空気温度が上がると、熱交換器の伝熱特性から、ボイラ排ガス側の空気予熱器の出口排ガス温度が上昇するので空気予熱器の交換熱量が減少し、ヒートポンプによるボイラ吸気側への熱回収効果を減ずるが、これはボイラ排ガス系統において空気予熱器の入口側にあるボイラ節炭器の伝熱面積を増加させボイラ節炭器での交換熱量を増加することにより、ボイラ排ガス系統側の空気予熱器入口温度を下げることにより回避される。   In this case, if the air temperature at the inlet of the air preheater on the boiler intake side increases, the heat transfer characteristics of the heat exchanger will increase the exhaust gas temperature at the outlet of the air preheater on the boiler exhaust gas side. However, this reduces the heat recovery effect of the heat pump to the boiler intake side, which increases the heat transfer area of the boiler economizer on the inlet side of the air preheater in the boiler exhaust gas system, and reduces the amount of heat exchanged in the boiler economizer. By increasing, it is avoided by lowering the air preheater inlet temperature on the boiler exhaust gas system side.

しかしながら、ボイラ節炭器の伝熱面積を増加させることは新設ボイラで最初から設計する場合には容易であるが、既設のボイラに対しては必ずしも容易ではない。   However, it is easy to increase the heat transfer area of a boiler economizer when designing from the beginning with a new boiler, but it is not always easy for an existing boiler.

そこで、第2の実施例は、ボイラ排ガス側にその温度よりも低温の液体を用いて熱回収を行う熱交換器を設置し、空気予熱器の入口側のボイラ吸気を予熱することによる空気予熱器の交換熱量の減少、すなわちボイラ排ガスの熱回収量の減少を補い、その回収した熱エネルギーをエネルギー供給設備内に回収することにある。   Therefore, in the second embodiment, a heat exchanger that performs heat recovery using a liquid having a temperature lower than that temperature is installed on the boiler exhaust gas side, and air preheating is performed by preheating boiler intake air on the inlet side of the air preheater. It is intended to compensate for the decrease in the heat exchange amount of the boiler, that is, the decrease in the heat recovery amount of the boiler exhaust gas, and recover the recovered thermal energy in the energy supply facility.

すなわち、既設のボイラ吸気系統にヒートポンプで汲み上げた廃熱を回収するような場合、ボイラ節炭器の伝熱面積等の仕様はヒートポンプからの熱回収がない場合をベースに決められており、多くの場合、既にボイラ本体及びボイラ架構に組み込まれておりその伝熱面積の拡張は難しいことが考えられる。その場合にはボイラ排ガスよりも低温の流体にボイラ排ガス系統の熱回収をするボイラ廃熱回収用熱交換器を設け、空気予熱器での熱回収量減少分を補うものである。   In other words, when recovering the waste heat pumped up by the heat pump to the existing boiler intake system, the specifications such as the heat transfer area of the boiler economizer are determined based on the case where there is no heat recovery from the heat pump. In this case, it is considered that expansion of the heat transfer area is difficult because it is already incorporated in the boiler body and the boiler frame. In this case, a boiler waste heat recovery heat exchanger that recovers the heat of the boiler exhaust gas system is provided in a fluid having a temperature lower than that of the boiler exhaust gas to compensate for the decrease in the amount of heat recovery in the air preheater.

なお、熱媒流体としては、ボイラ給水やタービン復水等のボイラ・タービン設備に限らず、ボイラ排ガス温度よりも温度が低い箇所で更に加温が必要な流体の加温に用いるものとする。   The heat transfer fluid is not limited to boiler / turbine equipment such as boiler feed water and turbine condensate, but is used for heating a fluid that needs further heating at a location where the temperature is lower than the boiler exhaust gas temperature.

第3の実施例は、重油焚や石炭焚ボイラのように煙突入口排ガス温度が約150℃以上あるボイラにおいて、空気予熱器の入口側でボイラ燃焼用空気を予熱するボイラ燃焼用空気加熱用熱交換器の入口側から取り出した熱媒流体の一部をボイラ排ガス系統で脱硫装置後流側に設けたボイラ廃熱回収用熱交換器で加熱し、再び取出し部よりは後流側のボイラ燃焼用空気加熱用熱交換器入口部に合流させることにより、ボイラ排ガスから回収した熱エネルギーをボイラ燃焼用空気加熱用熱交換器の入口熱媒流体の加温に使用する。一方、ヒートポンプの入口側にはボイラ燃焼用空気加熱用熱交換器出口の比較的低温の熱媒流体を流すことによりヒートポンプ汲み上げ熱量を確保する。   The third embodiment is a boiler combustion air heating heat that preheats boiler combustion air on the inlet side of an air preheater in a boiler having an exhaust gas temperature at a chimney inlet of about 150 ° C. or higher, such as a heavy oil soot or coal fired boiler. Part of the heat transfer fluid taken out from the inlet side of the exchanger is heated by a boiler waste heat recovery heat exchanger provided on the downstream side of the desulfurization unit in the boiler exhaust gas system, and boiler combustion on the downstream side from the extraction section again The heat energy recovered from the boiler exhaust gas is used for heating the inlet heat transfer fluid of the boiler combustion air heating heat exchanger by being joined to the inlet portion of the air heating heat exchanger. On the other hand, the heat pump pumping heat quantity is secured by flowing a relatively low-temperature heat transfer fluid at the outlet of the heat exchanger for heating the combustion air for boiler combustion on the inlet side of the heat pump.

なお、重油焚ボイラのように煙突入口排ガス温度が約150℃以上あるボイラにおいて、ボイラ廃熱回収用熱交換器の出口熱媒流体をボイラ燃焼用空気加熱用熱交換器入口部に戻すのではなく、ボイラ燃焼用空気加熱用熱交換器のボイラ吸気側に熱交換器を更に設け、ボイラ燃焼用空気に熱回収した後にヒートポンプに回収することにより、第3の実施例と同様の効果を得ることもできる。   In addition, in a boiler with a flue gas exhaust gas temperature of about 150 ° C. or more like a heavy oil fired boiler, the outlet heat transfer fluid of the boiler waste heat recovery heat exchanger is not returned to the boiler combustion air heating heat exchanger inlet. In addition, a heat exchanger is further provided on the boiler intake side of the boiler combustion air heating heat exchanger, and heat is recovered in the boiler combustion air and then recovered in the heat pump, thereby obtaining the same effect as in the third embodiment. You can also.

第4の実施例は、天然ガス焚ボイラのように煙突入口排ガス温度が100℃程度のボイラにおいて、空気予熱器の入口側でボイラ燃焼用空気を予熱するボイラ燃焼用空気加熱用熱交換器の出口側から取り出した熱煤流体の一部をボイラ発熱回収用熱交換器で加熱し、ボイラ燃焼用空気加熱用交換器入口に合流させることにより、ボイラ排ガスから回収した熱エネルギーをボイラ燃焼用空気加熱用熱交換器の入口熱煤流体の加温に使用する。一方ヒートポンプの入口側にはボイラ燃焼用空気加熱用熱交換器出口の比較的低温の熱煤流体を流すことによりヒートポンプ汲み上げ熱量を確保する。   The fourth embodiment is a boiler combustion air heating heat exchanger for preheating boiler combustion air on the inlet side of the air preheater in a boiler having an exhaust gas temperature of about 100 ° C. like a natural gas fired boiler. A part of the hot-steam fluid taken out from the outlet side is heated by a boiler heat recovery heat exchanger and merged with the boiler combustion air heating exchanger inlet, so that the thermal energy recovered from the boiler exhaust gas is used as boiler combustion air. Used to heat the inlet hot metal fluid of the heat exchanger for heating. On the other hand, the heat pump pumping heat quantity is secured by flowing a relatively low-temperature hot metal fluid at the outlet of the heat exchanger for heating the air for boiler combustion on the inlet side of the heat pump.

以上に示した如く、従来技術のようにボイラ給水やタービン復水等をヒートポンプにより汲み上げた未利用エネルギーで加温するのではなく、ボイラ燃料系と同様にボイラの最上流系統であるボイラ吸気を直接的に加温すること。かつ、その加温により空気予熱器でのボイラ排気側の熱エネルギー回収量の減少分を補うことができるため、従来技術と比較してヒートポンプによる未利用エネルギーの汲み上げ量が同一の場合に、ボイラ蒸発量の増加やボイラ燃料量の削減量を大きくすることにより解決される。   As shown above, the boiler intake water, which is the most upstream system of the boiler, as in the boiler fuel system, is not heated by the unused energy pumped up by the heat pump as in the prior art. Heat directly. In addition, since the heating can compensate for the decrease in the amount of heat energy recovered on the boiler exhaust side in the air preheater, when the amount of unused energy pumped up by the heat pump is the same as in the conventional technology, the boiler This can be solved by increasing the amount of evaporation and reducing the amount of boiler fuel.

以下に、本発明の実施例について図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の廃熱利用の省エネルギー設備に係る一実施例のシステムフロー図である。まず、ボイラ−蒸気タービン設備のサイクルについて説明する。   FIG. 1 is a system flow diagram of an embodiment relating to an energy saving facility using waste heat according to the present invention. First, the cycle of boiler-steam turbine equipment will be described.

