JP4554526B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP4554526B2
JP4554526B2 JP2006015987A JP2006015987A JP4554526B2 JP 4554526 B2 JP4554526 B2 JP 4554526B2 JP 2006015987 A JP2006015987 A JP 2006015987A JP 2006015987 A JP2006015987 A JP 2006015987A JP 4554526 B2 JP4554526 B2 JP 4554526B2
Authority
JP
Japan
Prior art keywords
layer
gallium
arsenic
semiconductor light
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006015987A
Other languages
Japanese (ja)
Other versions
JP2007201040A (en
Inventor
徹也 鈴木
弘明 吉田谷
幹明 藤田
慎太郎 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2006015987A priority Critical patent/JP4554526B2/en
Publication of JP2007201040A publication Critical patent/JP2007201040A/en
Application granted granted Critical
Publication of JP4554526B2 publication Critical patent/JP4554526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

本発明は、半導体発光素子に係り、特に、優れた光学特性を有する750〜950nm帯の半導体発光素子に関する。   The present invention relates to a semiconductor light emitting device, and more particularly to a semiconductor light emitting device in the 750 to 950 nm band having excellent optical characteristics.

近年、光通信および産業用に利用される半導体発光素子においては、発光特性の改善を図るため、活性層に量子井戸構造が用いられている。以下、この量子井戸構造を有する活性層を量子井戸活性層という。   In recent years, in semiconductor light emitting devices used for optical communication and industrial use, a quantum well structure is used for an active layer in order to improve light emission characteristics. Hereinafter, the active layer having this quantum well structure is referred to as a quantum well active layer.

特に井戸層に基板とは異なる格子定数を持つ材料を用いた歪量子井戸構造を用いることは、井戸層のバンド構造を変化させることにより発光特性がさらに改善されるため注目されている。   In particular, the use of a strained quantum well structure using a material having a lattice constant different from that of the substrate for the well layer is attracting attention because light emission characteristics are further improved by changing the band structure of the well layer.

このような歪量子井戸半導体発光素子としては、量子井戸活性層としてインジウム・ガリウム・ヒ素(InGaAs)の井戸層とガリウム・ヒ素・リン(GaAsP)の障壁層とを交互に積層した980nm帯レーザが既に実用化されている(例えば、非特許文献1参照)。   As such a strained quantum well semiconductor light emitting device, a 980 nm band laser in which a well layer of indium / gallium / arsenic (InGaAs) and a barrier layer of gallium / arsenic / phosphorus (GaAsP) are alternately stacked as a quantum well active layer. It has already been put into practical use (for example, see Non-Patent Document 1).

上記の歪量子井戸半導体発光素子は、井戸層に約1.4%の圧縮歪を有するが、障壁層に約1%の引張歪を有しており、量子井戸活性層の圧縮歪と引張歪とを相殺する歪補償構造となっている。なお、量子井戸活性層は膜厚が5.5nmである井戸層を3層有し、合計膜厚は46.5nm、平均歪は−0.15%である。   The above-described strained quantum well semiconductor light emitting device has a compressive strain of about 1.4% in the well layer, but has a tensile strain of about 1% in the barrier layer, and the compressive strain and tensile strain of the quantum well active layer. It has a distortion compensation structure that cancels out. The quantum well active layer has three well layers having a film thickness of 5.5 nm, the total film thickness is 46.5 nm, and the average strain is -0.15%.

また、基板にインジウム・リン(InP)、井戸層に圧縮歪を有するインジウム・ガリウム・ヒ素・リン(InGaAsP)を用い、障壁層と、障壁層の基板側に位置する井戸層との間に、基板と同一材料である膜厚1nmのInPの薄膜層を挿入した1.5μm帯歪量子井戸半導体レーザも提案されている(例えば、特許文献1参照)。   Further, indium / phosphorus (InP) is used for the substrate, and indium / gallium / arsenic / phosphorus (InGaAsP) having compressive strain is used for the well layer. Between the barrier layer and the well layer located on the substrate side of the barrier layer, A 1.5 μm-band strained quantum well semiconductor laser in which a 1 nm-thick InP thin film layer, which is the same material as the substrate, is also proposed (see, for example, Patent Document 1).

上記の歪量子井戸半導体発光素子では、井戸層の形成時に、歪の加わった井戸層の表面が無歪のInP薄膜層でカバーされるので、井戸層数を多くした場合であっても、各井戸層内の格子歪を一定に保つことができる。
特開平07−38206号公報([0017]−[0019]、図1) Appl. Phys. Lett. Vol.62, No14, 5 April 1993
In the above-described strained quantum well semiconductor light emitting device, when the well layer is formed, the surface of the well layer subjected to strain is covered with an unstrained InP thin film layer, so even if the number of well layers is increased, The lattice strain in the well layer can be kept constant.
Japanese Unexamined Patent Publication No. 07-38206 ([0017]-[0019], FIG. 1) Appl. Phys. Lett. Vol.62, No14, 5 April 1993

