JP4552011B2 - Endoscope - Google Patents

Endoscope Download PDF

Info

Publication number
JP4552011B2
JP4552011B2 JP2005022148A JP2005022148A JP4552011B2 JP 4552011 B2 JP4552011 B2 JP 4552011B2 JP 2005022148 A JP2005022148 A JP 2005022148A JP 2005022148 A JP2005022148 A JP 2005022148A JP 4552011 B2 JP4552011 B2 JP 4552011B2
Authority
JP
Japan
Prior art keywords
end portion
distal end
light beam
tip
endoscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005022148A
Other languages
Japanese (ja)
Other versions
JP2006204635A (en
Inventor
厚夫 宮川
進 寺川
圭一 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Hamamatsu University School of Medicine NUC
Original Assignee
Shizuoka University NUC
Hamamatsu University School of Medicine NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC, Hamamatsu University School of Medicine NUC filed Critical Shizuoka University NUC
Priority to JP2005022148A priority Critical patent/JP4552011B2/en
Publication of JP2006204635A publication Critical patent/JP2006204635A/en
Application granted granted Critical
Publication of JP4552011B2 publication Critical patent/JP4552011B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Description

本発明は内視鏡に係り、特に、観察対象の立体形状(3次元形状)を計測することができる医療用または工業用として利用可能な内視鏡に関する。   The present invention relates to an endoscope, and more particularly, to an endoscope that can be used for medical use or industrial use that can measure a three-dimensional shape (three-dimensional shape) of an observation target.

内視鏡としては、身体内の胃、腸、気管支、肺、膀胱、及び腎臓等の器官を観察、診断、または治療する医療用内視鏡、及び各種の機械装置や設備における間隙やパイプの内側、自然界における洞窟内の割れ目や隙間等の狭い場所や観察困難な場所を観察、または操作する工業用内視鏡が知られている。   Endoscopes include medical endoscopes that observe, diagnose, or treat organs such as the stomach, intestines, bronchi, lungs, bladder, and kidneys in the body, and gaps and pipes in various mechanical devices and equipment. 2. Description of the Related Art Industrial endoscopes are known that observe or manipulate narrow places such as cracks and gaps in caves in nature and places that are difficult to observe.

このような内視鏡は、一般に単眼鏡であるため、観察対象を立体的に観察することができないだけでなく、観察対象の立体形状を計測することもできない。従来の内視鏡では、内視鏡の撮影視野の大きさ及び内視鏡と観察対象との間の距離を推測すると共に、内視鏡のピントのぼけ具合や内視鏡を移動した際の画像の動き等を考慮することで、観察対象のおおよその立体形状を推測できるに過ぎない。   Since such an endoscope is generally a monocular, it cannot not only observe the observation object in three dimensions but also cannot measure the three-dimensional shape of the observation object. In a conventional endoscope, the size of the field of view of the endoscope and the distance between the endoscope and the observation target are estimated, and the degree of focus blur of the endoscope and the movement of the endoscope are estimated. By considering the movement of the image and the like, it is only possible to estimate the approximate three-dimensional shape of the observation target.

また、内視鏡とし、2台のカメラ及びイメージファイバ等が適度な間隔で配置されて観察対象の立体視が可能とされた立体内視鏡、または3次元内視鏡等と呼ばれる内視鏡が開発されている。   An endoscope called a three-dimensional endoscope or a three-dimensional endoscope or the like in which two cameras, image fibers, and the like are arranged at an appropriate interval to enable stereoscopic viewing of an observation target. Has been developed.

しかしながら、この立体内視鏡では、観察対象の立体視により観察対象表面の凹凸を捉えることは可能であるが、内視鏡と観察対象との間の距離を計測することができないため、観察対象の立体形状を計測することができない。この問題を解決するために、観察対象との間の距離を計測することができる内視鏡が開発されている(例えば、特許文献1及び特許文献2参照)。   However, with this stereoscopic endoscope, although it is possible to capture the unevenness of the surface of the observation target by stereoscopic viewing of the observation target, it is impossible to measure the distance between the endoscope and the observation target. The three-dimensional shape cannot be measured. In order to solve this problem, endoscopes that can measure the distance to the observation target have been developed (see, for example, Patent Document 1 and Patent Document 2).

特許文献1の内視鏡では、1つの測定光(スポット光)を対象物上に投影し、この測定光を2台のカメラで撮影することで、三角測量の原理を応用して、内視鏡先端と対象物上の測定光との距離を演算している。   In the endoscope of Patent Document 1, one measurement light (spot light) is projected onto an object, and this measurement light is photographed by two cameras, thereby applying the principle of triangulation to the endoscope. The distance between the mirror tip and the measurement light on the object is calculated.

また、特許文献2の内視鏡では、細いスコープの先端に投影系及び撮影系を設置し、投影系から細かい縞模様を観察個所上に投影すると共に、この縞模様を1台の撮影系で撮影することで、縞模様のずれから、三角測量の原理を応用して、観察個所の立体形状を計測するようにしている。   In the endoscope of Patent Document 2, a projection system and an imaging system are installed at the tip of a thin scope, and a fine stripe pattern is projected from the projection system onto an observation point. By taking a picture, the principle of triangulation is applied from the deviation of the stripe pattern to measure the three-dimensional shape of the observation site.

さらに、立体形状を計測する機器としては、所謂3次元レーザスキャナ(レーザ式3次元スキャナ)が知られている。この3次元レーザスキャナは、計測対象へ細いレーザビームを照射し、計測対象上のレーザスポットの位置(レーザビームの照射位置)をCCD撮像素子やポジショニングセンサ等で検出する。これにより、レーザビームの照射角度及びレーザスポットの検出位置から、三角測量の原理を用いて、レーザスポットの空間座標を計算する。そして、レーザビームをXYの2方向へ走査することで、計測対象の立体形状を計測する。
特許2875832号公報 特開平2−297515号公報
Furthermore, a so-called three-dimensional laser scanner (laser type three-dimensional scanner) is known as a device for measuring a three-dimensional shape. This three-dimensional laser scanner irradiates a measurement target with a thin laser beam, and detects the position of the laser spot on the measurement target (laser beam irradiation position) with a CCD image sensor, a positioning sensor, or the like. Thereby, the spatial coordinates of the laser spot are calculated from the irradiation angle of the laser beam and the detection position of the laser spot using the principle of triangulation. Then, the three-dimensional shape to be measured is measured by scanning the laser beam in two directions XY.
Japanese Patent No. 2875832 JP-A-2-297515

しかしながら、特許文献1の内視鏡では、内視鏡の先端縁に2台のカメラを配設しているため、三角測量を実施するために重要な基線長(2台のカメラ間の距離)を長くすることは困難である。このため、内視鏡の先端と対象物との間の間隔が大きくなると、カメラの解像力による制限もあって、対象物の立体形状の正確な計測は困難である。   However, in the endoscope of Patent Document 1, since two cameras are disposed at the distal end of the endoscope, the base line length (distance between the two cameras) important for performing triangulation It is difficult to lengthen. For this reason, when the interval between the tip of the endoscope and the object becomes large, accurate measurement of the three-dimensional shape of the object is difficult due to the limitation due to the resolution of the camera.