ボイラ1には燃料供給装置2からボイラ火炉3に燃料が供給される。ボイラ火炉3には押込みファン4から取り込まれた外気が、吸気ダクト5を通って送り込まれる。ボイラ火炉3で燃焼後の排ガスは、排気ダクト6を通って煙突7から大気に放出される。ここで、ボイラ排気の熱エネルギーの一部をボイラ吸気に熱回収できるように、吸気ダクト5と排気ダクト6の間には空気予熱器8が設けられている。   Fuel is supplied to the boiler 1 from the fuel supply device 2 to the boiler furnace 3. Outside air taken in from the pushing fan 4 is sent into the boiler furnace 3 through the intake duct 5. The exhaust gas after combustion in the boiler furnace 3 is discharged from the chimney 7 through the exhaust duct 6 to the atmosphere. Here, an air preheater 8 is provided between the intake duct 5 and the exhaust duct 6 so that a part of the thermal energy of the boiler exhaust can be recovered by the boiler intake air.

一方、ボイラ1で発生した蒸気は主蒸気管9、主蒸気加減弁10を通り蒸気タービン11に導かれる。蒸気タービン11に入った蒸気の一部は、抽気加減弁12前の抽気管13から蒸気タービン11外に送られる。また、抽気加減弁12を通った蒸気は蒸気タービン排気管14を通って復水器15に入る。蒸気タービン内部で蒸気は仕事をし、その熱力学的エネルギーは運動エネルギー、さらに発電機16で電気エネルギーに変換される。   On the other hand, steam generated in the boiler 1 is guided to the steam turbine 11 through the main steam pipe 9 and the main steam control valve 10. A part of the steam that has entered the steam turbine 11 is sent out of the steam turbine 11 from the extraction pipe 13 before the extraction control valve 12. In addition, the steam that has passed through the extraction control valve 12 enters the condenser 15 through the steam turbine exhaust pipe 14. Steam works inside the steam turbine, and its thermodynamic energy is converted into kinetic energy and further into electrical energy in the generator 16.

なお、抽気蒸気圧力は、蒸気タービン11として予め設定してある範囲内であれば、抽気管13からの抽気流量の多少に係らず、蒸気タービン11の主蒸気加減弁10と抽気加減弁12により、発電機16の電気出力を一定に保ったままほぼ一定圧力に制御される。   If the extraction steam pressure is within the range set in advance for the steam turbine 11, the main steam control valve 10 and the extraction control valve 12 of the steam turbine 11 do not depend on the amount of the extraction flow from the extraction pipe 13. The electric output of the generator 16 is controlled to a substantially constant pressure while keeping it constant.

復水器15以降の蒸気の流れは、復水器15で冷却水により冷却され蒸発潜熱を奪われ蒸気は凝縮水となり、蒸気タービン復水(復水という。)として復水配管17上にある復水ポンプ18で加圧され復水タンク19に送られる。そして、復水タンク19出口の復水管20に設置の脱気水供給ポンプ21により加圧され脱気器22に送られ加熱される。このようにして復水循環系統が形成される。   The steam flow after the condenser 15 is cooled by the cooling water in the condenser 15 to take away the latent heat of evaporation, and the steam becomes condensed water, which is on the condensate pipe 17 as steam turbine condensate (referred to as condensate). Pressurized by the condensate pump 18 and sent to the condensate tank 19. And it is pressurized by the deaeration water supply pump 21 installed in the condensate pipe 20 of the condensate tank 19 exit, is sent to the deaerator 22, and is heated. In this way, a condensate circulation system is formed.

脱気器22の加熱蒸気源は、抽気加減弁12前から取り出した抽気管13から供給される。   The heating steam source of the deaerator 22 is supplied from the extraction pipe 13 taken out before the extraction control valve 12.

脱気器22を出たボイラ給水はボイラ給水管25上にあるボイラ給水ポンプ26で加圧された後にボイラ1に戻る。   The boiler feed water that exits the deaerator 22 is pressurized by the boiler feed pump 26 on the boiler feed pipe 25 and then returns to the boiler 1.

なお、以上の水・蒸気系統全体への補給水は、復水タンク19に設置した水位調節器27により復水タンク水位調節弁28の開度を調節しボイラ給水用として処理された処理水を補給水管29から補給することによって行われる。   In addition, the replenishing water for the entire water / steam system is treated water treated for boiler feed by adjusting the opening of the condensate tank water level control valve 28 by the water level regulator 27 installed in the condensate tank 19. This is done by replenishing from the makeup water pipe 29.

また、図1の例では、復水器15の冷却水は冷却塔30出口の冷却水ポンプ31により冷却水供給母管32を経て復水器15に送られ冷却水戻り母管33を通って再び冷却塔30に戻る。蒸気タービン11から復水器15へ廃熱された蒸気タービン排気蒸気の蒸発潜熱分が復水器冷却水を加温し、その加温分の熱エネルギーが冷却塔30で蒸発させられることにより大気に放熱している。また、失った冷却水は冷却塔下部水槽34に自動的に補給される。   Further, in the example of FIG. 1, the cooling water of the condenser 15 is sent to the condenser 15 through the cooling water supply main pipe 32 by the cooling water pump 31 at the outlet of the cooling tower 30, and passes through the cooling water return main pipe 33. Return to the cooling tower 30 again. The latent heat of vaporization of the steam turbine exhaust steam exhausted from the steam turbine 11 to the condenser 15 heats the condenser cooling water, and the heat energy of the heated water is evaporated by the cooling tower 30 to the atmosphere. The heat is dissipated. The lost cooling water is automatically supplied to the cooling tower lower water tank 34.

復水器15で蒸気タービン11排気蒸気の蒸発潜熱と熱交換して温度が上昇した後の復水器15出口の復水器冷却水戻り母管33から吸熱源水供給管36を分岐し、その分岐管36に設けた吸熱源水供給ポンプ37で加圧する。低温熱源である吸熱源水は源水循環系統38を介してヒートポンプ(一重効用蒸気吸収式ヒートポンプ)35に導かれ、ヒートポンプ35の内部の構成機器である蒸発器62に源水循環系統38の源水供給管38Aを介して供給される。   The heat absorption source water supply pipe 36 is branched from the condenser cooling water return main pipe 33 at the outlet of the condenser 15 after the condenser 15 has exchanged heat with the latent heat of vaporization of the steam exhaust from the steam turbine 11 and the temperature rises. Pressurization is performed by a heat absorption source water supply pump 37 provided in the branch pipe 36. The heat absorption source water which is a low-temperature heat source is led to a heat pump (single effect steam absorption heat pump) 35 through a source water circulation system 38, and the source water supply of the source water circulation system 38 is supplied to an evaporator 62 which is an internal component of the heat pump 35. Supplied through tube 38A.

ヒートポンプ35の蒸発器62からの戻り熱源水は、源水循環系統38の源水戻り管38Bを通り、冷却塔30の入口の復水器冷却水戻り母管33に合流する。   The return heat source water from the evaporator 62 of the heat pump 35 passes through the source water return pipe 38B of the source water circulation system 38 and joins the condenser cooling water return main pipe 33 at the inlet of the cooling tower 30.

ヒートポンプ35の加熱蒸気の供給系統は、蒸気タービン抽気管13から分岐後、ヒートポンプ用蒸気管39に設置した減温器40にて減温した蒸気がヒートポンプ35を構成する発生器41に導かれ、最終的にヒートポンプ35内部でドレンとなる。   The supply system of the heating steam of the heat pump 35 is branched from the steam turbine extraction pipe 13, and then the steam reduced in temperature by the temperature reducer 40 installed in the heat pump steam pipe 39 is guided to the generator 41 constituting the heat pump 35, Finally, it becomes drainage inside the heat pump 35.

減温器40で蒸気を減温する減温水はボイラ給水ポンプ26出口の給水管25から分岐した減温水管71により取り出され、減温器40出口の蒸気管に設置された温度調節器42にて検知された温度が所定の温度となるように、ヒートポンプ入口蒸気温度調節弁43により制御される。   The temperature-reduced water for reducing the temperature of the steam by the temperature reducer 40 is taken out by the temperature-reduced water pipe 71 branched from the water supply pipe 25 at the outlet of the boiler feed pump 26 and is supplied to the temperature controller 42 installed at the steam pipe at the outlet of the temperature reducer 40 The heat pump inlet steam temperature control valve 43 controls the detected temperature to be a predetermined temperature.

またヒートポンプ35の蒸気ドレンはドレン管44を通って復水タンク19に回収される。ここでヒートポンプドレン出口弁45は排出ドレンが配管内部でフラッシュしないように差圧設定される。   The steam drain of the heat pump 35 is collected in the condensate tank 19 through the drain pipe 44. Here, the heat pump drain outlet valve 45 is set to have a differential pressure so that the discharged drain does not flush inside the pipe.

また、ヒートポンプ35入口の蒸気管39に設置の調節弁46はヒートポンプ35から供給される温水温度の調節用であり、ヒートポンプ35内部の凝縮器61出口の温水供給管47に設置のヒートポンプ出口温水温度調節器24で検知された水温が目標温度となるよう蒸気量が制御される。   A control valve 46 installed in the steam pipe 39 at the inlet of the heat pump 35 is for adjusting the temperature of the hot water supplied from the heat pump 35. The temperature of the hot water at the outlet of the heat pump installed in the hot water supply pipe 47 at the outlet of the condenser 61 inside the heat pump 35. The amount of steam is controlled so that the water temperature detected by the regulator 24 becomes the target temperature.