しかしながら、980nm帯より波長の短い750〜950nm帯の波長の光を発生する半導体発光素子において、非特許文献1に記載されたInGaAsの井戸層とGaAsPの障壁層で構成された歪量子井戸構造を採用するためには、井戸層の膜厚を薄くすること、あるいは、井戸層を構成するInGaAsの組成比を変えることによって、井戸層の圧縮歪を小さくすることが必要となるが、いずれの方法を採用しても量子井戸活性層全体の圧縮歪が減少するため、量子井戸活性層の歪は引張側に偏り、半導体レーザの光学特性が劣化するという課題があった。   However, in a semiconductor light emitting device that generates light having a wavelength of 750 to 950 nm shorter than that of the 980 nm band, the strain quantum well structure composed of an InGaAs well layer and a GaAsP barrier layer described in Non-Patent Document 1 is used. In order to adopt this method, it is necessary to reduce the compressive strain of the well layer by reducing the thickness of the well layer or changing the composition ratio of InGaAs constituting the well layer. However, since the compressive strain of the entire quantum well active layer is reduced, the strain of the quantum well active layer is biased toward the tensile side, and the optical characteristics of the semiconductor laser deteriorate.

即ち、InGaAsの井戸層とGaAsPの障壁層で構成された歪量子井戸構造は引張歪に弱く、例えば量子井戸活性層の膜厚が約60nmであるときに量子井戸活性層の平均歪が引張側に約0.35%以上となると、歪緩和により結晶欠陥の発生が顕著となり、非発光再結合の増加により、半導体レーザの光学特性が劣化する。   That is, a strained quantum well structure composed of an InGaAs well layer and a GaAsP barrier layer is weak against tensile strain. For example, when the thickness of the quantum well active layer is about 60 nm, the average strain of the quantum well active layer is If it is about 0.35% or more, the occurrence of crystal defects becomes remarkable due to strain relaxation, and the optical characteristics of the semiconductor laser deteriorate due to an increase in non-radiative recombination.

例えば、非特許文献1における歪量子井戸半導体発光素子において、井戸層の組成を変えずに、井戸層厚を3.5nmとして、900nm付近の発光素子を得ようとした場合、量子井戸活性層の合計膜厚は40.5nmであり、平均歪は−0.38%となる。ここで、さらに高出力特性を得るため井戸層数を5層にすると、平均歪は同じままで合計膜厚は67.5nmとなるが、この場合にはフォトルミネッセンス特性において非発光領域が顕著に現れることが、本出願人が行った実験において確認されている。このことは、量子井戸活性層の合計膜厚が平均的な格子歪から見積もられる臨界膜厚の1/2以下であっても、フォトルミネッセンス特性に異常が現れることを意味しており、この材料系が引張歪に非常に弱いことを示している。   For example, in the strained quantum well semiconductor light emitting device in Non-Patent Document 1, when the well layer thickness is set to 3.5 nm and the light emitting device near 900 nm is obtained without changing the composition of the well layer, the quantum well active layer The total film thickness is 40.5 nm and the average strain is -0.38%. Here, in order to obtain higher output characteristics, if the number of well layers is set to five, the average strain remains the same and the total film thickness becomes 67.5 nm. In this case, the non-light-emitting region is conspicuous in the photoluminescence characteristics. Appearance has been confirmed in experiments conducted by the applicant. This means that even if the total film thickness of the quantum well active layer is 1/2 or less of the critical film thickness estimated from the average lattice strain, an abnormality appears in the photoluminescence characteristics. It shows that the system is very sensitive to tensile strain.

図5は、井戸層にInGa(1−x)As、障壁層にGaAs0.70.3を用いた場合における、井戸層厚と量子井戸活性層の発光波長の関係を示す図である。図中のひし形(◆)、四角(■)、三角(▲)はInGa(1−x)Asの組成比を示すxがそれぞれx=0.05、x=0.10、x=0.20である場合のデータを示している。 FIG. 5 is a diagram showing the relationship between the well layer thickness and the emission wavelength of the quantum well active layer when In x Ga (1-x) As is used for the well layer and GaAs 0.7 P 0.3 is used for the barrier layer. It is. In the figure, rhombuses (♦), squares (■), and triangles (▲) indicate the composition ratio of In x Ga (1-x) As, where x is x = 0.05, x = 0.10, and x = 0. The data in the case of .20 is shown.

さらに、図6にInGa(1−x)Asの井戸層数を5層とした場合の歪量の指標として、量子井戸活性層の平均歪(%)と合計膜厚(nm)の積を横軸に取り、量子井戸活性層の発光波長を縦軸に取った関係を示す。なお、障壁層の合計膜厚は50nmで一定としている。図6において、歪量が−20よりも小さい領域(破線の左側の領域)は、量子井戸活性層の格子歪が特に大きいことを示している。つまり、井戸層にInGaAs、障壁層にGaAsPを用いた750nm〜950nmの波長帯で発光する構造においては、結晶内に格子歪が多く蓄積され、半導体レーザの光学特性に悪影響を及ぼすという問題がある。 Further, FIG. 6 shows the product of the average strain (%) of the quantum well active layer and the total film thickness (nm) as an index of strain when the number of In x Ga (1-x) As well layers is five. Is shown on the horizontal axis, and the emission wavelength of the quantum well active layer is shown on the vertical axis. The total film thickness of the barrier layers is constant at 50 nm. In FIG. 6, the region where the amount of strain is smaller than −20 (the region on the left side of the broken line) indicates that the lattice strain of the quantum well active layer is particularly large. In other words, in a structure that emits light in the wavelength band of 750 nm to 950 nm using InGaAs for the well layer and GaAsP for the barrier layer, there is a problem that a large amount of lattice strain is accumulated in the crystal, which adversely affects the optical characteristics of the semiconductor laser. .