さらに、内視鏡の先端縁から測定光を照射するイメージガイド(グラスファイバの束)の太さが、内視鏡先端の太さよりも小さい範囲に制限される。このため、イメージガイドの測定光出射側に測定光投影レンズが設けられていても、対象物へ測定光を投影できる範囲が狭く、対象物の立体形状を計測できる範囲が狭い。   Furthermore, the thickness of the image guide (bundle of glass fibers) that irradiates the measurement light from the distal end edge of the endoscope is limited to a range smaller than the thickness of the endoscope distal end. For this reason, even if the measurement light projection lens is provided on the measurement light emission side of the image guide, the range in which the measurement light can be projected onto the object is narrow, and the range in which the three-dimensional shape of the object can be measured is narrow.

また、特許文献2の内視鏡では、細いスコープの先端縁に投影系及び撮影系を設置しているため、三角測量における基線長(投影系と撮影系との間の距離)を長くすることは困難である。このため、実用的なスコープ先端と観察個所との間の間隔は、2.5cm程度に留まると記載されており、スコープ先端と観察個所との間の間隔が大きくなると、観察個所の立体形状を高精度に計測できない、という問題が生じる。   Further, in the endoscope of Patent Document 2, since the projection system and the imaging system are installed at the distal end edge of the thin scope, the base line length (distance between the projection system and the imaging system) in the triangulation is increased. It is difficult. For this reason, it is described that the distance between the practical scope tip and the observation point is about 2.5 cm, and when the distance between the scope tip and the observation point becomes large, the three-dimensional shape of the observation point is changed. There arises a problem that measurement cannot be performed with high accuracy.

さらに、投影系へ光を出射する光ファイバの太さが、スコープの先端の太さよりも小さい範囲に制限される。このため、光ファイバの光出射側に集光レンズが設けられていても、縞模様を投影できる範囲が狭く、観察個所の立体形状を計測できる範囲が狭い。   Furthermore, the thickness of the optical fiber that emits light to the projection system is limited to a range that is smaller than the thickness of the tip of the scope. For this reason, even if the condensing lens is provided on the light emitting side of the optical fiber, the range in which the stripe pattern can be projected is narrow, and the range in which the three-dimensional shape of the observation location can be measured is narrow.

また、上記3次元レーザスキャナでは、三角測量における基線長(計測対象へのレーザビームの照射原点とレーザスポットの検出位置との間の距離)が長くされているため、建物や構造物から数cm程度の小さな物品までの広い範囲での立体形状を高精度に計測できる。しかしながら、3次元レーザスキャナは、レーザビームをXYの2方向へ走査する必要があるため、レーザビームを走査する機構のサイズが大きく、このままでは内視鏡の細いチューブ状の先端部内に設置することができない。   Further, in the above three-dimensional laser scanner, the baseline length in triangulation (the distance between the irradiation origin of the laser beam on the measurement target and the detection position of the laser spot) is increased, so that it is several cm from the building or structure. Solid shapes in a wide range up to small articles can be measured with high accuracy. However, since the three-dimensional laser scanner needs to scan the laser beam in two directions of XY, the size of the mechanism for scanning the laser beam is large, and if it is left as it is, it should be installed in the thin tube-shaped tip of the endoscope. I can't.

本発明は、上記問題点を解決するためになされたもので、観察対象の立体形状を広い範囲で計測できると共に光線の走査機構を小型化して挿入部の先端部に設置できる内視鏡を提供することを目的とする。   The present invention has been made to solve the above problems, and provides an endoscope that can measure a three-dimensional shape of an observation object in a wide range and can be installed at the distal end of an insertion portion by downsizing a light beam scanning mechanism. The purpose is to do.

上記目的を達成するために、本発明の内視鏡は、基端部と、前記基端部に対して周方向に回転可能に設けられると共に側面に光透過窓が形成された筒状の先端部と、を備えた挿入部と、前記先端部に収納され、入射された光線を前記先端部の回転方向と交差する方向に走査するように前記光透過窓を介して観察対象上に照射する走査手段と、前記先端部に収納され、前記観察対象から反射されかつ前記光透過窓を介して入射された光線を検出する検出手段と、前記検出手段の検出結果に基づいて、前記観察対象上の光線照射位置の座標を算出する算出手段と、を備えている。   In order to achieve the above object, an endoscope according to the present invention has a base end portion and a cylindrical tip end that is provided so as to be rotatable in the circumferential direction with respect to the base end portion and has a light transmission window formed on a side surface. And an insertion portion provided with a portion, and is irradiated on the observation target through the light transmission window so as to scan the incident light beam in a direction intersecting with the rotation direction of the tip portion. Based on the detection result of the detection means, scanning means, detection means for detecting a light beam stored in the tip, reflected from the observation object and incident through the light transmission window, on the observation object Calculating means for calculating the coordinates of the light beam irradiation position.

なお、走査手段へ入射する光線を照射する光源は、挿入部の先端部または基端部、または挿入部以外に設けることができる。   In addition, the light source which irradiates the light which injects into a scanning means can be provided other than the front-end | tip part or base end part of an insertion part, or an insertion part.

本発明では、挿入部の筒状の先端部側面に光透過窓が形成されており、先端部に収納された走査手段が入射された光線を光透過窓を介して観察対象上に照射し、先端部に収納された検出手段が観察対象から反射されかつ光透過窓を介して入射された光線を検出し、算出手段が検出手段の検出結果に基づいて観察対象上の光線照射位置の座標を算出する。さらに、観察対象上に照射される光線が走査されて、算出手段による観察対象上の光線照射位置の座標が算出されることで、観察対象の立体形状が計測される。   In the present invention, a light transmission window is formed on the side surface of the cylindrical tip portion of the insertion portion, and the scanning means accommodated in the tip portion irradiates the observation target object through the light transmission window, The detection means housed at the tip detects the light beam reflected from the observation object and incident through the light transmission window, and the calculation means calculates the coordinates of the light irradiation position on the observation object based on the detection result of the detection means. calculate. Furthermore, the light beam irradiated onto the observation target is scanned, and the coordinates of the light irradiation position on the observation target are calculated by the calculation means, whereby the three-dimensional shape of the observation target is measured.