本実施例では、ヒートポンプ35により復水器冷却水系統から汲み上げられた廃熱は、熱煤流体を形成し、該熱煤流体循環系統47の供給配管47Aに設置の供給ポンプ48により押込みファン4と空気予熱器8の間のボイラ吸気ダクト5に設置のボイラ燃焼用空気加熱用熱交換器49に送られる。熱煤流体は、例えば温水である。このボイラ燃焼用空気加熱用熱交換器49を出た熱煤流体は戻り配管47Bを通り、ヒートポンプ35に再循環する。ヒートポンプ35の内部では、その構成機器である吸収器60、凝縮器61の順に通過して再び熱媒流体循環系統47の供給管47Aから加温された昇温となって利用される。   In this embodiment, the waste heat pumped up from the condenser cooling water system by the heat pump 35 forms hot water fluid, and the push fan 4 is installed by the supply pump 48 installed in the supply pipe 47A of the hot water fluid circulation system 47. Is sent to a boiler combustion air heating heat exchanger 49 installed in a boiler intake duct 5 between the air preheater 8 and the air preheater 8. The hot fluid is hot water, for example. The hot fluid from the boiler combustion air heating heat exchanger 49 is recirculated to the heat pump 35 through the return pipe 47B. Inside the heat pump 35, it passes through the absorber 60 and the condenser 61, which are its constituent devices, in this order, and is again used as a temperature rise heated from the supply pipe 47A of the heat medium fluid circulation system 47.

以上、図1に示す構成で復水器冷却水への廃熱をボイラ吸気系統に汲み上げた場合の温度変化を、図2を用いて説明する。   The temperature change when the waste heat to the condenser cooling water is pumped to the boiler intake system with the configuration shown in FIG. 1 will be described with reference to FIG.

図2の縦軸は温度、横軸はボイラ吸気・排気の節炭器、空気予熱器を含む各部位を示す。また、破線はヒートポンプ35による復水器15の廃熱回収を行わない場合のボイラ吸排気各部の温度を示し、実線は実施例1に示す通りヒートポンプ35により復水器15の廃熱を回収し、ボイラ吸気ダクト5に設置の熱交換器49でボイラ吸気を加温した場合の各部位の温度を示す。   The vertical axis in FIG. 2 indicates temperature, and the horizontal axis indicates each part including a boiler intake / exhaust economizer and an air preheater. The broken line indicates the temperature of each part of the boiler intake / exhaust when the waste heat recovery of the condenser 15 by the heat pump 35 is not performed, and the solid line recovers the waste heat of the condenser 15 by the heat pump 35 as shown in the first embodiment. The temperature of each part at the time of heating boiler intake air with the heat exchanger 49 installed in the boiler intake duct 5 is shown.

ヒートポンプ35での熱回収を一切行っていない破線の運転状態において、空気予熱器8の入口空気温度は常温の20℃であったものが、ヒートポンプ35を投入運転することにより実線に示すように50℃まで予熱される。   In the operation state indicated by the broken line in which no heat recovery is performed by the heat pump 35, the air temperature at the inlet of the air preheater 8 is 20 ° C., which is room temperature, as indicated by the solid line when the heat pump 35 is turned on. Preheated to ℃.

ところが、空気予熱器8のボイラ排ガス出口側のガス温度は、一転鎖線に示すようにヒートポンプを運転しない場合には150℃まで熱回収が図られていたものが、吸気側のボイラ燃焼用空気加熱用熱交換器49に通水することにより実線に示す如く、空気予熱器8のボイラ吸気側の温度が上りボイラ排ガス側の空気予熱器8の出口温度は若干上昇する。このことは、ヒートポンプにより汲み上げた復水器15の廃熱の一部をボイラ火炉3をバイパスしてボイラ排気ダクト6、煙突7を通って大気に捨てていることになる。すなわち、実施例1はヒートポンプを設置し汲み上げた未利用エネルギーをボイラ吸気に回収する場合の、基本的な設備構成を示すものである。   However, the gas temperature on the boiler exhaust gas outlet side of the air preheater 8 is the one where heat recovery is performed up to 150 ° C. when the heat pump is not operated as indicated by the chain line, the air heating for boiler combustion on the intake side By passing water through the heat exchanger 49, the temperature on the boiler intake side of the air preheater 8 rises and the outlet temperature of the air preheater 8 on the boiler exhaust gas side slightly increases as shown by the solid line. This means that a part of the waste heat of the condenser 15 pumped up by the heat pump is discarded to the atmosphere through the boiler exhaust duct 6 and the chimney 7 while bypassing the boiler furnace 3. That is, Example 1 shows a basic equipment configuration in the case where unused energy pumped up by installing a heat pump is collected in the boiler intake air.

実施例1ではヒートポンプで汲み上げた未利用エネルギーをボイラ吸気側に設けた熱交換器49でボイラ燃焼用空気の加温に使用していたが、その結果、空気予熱器8での交換熱量が減少し、ボイラ排ガス側に回収熱量の一部が逃げてしまうことになる。   In the first embodiment, the unused energy pumped up by the heat pump is used for heating the boiler combustion air in the heat exchanger 49 provided on the boiler intake side. As a result, the amount of exchange heat in the air preheater 8 is reduced. Then, a part of the recovered heat amount escapes to the boiler exhaust gas side.

そこで、図3は実施例1を改良する実施例2のシステムフロー図である。実施例1と同じ構成には同一番号を付してあり、実施例1の説明を援用するものとする。以下同じである。図3はタービン復水管20から分岐した復水の一部をボイラ排気ダクト6に設置するボイラ廃熱回収用熱交換器50に導きタービン復水温度を上げることにより熱回収を図る例を示している。熱交換器50で昇温後のタービン復水は再び復水管20に合流する。合流部に設置の三方弁はヒートポンプ35の運転有無による復水へのボイラ廃熱回収切替え弁63である。この廃熱回収により脱気器22入口復水温度が上昇するので脱気器抽気流量が減少し、蒸気タービン11の内部流量が増加するので省エネルギー効果を生み出す。   FIG. 3 is a system flow diagram of the second embodiment that improves the first embodiment. The same components as those in the first embodiment are denoted by the same reference numerals, and the description of the first embodiment is incorporated. The same applies hereinafter. FIG. 3 shows an example in which a part of the condensate branched from the turbine condensate pipe 20 is led to a boiler waste heat recovery heat exchanger 50 installed in the boiler exhaust duct 6 to recover heat by raising the turbine condensate temperature. Yes. The turbine condensate whose temperature has been raised by the heat exchanger 50 joins the condensate pipe 20 again. A three-way valve installed at the junction is a boiler waste heat recovery switching valve 63 for condensate depending on whether or not the heat pump 35 is operated. This waste heat recovery raises the condensate temperature at the inlet of the deaerator 22, so that the deaerator bleed flow rate decreases and the internal flow rate of the steam turbine 11 increases, resulting in an energy saving effect.

この場合に、ボイラ廃熱回収用熱交換器50はボイラ排気ダクト6において空気予熱器8の更に後流側に脱硫装置51が設置される場合には、更にその下流側に設置し、排ガス中の硫化物による低温腐食が極力抑制されるようにする。更に、本実施例ではボイラ廃熱回収用熱交換器50廻りには再循環ポンプ54、再循環配管55、ボイラ廃熱回収用熱交換器入口熱媒流体温度調節弁56、温度計57及び演算装置58を備え、熱交換器50入口の復水温度が、熱交換器50において低温腐食を回避するために必要な温度以上が保持されるように、温度調節弁56の開度を演算装置58から与えられる開度指令値により再循環流量比を制御する。   In this case, when the desulfurization device 51 is installed further downstream of the air preheater 8 in the boiler exhaust duct 6, the boiler waste heat recovery heat exchanger 50 is installed further downstream, The low-temperature corrosion due to sulfides of the steel is to be suppressed as much as possible. Further, in this embodiment, a recirculation pump 54, a recirculation pipe 55, a boiler waste heat recovery heat exchanger inlet heat medium fluid temperature control valve 56, a thermometer 57 and a calculation are provided around the heat exchanger 50 for boiler waste heat recovery. The temperature control valve 56 is adjusted so that the condensate temperature at the inlet of the heat exchanger 50 is maintained at a temperature higher than a temperature necessary for avoiding low temperature corrosion in the heat exchanger 50. The recirculation flow rate ratio is controlled by the opening degree command value given from.

実施例2におけるボイラ吸気・排気各部の温度変化を図4に示す。図4の縦軸は温度、横軸はボイラ吸気・排気の各部位を示す。実施例2では図4の一点鎖線に示すようにボイラ廃熱回収用熱交換器50でボイラ廃熱が回収されるので排ガス温度を、ヒートポンプでの熱回収を図る前の温度まで回収可能であり、ボイラ燃焼用空気加熱用熱交換器による空気予熱器入口空気温度の上昇による空気予熱器のボイラ排ガス側の出口温度上昇を補完するものであることが分かる。   FIG. 4 shows the temperature change of each part of the boiler intake / exhaust in the second embodiment. In FIG. 4, the vertical axis represents temperature, and the horizontal axis represents boiler intake / exhaust parts. In Example 2, the boiler waste heat is recovered by the boiler waste heat recovery heat exchanger 50 as shown by the one-dot chain line in FIG. 4, so that the exhaust gas temperature can be recovered up to the temperature before heat recovery by the heat pump. It can be seen that this supplements the increase in the outlet temperature on the boiler exhaust gas side of the air preheater due to the increase in the air temperature at the inlet of the air preheater by the heat exchanger for heating air for boiler combustion.