また、特許文献1に記載された歪量子井戸半導体発光素子にあっては、中間層により、個々の井戸層における格子歪は安定化するが、格子歪そのものは軽減されないため、井戸層と障壁層との間で平均的な格子歪が存在する場合には、層数が増えることにより格子歪が蓄積され、結晶欠陥発生の原因となるという課題があった。   In the strained quantum well semiconductor light emitting device described in Patent Document 1, the lattice strain in each well layer is stabilized by the intermediate layer, but the lattice strain itself is not reduced. When an average lattice strain exists between the two layers, the lattice strain is accumulated as the number of layers increases, which causes a crystal defect.

また、上記の歪量子井戸半導体発光素子においては、井戸層と障壁層の材料に4元材料が用いられており、3元材料が用いられた場合と比較して、組成および膜厚の再現性が低いため、素子特性の安定性も低いという課題もあった。   In the strained quantum well semiconductor light emitting device, a quaternary material is used for the material of the well layer and the barrier layer, and the reproducibility of the composition and the film thickness is compared with the case where the ternary material is used. Therefore, there is a problem that the stability of device characteristics is also low.

本発明は、従来の課題を解決するためになされたものであって、優れた光学特性を有する750〜950nm帯の歪量子井戸半導体発光素子を提供することを目的とする。   The present invention has been made to solve the conventional problems, and an object of the present invention is to provide a strained quantum well semiconductor light-emitting element in the 750 to 950 nm band having excellent optical characteristics.

本発明に係る半導体発光素子は、ガリウム・ヒ素基板と、前記ガリウム・ヒ素基板上に堆積する下部クラッド層と、前記下部クラッド層上に堆積し、障壁層と井戸層が交互に積層された量子井戸活性層と、前記量子井戸活性層上に堆積する上部クラッド層と、前記上部クラッド層上に堆積するコンタクト層とを含む半導体発光素子であって、前記井戸層が、前記ガリウム・ヒ素基板に対して圧縮歪を持つインジウム・ガリウム・ヒ素から成り、前記障壁層が、前記ガリウム・ヒ素基板に対して引張歪を持つガリウム・ヒ素・リン層と、前記ガリウム・ヒ素基板に対して無歪のアルミニウム・ガリウム・ヒ素層から成り、前記ガリウム・ヒ素・リン層と前記アルミニウム・ガリウム・ヒ素層のエネルギーギャップが等しく、発光波長が750〜950ナノメートルである構成を有している。 A semiconductor light emitting device according to the present invention includes a gallium arsenide substrate, a lower cladding layer deposited on the gallium arsenide substrate, a quantum layer in which barrier layers and well layers are stacked alternately on the lower cladding layer. A semiconductor light emitting device comprising a well active layer, an upper cladding layer deposited on the quantum well active layer, and a contact layer deposited on the upper cladding layer, wherein the well layer is formed on the gallium arsenide substrate. The barrier layer is composed of indium, gallium, and arsenic having a compressive strain, and the barrier layer has a gallium, arsenic, and phosphorus layer that has a tensile strain with respect to the gallium and arsenic substrate, and is unstrained with respect to the gallium and arsenic substrate. Ri consists of aluminum gallium arsenide layer, is equal to the energy gap of the gallium arsenide phosphide layer and the aluminum gallium arsenide layer, emission wavelength 750 It has a configuration which is 950 nanometers.

この構成により、圧縮歪を有する井戸層に対し、引張歪を有するガリウム・ヒ素・リンと無歪のアルミニウム・ガリウム・ヒ素を組み合わせた障壁層を用いることにより、量子井戸活性層全体の平均的な格子歪の絶対量を適度に小さくすることが可能となり、歪緩和による結晶欠陥の発生を抑制することができるとともに、各層の接合面においても、良好な界面を形成することが可能となる。
また、この構成により、障壁層がガリウム・ヒ素・リン層とアルミニウム・ガリウム・ヒ素層から成り、井戸層がインジウム・ガリウム・ヒ素から成るため、量子井戸活性層が全て3元材料から構成され、発光波長が750〜950ナノメートルである半導体発光素子においても、優れた発光特性を有する高出力半導体発光素子を再現性良く提供することが可能となる。
With this configuration, an average quantum well active layer as a whole can be obtained by using a barrier layer in which gallium / arsenic / phosphorus having tensile strain and unstrained aluminum / gallium / arsenic are combined with a well layer having compressive strain. The absolute amount of lattice strain can be appropriately reduced, generation of crystal defects due to strain relaxation can be suppressed, and a good interface can be formed on the bonding surface of each layer.
Also, with this configuration, the barrier layer is composed of a gallium / arsenic / phosphorus layer and an aluminum / gallium / arsenic layer, and the well layer is composed of indium / gallium / arsenic, so that the quantum well active layer is composed of ternary materials, Even in a semiconductor light emitting device having an emission wavelength of 750 to 950 nanometers, a high output semiconductor light emitting device having excellent light emission characteristics can be provided with good reproducibility.