ここで、観察対象上に照射される光線が、先端部が周方向に回転されて先端部の周方向(回転方向)に走査されると共に、走査手段によって先端部の回転方向と交差する方向に走査されるため、観察対象上へ光線を広い範囲で2次元状に走査でき、観察対象の立体形状を広い範囲で計測できる。   Here, the light beam irradiated onto the observation target is scanned in the circumferential direction (rotational direction) of the distal end portion by rotating the distal end portion in the circumferential direction, and in a direction crossing the rotational direction of the distal end portion by the scanning unit. Since scanning is performed, the light beam can be scanned two-dimensionally over a wide range, and the three-dimensional shape of the observation target can be measured over a wide range.

さらに、上述の如く、先端部の周方向への光線の走査が先端部の周方向への回転により行われると共に、先端部の回転方向の交差方向(直線方向)への光線の走査のみが走査手段によって行われる。このため、光線の走査機構を小型化できて先端部に設置することができる。   Further, as described above, the scanning of the light beam in the circumferential direction of the tip portion is performed by the rotation of the tip portion in the circumferential direction, and only the scanning of the light beam in the intersecting direction (linear direction) of the rotation direction of the tip portion is performed. By means. For this reason, the light beam scanning mechanism can be miniaturized and installed at the tip.

しかも、走査手段と検出手段とを先端部の回転軸において離間して配置することができ、三角測量における基線長を長くできて、観察対象の立体形状を高精度に計測できる。   In addition, the scanning unit and the detection unit can be arranged apart from each other on the rotation axis of the tip, the base line length in triangulation can be increased, and the three-dimensional shape of the observation target can be measured with high accuracy.

なお、本発明の内視鏡の走査手段は、先端部の回転軸と交差する軸を中心に回動可能に設けられた回動ミラー、先端部の回転軸と交差する軸を中心に回転可能に設けられたポリゴンミラー、及び凸面状反射面または凹面状反射面を備え先端部の回転軸と交差する方向に往復動可能に設けられた往復動ミラーのいずれかで構成することができる。   The endoscope scanning means of the present invention can be rotated around an axis that intersects with the rotation axis of the distal end, a rotating mirror that is provided so as to be rotatable about an axis that intersects the rotational axis of the distal end. And a reciprocating mirror provided with a convex reflecting surface or a concave reflecting surface and capable of reciprocating in the direction intersecting the rotation axis of the tip.

以上説明したように本発明の内視鏡によれば、観察対象の立体形状を広い範囲で計測できると共に光線の走査機構を小型化して挿入部の先端部に設置できる、という効果が得られる。   As described above, according to the endoscope of the present invention, it is possible to measure the three-dimensional shape of the observation target in a wide range, and to obtain an effect that the light beam scanning mechanism can be downsized and installed at the distal end portion of the insertion portion.

次に、本発明の実施の形態について説明する。図1には、本発明の実施の形態の内視鏡100の内部構成が断面図にて示されている。   Next, an embodiment of the present invention will be described. FIG. 1 is a sectional view showing an internal configuration of an endoscope 100 according to an embodiment of the present invention.

内視鏡100には、長尺筒状の挿入部102、及びこの挿入部102の基端部102Bの基端側に接続された本体部104が設けられている。基端部102Bの先端側には、基端部102Bに対して周方向に回転可能に先端部102Aが設けられている。挿入部102の先端部102Aの側面には、先端部102Aの長さ方向に延びた透明な光透過窓103が形成されており、先端部102Aには、光透過窓103を介して観察対象(測定対象)106上へ光線108を走査しつつ照射(投影)する走査機構としての走査装置110、及び観察対象106から反射されて光透過窓103を介して入射された光線108を検出する検出手段としての位置検出装置112が収納されている。   The endoscope 100 is provided with a long cylindrical insertion portion 102 and a main body portion 104 connected to the proximal end side of the proximal end portion 102B of the insertion portion 102. A distal end portion 102A is provided on the distal end side of the proximal end portion 102B so as to be rotatable in the circumferential direction with respect to the proximal end portion 102B. A transparent light transmission window 103 extending in the length direction of the distal end portion 102A is formed on the side surface of the distal end portion 102A of the insertion portion 102, and the distal end portion 102A is an object to be observed through the light transmission window 103 ( A scanning device 110 as a scanning mechanism that irradiates (projects) the light beam 108 onto the measurement target 106, and a detection unit that detects the light beam 108 reflected from the observation target 106 and incident through the light transmission window 103. The position detecting device 112 is stored.

走査装置110には、走査手段を構成する回動ミラーとしての微小な平板状の微小鏡116が設けられており、微小鏡116の表面(平面状反射面116A)は光透過窓103を介して挿入部102の先端部102A外側へ向けられている。図2に示す如く、微小鏡116は先端部102Aの軸方向に対し傾斜配置されており、微小鏡116は表面に平行でかつ先端部102Aの軸と直交する方向を回動中心軸として往復回動自在に支持されている。微小鏡116の裏面には走査手段を構成するカム機構120の一端が固定されており、カム機構120の他端は、走査手段を構成するリニアアクチュエータ122に回動自在に接続されている。リニアアクチュエータ122には、ピエゾアクチュエータ、リニア超音波モータ、又はボイスコイルが用いられており、リニアアクチュエータ122が先端部102Aの軸方向に平行に直線運動(往復動)することで、カム機構120が回動されて微小鏡116が往復回動され、これによって、光線108が観察対象106上に先端部102Aの軸方向に沿って走査される。なお、微小鏡116にカム機構120及びリニアアクチュエータ122を接続せずに、微小鏡116に走査手段を構成する小型のモータや超音波モータを直接接続することで、微小鏡116を回動させる構成としてもよい。   The scanning device 110 is provided with a minute flat plate-like micromirror 116 as a rotating mirror constituting the scanning means, and the surface of the micromirror 116 (planar reflecting surface 116A) is interposed via the light transmission window 103. The insertion portion 102 is directed outward from the distal end portion 102A. As shown in FIG. 2, the micromirror 116 is inclined with respect to the axial direction of the tip portion 102A, and the micromirror 116 is reciprocated around a rotation center axis in a direction parallel to the surface and perpendicular to the axis of the tip portion 102A. It is supported freely. One end of a cam mechanism 120 that constitutes a scanning unit is fixed to the back surface of the micromirror 116, and the other end of the cam mechanism 120 is rotatably connected to a linear actuator 122 that constitutes the scanning unit. As the linear actuator 122, a piezo actuator, a linear ultrasonic motor, or a voice coil is used. When the linear actuator 122 linearly moves (reciprocates) parallel to the axial direction of the distal end portion 102A, the cam mechanism 120 is The micromirror 116 is reciprocally rotated by the rotation, whereby the light beam 108 is scanned on the observation target 106 along the axial direction of the distal end portion 102A. A configuration in which the micromirror 116 is rotated by directly connecting a small motor or an ultrasonic motor constituting a scanning unit to the micromirror 116 without connecting the cam mechanism 120 and the linear actuator 122 to the micromirror 116. It is good.