実施例3のシステムフローを図5に示す。実施例2ではボイラ排ガス熱量をヒートポンプの熱媒流体循環系統47とは別の系統に回収する例を示したが、実施例3ではヒートポンプ35の熱媒流体循環系統47に流れている熱媒流体に回収している。すなわち実施例3では、実施例2に示すタービン復水の替りに、ヒートポンプ35とボイラ燃焼用空気加熱用熱交換器49間の供給配管47Aから分岐してボイラ廃熱回収用熱交換器50に熱媒流体を送り、ボイラ廃熱回収用熱交換器50でボイラ排気を熱回収した後に分岐部よりもボイラ燃焼用空気加熱用熱交換器49に近い側の供給配管47Aに熱媒流体を戻す系統構成としている。なお、ボイラ廃熱回収用熱交換器50廻りには、再循環ポンプ54、再循環配管55、ボイラ廃熱回収用熱交換器入口熱媒流体温度調節弁56、温度計57及び演算装置58を備え、熱交換器50入口の熱媒流体温度が、熱交換器50において低温腐食を回避するために必要な温度以上が保持されるように、温度調節弁56の開度を演算装置58から与えられる開度指令値により再循環流量比を制御する。   The system flow of Example 3 is shown in FIG. In the second embodiment, the heat amount of the boiler exhaust gas is collected in a system different from the heat medium fluid circulation system 47 of the heat pump. However, in the third embodiment, the heat medium fluid flowing in the heat medium fluid circulation system 47 of the heat pump 35 is shown. Have been collected. That is, in the third embodiment, instead of the turbine condensate shown in the second embodiment, a branch from a supply pipe 47A between the heat pump 35 and the boiler combustion air heating heat exchanger 49 is branched into the boiler waste heat recovery heat exchanger 50. After the heat transfer fluid is fed and the boiler exhaust heat is recovered by the boiler waste heat recovery heat exchanger 50, the heat transfer fluid is returned to the supply pipe 47A closer to the boiler combustion air heating heat exchanger 49 than the branch portion. System configuration. Around the boiler waste heat recovery heat exchanger 50, there are a recirculation pump 54, a recirculation pipe 55, a boiler waste heat recovery heat exchanger inlet heat medium fluid temperature control valve 56, a thermometer 57 and a calculation device 58. And the opening of the temperature control valve 56 is given from the arithmetic unit 58 so that the temperature of the heat medium fluid at the inlet of the heat exchanger 50 is maintained at a temperature higher than that necessary for avoiding low temperature corrosion in the heat exchanger 50. The recirculation flow rate ratio is controlled by the opening command value.

すなわち、ボイラ廃熱回収用熱交換器50の入口の温度計57は、ボイラ廃熱回収用熱交換器50の伝熱管の外表面温度が排ガス性状により決まる酸露点温度に対し予め定めた裕度を持った温度を保持出来るように温度調節弁56を制御する。この制御機構により、通常運転中にはボイラ廃熱回収用熱交換器50入口の熱媒流体温度は約130℃以上に保持することも可能となる。この熱媒流体が廃熱回収用熱交換器50で更に加温された後にボイラ燃焼用空気加熱用熱交換器49入口でヒートポンプから供給される約90℃の熱媒流体と合流するので、ボイラ燃焼用空気加熱用熱交換器49入口の熱媒流体温度は90℃から更に上昇する。この効果により排ガス側に逃げた熱量をボイラ吸気側に再び回収することが出来る。   That is, the thermometer 57 at the inlet of the boiler waste heat recovery heat exchanger 50 has a predetermined tolerance with respect to the acid dew point temperature at which the outer surface temperature of the heat transfer tube of the boiler waste heat recovery heat exchanger 50 is determined by the exhaust gas properties. The temperature control valve 56 is controlled so that the temperature having the temperature can be maintained. With this control mechanism, the temperature of the heat transfer fluid at the inlet of the boiler waste heat recovery heat exchanger 50 can be maintained at about 130 ° C. or higher during normal operation. Since this heat transfer fluid is further heated by the waste heat recovery heat exchanger 50 and then merges with the heat transfer fluid of about 90 ° C. supplied from the heat pump at the inlet of the boiler combustion air heating heat exchanger 49, the boiler The heat medium fluid temperature at the inlet of the heat exchanger 49 for heating the combustion air further rises from 90 ° C. Due to this effect, the amount of heat escaped to the exhaust gas side can be recovered again to the boiler intake side.

なお、ボイラ廃熱回収用熱交換器50を出た熱媒流体がボイラ燃焼用空気加熱用熱交換器49の熱媒流体入口側に合流する部分には三方弁64を設ける。この三方弁64は演算装置66でボイラ廃熱回収用熱交換器50出口の温度計65で検知した熱媒流体温度と温度計24で計測されるヒートポンプから供給される熱媒流体温度を比較し温度計65の温度が予め設定された温度偏差を保つように開度制御される。   A three-way valve 64 is provided at a portion where the heat transfer fluid exiting the boiler waste heat recovery heat exchanger 50 joins the heat transfer fluid inlet side of the boiler combustion air heating heat exchanger 49. The three-way valve 64 compares the heat medium fluid temperature detected by the thermometer 65 at the outlet of the boiler waste heat recovery heat exchanger 50 with the arithmetic device 66 and the heat medium fluid temperature supplied from the heat pump measured by the thermometer 24. The opening degree is controlled so that the temperature of the thermometer 65 maintains a preset temperature deviation.

実施例3の場合の熱媒流体のボイラ廃熱回収用熱交換器50出入口温度は実施例2で示す図4と同一となる温度レベルまで熱回収する。ただし実施例2では、ボイラ廃熱回収用熱交換器50の熱媒流体としてタービン復水を使用しているのに対し、実施例3ではヒートポンプ35から供給される熱媒流体を使用している。実施例2のタービン復水は温度上昇させた場合に、脱気器22の抽気流量が減少し蒸気タービン11の内部流量が増加するが、先述の通り脱気器蒸気量の低減として節約された熱量の内、ほぼ9割は再び復水器15への廃熱となる。すなわち、本従来技術の場合、ヒートポンプの汲み上げ熱量の内、約10%しか蒸気タービン11での仕事量の増加に寄与しない。   In the case of the third embodiment, the heat exchanger fluid boiler heat recovery heat exchanger 50 inlet / outlet temperature of the heat transfer fluid is recovered to the same temperature level as in FIG. However, in the second embodiment, turbine condensate is used as the heat medium fluid of the boiler waste heat recovery heat exchanger 50, whereas in the third embodiment, the heat medium fluid supplied from the heat pump 35 is used. . When the temperature of the turbine condensate of Example 2 is increased, the bleed flow rate of the deaerator 22 decreases and the internal flow rate of the steam turbine 11 increases, but as described above, it is saved as a reduction of the deaerator steam amount. Nearly 90% of the heat becomes waste heat to the condenser 15 again. That is, in the case of this prior art, only about 10% of the heat pumped-up heat amount contributes to an increase in the work amount in the steam turbine 11.

これに対し、実施例3においては、ボイラ廃熱回収用熱交換器50で加温した熱媒流体をボイラ燃焼空気加温用熱交換器49入口側に再循環させ、ボイラ吸気の温度上昇に直接寄与するのでボイラ燃料の低減割合が大きくなる。   On the other hand, in the third embodiment, the heat transfer fluid heated by the boiler waste heat recovery heat exchanger 50 is recirculated to the inlet side of the boiler combustion air heating heat exchanger 49 to increase the temperature of the boiler intake air. Since it contributes directly, the reduction rate of boiler fuel increases.

実施例4として、図6に天然ガス焚ボイラのように燃料中の硫黄分が少ない燃料を使用した場合のようにボイラ排ガス系統の煙突入口温度を100℃程度まで下げることが可能な場合のシステムフローを示す。   As a fourth embodiment, a system in which the chimney inlet temperature of the boiler exhaust gas system can be lowered to about 100 ° C. as in the case of using a fuel having a low sulfur content in the fuel as in a natural gas fired boiler in FIG. The flow is shown.