本発明に係る半導体発光素子は、前記障壁層が、一層のガリウム・ヒ素・リン層と一層のアルミニウム・ガリウム・ヒ素層とを積層したものである構成を有している。   The semiconductor light emitting device according to the present invention has a configuration in which the barrier layer is formed by laminating one gallium / arsenic / phosphorus layer and one aluminum / gallium / arsenic layer.

この構成により、量子井戸活性層の格子歪を低減し、かつ、障壁層の材料であるガリウム・ヒ素・リンとアルミニウム・ガリウム・ヒ素の間に良好な界面が形成され易いことから、結晶品質の優れた歪量子井戸活性層を形成することができることとなる。   With this configuration, the lattice strain of the quantum well active layer is reduced, and a good interface is easily formed between gallium, arsenic, phosphorus and aluminum, gallium, arsenic, which are the materials of the barrier layer. An excellent strained quantum well active layer can be formed.

本発明に係る半導体発光素子は、前記障壁層が、一層のガリウム・ヒ素・リン層と一層のアルミニウム・ガリウム・ヒ素層と一層のガリウム・ヒ素・リン層とを積層したものである構成を有している。   The semiconductor light emitting device according to the present invention has a configuration in which the barrier layer is formed by stacking one gallium / arsenic / phosphorus layer, one aluminum / gallium / arsenic layer, and one gallium / arsenic / phosphorus layer. is doing.

本発明に係る半導体発光素子は、前記障壁層が、一層のアルミニウム・ガリウム・ヒ素層と一層のガリウム・ヒ素・リン層と一層のアルミニウム・ガリウム・ヒ素層とを積層したものである構成を有している。   The semiconductor light emitting device according to the present invention has a configuration in which the barrier layer is formed by laminating one aluminum / gallium / arsenic layer, one gallium / arsenic / phosphorus layer, and one aluminum / gallium / arsenic layer. is doing.

これらの構成により、井戸層を構成する材料と、障壁層を構成する何れかの材料との界面で結晶品質に相違が現れるような場合においても、優れた発光特性を得ることが可能となる。   With these configurations, even when there is a difference in crystal quality at the interface between the material constituting the well layer and any material constituting the barrier layer, excellent light emission characteristics can be obtained.

本発明は、井戸層と障壁層の材料としてともに3元材料を用い、量子井戸活性層の格子歪を低減し、かつ、結晶品質の優れた歪量子井戸活性層を形成することにより、安定性の高い優れた光学特性を有する半導体発光素子を提供することができるものである。   The present invention uses a ternary material as a material for both the well layer and the barrier layer, reduces the lattice strain of the quantum well active layer, and forms a strained quantum well active layer with excellent crystal quality. It is possible to provide a semiconductor light emitting device having excellent optical characteristics.

以下、本発明の実施の形態の半導体発光素子について、図面を用いて説明する。   Hereinafter, semiconductor light emitting devices according to embodiments of the present invention will be described with reference to the drawings.

本発明に係る半導体発光素子1は、図1に示すように、ガリウム・ヒ素(GaAs)基板11と、GaAs基板11上に堆積するn型のアルミニウム・ガリウム・ヒ素(AlGaAs)から成る下部クラッド層12と、下部クラッド層12上に堆積し、インジウム・ガリウム・ヒ素(InGaAs)井戸層131と障壁層132が交互に積層された量子井戸活性層13と、量子井戸活性層13上に堆積するp型のAlGaAsから成る上部クラッド層14と、上部クラッド層14上に堆積するコンタクト層15とを含む。なお、GaAs基板11の下面には第1の金属電極16が、コンタクト層15の上面には第2の金属電極17が形成される。   As shown in FIG. 1, a semiconductor light emitting device 1 according to the present invention includes a gallium arsenide (GaAs) substrate 11 and a lower cladding layer made of n-type aluminum gallium arsenide (AlGaAs) deposited on the GaAs substrate 11. 12, a quantum well active layer 13 deposited on the lower cladding layer 12, an indium gallium arsenide (InGaAs) well layer 131 and a barrier layer 132 alternately stacked, and a p deposited on the quantum well active layer 13. An upper clad layer 14 made of AlGaAs and a contact layer 15 deposited on the upper clad layer 14 is included. A first metal electrode 16 is formed on the lower surface of the GaAs substrate 11, and a second metal electrode 17 is formed on the upper surface of the contact layer 15.

そして、障壁層132は、ガリウム・ヒ素・リン(GaAsP)障壁層133とAlGaAs障壁層134の少なくとも各一層を含む構成である。   The barrier layer 132 includes at least one of a gallium / arsenic / phosphorus (GaAsP) barrier layer 133 and an AlGaAs barrier layer 134.

それぞれの膜厚は、InGaAs井戸層131が7nm、障壁層132を構成するGaAsP障壁層133およびAlGaAs障壁層134がそれぞれ4.5nmおよび7.5nmである。   The respective thicknesses of the InGaAs well layer 131 are 7 nm, and the GaAsP barrier layer 133 and the AlGaAs barrier layer 134 constituting the barrier layer 132 are 4.5 nm and 7.5 nm, respectively.