挿入部102の先端部102Aは、挿入部102の基端部102Bに対して周方向へ回転可能に接続されており、挿入部102の先端部102Aと基端部102Bとの接続部分には、走査装置110を構成する回転機構128が設けられている。回転機構128には、中空軸構造のモータ、又は超音波モータが用いられている。   The distal end portion 102A of the insertion portion 102 is connected to the proximal end portion 102B of the insertion portion 102 so as to be rotatable in the circumferential direction, and the connection portion between the distal end portion 102A and the proximal end portion 102B of the insertion portion 102 includes A rotation mechanism 128 that constitutes the scanning device 110 is provided. As the rotation mechanism 128, a hollow shaft motor or an ultrasonic motor is used.

位置検出装置112は、走査装置110の走査手段(微小鏡116、カム機構120及びリニアアクチュエータ122)よりも挿入部102の基端部102B側に配置されており、光入射側が光透過窓103を介して挿入部102の先端部102A外側へ向けられた撮像レンズ(撮影レンズ)124、及び撮像レンズ124の光出射側へ配置された位置検出素子126を有している。位置検出素子126には、エリアタイプの2次元CCD撮像素子を用いることもできるが、画素が先端部102Aの軸方向に沿って配列されたリニアタイプの1次元CCD撮像素子、CMOS素子、ポジションセンサ、又は入射角検知センサを用いることができる。   The position detection device 112 is disposed on the proximal end portion 102B side of the insertion portion 102 with respect to the scanning means (the micromirror 116, the cam mechanism 120, and the linear actuator 122) of the scanning device 110, and the light incident side includes the light transmission window 103. An imaging lens (photographing lens) 124 that is directed outward from the distal end portion 102A of the insertion portion 102, and a position detection element 126 that is disposed on the light exit side of the imaging lens 124. As the position detection element 126, an area type two-dimensional CCD image pickup element can be used, but a linear type one-dimensional CCD image pickup element, a CMOS element, and a position sensor in which pixels are arranged along the axial direction of the distal end portion 102A. Alternatively, an incident angle detection sensor can be used.

なお、図2とは反対に、位置検出装置112を挿入部102(先端部102A)の先端側に、走査装置110の走査手段を挿入部102(先端部102A)の基端側に配置することもできる。   2, the position detection device 112 is disposed on the distal end side of the insertion portion 102 (the distal end portion 102A), and the scanning unit of the scanning device 110 is disposed on the proximal end side of the insertion portion 102 (the distal end portion 102A). You can also.

本体部104内には、高輝度の光を発光する半導体レーザ等の光源130が設けられている。光源130の光出射側には集光レンズ132が配置されており、集光レンズ132の光出射側には光ファイバ134の基端134Bが配置されている。光ファイバ134は、挿入部102内を挿通されて、先端134Aが微小鏡116の近傍に配置されており、光ファイバ134の先端134Aと微小鏡116との間には微小な照射レンズ(投影レンズ)118が配置されている。   A light source 130 such as a semiconductor laser that emits high-luminance light is provided in the main body 104. A condensing lens 132 is disposed on the light exit side of the light source 130, and a base end 134 </ b> B of the optical fiber 134 is disposed on the light exit side of the condensing lens 132. The optical fiber 134 is inserted through the insertion portion 102, and a tip 134 </ b> A is disposed in the vicinity of the micromirror 116. A minute irradiation lens (projection lens) is provided between the tip 134 </ b> A of the optical fiber 134 and the micromirror 116. ) 118 is arranged.

本体部104内には、算出手段としての制御部136が設けられており、制御部136は、光源130に接続されると共に、挿入部102内を介してリニアアクチュエータ122、位置検出素子126及び回転機構128に接続されている。さらに、制御部136には、本体部104外に設けられたコントローラ138及びモニタ140に接続されている。   A control unit 136 serving as a calculation unit is provided in the main body unit 104. The control unit 136 is connected to the light source 130, and the linear actuator 122, the position detection element 126, and the rotation through the insertion unit 102. It is connected to the mechanism 128. Further, the control unit 136 is connected to a controller 138 and a monitor 140 provided outside the main body unit 104.

以上の構成の内視鏡100では、コントローラ138が起動操作されて内視鏡100が起動されると共に、挿入部102が観察すべき物体内へ挿入されて挿入部102の先端部102A周囲が観察対象106に対向される。   In the endoscope 100 having the above configuration, the controller 138 is activated to activate the endoscope 100, and the insertion portion 102 is inserted into an object to be observed, and the periphery of the distal end portion 102A of the insertion portion 102 is observed. It faces the object 106.

コントローラ138が作動操作されると、制御部136から制御信号がリニアアクチュエータ122及び回転機構128へ送られることで、リニアアクチュエータ122の直線運動位置及び回転機構128の回転位置(挿入部102の先端部102Aの基端部102Bに対する回転位置)が制御されて、微小鏡116表面の先端部102A軸方向(回転軸方向)に対する傾斜角度及び先端部102A周方向(回転方向)における回転位置が制御される。   When the controller 138 is operated, a control signal is sent from the control unit 136 to the linear actuator 122 and the rotation mechanism 128, so that the linear motion position of the linear actuator 122 and the rotation position of the rotation mechanism 128 (the tip of the insertion unit 102). The rotational position of the surface of the micromirror 116 in the axial direction (rotational axis direction) and the rotational position in the circumferential direction (rotational direction) of the distal end portion 102A are controlled. .

さらに、制御部136から制御信号が光源130へ送られることで、光源130が点灯される。光源130から発光された光は、集光レンズ132を介して光ファイバ134の基端134Bへ照射されることで、光ファイバ134の先端134Aから光が照射される。このとき、光ファイバ134の先端134Aにおいては近似的な点光源になる。そして、光ファイバ134の先端134Aから出射した光線108は、照射レンズ118によって照射レンズ118の光出射側の適度な距離において焦点を結ぶように収束されることで、回折の影響を打ち消されて、直径が0.1mmから0.3mm程度の細い擬似的な平行光線に形成される。これにより、照射レンズ118から出射した光線108(細い平行光線)が微小鏡116に反射されて光透過窓103を介して観察対象106へ照射される。   Further, the control unit 136 sends a control signal to the light source 130 so that the light source 130 is turned on. The light emitted from the light source 130 is applied to the base end 134 </ b> B of the optical fiber 134 through the condenser lens 132, so that the light is applied from the distal end 134 </ b> A of the optical fiber 134. At this time, the tip 134A of the optical fiber 134 becomes an approximate point light source. Then, the light beam 108 emitted from the tip 134A of the optical fiber 134 is converged so as to be focused at an appropriate distance on the light emission side of the irradiation lens 118 by the irradiation lens 118, thereby canceling the influence of diffraction. It is formed into a thin pseudo parallel beam having a diameter of about 0.1 mm to 0.3 mm. Thereby, the light beam 108 (thin parallel light beam) emitted from the irradiation lens 118 is reflected by the micromirror 116 and irradiated onto the observation object 106 through the light transmission window 103.