図5に示す実施例3と図6に示す本実施例4の大きな相違点は、ボイラ廃熱回収用熱交換器50への熱媒流体の取り出し分岐箇所が、図5の実施例3ではボイラ燃焼用空気加熱用熱交換器49入口側であったものを出口側としていることである。一方、ボイラ廃熱回収用熱交換器50を通過後の熱媒流体の回収先は実施例3と同じくボイラ燃焼用空気加熱用熱交換器49入口側である。なお、ボイラ廃熱回収用熱交換器50廻りには、実施例3と同じく再循環ポンプ54、再循環配管55、ボイラ廃熱回収用熱交換器入口熱媒流体温度調節弁56、温度計57及び演算装置58を備え、熱交換器50入口の熱媒流体温度が、熱交換器50において低温腐食を回避するために必要な温度以上が保持されるように、温度調節弁56の開度を演算装置58から与えられた開度指令値により再循環流量比を制御しているが、実施例4では実施例3と違いボイラ廃熱回収用熱交換器50への熱媒流体の分岐箇所よりも上流側に合流させているので再循環ポンプ54の位置をボイラ廃熱回収用熱交換器50の再循環配管55ではなくその上流側としている。   The major difference between the third embodiment shown in FIG. 5 and the fourth embodiment shown in FIG. 6 is that the branch point where the heat transfer fluid is taken out to the boiler waste heat recovery heat exchanger 50 is different from the boiler in the third embodiment shown in FIG. What is the inlet side of the combustion air heating heat exchanger 49 is the outlet side. On the other hand, the recovery destination of the heat transfer fluid after passing through the boiler waste heat recovery heat exchanger 50 is the inlet side of the boiler combustion air heating heat exchanger 49 as in the third embodiment. The boiler waste heat recovery heat exchanger 50 is provided around the recirculation pump 54, the recirculation pipe 55, the boiler waste heat recovery heat exchanger inlet heat medium fluid temperature control valve 56, and the thermometer 57 as in the third embodiment. And the arithmetic device 58, and the opening of the temperature control valve 56 is adjusted so that the temperature of the heat medium fluid at the inlet of the heat exchanger 50 is maintained at a temperature higher than that necessary for avoiding low temperature corrosion in the heat exchanger 50. Although the recirculation flow rate ratio is controlled by the opening degree command value given from the arithmetic unit 58, in the fourth embodiment, unlike the third embodiment, from the branch point of the heat transfer fluid to the heat exchanger 50 for boiler waste heat recovery. Also, the recirculation pump 54 is located upstream rather than the recirculation pipe 55 of the boiler waste heat recovery heat exchanger 50 because the recirculation pump 54 is joined to the upstream side.

なお、ボイラ廃熱回収用熱交換器50を出た熱媒流体がボイラ燃焼用空気加熱用熱交換器49の熱媒流体入口側に合流する部分には三方弁64を設ける。この三方弁64は演算装置66でボイラ廃熱回収用熱交換器50出口の温度計65で検知した熱媒流体温度と温度計24で計測される一重効用蒸気吸収式ヒートポンプから供給される熱媒流体温度を比較し温度計65の温度が予め設定された温度偏差を保つように開度制御される。   A three-way valve 64 is provided at a portion where the heat transfer fluid exiting the boiler waste heat recovery heat exchanger 50 joins the heat transfer fluid inlet side of the boiler combustion air heating heat exchanger 49. The three-way valve 64 includes a heat medium fluid temperature detected by the thermometer 65 at the outlet of the boiler waste heat recovery heat exchanger 50 and a heat medium supplied from a single effect steam absorption heat pump measured by the thermometer 24. The fluid temperature is compared and the opening degree is controlled so that the temperature of the thermometer 65 maintains a preset temperature deviation.

実施例4で熱媒流体がボイラ燃焼用空気加熱用熱交換器49でボイラ吸気と熱交換後にボイラ廃熱回収用熱交換器50でボイラ排ガスと熱交換しているのは、天然ガス焚ボイラの場合、ボイラ排ガスの酸露点温度が低いので元々ボイラ排ガスは約100℃付近まで熱回収が図られており、約90℃のボイラ燃焼用空気加熱用熱交換器49の入口熱媒流体では排ガスの熱回収が困難であることによる。また、逆に、天然ガス焚ボイラの場合、燃料中の硫黄分が少ないため、ボイラ排ガスの酸露点温度が低く一般的に供給する熱媒流体温度は60℃を下回らなければ良い。このことから、ボイラ燃焼用空気加熱用熱交換器49でヒートポンプ35から供給される約90℃の熱媒流体を50℃程度までボイラ吸気に熱回収し、その次にボイラ廃熱回収用熱交換器50に送り、ボイラ排ガスと熱交換する。ここで、ボイラ廃熱回収用熱交換器50入口の熱媒流体温度は、その出口側から再循環される熱媒流体で60℃に保持される。なお、ボイラ廃熱回収用熱交換器50の出口側熱媒流体温度は約90℃まで上げ、これが、ボイラ燃焼用空気加熱用熱交換器49入口に循環するので、ボイラ燃焼用空気加熱用熱交換器49は入口、出口の熱媒流体温度は約90℃、50℃であるが、循環量が増加するので交換熱量が増え、ボイラ排気から吸気への熱回収となる。   In the fourth embodiment, the heat medium fluid exchanges heat with the boiler exhaust gas in the boiler waste heat recovery heat exchanger 50 after heat exchange with the boiler intake air in the boiler combustion air heating heat exchanger 49. In this case, since the acid dew point temperature of the boiler exhaust gas is low, the heat recovery of the boiler exhaust gas is originally attempted up to about 100 ° C., and the exhaust gas in the inlet heat transfer fluid of the heat exchanger 49 for heating air for boiler combustion at about 90 ° C. This is because it is difficult to recover heat. Conversely, in the case of a natural gas fired boiler, since the sulfur content in the fuel is small, the acid dew point temperature of the boiler exhaust gas is low and the generally supplied heat transfer fluid temperature should not be lower than 60 ° C. From this, the heat transfer fluid of about 90 ° C. supplied from the heat pump 35 is recovered to the boiler intake air up to about 50 ° C. in the boiler combustion air heating heat exchanger 49, and then the boiler waste heat recovery heat exchange is performed. The heat is exchanged with the boiler exhaust gas. Here, the heat medium fluid temperature at the inlet of the boiler waste heat recovery heat exchanger 50 is maintained at 60 ° C. with the heat medium fluid recirculated from the outlet side. Note that the temperature of the outlet side heat transfer fluid fluid of the heat exchanger 50 for recovering boiler waste heat is increased to about 90 ° C., and this is circulated to the inlet of the heat exchanger 49 for heating air for boiler combustion. In the exchanger 49, the temperature of the heat medium fluid at the inlet and outlet is about 90 ° C. and 50 ° C., but since the circulation amount increases, the exchange heat amount increases, and heat is recovered from the boiler exhaust to the intake air.

この実施例4の場合の熱媒流体とボイラ吸気、排気の温度を図7に示す。破線が従来設備の天然ガス焚のボイラ設備の場合の温度変化、実線が本実施例4の場合の温度変化である。   FIG. 7 shows the temperature of the heat transfer fluid, boiler intake air, and exhaust gas in the case of the fourth embodiment. A broken line is a temperature change in the case of a natural gas fired boiler facility of a conventional facility, and a solid line is a temperature change in the case of the fourth embodiment.

ボイラ廃熱回収用熱交換器50で加温した熱媒流体をボイラ燃焼用空気加温用熱交換器49の入口部に戻すのではなく、ボイラ燃焼用空気系統においてボイラ燃焼用空気加温用熱交換器49の入口側に熱媒流体とボイラ燃焼用空気との熱交換器を設置しボイラ廃熱回収用熱交換器での回収熱量をボイラ吸気に熱回収し温度を下げた熱媒流体をヒートポンプ入口に再循環させることも考えられる。   The heating medium fluid heated by the boiler waste heat recovery heat exchanger 50 is not returned to the inlet of the boiler combustion air heating heat exchanger 49, but is used for boiler combustion air heating in the boiler combustion air system. A heat exchanger fluid in which a heat exchanger fluid and boiler combustion air is installed on the inlet side of the heat exchanger 49, and the amount of heat recovered in the boiler waste heat recovery heat exchanger is recovered in the boiler intake air to lower the temperature. It is also conceivable to recirculate the gas to the heat pump inlet.

また、ボイラ廃熱回収用熱交換器50入口の熱媒流体の温度制御は、温度制御の替りにボイラ廃熱回収用熱交換器50の再循環配管55に固定オリフィスを用いることにより類似の効果を得ることができる。   Further, the temperature control of the heat transfer fluid fluid at the inlet of the boiler waste heat recovery heat exchanger 50 has a similar effect by using a fixed orifice in the recirculation pipe 55 of the boiler waste heat recovery heat exchanger 50 instead of the temperature control. Can be obtained.

また、ボイラ廃熱回収用熱交換器50の設置位置は、空気予熱器が吸気・排気側が一体構造であるため、ボイラ燃焼用空気加温用熱交換器49がボイラ吸気系統上で空気予熱器の上流側となるのでボイラ排気系統において、空気予熱器8の後流側に設置が標準的な位置と考えられるが、配置的な制約がなければ、酸露点温度の低い天然ガス焚のボイラにおいては空気予熱器8の入口側に設置することも考えられる。   The boiler waste heat recovery heat exchanger 50 is installed on the intake / exhaust side of the air preheater, so the boiler combustion air heating heat exchanger 49 is installed on the boiler intake system. In the boiler exhaust system, installation on the downstream side of the air preheater 8 is considered a standard position. However, in the case of a natural gas fired boiler with a low acid dew point temperature if there is no layout restriction, It is also conceivable to install them on the inlet side of the air preheater 8.

また、重油焚ボイラでは一般的に空気予熱器の吸気側入口に蒸気式空気予熱器が設けられているが、本発明のボイラ燃焼用空気加熱用熱交換器49を設置する場合は、蒸気式空気予熱器の吸気温度を上昇させることになるので、その補助蒸気量を低減する効果が得られる。   Further, in a heavy oil fired boiler, a steam type air preheater is generally provided at the intake side inlet of the air preheater. However, when the heat exchanger 49 for heating air for boiler combustion of the present invention is installed, a steam type Since the intake air temperature of the air preheater is raised, the effect of reducing the amount of auxiliary steam can be obtained.