図2は半導体発光素子1のエネルギーギャップの説明図である。障壁層132を構成するGaAsP障壁層133とAlGaAs障壁層134のエネルギーギャップを略等しくすることは、半導体レーザが発生する光のスペクトルの半値幅を狭くして、コヒーレント性を向上することのみならず、量子井戸活性層全体の有効屈折率を高め、光の閉じ込め係数を高めるとともに、温度特性を向上させる点で望ましい。   FIG. 2 is an explanatory diagram of the energy gap of the semiconductor light emitting device 1. Making the energy gap between the GaAsP barrier layer 133 and the AlGaAs barrier layer 134 constituting the barrier layer 132 substantially equal not only reduces the half-value width of the spectrum of light generated by the semiconductor laser and improves coherency. It is desirable in terms of increasing the effective refractive index of the whole quantum well active layer, increasing the light confinement factor, and improving the temperature characteristics.

AlGaAsは、GaAsPと同等の大きさのバンドギャップを持たせることが可能な材料である上に、バンドオフセットも類似であることから、井戸層に閉じ込められるキャリアのエネルギーレベルを均一にすることが可能である。また、AlGaAsとGaAsPが隣接する構造では、他の構造、例えばAlGaAsのみで形成された量子井戸構造等、と比較して、フォトルミネッセンス特性において遜色ない特性が得られることから、良好な界面が形成されていることが確認される。よって、AlGaAsをGaAsPとともに障壁層に用いることにより、障壁層にGaAsPのみを用いる場合と比較して、遜色のない良好な結晶が形成されると推察される。   AlGaAs is a material that can have a band gap of the same size as GaAsP, and the band offset is similar, so that the energy level of carriers confined in the well layer can be made uniform. It is. In addition, in the structure where AlGaAs and GaAsP are adjacent to each other, compared with other structures such as a quantum well structure formed only of AlGaAs, a characteristic comparable to the photoluminescence characteristic is obtained, so that a good interface is formed. Is confirmed. Therefore, it is presumed that by using AlGaAs together with GaAsP for the barrier layer, excellent crystals that are inferior to those using only GaAsP for the barrier layer are formed.

AlGaAsとGaAsPが隣接する構造を持つ障壁層を750〜950nmの波長帯で発光する半導体レーザに採用した場合においては、GaAsPの引張歪層とAlGaAsの無(弱)歪層を取り混ぜることで、量子井戸活性層の平均歪が大きく引張側に偏ることを軽減することが可能となる。さらには、GaAsPの組成比またはGaAsPとAlGaAsの膜厚比を適宜調整することにより、平均歪を0%に設計することも可能である。なお、図2において、プラスマイナスの符号はGaAs基板に対する歪の向き(圧縮歪:+、引張歪:−)を示す。符号を示していない層はほぼ無歪である。   In the case where a barrier layer having a structure in which AlGaAs and GaAsP are adjacent to each other is employed in a semiconductor laser that emits light in the wavelength band of 750 to 950 nm, by mixing a tensile strained layer of GaAsP and a no (weak) strained layer of AlGaAs, It is possible to reduce the large average strain of the quantum well active layer from being biased toward the tension side. Furthermore, the average strain can be designed to be 0% by appropriately adjusting the composition ratio of GaAsP or the film thickness ratio of GaAsP and AlGaAs. In FIG. 2, the plus / minus sign indicates the strain direction (compression strain: +, tensile strain: −) with respect to the GaAs substrate. The layer not showing the sign is almost undistorted.

また、障壁層あるいは量子井戸活性層全体を3元材料のみで構成することにより、4元材料を用いた場合と比較して、各層の組成比および膜厚を所望の値となるように作製することが容易となり、半導体発光素子を再現性良く、安定して作製することが可能となる。   Further, by forming the entire barrier layer or the quantum well active layer with only the ternary material, the composition ratio and the film thickness of each layer are made to have desired values as compared with the case of using the quaternary material. Thus, the semiconductor light emitting device can be stably manufactured with good reproducibility.

以下に半導体発光素子1の製造工程の一例を説明する。
1) GaAs基板11の上面に有機金属気相成長(MOVPE)法を用いて、下部クラッド層12としてn型のAlGaAs層を堆積する。
2) 次に、下部クラッド層12上にAlGaAs障壁層134を堆積する。
3) AlGaAs障壁層134上にInGaAs井戸層131を堆積する。
4) InGaAs井戸層131上に障壁層132としてAlGaAs障壁層134とGaAsP障壁層133を堆積する。
Hereinafter, an example of a manufacturing process of the semiconductor light emitting element 1 will be described.
1) An n-type AlGaAs layer is deposited on the upper surface of the GaAs substrate 11 as the lower cladding layer 12 by using metal organic vapor phase epitaxy (MOVPE).
2) Next, an AlGaAs barrier layer 134 is deposited on the lower cladding layer 12.
3) An InGaAs well layer 131 is deposited on the AlGaAs barrier layer 134.
4) An AlGaAs barrier layer 134 and a GaAsP barrier layer 133 are deposited on the InGaAs well layer 131 as the barrier layer 132.

5) GaAsP障壁層133上にInGaAs井戸層131を堆積する。
6) 再びInGaAs井戸層131上に、AlGaAs障壁層134とGaAsP障壁層133が隣接する構造を持つ障壁層132を堆積する。
7) 再びInGaAs井戸層131と障壁層132を堆積する。
8) InGaAs井戸層131とGaAsP障壁層133を堆積する。
9) 上部クラッド層14としてp型のAlGaAs層を堆積する。
5) An InGaAs well layer 131 is deposited on the GaAsP barrier layer 133.
6) The barrier layer 132 having a structure in which the AlGaAs barrier layer 134 and the GaAsP barrier layer 133 are adjacent to each other is deposited on the InGaAs well layer 131 again.
7) Deposit InGaAs well layer 131 and barrier layer 132 again.
8) An InGaAs well layer 131 and a GaAsP barrier layer 133 are deposited.
9) A p-type AlGaAs layer is deposited as the upper cladding layer 14.

その後、p型のコンタクト層15を順次堆積し、最後にGaAs基板11の下面に第1の金属電極16を、コンタクト層15の上面に第2の金属電極17を形成し、半導体発光素子1が完成する。   Thereafter, a p-type contact layer 15 is sequentially deposited. Finally, a first metal electrode 16 is formed on the lower surface of the GaAs substrate 11 and a second metal electrode 17 is formed on the upper surface of the contact layer 15. Complete.

なお、各成長界面の成長条件や成長方法によっては、AlGaAs、GaAsPの最適な形成順序または組み合わせが異なる場合もあり得る。その場合は各装置において、所望の発光波長、および、好適なフォトルミネッセンス特性が得られる条件を選択する必要がある。   Note that the optimal formation order or combination of AlGaAs and GaAsP may differ depending on the growth conditions and growth method of each growth interface. In that case, in each apparatus, it is necessary to select a desired light emission wavelength and conditions for obtaining suitable photoluminescence characteristics.

また、図3のエネルギーギャップ図に示すように、障壁層としてフォトルミネッセンスの半値幅が狭いAlGaAsとGaAsPの組み合わせから成る構造(AlGaAs/GaAsP)、および、AlGaAsを2つのGaAsP層で挟んだ構造(GaAsP/AlGaAs/GaAsP)を用いることも可能である。なお、この例では、クラッド層としてInGaPを用いることで、酸化に弱いAl系材料の使用を極力抑えた構造としている。   Further, as shown in the energy gap diagram of FIG. 3, the barrier layer has a structure composed of a combination of AlGaAs and GaAsP having a narrow half-value width of photoluminescence (AlGaAs / GaAsP), and a structure in which AlGaAs is sandwiched between two GaAsP layers ( It is also possible to use (GaAsP / AlGaAs / GaAsP). In this example, by using InGaP as the cladding layer, a structure in which the use of an Al-based material that is vulnerable to oxidation is suppressed as much as possible.

また、図4のエネルギーギャップ図に示すように、障壁層としてクラッド層に隣接するAlGaAs、および、GaAsPを2層のAlGaAs層で挟んだ構造(AlGaAs/GaAsP/AlGaAs)を用いることも可能である。   As shown in the energy gap diagram of FIG. 4, it is also possible to use AlGaAs adjacent to the cladding layer as a barrier layer and a structure (AlGaAs / GaAsP / AlGaAs) in which GaAsP is sandwiched between two AlGaAs layers. .

以上説明したように、本発明の実施の形態に係る半導体発光素子は、井戸層と障壁層の材料としてともに3元材料を用い、量子井戸活性層の格子歪を低減し、かつ、結晶品質の優れた歪量子井戸活性層を形成することにより、安定性の高い優れた光学特性を有する750〜950nm帯の半導体発光素子として機能することができる。   As described above, the semiconductor light emitting device according to the embodiment of the present invention uses a ternary material as the material of the well layer and the barrier layer, reduces the lattice strain of the quantum well active layer, and has a crystal quality. By forming an excellent strained quantum well active layer, it can function as a 750-950 nm band semiconductor light emitting device having excellent optical characteristics with high stability.

なお、本願の目的は、量子井戸活性層の障壁層として、3元材料であるAlGaAsとGaAsPを組み合わせて用いることで、井戸層の格子歪を緩和し、かつ結晶品質に優れた量子井戸活性層を安定して作製する点にある。従って、井戸層については、一定の歪が加えられる材料を用いるのであれば、3元材料にこだわるものではなく、圧縮歪を持つ材料であれば、例えば4元材料であるAlInGaAsまたはInGaAsPであっても、同様の効果が期待できる。   The object of the present application is to use a combination of AlGaAs and GaAsP, which are ternary materials, as a barrier layer of the quantum well active layer, thereby relaxing the lattice strain of the well layer and excellent in crystal quality. Is in a stable production. Therefore, the well layer is not limited to a ternary material if a material to which a certain strain is applied is used, and a material having a compressive strain is, for example, AlInGaAs or InGaAsP which is a quaternary material. The same effect can be expected.

以上のように、本発明に係る半導体発光素子は、750〜950nm帯において優れた光学特性を有するという効果を有し、レーザ加工機等において有効である。   As described above, the semiconductor light emitting device according to the present invention has an effect of having excellent optical characteristics in the 750 to 950 nm band, and is effective in a laser processing machine or the like.

本発明に係る半導体発光素子の各層の組成図Composition diagram of each layer of semiconductor light emitting device according to the present invention 本発明に係る半導体発光素子のエネルギーギャップを示す図The figure which shows the energy gap of the semiconductor light-emitting device based on this invention 本発明に係る半導体発光素子のエネルギーギャップを示す図The figure which shows the energy gap of the semiconductor light-emitting device based on this invention 本発明に係る半導体発光素子のエネルギーギャップを示す図The figure which shows the energy gap of the semiconductor light-emitting device based on this invention 井戸層厚と量子井戸活性層の発光波長の関係を示す図Diagram showing the relationship between well layer thickness and emission wavelength of quantum well active layer 歪量と量子井戸活性層の関係を示す図Diagram showing the relationship between strain and quantum well active layer

符号の説明Explanation of symbols

1 半導体発光素子
11 ガリウム・ヒ素(GaAs)基板
12 下部クラッド層
13 量子井戸活性層
14 上部クラッド層
15 コンタクト層
16 第1の金属電極
17 第2の金属電極
131 インジウム・ガリウム・ヒ素(InGaAs)井戸層
132 障壁層
133 ガリウム・ヒ素・リン(GaAsP)障壁層
134 アルミニウム・ガリウム・ヒ素(AlGaAs)障壁層
DESCRIPTION OF SYMBOLS 1 Semiconductor light emitting element 11 Gallium arsenic (GaAs) substrate 12 Lower clad layer 13 Quantum well active layer 14 Upper clad layer 15 Contact layer 16 First metal electrode 17 Second metal electrode 131 Indium gallium arsenide (InGaAs) well Layer 132 Barrier layer 133 Gallium / Arsenic / Phosphorus (GaAsP) barrier layer 134 Aluminum / Gallium / Arsenic (AlGaAs) barrier layer

Claims (4)

ガリウム・ヒ素基板と、
前記ガリウム・ヒ素基板上に堆積する下部クラッド層と、
前記下部クラッド層上に堆積し、障壁層と井戸層が交互に積層された量子井戸活性層と、
前記量子井戸活性層上に堆積する上部クラッド層と、
前記上部クラッド層上に堆積するコンタクト層とを含む半導体発光素子であって、
前記井戸層が、前記ガリウム・ヒ素基板に対して圧縮歪を持つインジウム・ガリウム・ヒ素から成り、
前記障壁層が、前記ガリウム・ヒ素基板に対して引張歪を持つガリウム・ヒ素・リン層と、前記ガリウム・ヒ素基板に対して無歪のアルミニウム・ガリウム・ヒ素層から成り、
前記ガリウム・ヒ素・リン層と前記アルミニウム・ガリウム・ヒ素層のエネルギーギャップが等しく、
発光波長が750〜950ナノメートルである半導体発光素子。
A gallium arsenide substrate,
A lower cladding layer deposited on the gallium arsenide substrate;
A quantum well active layer deposited on the lower cladding layer, wherein barrier layers and well layers are alternately stacked;
An upper cladding layer deposited on the quantum well active layer;
A semiconductor light emitting device including a contact layer deposited on the upper cladding layer,
The well layer is made of indium gallium arsenide having a compressive strain with respect to the gallium arsenide substrate ;
The barrier layer, Ri consists gallium arsenide phosphide layer having a tensile strain with respect to the gallium arsenide substrate, an aluminum gallium arsenide layer of unstrained with respect to the gallium arsenide substrate,
The energy gap between the gallium / arsenic / phosphorus layer and the aluminum / gallium / arsenic layer is equal,
A semiconductor light emitting device having an emission wavelength of 750 to 950 nanometers .
前記障壁層が、一層のガリウム・ヒ素・リン層と一層のアルミニウム・ガリウム・ヒ素層とを積層したものである請求項1に記載の半導体発光素子。2. The semiconductor light emitting device according to claim 1, wherein the barrier layer is formed by stacking a single layer of a gallium / arsenic / phosphorus layer and a single layer of an aluminum / gallium / arsenic layer. 前記障壁層が、一層のガリウム・ヒ素・リン層と一層のアルミニウム・ガリウム・ヒ素層と一層のガリウム・ヒ素・リン層とを積層したものである請求項1に記載の半導体発光素子。2. The semiconductor light emitting device according to claim 1, wherein the barrier layer is formed by stacking one gallium / arsenic / phosphorus layer, one aluminum / gallium / arsenic layer, and one gallium / arsenic / phosphorus layer. 前記障壁層が、一層のアルミニウム・ガリウム・ヒ素層と一層のガリウム・ヒ素・リン層と一層のアルミニウム・ガリウム・ヒ素層とを積層したものである請求項1に記載の半導体発光素子。2. The semiconductor light emitting device according to claim 1, wherein the barrier layer is formed by stacking one aluminum / gallium / arsenic layer, one gallium / arsenic / phosphorus layer, and one aluminum / gallium / arsenic layer.
JP2006015987A 2006-01-25 2006-01-25 Semiconductor light emitting device Active JP4554526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006015987A JP4554526B2 (en) 2006-01-25 2006-01-25 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006015987A JP4554526B2 (en) 2006-01-25 2006-01-25 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2007201040A JP2007201040A (en) 2007-08-09
JP4554526B2 true JP4554526B2 (en) 2010-09-29

Family

ID=38455342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006015987A Active JP4554526B2 (en) 2006-01-25 2006-01-25 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4554526B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11728458B2 (en) 2021-01-15 2023-08-15 Kabushiki Kaisha Toshiba Semiconductor light-emitting device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5271027B2 (en) * 2008-10-10 2013-08-21 アンリツ株式会社 Semiconductor light emitting device
JP5534877B2 (en) * 2010-03-15 2014-07-02 古河電気工業株式会社 Optical semiconductor device
CN103548220B (en) * 2011-03-17 2015-12-09 菲尼萨公司 Decompose the laser with indium INGaP barrier layer and INGaAs (P) quantum well reduced
CN103457158A (en) * 2012-05-31 2013-12-18 山东浪潮华光光电子股份有限公司 TM-polarization GaAsP/GaInP active-region 808nm quantum-well laser
JP6213729B2 (en) * 2013-10-18 2017-10-18 富士ゼロックス株式会社 Surface emitting semiconductor laser, surface emitting semiconductor laser device, and optical transmission device
TWI742714B (en) * 2019-06-11 2021-10-11 全新光電科技股份有限公司 Semiconductor laser diode
CN110197993B (en) * 2019-06-17 2024-01-26 威科赛乐微电子股份有限公司 VCSEL chip with high recombination efficiency and manufacturing method thereof
JP7319618B2 (en) * 2020-08-12 2023-08-02 株式会社東芝 semiconductor light emitting device
JP2022140943A (en) 2021-03-15 2022-09-29 株式会社東芝 Semiconductor light-emitting device and optical coupling device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183614A (en) * 1993-12-24 1995-07-21 Fujikura Ltd Distorted multiple quantum well optical device
JPH07235730A (en) * 1994-02-22 1995-09-05 Matsushita Electric Ind Co Ltd Distortion multiquantum well structure, its manufacture and semiconductor laser
JP2002319742A (en) * 2001-04-20 2002-10-31 Fuji Photo Film Co Ltd Second harmonic generator
JP2004207724A (en) * 2002-12-20 2004-07-22 Osram Opto Semiconductors Gmbh Vertical emission type semiconductor laser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183614A (en) * 1993-12-24 1995-07-21 Fujikura Ltd Distorted multiple quantum well optical device
JPH07235730A (en) * 1994-02-22 1995-09-05 Matsushita Electric Ind Co Ltd Distortion multiquantum well structure, its manufacture and semiconductor laser
JP2002319742A (en) * 2001-04-20 2002-10-31 Fuji Photo Film Co Ltd Second harmonic generator
JP2004207724A (en) * 2002-12-20 2004-07-22 Osram Opto Semiconductors Gmbh Vertical emission type semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11728458B2 (en) 2021-01-15 2023-08-15 Kabushiki Kaisha Toshiba Semiconductor light-emitting device

Also Published As

Publication number Publication date
JP2007201040A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
JP4554526B2 (en) Semiconductor light emitting device
US8000366B2 (en) Laser diode with high indium active layer and lattice matched cladding layer
KR100689782B1 (en) Semiconductor light-emitting element and method for manufacturing the same
JP4922036B2 (en) Quantum dot semiconductor device
US7196347B2 (en) Semiconductor light emitting device
US8358673B2 (en) Strain balanced laser diode
KR20110106879A (en) Mqw laser structure comprising plural mqw regions
TWI515984B (en) Vertical resonant surface luminous lasers
JP2007299791A (en) Semiconductor optical element
US20130329760A1 (en) Semiconductor lasers with indium containing cladding layers
JP5475398B2 (en) Semiconductor light emitting device
Liang et al. Improved performance of GaN-based blue laser diodes using asymmetric multiple quantum wells without the first quantum barrier layer
JP4641230B2 (en) Optical semiconductor device
WO2020145025A1 (en) Semiconductor light emitting element and method for manufacturing semiconductor light emitting element
JP2009059797A (en) Nitride semiconductor laser device
JP2007258269A (en) Semiconductor optical element
JP5026115B2 (en) Quantum well structure, semiconductor laser, spectroscopic measurement apparatus, and method for manufacturing quantum well structure
JP2008103498A (en) Light-emitting element
JP2011023493A (en) Semiconductor laser
JP3771925B2 (en) Semiconductor quantum dot structure and manufacturing method thereof
JP2004235628A (en) InP-BASED HIGH-TEMPERATURE LASER HAVING InAsP QUANTUM WELL LAYER AND Gax(AlIn) l-xP BARRIER LAYER
JPH0794822A (en) Semiconductor light emitting element
JP2007250896A (en) Semiconductor optical element
JP2006339311A (en) Semiconductor laser
JPH053367A (en) Semiconductor laser

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4554526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250