図3に詳細に示す如く、観察対象106上に照射された光線108は、観察対象106に反射されて、光透過窓103及び撮像レンズ124を介して位置検出素子126へ入射することで、位置検出素子126に検出される。そして、位置検出素子126から制御部136へ検出結果である位置信号(光線108の位置検出素子126における撮像位置又は光線108の位置検出素子126への入射角度に関する信号)が送られる。これにより、制御部136では、リニアアクチュエータ122の直線運動位置によって求められる微小鏡116による光線108の先端部102A軸方向に対する照射角度α、回転機構128の回転位置によって求められる微小鏡116による光線108の先端部102A周方向における照射方向、及び位置検出素子126からの位置信号によって求められる光線108の位置検出素子126における撮像位置又は光線108の位置検出素子126への入射角度に基づき、三角測量の方法によって、観察対象106上の光線108照射位置の空間座標が求められる。   As shown in detail in FIG. 3, the light beam 108 irradiated on the observation target 106 is reflected by the observation target 106 and enters the position detection element 126 via the light transmission window 103 and the imaging lens 124, thereby It is detected by the detection element 126. Then, a position signal (signal relating to the imaging position of the light beam 108 at the position detection element 126 or the incident angle of the light beam 108 to the position detection element 126) is sent from the position detection element 126 to the control unit 136. Thereby, in the control unit 136, the light beam 108 by the micromirror 116 obtained by the irradiation angle α of the light beam 108 by the micromirror 116 obtained from the linear motion position of the linear actuator 122 with respect to the axial direction of the tip end 102 </ b> A and the rotation position of the rotation mechanism 128. Triangulation based on the irradiation direction in the circumferential direction of the tip 102A of the lens and the imaging position of the light beam 108 obtained from the position signal from the position detection element 126 or the incident angle of the light beam 108 to the position detection element 126. The spatial coordinates of the irradiation position of the light beam 108 on the observation object 106 are obtained by the method.

さらに、制御部136から制御信号がリニアアクチュエータ122及び回転機構128へ送られて、微小鏡116表面の先端部102A軸方向に対する傾斜角度及び先端部102A周方向における回転位置の少なくとも一方が変更されることで、微小鏡116から観察対象106へ照射される光線108が走査されて、上記と同様に制御部136によって観察対象106上の光線108照射位置の空間座標が求められる。そして、この微小鏡116から観察対象106へ照射される光線108の走査及び制御部136による観察対象106上の光線108照射位置の空間座標の算出が繰り返されることで、観察対象106の立体形状が計測される。また、制御部136で計測された観察対象106の立体形状の画像は、モニタ140に映し出すことができる。   Further, a control signal is sent from the control unit 136 to the linear actuator 122 and the rotation mechanism 128, and at least one of the inclination angle of the surface of the micromirror 116 with respect to the axial direction of the distal end portion 102A and the rotational position in the circumferential direction of the distal end portion 102A is changed. Thus, the light beam 108 irradiated from the micromirror 116 to the observation target 106 is scanned, and the spatial coordinates of the irradiation position of the light beam 108 on the observation target 106 are obtained by the control unit 136 as described above. Then, by scanning the light beam 108 irradiated from the micromirror 116 onto the observation object 106 and repeatedly calculating the spatial coordinates of the irradiation position of the light beam 108 on the observation object 106 by the control unit 136, the three-dimensional shape of the observation object 106 is changed. It is measured. Further, the three-dimensional image of the observation target 106 measured by the control unit 136 can be displayed on the monitor 140.

ここで、上述の如く、観察対象106上に照射される光線108が、回転機構128によって先端部102Aが周方向に回転されて先端部102Aの周方向に走査されると共に、カム機構120及びリニアアクチュエータ122によって微小鏡116の先端部102A軸方向に対する傾斜角度が変更されて先端部102Aの軸方向に走査される。このため、観察対象106上へ光線108を広い範囲(先端部102A周囲における観察対象106の略全体)で走査でき、観察対象106の立体形状を広い範囲(先端部102A周囲における観察対象106の略全体)で計測できる。   Here, as described above, the light beam 108 irradiated on the observation target 106 is scanned in the circumferential direction of the distal end portion 102A by rotating the distal end portion 102A in the circumferential direction by the rotation mechanism 128, and the cam mechanism 120 and linear The tilt angle with respect to the axial direction of the distal end portion 102A of the micromirror 116 is changed by the actuator 122, and scanning is performed in the axial direction of the distal end portion 102A. Therefore, the light beam 108 can be scanned over the observation target 106 in a wide range (substantially the entire observation target 106 around the tip 102A), and the three-dimensional shape of the observation target 106 (substantially the observation target 106 around the tip 102A). Can be measured.

例えば、観察対象106の立体形状の計測では、リニアアクチュエータ122の駆動による光線108の先端部102A軸方向への走査と、回転機構128の駆動による光線108の先端部102A周方向への走査と、を同期させて行う。具体的には、光線108の先端部102A軸方向への1回の走査終了後に光線108を先端部102A周方向へ1段階移動させることを繰り返す方式、光線108の先端部102A周方向への1回の走査終了後に光線108を先端部102A軸方向へ1段階移動させることを繰り返す方式、光線108の先端部102A軸方向への1回の走査中に光線108を先端部102A周方向へ1段階移動させることを繰り返す方式、光線108の先端部102A周方向への1回の走査中に光線108を先端部102A軸方向へ1段階移動させることを繰り返す方式がある。   For example, in the measurement of the three-dimensional shape of the observation object 106, scanning of the light beam 108 in the axial direction of the tip 102A by driving the linear actuator 122, scanning of the light beam 108 in the circumferential direction of the light beam 108 by driving of the rotating mechanism 128, Synchronize. Specifically, a method of repeatedly moving the light beam 108 one step in the circumferential direction of the distal end portion 102A after the end of one scan in the axial direction of the distal end portion 102A of the light beam 108, 1 in the circumferential direction of the distal end portion 102A of the light beam 108 A method of repeating the movement of the light beam 108 in the axial direction of the tip end 102A after the end of the scanning, and the light beam 108 in one step in the circumferential direction of the tip end 102A during one scan in the axial direction of the tip end 102A. There are a method of repeating the movement, and a method of repeatedly moving the light beam 108 in the axial direction of the distal end portion 102A during one scanning of the light beam 108 in the circumferential direction of the distal end portion 102A.