また、当該ヒートポンプ型式を一重効用蒸気吸収式ヒートポンプとしたが、二重効用蒸気吸収式ヒートポンプや圧縮式ヒートポンプなど他の型式のヒートポンプを使用の場合も同様の効果を得る。   Moreover, although the said heat pump type was made into the single effect steam absorption heat pump, the same effect is acquired also when using other types of heat pumps, such as a double effect steam absorption heat pump and a compression heat pump.

また、ボイラ燃焼用空気加温用熱交換器49およびボイラ廃熱回収用熱交換器50において、ヒートポンプから熱媒流体を直接的に供給するのではなく、熱交換器を介して熱のやり取りをすることも考えられる。   In addition, in the heat exchanger 49 for heating air for boiler combustion and the heat exchanger 50 for recovering waste heat from the boiler, heat medium fluid is not directly supplied from the heat pump, but is exchanged through the heat exchanger. It is also possible to do.

また、ヒートポンプで蒸気タービン復水を昇温する系統と本発明のボイラ吸気を昇温する系統を同時使用したり切り替え式にすることも考えられる。   It is also conceivable that a system for raising the temperature of the steam turbine condensate with a heat pump and a system for raising the temperature of the boiler intake air of the present invention may be used simultaneously or switched.

また、復水器の冷却水を冷却塔で冷却するとしているが、河川水や海水による直接冷却の場合も容易に考え得る。すなわち、河川水や海水による直接冷却の場合に、ヒートポンプに直接低温熱源である吸熱源水として導入するには水質上問題がある場合には、非接触式の熱交換器を間に入れ、間接的に吸熱源水を利用可能である。   In addition, although the cooling water of the condenser is cooled by the cooling tower, direct cooling by river water or seawater can be easily considered. In other words, in the case of direct cooling by river water or seawater, if there is a water quality problem to introduce as heat absorption source water that is a low-temperature heat source directly into the heat pump, a non-contact type heat exchanger is placed in between Endothermic source water can be used.

また、吸熱源水はタービンプラントに限るものではなく、ボイラプラントや系外の未利用エネルギーを利用することも考えられる。   In addition, the heat absorption source water is not limited to the turbine plant, and it is conceivable to use unused energy outside the boiler plant or the system.

また、蒸気タービンプラントのサイクルとして、非再熱型の復水タービンとしているが、再熱型の蒸気タービンにおいても、本原理は同様である。   Further, the cycle of the steam turbine plant is a non-reheat type condensate turbine, but the same principle applies to a reheat type steam turbine.

また、主タービンが背圧式の蒸気タービンの場合において復水器が設置されていない場合についても、ヒートポンプの吸熱源となる廃熱源は、蒸気タービンからの排気蒸気となる。   Further, even when the main turbine is a back-pressure steam turbine and no condenser is installed, the waste heat source serving as the heat absorption source of the heat pump is exhaust steam from the steam turbine.

ボイラで発生した蒸気で蒸気タービンを駆動する設備において、従来技術である復水器への廃熱をヒートポンプにより汲み上げて脱気器入口の復水系統に熱回収を図る場合と本実施例とを比較した効果を以下説明する。   This example shows the case where the steam turbine is driven by steam generated in the boiler and the heat recovery from the condenser, which is a conventional technology, is pumped up by a heat pump to recover the heat in the condenser system at the inlet of the deaerator. The comparative effect will be described below.

まず、従来技術であるヒートポンプで汲み上げた復水器廃熱を脱気器入口の復水系統に熱回収する場合、蒸気タービンの入口蒸気条件を3.9MPa(ゲージ圧力。以降全てゲージ圧力)、400℃、脱気器圧力を0.25MPa、蒸気タービンの排気条件を-94.66kPaと想定する。復水器から脱気器までの蒸気タービン復水の経路は、復水器出口で復水ポンプにより加圧され一旦、復水タンクに集められ、復水タンク出口に設けられた脱気水昇圧ポンプにより脱気器に送水される。そして、脱気器にて蒸気タービン抽気により加熱脱気後、ボイラ給水ポンプによりボイラ節炭器に送水されるものとする。なお、補給水は、復水タンクに処理水が補給されるものとする。   First, when recovering heat from the condenser waste heat pumped up by the conventional heat pump to the condenser system at the inlet of the deaerator, the steam condition at the inlet of the steam turbine is 3.9 MPa (gauge pressure, hereinafter all gauge pressure), Assume 400 ° C., deaerator pressure is 0.25 MPa, and steam turbine exhaust condition is −94.66 kPa. The steam turbine condensate path from the condenser to the deaerator is pressurized by the condensate pump at the condenser outlet, and once collected in the condensate tank, the deaerated water pressure provided at the condensate tank outlet Water is sent to the deaerator by a pump. And after heating deaeration by steam turbine extraction with a deaerator, water shall be sent to a boiler economizer by a boiler feed pump. As for the makeup water, treated water is replenished to the condensate tank.

このような構成の場合、脱気器入口の蒸気タービン復水温度は、ほぼ常温の40℃程度であるのに対し、脱気器出口水は器内圧力の飽和温度となるので、約140℃近い温度となる。   In such a configuration, the steam turbine condensate temperature at the inlet of the deaerator is about 40 ° C., which is about room temperature, whereas the water at the outlet of the deaerator becomes a saturation temperature of the internal pressure. The temperature will be close.

この時、脱気器と脱気水供給ポンプ間でヒートポンプによる熱回収を行い、40℃程度の給水を90℃まで加温したとすると、ヒートポンプの運転前後にて脱気器抽気流量は、脱気器にて40℃の給水を140℃に昇温していたものが、90℃の給水を140℃に昇温すれば良いので約50%の蒸気使用量に低減される。   At this time, if heat recovery is performed by a heat pump between the deaerator and the deaerated water supply pump and the water supply at about 40 ° C. is heated to 90 ° C., the deaerator bleed flow rate before and after the operation of the heat pump is What has been raised to 140 ° C. from 40 ° C. water supply with an air vaporizer can be reduced to about 50% steam consumption since 90 ° C. water supply can be raised to 140 ° C.

しかし、ここで脱気器蒸気量が約50%低減されても、その低減による効果は、蒸気タービンから脱気器への抽気蒸気を供給している段落から蒸気タービン排気までの蒸気タービンでの仕事量を増加させるだけである。これは、蒸気タービン復水系統へのヒートポンプによる未利用エネルギーの回収により、減少する脱気器蒸気の抽気段落のエンタルピが、蒸気タービン入口のよりも蒸気タービン排気部に近いエンタルピしか持っていないことによる。本ケースの場合では、脱気器蒸気量の低減として節約された熱量の内、ほぼ9割は再び復水器への廃熱となる。すなわち、従来技術の場合、ヒートポンプの汲み上げ熱量の内、約10%しか蒸気タービンでの仕事量の増加に寄与しない。   However, even if the deaerator steam amount is reduced by about 50% here, the effect of the reduction is that in the steam turbine from the stage supplying steam extracted from the steam turbine to the deaerator to the steam turbine exhaust. It only increases the amount of work. This is because the enthalpy of the extraction stage of the deaerator steam that decreases due to the recovery of unused energy to the steam turbine condensate system has only enthalpy closer to the steam turbine exhaust than the steam turbine inlet by. In the case of this case, about 90% of the heat saved as a reduction in the amount of deaerator steam becomes waste heat to the condenser again. That is, in the case of the prior art, only about 10% of the heat pumped up by the heat pump contributes to an increase in the work amount in the steam turbine.

一方、本実施例では、ヒートポンプを使用して復水器への廃熱を汲み上げ、それをボイラ燃焼用空気の加熱用に使用する。ボイラ効率を約85%と想定すると、ヒートポンプでの汲み上げ熱量の約85%がボイラ蒸発量の増加に寄与する。更に蒸気タービン発電プラントの効率を約30%と想定すると、ヒートポンプで汲み上げた熱量に対する蒸気タービンでの仕事量の増加割合は、85%の内の30%が寄与するので、約26%となる。   On the other hand, in this embodiment, a heat pump is used to pump up waste heat to the condenser, which is used for heating boiler combustion air. Assuming that the boiler efficiency is about 85%, about 85% of the heat pumped up by the heat pump contributes to an increase in boiler evaporation. Further, assuming that the efficiency of the steam turbine power plant is about 30%, the increase rate of the work in the steam turbine with respect to the heat pumped up by the heat pump is about 26% because 30% of 85% contributes.

これは、従来技術での寄与率である約10%の2.6倍の効果となる。   This is an effect that is 2.6 times as large as the contribution rate of the prior art, which is about 10%.

蒸気タービン発電設備においては、主蒸気条件の高温高圧化やガスタービンと組み合わせた複合発電設備化により高効率化が図られてきているが、これらは新設プラントに限られた方法であり、国内に既に数100プラントある既存の発電設備への適用は困難である。   In steam turbine power generation facilities, high efficiency has been achieved through high-temperature and high-pressure main steam conditions and combined power generation facilities combined with gas turbines, but these methods are limited to new plants, Application to existing power generation facilities that already have several hundred plants is difficult.

一方、蒸気タービンを用いた発電プラントの復水器からは、ボイラへの燃料入熱の60%以上の熱が廃熱されており、一般的に年間の利用率が高い設備であるので、省エネルギー対策を導入した場合その効果が大きい。   On the other hand, the condenser of a power plant using a steam turbine wastes more than 60% of the fuel heat input to the boiler, and is generally a facility with a high annual utilization rate. The effect is great when measures are introduced.

本発明は、こうした蒸気タービンを駆動するボイラ設備に現状ほとんど未利用となっている復水器冷却水の廃熱などの熱エネルギーをヒートポンプにより汲み上げ、ボイラ燃料量の低減や蒸発量の増加を図る場合に、その汲み上げ熱量をボイラ燃焼用空気温度を上げることに使用し、効率良く熱回収するものである。従って、事業用、産業用を問わず、復水タービンを駆動するボイラ設備に広く適用可能である。   The present invention uses a heat pump to pump up heat energy, such as waste heat from condenser cooling water that is currently almost unused in boiler equipment for driving such steam turbines, to reduce boiler fuel and increase evaporation. In this case, the pumped heat amount is used to raise the temperature of boiler combustion air, and heat is recovered efficiently. Therefore, it can be widely applied to boiler facilities for driving condensate turbines regardless of business use or industrial use.

本発明に係る廃熱利用の省エネルギー設備の実施例1のシステムフロー図である。It is a system flow figure of Example 1 of the energy saving facility of waste heat utilization concerning the present invention. 実施例1の効果を説明するための図である。It is a figure for demonstrating the effect of Example 1. FIG. 本発明に係る廃熱利用の省エネルギー設備の実施例2のシステムフロー図である。It is a system flow figure of Example 2 of the energy saving facility of waste heat utilization which concerns on this invention. 実施例2及び実施例3の効果を説明するための図である。It is a figure for demonstrating the effect of Example 2 and Example 3. FIG. 本発明に係る廃熱利用の省エネルギー設備の実施例3のシステムフロー図である。It is a system flow figure of Example 3 of the energy saving facility of waste heat utilization which concerns on this invention. 本発明に係る廃熱利用の省エネルギー設備の実施例4のシステムフロー図である。It is a system flow figure of Example 4 of the energy saving equipment of waste heat utilization which concerns on this invention. 実施例4の効果を説明するための図である。It is a figure for demonstrating the effect of Example 4. FIG.

符号の説明Explanation of symbols

1…ボイラ、2…燃料供給装置、3…ボイラ火炉、4…押込みファン、5…吸気ダクト、6…排気ダクト、7…煙突、8…空気予熱器、9…主蒸気管、10…主蒸気加減弁、11…蒸気タービン、12…抽気加減弁、13…抽気管、14…蒸気タービン排気管、15…復水器、16…発電機、17…復水管、18…復水ポンプ、19…復水タンク、20…復水管、21…脱気水供給ポンプ、22…脱気器、23…減温水管、24…ヒートポンプ出口温水温度調節器、25…ボイラ給水管、26…ボイラ給水ポンプ、27…水位調節器、28…復水タンク水位調節弁、29…補給水管、30…冷却塔、31…冷却水ポンプ、32…冷却水供給母管、33…冷却水戻り母管、34…冷却塔下部水槽、35…ヒートポンプ(一重効用蒸気)、36…分岐管、37…吸熱源水供給ポンプ、38…吸熱源水循環系統、38A…源水供給配管、38B…源水戻り配管、39…ヒートポンプ用蒸気管、40…減温器、41…ヒートポンプ発生器、42…温度調節器、43…ヒートポンプ入口蒸気温度調節弁、44…ドレン管、45…ヒートポンプドレン出口弁、46…ヒートポンプ出口温水温度調節弁、47…熱媒流体循環系統、47A…供給配管、47B…戻り配管、48…温水供給ポンプ、49…ボイラ燃焼用空気加熱用熱交換器、50…ボイラ廃熱回収用熱交換器、51…脱硫装置、54…再循環ポンプ、55…再循環配管、56…ボイラ廃熱回収用熱交換器入口熱媒流体温度調節弁、57…温度計、58…演算装置、60…ヒートポンプ吸収器、61…ヒートポンプ凝縮器、62…ヒートポンプ蒸発器、63…ボイラ廃熱回収切替え弁、64…三方弁、65…温度計、66…演算装置。   DESCRIPTION OF SYMBOLS 1 ... Boiler, 2 ... Fuel supply device, 3 ... Boiler furnace, 4 ... Push-in fan, 5 ... Intake duct, 6 ... Exhaust duct, 7 ... Chimney, 8 ... Air preheater, 9 ... Main steam pipe, 10 ... Main steam Control valve, 11 ... Steam turbine, 12 ... Extraction control valve, 13 ... Extraction pipe, 14 ... Steam turbine exhaust pipe, 15 ... Condenser, 16 ... Generator, 17 ... Condensate pipe, 18 ... Condensate pump, 19 ... Condensate tank, 20 ... Condensate pipe, 21 ... Deaerated water supply pump, 22 ... Deaerator, 23 ... Dewarmed water pipe, 24 ... Heat pump outlet hot water temperature controller, 25 ... Boiler feed pipe, 26 ... Boiler feed pump, 27 ... Water level controller, 28 ... Condensate tank water level control valve, 29 ... Supply water pipe, 30 ... Cooling tower, 31 ... Cooling water pump, 32 ... Cooling water supply mother pipe, 33 ... Cooling water return mother pipe, 34 ... Cooling Tower bottom tank, 35 ... Heat pump (single effect steam), 36 ... Branch pipe, 37 ... endothermic source water supply pump, 38 ... endothermic source water circulation system, 38A ... source water supply pipe, 38B ... source water return pipe, 39 ... heat pump steam pipe, 40 ... temperature reducer, 41 ... heat pump generator , 42 ... Temperature controller, 43 ... Heat pump inlet steam temperature control valve, 44 ... Drain pipe, 45 ... Heat pump drain outlet valve, 46 ... Heat pump outlet hot water temperature control valve, 47 ... Heat transfer fluid circulation system, 47A ... Supply piping, 47B ... Return pipe, 48 ... Hot water supply pump, 49 ... Heat exchanger for air heating for boiler combustion, 50 ... Heat exchanger for boiler waste heat recovery, 51 ... Desulfurization device, 54 ... Recirculation pump, 55 ... Recirculation pipe 56 ... Heat exchanger inlet heat medium fluid temperature control valve for heat exchanger recovery for boiler waste heat, 57 ... Thermometer, 58 ... Computing device, 60 ... Heat pump absorber, 61 ... Heat pump condenser, 62 ... Heat Pump evaporator, 63 ... boiler waste heat recovery switching valve, 64 ... three-way valve, 65 ... thermometer, 66 ... arithmetic unit.

Claims (6)