さらに、光線108の先端部102A軸方向への1回の走査中に光線108を先端部102A周方向へm段階移動させることをk回繰り返す方式、光線108の先端部102A周方向への1回の走査中に光線108を先端部102A軸方向へm段階移動させることをk回繰り返す方式もある。但し、この場合、先端部102A周囲の観察対象106全体へ光線108を均一に走査するためには、全走査ステップ数をnとすると、k=(n−1)/mとなる関係が必要である。   Further, a method of repeating the light beam 108 m times in the circumferential direction of the tip portion 102A k times during one scan in the axial direction of the tip portion 102A of the light beam 108, once in the circumferential direction of the tip portion 102A of the light beam 108. There is also a method in which the light beam 108 is moved k steps in the axial direction of the distal end portion 102A k times during the scanning. However, in this case, in order to uniformly scan the light beam 108 around the entire observation target 106 around the distal end portion 102A, a relationship of k = (n−1) / m is required where n is the total number of scanning steps. is there.

また、上述の如く、先端部102Aの周方向への光線108の走査が回転機構128による先端部102Aの周方向への回転によって行われると共に、先端部102Aの軸方向(直線方向)への光線108の走査のみが微小鏡116、カム機構120及びリニアアクチュエータ122によって行われる。このため、走査装置110(回転機構128、微小鏡116、カム機構120及びリニアアクチュエータ122)を小型化できて先端部102Aに設置することができる。   Further, as described above, the scanning of the light beam 108 in the circumferential direction of the distal end portion 102A is performed by the rotation of the distal end portion 102A in the circumferential direction by the rotation mechanism 128, and the light beam in the axial direction (linear direction) of the distal end portion 102A. Only the scanning 108 is performed by the micromirror 116, the cam mechanism 120, and the linear actuator 122. For this reason, the scanning device 110 (the rotation mechanism 128, the micromirror 116, the cam mechanism 120, and the linear actuator 122) can be reduced in size and can be installed at the distal end portion 102A.

しかも、微小鏡116が先端部102Aの径方向に平行な回動中心軸を中心に回動可能に設けられている。このため、先端部102Aの軸方向へ光線108を簡単な構成で走査でき、カム機構120及びリニアアクチュエータ122を確実に小型化できる。   In addition, the micromirror 116 is provided so as to be rotatable about a rotation central axis parallel to the radial direction of the distal end portion 102A. For this reason, the light beam 108 can be scanned in a simple configuration in the axial direction of the distal end portion 102A, and the cam mechanism 120 and the linear actuator 122 can be reliably reduced in size.

また、微小鏡116と撮像レンズ124とが先端部102Aの軸方向において離間されている。これにより、微小鏡116と撮像レンズ124との間の距離を大きくできて、三角測量における基線長D(図3参照)を長くでき、観察対象106の立体形状を高精度に計測できる。   Further, the micromirror 116 and the imaging lens 124 are separated from each other in the axial direction of the distal end portion 102A. Thereby, the distance between the micromirror 116 and the imaging lens 124 can be increased, the baseline length D (see FIG. 3) in the triangulation can be increased, and the three-dimensional shape of the observation target 106 can be measured with high accuracy.

例えば、焦点距離が6.0mm、口径比が16の撮像レンズ124を用いるとすると、撮像レンズ124の中心から38mmの距離に撮像レンズ124の焦点を合わせることで、撮像レンズ124の中心から焦点方向においてほぼ無限遠から19mmまでの間で位置検出装置112のピントが合い、かつ、この時の撮像レンズ124と位置検出素子126との光学的な距離は7.125mmとなる。   For example, if the imaging lens 124 having a focal length of 6.0 mm and an aperture ratio of 16 is used, the imaging lens 124 is focused at a distance of 38 mm from the center of the imaging lens 124, so that the focal direction from the center of the imaging lens 124 is obtained. In FIG. 4, the position detection device 112 is focused from approximately infinity to 19 mm, and the optical distance between the imaging lens 124 and the position detection element 126 at this time is 7.125 mm.

この条件で、撮像レンズ124の中心から焦点方向へ100mmの距離にある地点での撮像レンズ124の径方向に平行な方向への0.1mmの変化は、基線長Dすなわち微小鏡116と撮像レンズ124との間隔を50.0mmとすると位置検出素子126上で3.559μmの変位が得られ、基線長Dを20.0mmとすると位置検出素子126上で1.4236μmの変位が得られる。なお、基線長Dを更に長くすると、位置検出装置112の計測精度が向上するが、先端部102Aが軟性にされて屈曲される場合には、基線長Dの長さに制限が出てくる。   Under this condition, a change of 0.1 mm in a direction parallel to the radial direction of the imaging lens 124 at a point at a distance of 100 mm from the center of the imaging lens 124 in the focal direction is the baseline length D, that is, the micromirror 116 and the imaging lens. A displacement of 3.559 μm is obtained on the position detection element 126 if the distance from the electrode 124 is 50.0 mm, and a displacement of 1.4236 μm is obtained on the position detection element 126 if the baseline length D is 20.0 mm. If the baseline length D is further increased, the measurement accuracy of the position detection device 112 is improved. However, when the distal end portion 102A is softened and bent, the length of the baseline length D is limited.

これらの位置検出素子126上での変位は、高精度な1次元位置検出素子の分解能である0.1μmから0.3μmよりも十分に大きいため、位置検出素子126が容易に検出できる。また、これらの位置検出素子126上での変位は、多くのリニアタイプのCCD素子の分解能である10μmから5μmよりも小さいが、位置検出素子126上に結像した光線108の重心位置を計算することで、位置検出素子126が検出可能である。さらに、位置検出装置112と観察対象106との距離が短くなると、位置検出素子126上での変位がより大きくなり、観察対象106の立体形状の計測における分解能が更に向上する。   These displacements on the position detection element 126 are sufficiently larger than 0.1 μm to 0.3 μm, which is the resolution of the high-precision one-dimensional position detection element, so that the position detection element 126 can be easily detected. Further, the displacement on these position detection elements 126 is smaller than 10 μm to 5 μm, which is the resolution of many linear type CCD elements, but the barycentric position of the light beam 108 imaged on the position detection element 126 is calculated. Thus, the position detection element 126 can be detected. Furthermore, when the distance between the position detection device 112 and the observation target 106 is shortened, the displacement on the position detection element 126 becomes larger, and the resolution in measuring the three-dimensional shape of the observation target 106 is further improved.

また、医療においては、胃ガンや大腸ガン等の病変部の立体形状(表面の形状、凹凸、テクスチャ)や大きさ(広がり)が、診断とその後の治療方針とに重要な情報を持っている。これらの病変部は、数平方cmの広がりがあるものもあり、0.1mm程度の分解能で観察することが必要である。ここで、本実施の形態に係る内視鏡100では、上述の如く、これらの病変部に対して、広範囲にわたり非接触で高い分解能の立体形状を計測することができる。   In medicine, the three-dimensional shape (surface shape, unevenness, texture) and size (spread) of lesions such as stomach cancer and colon cancer have important information for diagnosis and subsequent treatment policy. . Some of these lesions have a spread of several square centimeters and need to be observed with a resolution of about 0.1 mm. Here, with the endoscope 100 according to the present embodiment, as described above, a high-resolution three-dimensional shape can be measured over a wide range in a non-contact manner with respect to these lesions.

(第1変形例)
図4(A)に示す如く、本実施の形態の第1変形例では、平板状の微小鏡116に代えて、走査手段を構成する往復動ミラーとしての微小な湾曲鏡150が設けられており、湾曲鏡150の表面(凸面状反射面150A)は照射レンズ118側へ向かうに従い照射レンズ118の径方向へ向かうように凸面状に湾曲されている。湾曲鏡150の反照射レンズ118側は走査手段を構成するリニアアクチュエータ122に接続されており、リニアアクチュエータ122が照射レンズ118の径方向に平行に直線運動(往復動)することで、湾曲鏡150による光線108の先端部102A軸方向に対する照射角度が変更されて、光線108が先端部102Aの軸方向へ走査される。
(First modification)
As shown in FIG. 4A, in the first modification of the present embodiment, a minute curved mirror 150 as a reciprocating mirror constituting the scanning means is provided in place of the flat micromirror 116. The surface of the curved mirror 150 (convex reflective surface 150A) is curved in a convex shape so as to go in the radial direction of the irradiation lens 118 toward the irradiation lens 118 side. The anti-irradiation lens 118 side of the curved mirror 150 is connected to a linear actuator 122 that constitutes a scanning unit. The linear actuator 122 linearly moves (reciprocates) in parallel with the radial direction of the irradiation lens 118, so that the curved mirror 150. The irradiation angle of the light beam 108 with respect to the axial direction of the distal end portion 102A is changed and the light beam 108 is scanned in the axial direction of the distal end portion 102A.

(第2変形例)
図4(B)に示す如く、本実施の形態の第2変形例では、平板状の微小鏡116に代えて、走査手段を構成する往復動ミラーとしての微小な湾曲鏡152が設けられており、湾曲鏡152の表面(凹面状反射面152A)は照射レンズ118側へ向かうに従い照射レンズ118の径方向へ向かうように凹面状に湾曲されている。湾曲鏡152の反照射レンズ118側は走査手段を構成するリニアアクチュエータ122に接続されており、リニアアクチュエータ122が照射レンズ118の径方向に平行に直線運動(往復動)することで、湾曲鏡152による光線108の先端部102A軸方向に対する照射角度が変更されて、光線108が先端部102Aの軸方向へ走査される。
(Second modification)
As shown in FIG. 4B, in the second modification of the present embodiment, a minute curved mirror 152 as a reciprocating mirror constituting the scanning means is provided in place of the flat micromirror 116. The surface of the curved mirror 152 (concave reflection surface 152A) is curved in a concave shape so as to go in the radial direction of the irradiation lens 118 toward the irradiation lens 118 side. The anti-irradiation lens 118 side of the bending mirror 152 is connected to a linear actuator 122 that constitutes a scanning unit. The irradiation angle of the light beam 108 with respect to the axial direction of the distal end portion 102A is changed, and the light beam 108 is scanned in the axial direction of the distal end portion 102A.

なお、図4(A)及び図4(B)では、湾曲鏡150、152を固定し、照射レンズ118及び光ファイバ134の先端134Aをリニアアクチュエータ122で照射レンズ118の光軸方向に平行に直線運動(往復動)することでも、湾曲鏡150、152による光線108の先端部102A軸方向に対する照射角度が変更されて、光線108が先端部102Aの軸方向へ走査される。   In FIGS. 4A and 4B, the bending mirrors 150 and 152 are fixed, and the irradiation lens 118 and the tip 134A of the optical fiber 134 are linearly parallel to the optical axis direction of the irradiation lens 118 by the linear actuator 122. By moving (reciprocating), the irradiation angle of the light beam 108 with respect to the axial direction of the distal end portion 102A by the curved mirrors 150 and 152 is changed, and the light beam 108 is scanned in the axial direction of the distal end portion 102A.

(第3変形例)
図4(C)に示す如く、本実施の形態の第3変形例では、平板状の微小鏡116に代えて、走査手段を構成する微小なポリゴンミラー154が設けられており、ポリゴンミラー154は、周面が反射面154Aである断面多角形の柱状にされている。ポリゴンミラー154の中心には走査手段を構成する小型のモータ又は超音波モータが接続されており、当該モータ又は超音波モータが駆動されてポリゴンミラー154が先端部102Aの径方向に平行な中心軸周りへ回転されることで、ポリゴンミラー154による光線108の先端部102A軸方向に対する照射角度が変更されて、光線108が先端部102Aの軸方向へ走査される。
(Third Modification)
As shown in FIG. 4C, in the third modification of the present embodiment, a minute polygon mirror 154 constituting a scanning unit is provided instead of the flat plate-like micro mirror 116, and the polygon mirror 154 is The peripheral surface is a polygonal cross-section with a reflective surface 154A. A small motor or an ultrasonic motor constituting a scanning unit is connected to the center of the polygon mirror 154, and the motor or the ultrasonic motor is driven so that the polygon mirror 154 is a central axis parallel to the radial direction of the distal end portion 102A. By being rotated around, the irradiation angle of the light beam 108 by the polygon mirror 154 with respect to the axial direction of the tip portion 102A is changed, and the light beam 108 is scanned in the axial direction of the tip portion 102A.

本発明の実施の形態に係る内視鏡の内部構成を示す断面図である。It is sectional drawing which shows the internal structure of the endoscope which concerns on embodiment of this invention. 本発明の実施の形態に係る内視鏡における挿入部の先端部の内部構成を詳細に示す断面図である。It is sectional drawing which shows in detail the internal structure of the front-end | tip part of the insertion part in the endoscope which concerns on embodiment of this invention. 本発明の実施の形態に係る内視鏡における光線の到来状況を示す側面図である。It is a side view which shows the arrival condition of the light ray in the endoscope which concerns on embodiment of this invention. (A)は、本発明の実施の形態の第1変形例に係る内視鏡の主要部を示す側面図であり、(B)は、本発明の実施の形態の第2変形例に係る内視鏡の主要部を示す側面図であり、(C)は、本発明の実施の形態の第3変形例に係る内視鏡の主要部を示す側面図である。(A) is a side view which shows the principal part of the endoscope which concerns on the 1st modification of embodiment of this invention, (B) is the inside which concerns on the 2nd modification of embodiment of this invention. It is a side view which shows the principal part of an endoscope, (C) is a side view which shows the principal part of the endoscope which concerns on the 3rd modification of embodiment of this invention.

符号の説明Explanation of symbols

100 内視鏡
102 挿入部
102A 先端部
102B 基端部
103 光透過窓
106 観察対象
108 光線
112 位置検出装置
116 微小鏡
120 カム機構
122 リニアアクチュエータ
136 制御部
150 湾曲鏡
150A 凸面状反射面
152 湾曲鏡
152A 凹面状反射面
154 ポリゴンミラー
DESCRIPTION OF SYMBOLS 100 Endoscope 102 Insertion part 102A Tip part 102B Base end part 103 Light transmission window 106 Observation object 108 Light beam 112 Position detection apparatus 116 Micro mirror 120 Cam mechanism 122 Linear actuator 136 Control part 150 Curved mirror 150A Convex-shaped reflective surface 152 Curved mirror 152A Concave Reflective Surface 154 Polygon Mirror

Claims (2)

基端部と、前記基端部に対して周方向に回転可能に設けられると共に側面に光透過窓が形成された筒状の先端部と、を備えた挿入部と、
前記先端部に収納され、入射された光線を前記先端部の回転方向と交差する方向に走査するように前記光透過窓を介して観察対象上に照射する走査手段と、
前記先端部に収納され、前記観察対象から反射されかつ前記光透過窓を介して入射された光線を検出する検出手段と、
前記検出手段の検出結果に基づいて、前記観察対象上の光線照射位置の座標を算出する算出手段と、
を備えた内視鏡。
An insertion portion comprising: a base end portion; and a cylindrical tip end portion provided so as to be rotatable in the circumferential direction with respect to the base end portion and having a light transmission window formed on a side surface thereof;
A scanning means for irradiating the observation object through the light transmission window so as to scan the incident light beam stored in the distal end portion in a direction intersecting the rotation direction of the distal end portion;
Detection means for detecting a light beam stored in the tip portion and reflected from the observation object and incident through the light transmission window;
Based on the detection result of the detection means, calculation means for calculating the coordinates of the light irradiation position on the observation object;
Endoscope equipped with.
前記走査手段は、前記先端部の回転軸と交差する軸を中心に回動可能に設けられた回動ミラー、前記先端部の回転軸と交差する軸を中心に回転可能に設けられたポリゴンミラー、及び凸面状反射面または凹面状反射面を備え前記先端部の回転軸と交差する方向に往復動可能に設けられた往復動ミラーのいずれかを有する請求項1記載の内視鏡。   The scanning means is a rotation mirror provided to be rotatable about an axis intersecting with the rotation axis of the tip portion, and a polygon mirror provided to be rotatable about an axis intersecting the rotation axis of the tip portion. The endoscope according to claim 1, further comprising a reciprocating mirror provided with a convex reflecting surface or a concave reflecting surface and provided so as to be capable of reciprocating in a direction intersecting a rotation axis of the tip portion.
JP2005022148A 2005-01-28 2005-01-28 Endoscope Active JP4552011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005022148A JP4552011B2 (en) 2005-01-28 2005-01-28 Endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005022148A JP4552011B2 (en) 2005-01-28 2005-01-28 Endoscope

Publications (2)

Publication Number Publication Date
JP2006204635A JP2006204635A (en) 2006-08-10
JP4552011B2 true JP4552011B2 (en) 2010-09-29

Family

ID=36962070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005022148A Active JP4552011B2 (en) 2005-01-28 2005-01-28 Endoscope

Country Status (1)

Country Link
JP (1) JP4552011B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125996A (en) * 2006-11-24 2008-06-05 Pentax Corp Endoscope-subject distance measuring system
DE102009043523A1 (en) * 2009-09-30 2011-04-07 Siemens Aktiengesellschaft endoscope
US20170280970A1 (en) * 2016-03-31 2017-10-05 Covidien Lp Thoracic endoscope for surface scanning
US11071591B2 (en) 2018-07-26 2021-07-27 Covidien Lp Modeling a collapsed lung using CT data
US11705238B2 (en) 2018-07-26 2023-07-18 Covidien Lp Systems and methods for providing assistance during surgery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187310A (en) * 1983-04-07 1984-10-24 Sumitomo Electric Ind Ltd Internal observation device
JP2002214127A (en) * 1996-02-27 2002-07-31 Massachusetts Inst Of Technol <Mit> Method and device for performing optical measurement by using optical fiber imaging guide wire, catheter or endoscope
JP2002263055A (en) * 2001-03-12 2002-09-17 Olympus Optical Co Ltd Tip hood for endoscope
JP2007525248A (en) * 2003-06-06 2007-09-06 インフレアデックス, インク. Arthroscopy apparatus and method for collecting deep scattered light

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004223469B2 (en) * 2003-03-24 2009-07-30 D4D Technologies, Llc Laser digitizer system for dental applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187310A (en) * 1983-04-07 1984-10-24 Sumitomo Electric Ind Ltd Internal observation device
JP2002214127A (en) * 1996-02-27 2002-07-31 Massachusetts Inst Of Technol <Mit> Method and device for performing optical measurement by using optical fiber imaging guide wire, catheter or endoscope
JP2002263055A (en) * 2001-03-12 2002-09-17 Olympus Optical Co Ltd Tip hood for endoscope
JP2007525248A (en) * 2003-06-06 2007-09-06 インフレアデックス, インク. Arthroscopy apparatus and method for collecting deep scattered light

Also Published As

Publication number Publication date
JP2006204635A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
US10918286B2 (en) Compact confocal dental scanning apparatus
US10746540B2 (en) Confocal surface topography measurement with fixed focal positions
JP4672260B2 (en) Imaging device
US20170304030A1 (en) Viewfinder with real-time tracking for intraoral scanning
KR101609029B1 (en) Method for measuring transmission characteristic of optical transmission media and imaging apparatus
JP6606159B2 (en) Confocal imaging of objects using pinhole arrays
JP4552011B2 (en) Endoscope
JPH11337845A (en) Endoscope device
JP2006325978A (en) Panorama roentgenography device
US7104689B2 (en) Positioning device and method in X-ray imaging systems
WO2010061471A1 (en) Living body observation apparatus
JP4759277B2 (en) Observation method and observation aid
JP2927179B2 (en) 3D shape input device
JP4587693B2 (en) Living body observation device
JP5131552B2 (en) Microscope equipment
JP2982757B2 (en) 3D shape input device
KR101774653B1 (en) Confocal micorscopy system
JPH0541901A (en) Endoscope for three-dimensional measurement
JP2006271503A (en) Endoscopic apparatus with three-dimensional measuring function
JP2012002573A (en) Non-contact shape measuring apparatus
JP2006072109A (en) Observation method and apparatus
JP2008295744A (en) Living body observing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150