ボイラ、空気予熱器を備えたボイラ燃焼用空気系統、ボイラで発生した蒸気で駆動される蒸気タービンを備えた蒸気作動系統、前記蒸気タービンで作動した蒸気を復水して前記ボイラに循環する復水循環系統および該循環系統に付属させたヒートポンプを備えた蒸気を熱源とするボイラ−蒸気タービン設備に設ける省エネルギー設備において、
前記蒸気作動系統から抽気した蒸気を動力源とし、低温熱源から熱を吸収し、熱媒流体に熱回収させ、熱媒流体循環系統を備えて前記ヒートポンプを構成し、
前記ヒートポンプで熱回収された熱煤流体が前記熱媒流体循環系統を介して前記空気予熱器の入口側の前記ボイラ燃焼用空気系統に設けたボイラ燃焼用空気加熱用熱交換器に導入されてボイラ燃焼用空気が加熱されること
を特徴とするボイラ−蒸気タービン設備に設ける省エネルギー設備。
A boiler combustion air system equipped with a boiler, an air preheater, a steam operating system equipped with a steam turbine driven by steam generated in the boiler, and a recovery system for condensing steam circulated in the steam turbine and circulating it to the boiler In an energy saving facility provided in a boiler-steam turbine facility using a water circulation system and a steam equipped with a heat pump attached to the circulation system as a heat source,
Steam extracted from the steam operating system is used as a power source, heat is absorbed from a low-temperature heat source, heat is recovered in a heat transfer fluid, and the heat pump is provided with a heat transfer fluid circulation system,
The hot fluid recovered by the heat pump is introduced into the boiler combustion air heating heat exchanger provided in the boiler combustion air system on the inlet side of the air preheater through the heat medium fluid circulation system. Energy-saving equipment installed in boiler-steam turbine equipment, characterized in that boiler combustion air is heated.
請求項1において、前記復水循環系統から復水が分岐して、前記空気予熱器から排出されてボイラ廃熱回収用熱交換器に導入されたボイラ廃ガスと熱交換され、昇温した復水が前記復水循環系統に戻されることを特徴とするボイラ−蒸気タービン設備に設ける省エネルギー設備。   The condensate according to claim 1, wherein the condensate branches from the condensate circulation system, is exhausted from the air preheater, is heat-exchanged with the boiler waste gas introduced into the boiler waste heat recovery heat exchanger, and is heated. Is returned to the condensate circulation system, and is an energy saving facility provided in a boiler-steam turbine facility. 請求項1において、前記熱媒流体循環系統から熱煤流体が分岐されて、前記空気予熱器から排出されてボイラ廃熱回収用熱交換器に導入されたボイラ廃ガスと熱交換され、昇温した熱煤流体が前記熱煤流体循環系統に戻されることを特徴とするボイラ−蒸気タービン設備に設ける省エネルギー設備。   In Claim 1, a hot-steam fluid is branched from the said heat-medium fluid circulation system, is heat-exchanged with the boiler waste gas discharged | emitted from the said air preheater, and was introduced into the heat exchanger for boiler waste heat recovery, and temperature rising An energy-saving facility provided in a boiler-steam turbine facility, wherein the heated hot fluid is returned to the hot fluid circulation system. 請求項3において、前記熱煤流体循環系統からの熱煤流体の分岐は、前記ボイラ燃焼用空気加熱用熱交換器の入口側もしくは出口側で行われ、昇温された熱煤流体は、前記ボイラ燃焼用空気加熱用熱交換器の入口側に戻されることを特徴とするボイラ−蒸気タービン設備に設ける省エネルギー設備。   In Claim 3, branching of the hot-steam fluid from the hot-steam fluid circulation system is performed on the inlet side or the outlet side of the boiler combustion air heating heat exchanger. An energy saving facility provided in a boiler-steam turbine facility, which is returned to the inlet side of a heat exchanger for heating air for boiler combustion. 請求項2から4のいずれかにおいて、前記空気予熱器と前記ボイラ廃熱回収用熱交換器との間の系統に脱硫装置を設けたことを特徴とするボイラ−蒸気タービン設備に設ける省エネルギー設備。   5. The energy saving equipment provided in a boiler-steam turbine equipment according to claim 2, wherein a desulfurization device is provided in a system between the air preheater and the boiler waste heat recovery heat exchanger. ボイラ、空気予熱器を備えたボイラ燃焼用空気系統、ボイラで発生した蒸気で駆動される蒸気タービンを備えた蒸気作動系統、前記蒸気タービンで作動した蒸気を復水して前記ボイラに循環する復水循環系統および該循環系統に付属され、前記蒸気作動系統から抽気した蒸気を動力源とし、低温熱源から熱を吸収し、熱煤流体に熱回収させるようにしたヒートポンプを備えた、蒸気を熱源とするボイラ−蒸気タービン設備に設ける省エネルギー設備による省エネルギー運転方法において、
前記ヒートポンプで熱回収された熱媒流体を熱源として、前記空気予熱気の入口側の前記ボイラ燃焼用空気系統に設けたボイラ燃焼用空気加熱用熱交換器に導入してボイラ燃焼用空気を加熱するようにしたこと
を特徴とするボイラ−蒸気タービン設備に設ける省エネルギー設備による省エネルギー運転方法。
A boiler combustion air system equipped with a boiler, an air preheater, a steam operating system equipped with a steam turbine driven by steam generated in the boiler, and a recovery system for condensing steam circulated in the steam turbine and circulating it to the boiler A water circulation system and a steam pump attached to the circulation system, including a steam extracted from the steam operation system as a power source, absorbing heat from a low-temperature heat source, and recovering heat to the hot water fluid, steam as a heat source In the energy saving operation method by the energy saving equipment provided in the boiler-steam turbine equipment,
Using the heat transfer fluid recovered by the heat pump as a heat source, it is introduced into the boiler combustion air heating heat exchanger provided in the boiler combustion air system on the inlet side of the air preheated air to heat the boiler combustion air An energy-saving operation method using energy-saving equipment provided in a boiler-steam turbine equipment, characterized in that
JP2006022214A 2006-01-31 2006-01-31 Energy-saving equipment using waste heat Expired - Fee Related JP4554527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006022214A JP4554527B2 (en) 2006-01-31 2006-01-31 Energy-saving equipment using waste heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006022214A JP4554527B2 (en) 2006-01-31 2006-01-31 Energy-saving equipment using waste heat

Publications (2)

Publication Number Publication Date
JP2007205188A JP2007205188A (en) 2007-08-16
JP4554527B2 true JP4554527B2 (en) 2010-09-29

Family

ID=38484874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006022214A Expired - Fee Related JP4554527B2 (en) 2006-01-31 2006-01-31 Energy-saving equipment using waste heat

Country Status (1)

Country Link
JP (1) JP4554527B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101050770B1 (en) * 2009-09-08 2011-07-21 한국전력공사 Heat recovery device of power plant using heat pump
WO2011033559A1 (en) * 2009-09-16 2011-03-24 株式会社日立製作所 Cogeneration power plant and biomass reforming combined cycle plant
FR2957408B1 (en) 2010-03-09 2015-07-17 Air Liquide METHOD AND APPARATUS FOR HEATING AN AIR GAS FROM AN AIR SEPARATION APPARATUS
CN101818994B (en) * 2010-05-04 2013-07-31 昆明理工大学 Method for improving utilization of low-temperature sintering afterheat
JP5686285B2 (en) * 2010-12-21 2015-03-18 三浦工業株式会社 Boiler blow water heat recovery system
JP5832103B2 (en) * 2011-02-25 2015-12-16 三菱重工業株式会社 Boiler plant
KR101436002B1 (en) 2012-12-20 2014-09-02 한국지역난방공사 District heating system including absorption heat pump for increasing production amount of electricity and heat
CN103398369A (en) * 2013-08-05 2013-11-20 吕克庆 Method and system for comprehensive utilization of tail heat of boiler
GB201509651D0 (en) * 2015-06-03 2015-07-15 Castle Europ Ltd Turbine system and method
CN107401856A (en) * 2016-05-19 2017-11-28 华电电力科学研究院 A kind of energy conserving system and its application method using heat pump heat smoke again
CN107687766A (en) * 2016-08-03 2018-02-13 天津华赛尔传热设备有限公司 A kind of carbon calciner flue-gas-cooling system
CN106402820B (en) * 2016-11-14 2018-08-14 大连科林能源工程技术开发有限公司 A kind of fine ore suspending magnetization roasting powder chilling temperature reduction technology waste heat boiler
CN109539216B (en) * 2018-12-18 2023-09-05 华北电力大学 Combined power generation system integrating garbage incineration boiler and coal-fired boiler
CN111076260A (en) * 2019-12-31 2020-04-28 淮北工业建筑设计院有限责任公司 Comprehensive utilization system of clean energy in mining area
CN112594019B (en) * 2020-12-13 2022-11-25 东北电力大学 Energy cascade efficient utilization system of supercritical coal-fired generator set
CN113577944A (en) * 2021-07-15 2021-11-02 宁波久丰热电有限公司 Cleaning device is collected to impurity in boiler waste gas
CN113566186B (en) * 2021-07-28 2023-08-29 西安热工研究院有限公司 Boiler drum water level adjusting method after damaged stage pressure measuring points
CN117716186A (en) * 2021-09-08 2024-03-15 西门子股份公司 Industrial boiler heating system and control method and control device thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267154A (en) * 2001-03-06 2002-09-18 Babcock Hitachi Kk Boiler device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4882203A (en) * 1972-02-04 1973-11-02
DE3935852A1 (en) * 1989-10-27 1991-05-02 Asea Brown Boveri POWER PLANT

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267154A (en) * 2001-03-06 2002-09-18 Babcock Hitachi Kk Boiler device

Also Published As

Publication number Publication date
JP2007205188A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP4554527B2 (en) Energy-saving equipment using waste heat
JP4676284B2 (en) Waste heat recovery equipment for steam turbine plant
JP4578354B2 (en) Waste heat utilization equipment for steam turbine plant
RU2586036C2 (en) System for heating oil as heat carrier using boiler flue gas waste heat
JP5832102B2 (en) Boiler plant and operation method thereof
CN104763485B (en) A kind of concurrent heating type ultrahigh pressure/subcritical back pressure thermal power plant unit thermodynamic system
CN108443906B (en) Flue gas waste heat utilization system and method based on multi-energy level and recirculated heating cold air
JP2007205187A (en) Heat recovery system attached to boiler-steam turbine system
TWI639764B (en) Coal fired oxy boiler power plant
CN210197332U (en) Cascade utilization deep coupling system for smoke, wind and sewage waste heat of coal-fired boiler
CN102607011A (en) Multi-stage utilization system for transferring exhaust afterheat energy of power station boiler
CN103380329B (en) Boiler plant
WO2012097602A1 (en) Low-pressure steam generation system utilizing waste heat of flue gas
CN113803706B (en) Power generation system based on hot air recycling and utilizing waste heat of tail flue gas of boiler
CN106322427A (en) Deslagging waste heat utilization system and deslagging waste heat utilization method for circulating fluidized bed boiler
JP2009097735A (en) Feed-water warming system and exhaust heat recovering boiler
CN102494329B (en) Device for utilizing flue gas waste heat of boiler comprehensively
CN111536501A (en) Heating method for boiler deaerator inlet water
JP2011149434A (en) Gas turbine combined power generation system
JP4437987B2 (en) Hot water circulation system
CN210688281U (en) Flue gas treatment system
KR101103768B1 (en) Electric Generating System Using Heat Pump Unit
JPH09209715A (en) Low-temperature corrosion preventing device for exhaust gas re-combustion type combined plant
CN211011462U (en) System for utilize condensate water to improve air heater and adjust cold and hot overgrate air temperature
CN207849346U (en) Utilize the Steam Turbine Regenerative System of medium temperature flue gas condensed water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4554527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees