JP4548628B2 - Optical film - Google Patents

Optical film Download PDF

Info

Publication number
JP4548628B2
JP4548628B2 JP2000004241A JP2000004241A JP4548628B2 JP 4548628 B2 JP4548628 B2 JP 4548628B2 JP 2000004241 A JP2000004241 A JP 2000004241A JP 2000004241 A JP2000004241 A JP 2000004241A JP 4548628 B2 JP4548628 B2 JP 4548628B2
Authority
JP
Japan
Prior art keywords
film
optical path
light
optical
slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000004241A
Other languages
Japanese (ja)
Other versions
JP2001194517A (en
Inventor
清司 梅本
貴雄 鈴木
俊彦 有吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000004241A priority Critical patent/JP4548628B2/en
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to KR1020010001874A priority patent/KR100769779B1/en
Priority to TW090100717A priority patent/TW526348B/en
Priority to EP04003308A priority patent/EP1420272A3/en
Priority to EP04003309A priority patent/EP1420273B1/en
Priority to US09/758,165 priority patent/US6747801B2/en
Priority to EP01100736A priority patent/EP1143270B1/en
Publication of JP2001194517A publication Critical patent/JP2001194517A/en
Priority to US10/735,209 priority patent/US7227685B2/en
Priority to US10/734,224 priority patent/US6917473B2/en
Application granted granted Critical
Publication of JP4548628B2 publication Critical patent/JP4548628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【0001】
【発明の技術分野】
本発明は、側面入射光を効率よく視認方向に光路変換して薄型軽量で明るくて見易い表示の透過型や反射・透過両用型の液晶表示装置を形成しうる光学フィルムに関する。
【0002】
【発明の背景】
TVやパソコン画面の大型化に伴う高重量化の抑制、携帯パソコンや携帯電話等の小型軽量化などを目的に透過型液晶表示装置の更なる薄型軽量化が求められる中、従来の直下型やサイドライト型導光板によるバックライトを設けたものでは、その薄型軽量化が困難となっている。ちなみに直下型のバックライトでは液晶表示パネルの直下に照明装置と共に光拡散板や反射板が配置されて通例4mm以上の厚さとなり、サイドライト型導光板でも光伝送の必要上1mm以上の板厚となりそれに光拡散板や反射板やプリズムシートなどを配置した場合には通例3mm以上の厚さとなる。
【0003】
また前記した透過型液晶表示パネルとバックライトの間に半透過型反射板を配置して外光による反射モードにても視認できるようにした反射・透過両用型の液晶表示装置も知られていた。半透過型反射板の配置は、反射モードによる視認の可能化を目的とし、それなしでは外光による反射モードでの視認が暗くて反射型の液晶表示装置として実質的に機能しにくい。しかしながら半透過型反射板の付加で更に嵩高高重量化することに加えて、半透過型反射板では透過光と反射光に分散されるため透過モードでの視認を暗くし、また反射モードでも視認を暗くしてその明るさが高反射率の反射層による反射専用のものに及びにくい問題点があった。
【0004】
【発明の技術的課題】
本発明は、側面入射光を効率よく視認方向に光路変換して薄型軽量で明るくて見易い表示の透過型や反射・透過両用型の液晶表示装置を形成しうる光学フィルムの開発を課題とする。
【0005】
【課題の解決手段】
本発明は、透明フィルムの片面に粘着層を有し、かつ前記透明フィルムの他面に光路変換斜面および平坦面を具備する凹凸の繰り返し構造を有し、前記粘着層を介して光伝送部材に接着される光学フィルムであって、前記透明フィルムは、厚さが300μm以下であり、前記粘着層は、前記透明フィルムの表面層との屈折率差が0.1以内であり、前記凹凸の繰り返し構造における前記光路変換斜面は、フィルム面に対する傾斜角が35〜48度で略一定方向を向き、前記凹凸の繰り返し構造における前記平坦面は、前記フィルム面に対する傾斜角が5度以下であり、前記凹凸の繰り返し構造における前記平坦面は、前記凹凸の繰り返し構造における前記光路変換斜面の凸側に接続され、前記平坦面を、フィルム片面における占有面積に基づいて前記光路変換斜面の10倍以上有することを特徴とする光学フィルムを提供するものである。
【0006】
【発明の効果】
本発明の光学フィルムによれば、それを側面に照明装置を有する液晶表示パネルの視認面に沿わせて配置することにより、前記側面からの入射光ないしその伝送光を光学フィルムの光路変換斜面を介し液晶表示パネルの視認方向に効率よく光路変換して透過モードでの液晶表示に利用でき、薄さと軽量性に優れ明るくて表示品位に優れる透過型の液晶表示装置を形成することができる。また光学フィルムの光路変換斜面間に平坦面部分を設けることで外光を効率よく入射させることができその入射光を反射層を介し反射させて反射モードでの液晶表示に利用でき、前記した透過モード機構に加えて反射モード機構も形成できて薄さと軽量性に優れ明るくて表示品位に優れる反射・透過両用型の液晶表示装置を形成することができる。
【0007】
前記の効果は、主に斜面反射による光路制御式の光学フィルムとしたことによる。すなわち光路変換斜面を介して側面からの入射光ないしその伝送光を反射させることで指向性よく光路変換できて透過モードでの良視認が達成されると共に、光路変換斜面間に容易に平坦面を配置できてその平坦面を介し外光を透過させて充分な外光入射を確保でき反射モードでの良視認も達成される。図10に例示の如く散乱シート6等による粗面を介した散乱反射方式では前記効果の達成は困難である。ちなみに特開平5−158033号公報では液晶表示パネルの側面より照明光を入射させて視認側セル基板で全反射させその反射光を粗面型の反射板で散乱させて表示に利用する反射型液晶表示装置を教示する。
【0008】
しかし前記の場合、表示に利用できる光は、散乱で全反射条件から外れてパネルより出射する光であり、一般に散乱光は正反射方向をピークとする正規分布を示すことから(第20回液晶討論会講演予稿集3 G510、東北大学;内田等)、前記の表示光は、正面(垂直)方向より大きく傾斜した光で表示に有効利用しにくく正面方向では暗い表示となる。さりとて粗面型反射板による散乱を強くすると反射モードでの正面方向の光量を低減させて、やはり表示に不利となる(SID 96 DIGEST P149-152)。従ってかかる粗面散乱反射方式では透過と反射の両モードに要求される散乱強さが背反関係にあるため両者に有利な散乱強さとすることが困難である。
【0009】
一方、本発明による斜面反射による光路制御式の光学フィルムでは、ピークを示す正反射方向の光の利用を主体とし、その反射光の光路を制御するものであることから表示に有利な指向性、就中、正面方向の指向性を容易にもたせることができて明るい透過モードを達成することができる。また反射モードにても光学フィルムの当該斜面以外の平坦部分を利用して外光の効率的な入射と反射透過を確保でき、反射と透過の両モードに有利な状態に容易にバランスさせることができる。
【0010】
【発明の実施形態】
本発明による光学フィルムは、透明フィルムの片面に粘着層を有し、かつ前記透明フィルムの他面に光路変換斜面および平坦面を具備する凹凸の繰り返し構造を有し、前記粘着層を介して光伝送部材に接着される光学フィルムであって、前記透明フィルムは、厚さが300μm以下であり、前記粘着層は、前記透明フィルムの表面層との屈折率差が0.1以内であり、前記凹凸の繰り返し構造における前記光路変換斜面は、フィルム面に対する傾斜角が35〜48度で略一定方向を向き、前記凹凸の繰り返し構造における前記平坦面は、前記フィルム面に対する傾斜角が5度以下であり、前記凹凸の繰り返し構造における前記平坦面は、前記凹凸の繰り返し構造における前記光路変換斜面の凸側に接続され、前記平坦面を、フィルム片面における占有面積に基づいて前記光路変換斜面の10倍以上有するものからなる。その例を図1(a)〜(h)に示した。1が光学フィルムで、11が透明フィルム、12が粘着層、13が光路変換斜面A1を具備する凹凸すなわち光路変換手段Aの繰り返し構造層であり、14は剥離シートである。図1(g)に例示の如く光路変換手段Aの繰り返し構造は、透明フィルム11と同体に形成されていてもよい。
【0011】
光学フィルム1は、図7に例示した如く側面に照明装置5を有する液晶表示パネルPの視認面に沿う方向に配置し、前記照明装置による側面方向からの入射光ないしその伝送光を矢印の如く光路変換斜面A1を介し反射させ透明フィルム11の当該斜面を有しない面側に、従って液晶表示パネルPの視認方向に光路変換して透明フィルムより出射させ、その出射光を液晶表示パネル等の照明光(表示光)として利用できるようにすることを目的とする。
【0012】
透明フィルム11は、前記した目的を達成する点より図1に例示した如く側面方向からの入射光ないしその伝送光を所定方向に反射して光路変換する斜面A1をフィルムの片面に有するものとされる。その場合、本発明にては光路変換を介して正面方向への指向性に優れる照明光を得る点より図1に示した如く、フィルム面A4に対する傾斜角θ1が35〜48度で、略一定方向を向く光路変換斜面A1を具備する凹凸すなわち光路変換手段Aの繰り返し構造を有するものとされる。
【0013】
前記した光路変換斜面A1を有する光路変換手段Aの例を図1(a)〜(h)に示した。その(a)〜(c)、(g)、(h)では光路変換手段Aが断面略三角形のものからなり、(d)、(e)では断面略四角形、(f)では断面略五角形のものからなる。また(a)では二等辺三角形による2面の光路変換斜面A1を有し、(b)、(g)、(h)では光路変換斜面A1と傾斜角が斜面A1よりも大きい急斜面A2を有する光路変換手段Aを有するものからなる。
【0014】
一方、(c)では光路変換斜面A1と傾斜角が小さい緩斜面A3とを単位とする光路変換手段Aが隣接連続状態の繰返し構造としてフィルム片側の全面に形成されたものからなる。さらに(a)〜(c)、(e)、(g)、(h)では凹部(溝)からなる光路変換手段Aを有するものからなり、(d)、(f)では凸部(突起)からなる光路変換手段Aを有するものからなる。
【0015】
従って前記した例のように光路変換手段は、等辺面ないし同じ傾斜角の斜面からなる凸部又は凹部にても形成できるし、光路変換斜面と急斜面又は緩斜面ないし傾斜角が相違する斜面からなる凸部又は凹部にても形成でき、その斜面形態は光を入射させる側面方向の数や位置にて適宜に決定することができる。耐擦傷性の向上による斜面機能の維持の点よりは、凸部よりも凹部からなる光路変換手段として形成されていることが斜面等が傷付きにくくて有利である。
【0016】
上記した正面方向への指向性等の特性を達成する点などより好ましい光学フィルムは、光路変換斜面A1が向く略一定方向を光が入射する側面方向と対面する方向としたものである。従って例えば図8の如く光学フィルム1の2側面以上の側面方向から光を入射させる場合には、その数と位置に対応して光路変換斜面A1を有する光学フィルムとしたものが好ましく用いられる。
【0017】
ちなみに図8の如く光学フィルムの対向する2側面を光が入射する側面方向とする場合には、図1(a)の如き断面略二等辺三角形からなる光路変換手段Aによる2面の光路変換斜面A1や、図1(d)、(e)、(f)の如き断面略台形ないし四角形又は断面略五角形からなる光路変換手段Aによる2面の光路変換斜面A1をその稜線が前記側面方向に沿う方向となる状態で有するものの如く、略一定方向を向く光路変換斜面がその一面を基準にそれとは反対方向を向く面を含む状態で2面以上有する光学フィルム1が好ましく用いられる。
【0018】
また光学フィルムの縦横で隣接する2側面を光が入射する側面方向とする場合には、その側面に対応して稜線が縦横の両方向に沿う状態で光路変換斜面A1を有する光学フィルムが好ましく用いられる。さらには対向及び縦横を含む3側面以上を光が入射する側面方向とする場合には、前記の組合せからなる光路変換斜面A1を有する光学フィルムが好ましく用いられる。
【0019】
上記したように光路変換斜面A1は、側面方向よりの入射光ないしその伝送光の内、その面A1に入射する光を反射して光路変換する役割をする。その場合、図1(a)に例示の如く光路変換斜面A1のフィルム面に対する傾斜角θ1を35〜48度とすることにより側面方向よりの入射光ないしその伝送光をフィルム面に対し垂直性よく光路変換して正面への指向性に優れる照明光を効率よく得ることができる。
【0020】
前記の傾斜角θ1が35度未満では反射光の光路が正面方向より30度以上の方向に大きくずれて表示に有効利用しにくく正面方向の輝度に乏しくなり、48度を超えると側面方向よりの入射光ないしその伝送光を全反射させる条件から外れて光路変換斜面よりの漏れ光が多くなり側面方向よりの入射光の光利用効率に乏しくなる。正面への指向性に優れる光路変換や漏れ光の抑制等の点より光路変換斜面A1の好ましい傾斜角θ1は、伝送光のスネルの法則による屈折に基づく全反射条件などを考慮して38〜45度、就中40〜44度である。
【0021】
上記の光路変換斜面A1を具備する光路変換手段Aは、光学フィルムの薄型化を目的に凹凸の繰返し構造として形成される。その場合、側面方向からの入射光を後方に反射し対向側面側に効率よく伝送して光学フィルム全面で可及的に均一に発光させる点よりは、図1に例示の如く、前記凹凸の繰り返し構造において、光路変換斜面A1の凸側に、フィルム面に対する傾斜角が5度以下、就中4度以下、特に3度以下の緩斜面A3ないし当該傾斜角が略0度のフィルム面A4からなる平坦面が接続され、前記平坦面を、フィルム片面における占有面積に基づいて前記光路変換斜面の10倍以上有する構造とする。従って図1(b)、(e)、(g)、(h)に例示の急斜面A2を含む光路変換手段Aでは、その急斜面の角度を35度以上、就中50度以上、特に60度以上としてフィルム面A4の幅を広くできる構造とすることが好ましい。
【0022】
また前記の緩斜面A3やフィルム面A4からなる平坦面は、図7、8の例の如く光学フィルム1の背面側に反射層4を配置した場合に、外光の入射部分及びその入射光の反射層4を介した反射光の透過部分として機能させることができ、これにより照明装置を消灯した外光による反射モードでの表示を可能として反射・透過両用型の液晶表示装置の形成を可能とする。
【0023】
前記の場合、特に図1(c)の如き斜面A1、A3による光路変換手段Aの隣接繰返し構造からなるときには、その緩斜面A3のフィルム面に対する傾斜角の角度差を光学フィルムの全体で5度以内、就中4度以内、特に3度以内、さらに最寄りの緩斜面間の傾斜角の差を1度以内、就中0.3度以内、特に0.1度以内とすることが好ましい。これは緩斜面A3を介した反射光路を大きく変化させないこと、特に最寄りの緩斜面間で大きく変化させないことを目的とする。図1(f)の如き斜面A1、A3による光路変換手段Aの場合も前記に準じうる。
【0024】
また外光モードによる明るい表示を得る点よりは、フィルム面に対する傾斜角が5度以下の緩斜面A3やフィルム面A4からなる平坦面の占有面積ないし幅を光路変換手段Aを形成したフィルム片面に基づいて当該傾斜角が35度以上の斜面A1やA2によるそれの10倍以上、就中12倍以上、特に15倍以上とすることが好ましい。これは外光の入射効率とその反射層を介した反射光の透過効率の向上を目的とする。
【0025】
光路変換手段Aは、図2〜4に例示の如くその稜線が光が入射する側面方向に平行又は傾斜状態で沿うように設けられるがその場合、光路変換手段Aは図2、3の例の如く光学フィルム1の一端から他端にわたり連続して形成されていてもよいし、図4の例の如く断続的に不連続に形成されていてもよい。
【0026】
前記した不連続に形成する場合、伝送光の入射効率や光路変換効率などの点よりその溝又は突起からなる凹凸の側面方向に沿う方向の長さを深さ又は高さの5倍以上とすることが好ましく、また光学フィルム上での均一発光化の点より前記長さを500μm以下、就中10〜480μm、特に50〜450μmとすることが好ましい。
【0027】
光路変換手段Aを形成する斜面は、直線面や屈折面や湾曲面等の適宜な面形態に形成されていてよく、光路変換手段Aの断面形状やそれを介した光路変換斜面A1の繰返しピッチについては特に限定はない。光路変換斜面A1が透過(点灯)モードでの輝度決定要因となることより光学フィルム上での発光の均一性や、反射・透過両用型では外光モードでの発光の均一性などに応じて適宜に決定でき、その分布密度にて光路変換光量を制御することができる。
【0028】
従って斜面A1、2、3の傾斜角等がシートの全面で一定な形状であってもよいし、吸収ロスや先の光路変換による伝送光の減衰に対処して光学フィルム上での発光の均一化を図ることを目的に、図5の例の如く光が入射する側の側面から遠離るほど光路変換手段Aを大きくしてもよい。
【0029】
また図2、3の例の如く一定ピッチの光路変換手段Aとすることもできるし、図4、6の例の如く光が入射する側の側面から遠離るほど徐々にピッチを狭くして光路変換手段Aの分布密度を多くしたものとすることもできる。さらにランダムピッチにて光学フィルム上での発光の均一化を図ることもでき、ランダムピッチは画素との干渉によるモアレの防止の点よりも有利である。よって光路変換手段Aは、ピッチに加えて形状等も異なる凹凸の組合せからなっていてもよい。なお図2〜6において矢印方向が光の伝送方向である。
【0030】
反射・透過両用型の液晶表示装置とする場合、光路変換斜面A1が液晶表示パネルの画素とオーバーラップすると表示光の透過不足で不自然な表示となることがあり、それを防止する点などよりはそのオーバーラップ面積を可及的に小さくして平坦面A3、4を介した充分な光透過率を確保することが好ましい。かかる点より液晶表示パネルの画素ピッチが一般に100〜300μmであることも考慮して光路変換斜面A1は、そのフィルム面に対する投影幅に基づいて40μm以下、就中3〜20μm、特に5〜15μmとなるように形成することが好ましい。かかる投影幅は、一般に蛍光管のコヒーレント長が20μm程度とされている点などより回折による表示品位の低下を防止する点よりも好ましい。
【0031】
一方、前記の点よりは光路変換斜面A1の間隔の大きいことが好ましいが、他方で光路変換斜面は上記したように側面方向よりの入射光の光路変換による実質的な照明光形成の機能部分であるから、その間隔が広すぎると点灯時の照明が疎となって不自然な表示となる場合がありそれらを鑑みた場合、光路変換斜面A1の繰返しピッチは、5mm以下、就中20μm〜3mm、特に50μm〜2mmとすることが好ましい。
【0032】
また凹凸の繰返し構造からなる光路変換手段の場合、液晶表示パネルの画素と干渉してモアレを生じる場合がある。モアレの防止は、その繰返し構造のピッチ調節で行いうるが、上記したように繰返し構造のピッチには好ましい範囲がある。従ってそのピッチ範囲でモアレが生じる場合の解決策が問題となる。本発明においては図3の例の如く画素に対して凹凸の繰返し構造を交差状態で配列しうるように凹凸の稜線を側面方向に対し傾斜する状態に形成してモアレを防止する方式が好ましい。
【0033】
前記の場合、側面方向に対する傾斜角θ2が大きすぎると光路変換斜面A1を介した反射に偏向を生じて光路変換の方向に大きな偏りが発生し表示品位の低下原因となりやすいことから、その稜線の側面方向に対する傾斜角θ2は、±30度以内、就中±25度以内、±20度以内とすることが好ましい。なお±の符号は側面方向を基準とした稜線の傾斜方向を意味する。液晶表示パネルの解像度が低くてモアレを生じない場合やモアレを無視しうる場合には、かかる稜線は側面方向に平行なほど好ましい。
【0034】
光路変換手段を有する透明フィルムは、例えば熱可塑性樹脂を所定の形状を形成しうる金型に加熱下に押付て形状を転写する方法、加熱溶融させた熱可塑性樹脂あるいは熱や溶媒を介して流動化させた樹脂を所定の形状に成形しうる金型に充填する方法、熱や紫外線、あるいは電子等の放射線で重合処理しうる液状樹脂を所定の形状を形成しうる型に充填ないし流延して重合処理する方法などの適宜な方法で形成することができる。
【0035】
光路変換手段を有する透明フィルムの好ましい形成方法は例えば、透明フィルムの片面に紫外線ないし放射線等で重合処理しうる硬化型樹脂を塗工し、その塗工層を金型の所定凹凸構造の形成面に密着させて紫外線や放射線等の照射により硬化処理した後、金型よりその透明フィルムを剥離回収する方法の如く、所定の凹凸構造を有する金型を介して透明フィルムの片面に光路変換斜面を具備する凹凸の繰り返し構造を付加する方法である。
【0036】
前記の如く光路変換手段を有する透明フィルムは、光路変換手段を有する状態に一体成形して得ることもできるし、透明フィルムの片面に光路変換手段を付加する方法にても得ることができる。後者の場合、付加する光路変換手段と透明フィルムの屈折率差が大きいと界面反射等にて出射効率が大きく低下する場合があり、それを防止する点より透明フィルムと付加する光路変換手段との屈折率差を可及的に小さくすること、就中0.10以内、特に0.05以内とすることが好ましい。またその場合、透明フィルムよりも付加する光路変換手段の屈折率を高くすることが出射効率の点より好ましい。
【0037】
なお透明フィルムや光路変換手段は、照明装置等を介して入射させる光の波長域に応じそれに透明性を示す適宜な材料にて形成しうる。ちなみに可視光域では、例えばアクリル系樹脂やポリカーボネート系樹脂、セルロース系樹脂やノルボルネン系樹脂等で代表される透明樹脂、熱や紫外線、電子線等の放射線で重合処理しうる硬化型樹脂などがあげられる。
【0038】
就中、複屈折を示さないか、複屈折の小さい材料を用いてキャスティング方式などにより位相差の小さい透明フィルムとすることが好ましい。また接着処理にて透明フィルムに内部応力が発生する場合があり、かかる内部応力による位相差の発生を防止する点よりは光弾性係数の小さい材料を用いることが好ましい。透明フィルムの厚さは薄型化などの点より300μm以下、就中5〜200μm、特に10〜100μmとされる。なお透明フィルムは、図1(h)の例の如く同種又は異種の樹脂からなる2層以上の重畳体11A、Bとして形成されていてもよく、1種の材料による一体的単層物として形成されている必要はない。
【0039】
光学フィルムは、図1の例の如く透明フィルム11の凹凸の繰り返し構造13を有しない面に粘着層12を設けたものとされる。かかる粘着層12は、液晶表示パネル等の支持部材に光学フィルムを接着するためのものでありその粘着層を介した接着処理は、光路変換手段Aの光路変換斜面A1を介した反射効率、ひいては側面方向よりの入射光の有効利用による輝度向上などを目的とする。粘着層の形成には、ゴム系やアクリル系、ビニルアルキルエーテル系やシリコーン系、ポリエステル系やポリウレタン系、ポリエーテル系やポリアミド系、スチレン系などの適宜なポリマーをベースポリマーとする粘着剤などを用いうる。就中アクリル酸ないしメタクリル酸のアルキルエステルを主体とするポリマーをベースポリマーとするアクリル系粘着剤の如く透明性や耐候性や耐熱性などに優れるものが好ましく用いられる。
【0040】
前記において本発明では図9に矢印で例示した如く屈折率差による界面反射で光が前記液晶表示パネル等の支持部材内に閉じ込められて出射できなくなることを防止し、出射できずに損失となる光量を抑制する点より、透明フィルムとの屈折率差が0.1以内、就中0.08以内、特に0.05以内の粘着層が用いられる。また粘着層は、それに例えばシリカやアルミナ、チタニアやジルコニア、酸化錫や酸化インジウム、酸化カドミウムや酸化アンチモン等の導電性のこともある無機系粒子や、架橋又は未架橋ポリマー等の有機系粒子などの適宜な透明粒子を1種又は2種以上含有させて光拡散型のものとすることもできる。なお粘着層に対してはそれを実用に供するまでの間、異物の混入等の防止を目的に図1の例の如く剥離シート14を仮着してカバーしておくことが好ましい。さらに前記と同様の理由で粘着層を接着する前記支持部材との屈折率差も0.15以内、就中0.10以内、特に0.05以内であることが好ましい。
【0041】
光学フィルムは、透明フィルムの光路変換斜面を形成した面にその光路変換斜面の保護を目的としたシート等の基材を密着配置したものであってもよい。また光学フィルムは、図7、8に例示した如くその透明フィルム11の光路変換斜面を形成した面に反射層4を密着配置したものであってもよい。かかる反射層は、透明フィルムの光路変換斜面を形成した面よりの漏れ光を反射反転させて再入射させることによる光利用効率の向上や反射・透過両用型の液晶表示装置の形成を目的とする。
【0042】
反射層は、従来に準じた白色シートなどの適宜なものにて形成することができる。就中、例えばアルミニウムや銀、金や銅やクロム等の高反射率の金属ないしその合金の粉末をバインダ樹脂中に含有させた塗工層、前記の金属等や誘電体多層膜を真空蒸着方式やスパッタリング方式等の適宜な薄膜形成方式で付設してなる層、前記の塗工層や付設層をフィルム等からなる基材で支持した反射シート、金属箔などからなる高反射率の反射層が好ましく、反射・透過両用型の液晶表示装置を形成する場合に特に好ましい。
【0043】
形成する反射層は、光拡散機能を示すものであってもよい。拡散反射面にて反射光を拡散させることにより正面方向への指向性の向上を図ることができ、また粗面化による場合には密着によるニュートンリングの発生を防止して視認性を向上させることができる。
【0044】
光拡散型の反射層の形成は、例えばサンドブラストやマット処理等による表面の粗面化方式や、粒子添加方式などの適宜な方式で表面を微細凹凸構造としたフィルム基材等にその微細凹凸構造を反映させた反射層を設ける方式などにより行うことができる。その表面の微細凹凸構造を反映させた微細凹凸構造の反射層の形成は、例えば真空蒸着方式やイオンプレーティング方式、スパッタリング方式等の蒸着方式やメッキ方式などの適宜な方式で金属をフィルム基材等の表面に付設する方法などにより行うことができる。
【0045】
本発明による光学フィルムは、照明装置等による側面方向からの入射光ないしその伝送光を光路変換斜面を介し視認に有利な垂直性に優れる方向に光路変換して光の利用効率よく出射し、また外光に対しても良好な透過性を示し、図78に例示した如く1又は2以上の側面に照明装置5、51を配置した液晶表示パネルPの視認背面側(バック)や視認側(フロント)に配置して明るくて見やすい透過型や低消費電力性に優れる反射・透過両用型の液晶表示装置などの種々の装置を形成することができる。
【0046】
ちなみに前記した液晶表示装置によれば、照明装置を介した側面方向よりの入射光の殆どが液晶表示パネルにおける各層の厚さ比に基づいてその上下のセル基板21、28を介し屈折の法則による反射を介して後方に伝送され、パネル表面よりの出射(漏れ)が防止されつつ光学フィルム1の光路変換斜面A1に入射した光が効率よく視認方向、特に正面方向に光路変換され、他の光は全反射にて後方に伝送されて後方における光路変換斜面A1に入射し効率よく視認方向に光路変換されてパネル表示面の全面において明るさに優れる表示を達成することができる。
【0047】
前記において液晶表示パネルPとしては、少なくとも液晶セルを有する適宜な透過型のもの、すなわち図7、8の例の如くセル基板21、28の間にシール材24を介し液晶25を封入してなる液晶セルを少なくとも有して、光学フィルム1を配置した側からの入射光を液晶等による制御を介し表示光として他方側より出射するものを用いることができ、その種類について特に限定はない。
【0048】
ちなみに前記した液晶セルの具体例としては、TN液晶セルやSTN液晶セル、IPS液晶セルやHAN液晶セル、OCB液晶セルやVA液晶セルの如きツイスト系や非ツイスト系、ゲストホスト系や強誘電性液晶系の液晶セル、あるいは光拡散型の液晶セルなどがあげられ、液晶の駆動方式も例えばアクティブマトリクス方式やパッシブマトリクス方式などの適宜なものであってよい。その液晶の駆動は通例、図7、8に例示の如く一対のセル基板21、28の内側に設けた透明電極22、27を介して行われる。
【0049】
セル基板については、ガラスや樹脂などから適宜な透明基板を用いることができ、就中、表示品位等の点より光学的に等方性の材料からなるものが好ましい。
また輝度や表示品位の向上等の点より青ガラス板に対する無アルカリガラス板の如く無色透明性に優れるものが好ましく、さらに軽量性等の点よりは樹脂基板が好ましい。セル基板の厚さについては、特に限定はなく液晶の封入強度などに応じて適宜に決定しうる。一般には光伝送効率と薄型軽量性のバランスなどの点より10μm〜5mm、就中50μm〜2mm、特に100μm〜1mmの厚さとされる。
【0050】
液晶セルの形成に際しては必要に応じ、液晶を配向させるためのラビング処理膜等からなる配向膜やカラー表示のためのカラーフィルタなどの適宜な機能層の1層又は2層以上を設けることができる。なお図例の如く、配向膜23、26は通常、透明電極22、27の上に形成され、また図外のカラーフィルタは通常、セル基板21、28の一方における基板と透明電極の間に設けられる。
【0051】
液晶表示パネルは、図7、8の例の如く液晶セルに偏光板31、34や位相差板32、33、光拡散層等の適宜な光学層の1層又は2層以上を付加したものであってもよい。偏光板は直線偏光を利用した表示の達成を目的とし、位相差板は液晶の複屈折性による位相差の補償等による表示品位の向上などを目的とする。
また光拡散層は、表示光の拡散による表示範囲の拡大や光学フィルムの斜面を介した輝線状発光の平準化による輝度の均一化、液晶表示パネル内の伝送光の拡散による光学フィルムへの入射光量の増大などを目的とする。
【0052】
前記の偏光板としては、適宜なものを用いることができ特に限定はない。高度な直線偏光の入射による良好なコントラスト比の表示を得る点などよりは、例えばポリビニルアルコール系フィルムや部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルムの如き親水性高分子フィルムにヨウ素や二色性染料等の二色性物質を吸着させて延伸したものからなる吸収型偏光フィルムやその片側又は両側に透明保護層を設けたものなどの如く偏光度の高いものが好ましく用いうる。
【0053】
前記透明保護層の形成には、透明性や機械的強度、熱安定性や水分遮蔽性などに優れるものが好ましく用いられ、その例としてはアセテート系樹脂やポリエステル系樹脂、ポリエーテルスルホン系樹脂やポリカーボネート系樹脂、ポリアミド系樹脂やポリイミド系樹脂、ポリオレフィン系樹脂やアクリル系樹脂、ポリエーテル系樹脂やポリ塩化ビニル、スチレン系樹脂やノルボルネン系樹脂の如きポリマー、あるいはアクリル系やウレタン系、アクリルウレタン系やエポキシ系、シリコーン系等の熱硬化型ないし紫外線硬化型の樹脂などがあげられる。透明保護層は、フィルムとしたものの接着方式やポリマー液等の塗布方式などにより付与することができる。
【0054】
用いる偏光板、特に視認側の偏光板は、外光の表面反射による視認阻害の防止を目的にノングレア処理や反射防止処理を施したものであってもよい。ノングレア処理は、サンドブラスト方式やエンボス加工方式等の粗面化方式、シリカ等の透明粒子の配合方式などの種々の方式で表面を微細凹凸構造化することにより施すことができ、反射防止処理は、干渉性の蒸着膜を形成する方式などにて施すことができる。またノングレア処理や反射防止処理は、前記の表面微細凹凸構造や干渉膜を付与したフィルムの接着方式などにても施すことができる。なお偏光板は、図例の如く液晶セルの両側に設けることもできるし、液晶セルの片側にのみ設けることもできる。
【0055】
一方、位相差板としても例えば前記の透明保護層で例示したものなどの適宜なポリマーからなるフィルムを一軸や二軸等の適宜な方式で延伸処理してなる複屈折性フィルム、ネマチック系やディスコティック系等の適宜な液晶ポリマーの配向フィルムやその配向層を透明基材で支持したものなどの適宜なものを用いることができ、熱収縮性フィルムの加熱収縮力の作用下に厚さ方向の屈折率を制御したものなどであってもよい。
【0056】
図例の如く補償用の位相差板32、33は通例、視認側又は/及び背面側の偏光板31、34と液晶セルの間に必要に応じて配置され、その位相差板には波長域などに応じて適宜なものを用いうる。また位相差板は、位相差等の光学特性の制御を目的に2層以上を重畳して用いることもできる。
【0057】
また光拡散層についても前記のノングレア層に準じた表面微細凹凸構造を有する塗工層や拡散シートなどによる適宜な方式にて設けることができる。光拡散層は、上記した透明粒子配合の粘着層12に準じて図例の如く偏光板34と位相差板33の接着を兼ねる粘着層35として配置することもでき、これにより薄型化を図かることができる。光拡散層は、偏光板よりも外側(視認側)に配置することもできるが、図例の如く偏光板34よりも液晶セル側に配置することで外光が偏光板で吸収された後に光拡散層に入射することとなり、光拡散層を介した後方散乱による反射損を抑制できて有利である。
【0058】
一方、液晶表示パネルの側面に配置する照明装置は、液晶表示装置の照明光として利用する光を液晶表示パネルの側面から入射させることを目的とする。これによりパネルのバックやフロントに配置する光学フィルムとの組合せにて液晶表示装置の薄型軽量化を図ることができる。照明装置としては適宜なものを用いることができ、例えば(冷,熱)陰極管等の線状光源、発光ダイオード等の点光源やそれを線状や面状等に配列したアレイ体、あるいは点光源と線状導光板を組合せて点光源からの入射光を線状導光板を介し線状光源に変換するようにした照明装置などが好ましく用いうる。
【0059】
図7、8の例の如く照明装置5、51は、液晶表示パネルPにおける1又は2以上の側面に配置することができる。照明装置を2以上の側面に配置する場合、その複数の側面は図8の例の如く対向する側面の組合せであってもよいし、縦横に交差する側面の組合せであってもよく、それらを併用した3側面以上の組合せであってもよい。
【0060】
照明装置は、その点灯による透過モードでの視認を可能とするものであり、反射・透過両用型の液晶表示装置の場合に外光による反射モードにて視認するときには点灯の必要がないので、その点灯・消灯を切り替えうるものとされる。その切り替え方式には任意な方式を採ることができ、従来方式のいずれも採ることができる。なお照明装置は、発光色を切り替えうる異色発光式のものであってもよく、また異種の照明装置を介して異色発光させうるものとすることもできる。
【0061】
図例の如く照明装置5、51に対しては、必要に応じ発散光を液晶表示パネルPの側面に導くためにそれを包囲するリフレクタ52などの適宜な補助手段を配置した組合せ体とすることもできる。リフレクタとしては、高反射率の金属薄膜を付設した樹脂シートや白色シートや金属箔などの適宜な反射シートを用いうる。リフレクタは、その端部を液晶表示パネルのセル基板等の端部に接着する方式などにて照明装置の包囲を兼ねる固定手段として利用することもできる。
【0062】
なお本発明において上記した液晶表示装置を形成する液晶セルや偏光板や位相差板等の光学素子ないし部品は、全体的又は部分的に積層一体化されて固着されていてもよいし、分離容易な状態に配置されていてもよい。界面反射の抑制によるコントラストの低下防止などの点よりは固着状態にあることが好ましい。その固着密着処理には、粘着剤等の適宜な透明接着剤を用いることができ、その透明接着層に上記した透明粒子等を含有させて拡散機能を示す接着層などとすることもできる。
【0063】
また前記の光学素子ないし部品、特に視認側のそれには例えばサリチル酸エステル系化合物やベンゾフェノン系化合物、ベンゾトリアゾール系化合物やシアノアクリレート系化合物、ニッケル錯塩系化合物等の紫外線吸収剤で処理する方式などにより紫外線吸収能をもたせることもできる。
【0064】
【実施例】
実施例1
予め所定形状に加工した金型にアクリル系の紫外線硬化型樹脂(東亞合成社製、アロニックスUV−3701)をスポイトにて滴下充填し、その上に厚さ80μmのトリアセチルセルロース(TAC)フィルム(表面ケン化処理物)を静置しゴムローラで密着させて余分な樹脂と気泡を除去しメタルハライドランプにて紫外線を照射して硬化処理した後、金型から剥離し所定寸法に裁断して屈折率1.49のTACフィルムに屈折率1.533の光路変換手段層を有する透明フィルムを得、その光路変換手段を有しない面に屈折率1.47の粘着層を付設して光学フィルムを得た。
【0065】
なお前記の光学フィルムは、幅60mm、奥行45mmであり、稜線が幅方向に平行でかつ連続したプリズム状凹部を210μmのピッチで有し(図1c)、その光路変換斜面A1の傾斜角が42.5〜43度の範囲で、緩斜面A3の傾斜角が1.8〜3.5度の範囲で変化し、最寄り緩斜面の傾斜角変化が0.1度以内にあり、光路変換斜面のフィルム面に対する投影幅が10〜16μm、緩斜面/光路変換斜面のフィルム面に対する投影面積比が12倍以上のものからなる。
【0066】
次に市販のTN型液晶セルの視認側に樹脂微粒子含有の粘着層をTACフィルムに設けてなる光拡散フィルムを接着し、そのセルの表裏に偏光板を貼着してなるノーマリーホワイトの透過型TN液晶表示パネルの側面に冷陰極管を配置して銀蒸着の反射シートからなるリフレクタにて包囲し、その両端部をパネルの上下面に接着して冷陰極管を固定した後その視認背面側の偏光板に前記の光学フィルムをその粘着層を介し光路変換斜面が冷陰極管と平行に対面するように接着し、光学フィルムの背面に白色ポリエステルフィルムからなる反射板を配置して透過型の液晶表示装置を得た。
【0067】
実施例2
光路変換斜面A1の傾斜角が約42度で、急斜面A2との頂角が70度、平坦面A4の面積が光路変換斜面と急斜面のフィルム面に対する投影合計面積の10倍以上の光路変換手段(図1b)を有する光学フィルムとしたほかは、それを用いて実施例1に準じ透過型の液晶表示装置を得た。
【0068】
実施例3
傾斜角が約42度でフィルム面に対する投影幅が10μmの光路変換斜面A1と傾斜角が約55度の急斜面A2からなる長さ80μmの光路変換手段(図1b)をその長さ方向が幅方向に略平行な状態で有し、かつその光路変換手段を奥行方向の光入射側より遠離るほど徐々に高密度に配置してなる光学フィルム(図6)としたほかは、それを用いて実施例1に準じ透過型の液晶表示装置を得た。なお平坦面A4の面積は、光路変換斜面と急斜面のフィルム面に対する投影合計面積の10倍以上である。
【0069】
実施例4
傾斜角が約42度でフィルム面に対する投影幅が10μmの光路変換斜面A1による二等辺三角形からなる長さ80μmの光路変換手段(図1a)をその長さ方向が幅方向に平行な状態で有し、かつその光路変換手段を奥行方向の光入射側より中央部に向けて徐々に高密度となるようにランダムに配置してなる光学フィルム(図4)としそれを用いて対向する2側面に冷陰極管を配置したほかは、実施例1に準じ透過型の液晶表示装置を得た。なお平坦面A4の面積は、2面の光路変換斜面の合計面積の10倍以上である。
【0070】
実施例5
傾斜角が約42度でフィルム面に対する投影幅が10μmの光路変換斜面A1を2面有する長さ80μmで断面略四角形の溝からなる光路変換手段(図1e)をその長さ方向が幅方向に略平行な状態で有し、かつその光路変換手段を奥行方向の光入射側より中央部に向けて徐々に高密度となるようにランダムに配置してなる光学フィルムとしそれを用いたほかは、実施例4に準じ2側面入射式の透過型液晶表示装置を得た。なお平坦面A4の面積は、光路変換手段による面積の10倍以上である。
【0071】
実施例6
光路変換手段を形成した面に銀蒸着膜からなる反射層を設けた光学フィルムを用いて背面の反射板を省略したほかは実施例2に準じ反射・透過両用型の液晶表示装置を得た。
【0072】
比較例1
光学フィルムに変えて、サンドブラスト加工による散乱シートを用いたほかは実施例1に準じ透過型の液晶表示装置(図10)を得た。なお散乱シートは、粗面を視認背面側として配置した。
【0073】
比較例2
光路変換斜面の傾斜角が約30度で、急斜面との頂角が70度、平坦部A4の面積が光路変換斜面と急斜面のフィルム面に対する投影合計面積の10倍以上の光路変換手段(図1b)を有する光学フィルムとしたほかは、それを用いて実施例1に準じ透過型の液晶表示装置を得た。
【0074】
比較例3
視認背面側にシボ状の粗面を有する厚さ1.2mmの導光板の側面に冷陰極管を配置して銀蒸着の反射シートからなるリフレクタにて包囲し、その両端部を導光板の上下面に接着してそれを白色ポリエステルフィルムからなる反射板の上に配置し、その上に光拡散板を介して市販のノーマリーホワイトの透過型TN液晶パネルを配置して透過型の液晶表示装置を得た。
【0075】
比較例4
散乱面に銀蒸着膜からなる反射層を設けた比較例1の散乱フィルムを用いて背面の反射板を省略したほかは実施例6に準じ反射・透過両用型の液晶表示装置を得た。
【0076】
比較例5
光路変換手段を形成した面に銀蒸着膜からなる反射層を設けた比較例2の光学フィルムを用いて背面の反射板を省略したほかは実施例6に準じ反射・透過両用型の液晶表示装置を得た。
【0077】
評価試験
実施例、比較例で得た透過型又は反射・透過両用型の液晶表示装置について、液晶表示パネルに電圧を印加しない状態で冷陰極管を点灯させ透過モードによる装置中央部での正面輝度を輝度計(トプコン社製、BM7)にて調べた。またそれに準じ冷陰極管を消灯したリング状照明による外光を15度の角度で入射させる反射モードにおける白状態での正面輝度も調べた。その結果を次表に示した。
【0078】

Figure 0004548628
【0079】
表より、実施例では透過モードにおいて比較例1、2、4、5に比べて優れた正面輝度が達成されていることがわかる。これは比較例1、2、4、5では透過モードにおいて光源とは反対の方向に光が出射されて正面方向の輝度に乏しく表示に寄与しにくい出射光であったことによる。特に比較例1、4ではどの方位においても出射光に乏しかった。
【0080】
また実施例4、5では2灯式による輝度の向上が顕著で、比較例3のサイドライト型導光板以上の明るさが得られていることがわかる。なお比較例3のサイドライト型導光板による方式では、その導光板による厚さ増が顕著に現れて、薄型化が困難であった。さらに透過モードにおいて液晶表示パネルに電圧を印加した状態での視認でも実施例では問題はなく良好な表示品位であった。また実施例2で光拡散フィルムを除去した状態では、見やすさの点で光拡散フィルムがあるときよりも劣るが、正面輝度の点では遜色はなかった。
【0081】
一方、反射モードにおいても液晶表示パネルへの電圧印加状態において、実施例6及び比較例4、5では像の乱れ等のない表示であったが、比較例4、5では実施例6よりも暗かった。以上より実施例では透過モードにおいて明るい表示が達成されており、また実施例6の反射モードにおいても明るい表示が達成されてこれより本発明にて導光板による嵩高化、高重量化を回避してフィルム方式による薄型軽量化を達成しつつ、表示品位の良好な透過型や反射・透過両用型の液晶表示装置を形成できることがわかる。
【図面の簡単な説明】
【図1】光学フィルム例(光路変換斜面)の側面説明図
【図2】光路変換斜面の平面説明図
【図3】他の光路変換斜面の平面説明図
【図4】更に他の光路変換斜面の平面説明図
【図5】他の光学フィルム例の側面説明図
【図6】更に他の光学フィルム例の側面説明図
【図7】透過型(反射・透過両用型)液晶表示装置例の説明断面図
【図8】他の透過型(反射・透過両用型)液晶表示装置例の説明断面図
【図9】屈折率と光路の関係の説明図
【図10】従来の透過型液晶表示装置例の説明断面図
【符号の説明】
1:光学フィルム
11:透明フィルム
12:粘着層
13:光路変換手段層
A:光路変換手段
A1:光路変換斜面 A3、4:平坦面
4:反射層
P:液晶表示パネル
5、51:照明装置
21、28:セル基板 25:液晶層
31、34:偏光板 32、33:位相差板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical film capable of forming a transmissive and reflective / transmissive liquid crystal display device that is thin, light, bright and easy to view by efficiently changing the optical path of side incident light in the viewing direction.
[0002]
BACKGROUND OF THE INVENTION
In order to reduce the weight of TV and PC screens and to reduce the size and weight of mobile PCs and mobile phones, it is necessary to reduce the thickness and weight of transmissive LCDs. It is difficult to reduce the thickness and weight of a backlight provided with a sidelight type light guide plate. By the way, in the direct type backlight, a light diffusing plate and a reflecting plate are arranged directly under the liquid crystal display panel together with the illuminating device, and the thickness is usually 4 mm or more, and the side light type light guide plate also has a thickness of 1 mm or more due to the necessity of light transmission When a light diffusing plate, a reflecting plate, a prism sheet, or the like is disposed thereon, the thickness is usually 3 mm or more.
[0003]
There is also known a reflection / transmission type liquid crystal display device in which a transflective reflector is disposed between the above-described transmission type liquid crystal display panel and a backlight so that it can be seen even in a reflection mode by external light. . The arrangement of the transflective reflector is intended to enable the visual recognition in the reflection mode. Without it, the visual recognition in the reflection mode by the external light is dark and it is difficult to function as a reflective liquid crystal display device. However, in addition to adding bulkiness and weight by adding a transflective reflector, the transflective reflector disperses the transmitted light and the reflected light, so the visibility in the transmissive mode is darkened, and the reflective mode is also visible. There is a problem that it is difficult to make the brightness darker than that of a reflection-only layer having a high reflectance.
[0004]
[Technical Problem of the Invention]
It is an object of the present invention to develop an optical film capable of forming a transmissive type liquid crystal display device that is thin, light, bright, and easy to view by efficiently changing the optical path of side incident light in the viewing direction, and capable of forming a reflective and transmissive liquid crystal display device.
[0005]
[Means for solving problems]
The present invention has a single-sided pressure-sensitive adhesive layer of the transparent film, and has a repeating structure of irregularities having a light path changing slopes and flat surfaces on the other surface of the transparent film, the optical transmission member via the adhesive layer An optical film to be bonded , wherein the transparent film has a thickness of 300 μm or less, the adhesive layer has a refractive index difference with the surface layer of the transparent film within 0.1, and the unevenness is repeated. The optical path changing slope in the structure has a tilt angle of 35 to 48 degrees with respect to the film surface and faces a substantially constant direction, and the flat surface in the repeated structure of the unevenness has a tilt angle of 5 degrees or less with respect to the film surface, The flat surface in the concave / convex repeating structure is connected to the convex side of the optical path conversion slope in the concave / convex repeating structure, and the flat surface is based on the occupied area on one side of the film. There is provided an optical film characterized in that it has more than 10 times the optical path changing slopes.
[0006]
【The invention's effect】
According to the optical film of the present invention, it is arranged along the viewing surface of the liquid crystal display panel having the illumination device on the side surface, so that the incident light from the side surface or the transmitted light can be changed to the optical path changing slope of the optical film. Therefore, the optical path can be efficiently changed in the viewing direction of the liquid crystal display panel and used for liquid crystal display in the transmission mode, and a transmissive liquid crystal display device which is excellent in thinness and light weight and is bright and excellent in display quality can be formed. Further, by providing a flat surface portion between the optical path changing slopes of the optical film, external light can be efficiently incident, and the incident light can be reflected through the reflective layer and used for liquid crystal display in the reflective mode. In addition to the mode mechanism, a reflection mode mechanism can also be formed, and a reflection / transmission type liquid crystal display device that is excellent in thinness, lightness and brightness and excellent in display quality can be formed.
[0007]
The above-mentioned effect is mainly due to the optical path control type optical film by slope reflection. In other words, by reflecting incident light from the side surface or its transmitted light through the optical path conversion slope, the optical path can be changed with good directivity and good visibility in the transmission mode is achieved, and a flat surface can be easily formed between the optical path conversion slopes. It is possible to arrange and transmit external light through the flat surface to ensure sufficient external light incidence, and good visual recognition in the reflection mode is also achieved. As illustrated in FIG. 10, it is difficult to achieve the above effect by the scattering reflection method using the scattering sheet 6 or the like through the rough surface. Incidentally, in Japanese Patent Laid-Open No. 5-158033, a reflective liquid crystal is used for display in which illumination light is incident from the side surface of a liquid crystal display panel and totally reflected by a viewing side cell substrate, and the reflected light is scattered by a rough surface type reflector. Teaching a display device.
[0008]
However, in the above case, the light that can be used for display is light that scatters out of the total reflection condition and is emitted from the panel. Generally, the scattered light exhibits a normal distribution having a peak in the regular reflection direction (the 20th liquid crystal display). 3) G510, Tohoku University; Uchida, etc.), the above display light is light that is greatly inclined from the front (vertical) direction and is not effectively used for display, and the display light is dark in the front direction. If the scattering by the rough reflector is increased, the amount of light in the front direction in the reflection mode is reduced, which is also disadvantageous for display (SID 96 DIGEST P149-152). Therefore, in such a rough surface scattering reflection system, the scattering intensity required for both the transmission and reflection modes has a contradictory relationship, and it is difficult to obtain a scattering intensity that is advantageous for both.
[0009]
On the other hand, the optical film of the optical path control type by slope reflection according to the present invention mainly uses light in the regular reflection direction showing a peak, and controls the optical path of the reflected light. In particular, the directivity in the front direction can be easily provided and a bright transmission mode can be achieved. In addition, even in the reflection mode, it is possible to ensure efficient incidence and reflection / transmission of external light by using a flat portion other than the inclined surface of the optical film, and it is possible to easily balance in an advantageous state for both reflection and transmission modes. it can.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The optical film according to the present invention has a single-sided pressure-sensitive adhesive layer of the transparent film, and has a repeating structure of irregularities having a light path changing slopes and flat surfaces on the other surface of the transparent film, light through the adhesive layer An optical film to be bonded to a transmission member , wherein the transparent film has a thickness of 300 μm or less, and the adhesive layer has a refractive index difference within 0.1 with respect to the surface layer of the transparent film, The optical path conversion slope in the repeating structure of concaves and convexes faces a substantially constant direction with an inclination angle of 35 to 48 degrees with respect to the film surface, and the flat surface in the repeating structure of concaves and convexes has an inclination angle with respect to the film surface of 5 degrees or less. And the flat surface in the repeating structure of concaves and convexes is connected to the convex side of the optical path conversion slope in the repeating structure of concaves and convexes, and the flat surface is placed on one side of the film. They comprise those having more than 10 times the optical path changing slopes on the basis of the occupied area. Examples thereof are shown in FIGS. 1 is an optical film, 11 is a transparent film, 12 is a pressure-sensitive adhesive layer, 13 is an uneven structure having an optical path changing slope A1, that is, a repeating structure layer of the optical path changing means A, and 14 is a release sheet. As illustrated in FIG. 1G, the repeating structure of the optical path changing unit A may be formed in the same body as the transparent film 11.
[0011]
The optical film 1 is arranged in a direction along the viewing surface of the liquid crystal display panel P having the illuminating device 5 on the side surface as illustrated in FIG. 7, and incident light from the side surface direction or transmitted light by the illuminating device is indicated by an arrow. The light path is reflected through the light path changing slope A1 and the transparent film 11 does not have the slope, and thus the light path is changed in the viewing direction of the liquid crystal display panel P and emitted from the transparent film, and the emitted light is emitted from the liquid crystal display panel or the like. It aims at making it usable as light (display light).
[0012]
The transparent film 11 has a slope A1 on one side of the film for reflecting the incident light from the side surface or its transmitted light in a predetermined direction to change the optical path as illustrated in FIG. The In that case, in the present invention, as shown in FIG. 1, the inclination angle θ1 with respect to the film surface A4 is 35 to 48 degrees and substantially constant from the point of obtaining illumination light having excellent directivity in the front direction through optical path conversion. It is assumed that it has a concave-convex structure having an optical path changing slope A1 that faces the direction, that is, a repeating structure of the optical path changing means A.
[0013]
Examples of the optical path changing means A having the above-described optical path changing slope A1 are shown in FIGS. In (a) to (c), (g), and (h), the optical path changing means A has a substantially triangular cross section. In (d) and (e), the cross section is substantially square. In (f), the cross section is substantially pentagonal. Consists of things. Further, (a) has two optical path conversion slopes A1 with isosceles triangles, and (b), (g), and (h) have optical path conversion slopes A1 and an optical path having a steep slope A2 having an inclination angle larger than the slope A1. It consists of what has the conversion means A.
[0014]
On the other hand, in (c), the optical path changing means A having the unit of the optical path changing slope A1 and the gentle slope A3 having a small inclination angle is formed on the entire surface of one side of the film as a repeating structure in an adjacent continuous state. Further, (a) to (c), (e), (g), and (h) have an optical path changing means A composed of a recess (groove), and (d) and (f) have a protrusion (projection). It has what has the optical path conversion means A which consists of.
[0015]
Therefore, as in the above-described example, the optical path changing means can be formed on a convex portion or a concave portion made of an equilateral surface or an inclined surface having the same inclination angle, or an optical path changing inclined surface and a steep slope or a gentle inclined surface or an inclined surface having different inclination angles. It can also be formed in a convex part or a concave part, and the slope form can be determined as appropriate depending on the number and position of the side surfaces in which light is incident. From the viewpoint of maintaining the slope function by improving the scratch resistance, it is advantageous that the slope or the like is not easily damaged because it is formed as a light path changing means including a concave portion rather than a convex portion.
[0016]
More preferable optical films such as the above-mentioned characteristics such as directivity in the front direction are such that a substantially constant direction facing the light path conversion inclined surface A1 is a direction facing a side direction in which light is incident. Therefore, for example, when light is incident from two or more side directions of the optical film 1 as shown in FIG. 8, an optical film having an optical path changing slope A1 corresponding to the number and position is preferably used.
[0017]
Incidentally, when the two opposite side surfaces of the optical film are in the direction of the incident side as shown in FIG. 8, the two optical path changing slopes by the optical path changing means A having a substantially isosceles cross section as shown in FIG. A1 or two ridges of the optical path conversion slope A1 formed by the optical path conversion means A having a substantially trapezoidal or quadrangular or substantially pentagonal cross section as shown in FIGS. 1 (d), (e), and (f), along the lateral direction. The optical film 1 having two or more surfaces in a state in which the light path changing inclined surface facing in a substantially constant direction includes a surface facing in the opposite direction with respect to the one surface is preferably used, like the one having the direction.
[0018]
In addition, when two side surfaces that are adjacent in the vertical and horizontal directions of the optical film are set as the side directions in which light is incident, an optical film having an optical path conversion slope A1 in a state in which the ridge line extends in both the vertical and horizontal directions corresponding to the side surfaces is preferably used. . Further, in the case where three or more side surfaces including the opposite and vertical and horizontal directions are in the side surface direction where light enters, an optical film having an optical path conversion slope A1 composed of the above combination is preferably used.
[0019]
As described above, the optical path changing slope A1 plays a role of changing the optical path by reflecting the light incident on the face A1 from the incident light from the side surface direction or the transmitted light. In this case, as shown in FIG. 1 (a), the incident light from the side surface direction or its transmitted light has a good perpendicularity to the film surface by setting the inclination angle θ1 of the optical path conversion slope A1 to the film surface to 35 to 48 degrees. It is possible to efficiently obtain illumination light that is converted into an optical path and has excellent directivity toward the front.
[0020]
When the tilt angle θ1 is less than 35 degrees, the optical path of the reflected light is greatly shifted in the direction of 30 degrees or more from the front direction, making it difficult to effectively use for display, and the brightness in the front direction is poor. When the incident light or the transmitted light is not totally reflected, the leakage light from the optical path changing slope increases, and the light use efficiency of the incident light from the side surface direction becomes poor. The preferable inclination angle θ1 of the light path conversion inclined surface A1 is 38 to 45 in consideration of the total reflection condition based on the refraction according to Snell's law of the transmitted light in view of the optical path conversion excellent in the directivity to the front and the suppression of the leakage light. Degree, especially 40-44 degrees.
[0021]
The optical path changing means A provided with the optical path changing slope A1 is formed as a repeated structure of irregularities for the purpose of thinning the optical film. In that case, as shown in FIG. 1, the unevenness is repeated, since incident light from the side surface direction is reflected backward and efficiently transmitted to the opposite side surface to emit light as uniformly as possible on the entire surface of the optical film. In the structure, on the convex side of the optical path converting slope A1, the slope with respect to the film surface is 5 degrees or less, especially 4 degrees or less, particularly 3 degrees or less, and the gentle slope A3 or the film surface A4 having the slope angle of approximately 0 degrees. A flat surface is connected, and the flat surface has a structure having at least 10 times the optical path conversion slope based on the occupied area on one side of the film . Accordingly, in the optical path changing means A including the steep slope A2 illustrated in FIGS. 1B, 1E, 1G, and 1H, the angle of the steep slope is 35 degrees or more, especially 50 degrees or more, particularly 60 degrees or more. It is preferable that the film surface A4 has a wide structure.
[0022]
Further, the flat surface composed of the gentle slope A3 and the film surface A4 has an incident portion of external light and the incident light of the incident light when the reflective layer 4 is disposed on the back side of the optical film 1 as in the examples of FIGS. It can function as a transmission part of the reflected light through the reflective layer 4, thereby enabling display in a reflection mode by external light with the illumination device turned off, and forming a reflection / transmission type liquid crystal display device To do.
[0023]
In the case described above, particularly when the optical path changing means A is composed of adjacent repeating structures with the slopes A1 and A3 as shown in FIG. 1 (c), the angle difference of the slope of the gentle slope A3 with respect to the film surface is 5 degrees as a whole of the optical film. Within 3 degrees, especially within 3 degrees, and the difference in inclination angle between the nearest gentle slopes is preferably within 1 degree, within 0.3 degrees, especially within 0.1 degrees. The purpose of this is to prevent the reflected light path through the gentle slope A3 from changing greatly, and in particular, from changing the distance between the nearest gentle slopes. The case of the optical path changing means A using the slopes A1 and A3 as shown in FIG.
[0024]
Further, from the point of obtaining a bright display in the external light mode, the occupied area or width of the flat surface composed of the gentle slope A3 or the film surface A4 having an inclination angle of 5 degrees or less with respect to the film surface is set on one side of the film on which the optical path changing means A is formed. Based on the slope A1 or A2 having an inclination angle of 35 degrees or more, it is preferably 12 times or more, especially 15 times or more. The purpose is to improve the incident efficiency of external light and the transmission efficiency of reflected light through the reflective layer.
[0025]
2-4, the optical path changing means A is provided so that its ridgeline is parallel or inclined along the side surface direction on which the light is incident. In this case, the optical path changing means A is the same as that shown in FIGS. Thus, it may be formed continuously from one end to the other end of the optical film 1, or may be formed intermittently discontinuously as in the example of FIG.
[0026]
When formed discontinuously as described above, the length in the direction along the side surface direction of the irregularities formed by the grooves or projections is set to 5 times or more of the depth or height in terms of the incident efficiency of transmission light, the optical path conversion efficiency, and the like. In view of uniform light emission on the optical film, the length is preferably 500 μm or less, more preferably 10 to 480 μm, and particularly preferably 50 to 450 μm.
[0027]
The slope forming the optical path conversion means A may be formed in an appropriate surface form such as a straight surface, a refracting surface, or a curved surface, and the cross-sectional shape of the optical path conversion means A and the repetitive pitch of the optical path conversion slope A1 therethrough There is no particular limitation on. As the light path conversion slope A1 becomes a factor determining the luminance in the transmission (lighting) mode, the light emission uniformity on the optical film, or the light emission uniformity in the external light mode in the reflection / transmission type is appropriately selected. The optical path conversion light quantity can be controlled by the distribution density.
[0028]
Accordingly, the inclination angle of the slopes A1, 2, and 3 may be a constant shape over the entire surface of the sheet, or uniform emission of light on the optical film in response to absorption loss and attenuation of transmitted light due to optical path conversion. For the purpose of reducing the light path, the optical path changing means A may be increased as the distance from the side surface on the light incident side increases as in the example of FIG.
[0029]
2 and 3 can be used as the optical path conversion means A with a constant pitch, or the optical path can be gradually narrowed as the distance from the side surface on which light enters as shown in FIGS. The distribution density of the conversion means A can be increased. Furthermore, the light emission on the optical film can be made uniform at a random pitch, and the random pitch is more advantageous than the point of preventing moire due to interference with pixels. Therefore, the optical path changing means A may be composed of a combination of irregularities having different shapes and the like in addition to the pitch. 2 to 6, the arrow direction is the light transmission direction.
[0030]
In the case of a reflection / transmission type liquid crystal display device, if the light path changing slope A1 overlaps with the pixels of the liquid crystal display panel, the display light may be insufficiently transmitted, resulting in an unnatural display. Preferably, the overlap area is made as small as possible to ensure sufficient light transmittance through the flat surfaces A3 and A4. Considering that the pixel pitch of the liquid crystal display panel is generally 100 to 300 μm from this point, the optical path changing slope A1 is 40 μm or less, especially 3 to 20 μm, especially 5 to 15 μm, based on the projection width on the film surface. It is preferable to form it as follows. Such a projection width is more preferable than the point of preventing deterioration of display quality due to diffraction, for example, because the coherent length of the fluorescent tube is generally about 20 μm.
[0031]
On the other hand, it is preferable that the distance between the light path conversion slopes A1 is larger than the above point. On the other hand, the light path conversion slope is a function part of substantial illumination light formation by light path conversion of incident light from the side surface direction as described above. Therefore, if the interval is too wide, lighting at the time of lighting may become sparse and unnatural display may occur. In view of these, the repetitive pitch of the optical path changing slope A1 is 5 mm or less, especially 20 μm to 3 mm. In particular, the thickness is preferably 50 μm to 2 mm.
[0032]
Further, in the case of an optical path changing means having a repeated structure of irregularities, moire may occur due to interference with the pixels of the liquid crystal display panel. Although moiré can be prevented by adjusting the pitch of the repeating structure, there is a preferable range for the pitch of the repeating structure as described above. Therefore, a solution in the case where moire occurs in the pitch range becomes a problem. In the present invention, as shown in the example of FIG. 3, it is preferable to form a concave / convex ridge line so as to be inclined with respect to the side surface so that a repeating structure of concave / convex can be arranged in a crossing manner with respect to the pixel.
[0033]
In this case, if the inclination angle θ2 with respect to the side surface direction is too large, the reflection through the optical path conversion inclined surface A1 is deflected, and a large deviation occurs in the optical path conversion direction, which is likely to cause deterioration in display quality. The inclination angle θ2 with respect to the side surface direction is preferably within ± 30 degrees, particularly within ± 25 degrees, and preferably within ± 20 degrees. The sign “±” means the inclination direction of the ridge line with respect to the side surface direction. When the resolution of the liquid crystal display panel is low and moire is not generated or when moire can be ignored, it is preferable that the ridge line be parallel to the side surface direction.
[0034]
The transparent film having the optical path changing means is, for example, a method of transferring a shape by pressing a thermoplastic resin to a mold capable of forming a predetermined shape under heating, a heat-melted thermoplastic resin, or flowing through heat or a solvent. Filling a mold that can be molded into a predetermined shape, filling a liquid mold that can be polymerized with heat, ultraviolet rays, or radiation such as an electron beam into a mold that can form a predetermined shape Then, it can be formed by an appropriate method such as a polymerization method.
[0035]
A preferable method for forming a transparent film having an optical path changing means is, for example, coating a curable resin that can be polymerized with ultraviolet rays or radiation on one side of the transparent film, and forming the coating layer on the surface on which the predetermined uneven structure of the mold is formed. After being cured by irradiation with ultraviolet rays, radiation, etc., an optical path changing slope is formed on one side of the transparent film through a mold having a predetermined concavo-convex structure, such as a method of peeling and collecting the transparent film from the mold. This is a method of adding a repeating structure of unevenness.
[0036]
As described above, the transparent film having the optical path changing means can be obtained by being integrally formed in a state having the optical path changing means, or can be obtained by a method of adding the optical path changing means to one side of the transparent film. In the latter case, if the refractive index difference between the optical path changing means to be added and the transparent film is large, the emission efficiency may be greatly reduced due to interface reflection or the like. From the point of preventing this, the transparent film and the optical path changing means to be added It is preferable to make the difference in refractive index as small as possible, especially within 0.10, especially within 0.05. In that case, it is preferable from the viewpoint of the emission efficiency that the refractive index of the optical path changing means to be added is higher than that of the transparent film.
[0037]
The transparent film and the optical path changing means can be formed of an appropriate material that exhibits transparency according to the wavelength range of light incident through an illumination device or the like. By the way, in the visible light range, for example, transparent resins represented by acrylic resins, polycarbonate resins, cellulose resins and norbornene resins, and curable resins that can be polymerized by radiation such as heat, ultraviolet rays, electron beams, etc. It is done.
[0038]
In particular, it is preferable to use a material that does not exhibit birefringence or that has a small birefringence and is made into a transparent film having a small retardation by a casting method or the like. Moreover, an internal stress may generate | occur | produce in a transparent film by an adhesion | attachment process, and it is preferable to use a material with a small photoelastic coefficient from the point which prevents generation | occurrence | production of the phase difference by this internal stress. The thickness of the transparent film, 300 [mu] m or less from the viewpoint of such as thinning, especially 5 to 200 [mu] m, are particularly 10 to 100 [mu] m. The transparent film may be formed as two or more layers of superposed bodies 11A and 11B made of the same kind or different kinds of resins as in the example of FIG. 1 (h), and may be formed as an integral single layer made of one kind of material. There is no need to be.
[0039]
The optical film is provided with the adhesive layer 12 on the surface of the transparent film 11 that does not have the concave and convex repeated structure 13 as in the example of FIG. The pressure-sensitive adhesive layer 12 is for bonding an optical film to a support member such as a liquid crystal display panel, and the bonding treatment via the pressure-sensitive adhesive layer is a reflection efficiency through the optical path conversion slope A1 of the optical path conversion means A, and consequently The purpose is to improve brightness by effectively using incident light from the side. For the formation of the adhesive layer, use adhesives such as rubber, acrylic, vinyl alkyl ether, silicone, polyester, polyurethane, polyether, polyamide, styrene, etc. Can be used. Among them, those having excellent transparency, weather resistance, heat resistance and the like, such as an acrylic pressure-sensitive adhesive mainly composed of a polymer mainly composed of an alkyl ester of acrylic acid or methacrylic acid, are preferably used.
[0040]
In the present invention, as exemplified by the arrows in FIG. 9, it is prevented that light is trapped in the support member such as the liquid crystal display panel and cannot be emitted due to the interface reflection due to the difference in refractive index, resulting in loss without being emitted. From the viewpoint of suppressing the amount of light, an adhesive layer having a refractive index difference from the transparent film of 0.1 or less, particularly 0.08 or less, and particularly 0.05 or less is used. In addition, the adhesive layer includes inorganic particles having conductivity such as silica, alumina, titania, zirconia, tin oxide, indium oxide, cadmium oxide, and antimony oxide, and organic particles such as a crosslinked or uncrosslinked polymer. One kind or two or more kinds of appropriate transparent particles may be contained to obtain a light diffusion type. Note that it is preferable to temporarily cover the adhesive layer with a release sheet 14 as shown in the example of FIG. 1 for the purpose of preventing foreign matters from being mixed in until the adhesive layer is put into practical use. Further, for the same reason as described above, the difference in refractive index from the support member to which the adhesive layer is bonded is preferably within 0.15, more preferably within 0.10, and particularly preferably within 0.05.
[0041]
The optical film may be one in which a base material such as a sheet for the purpose of protecting the optical path conversion slope is closely disposed on the surface of the transparent film on which the optical path conversion slope is formed. The optical film may be one in which the reflective layer 4 is disposed in close contact with the surface of the transparent film 11 on which the optical path changing slope is formed as illustrated in FIGS. The purpose of this reflective layer is to improve light utilization efficiency by reflecting and re-entering leaked light from the surface of the transparent film on which the optical path changing slope is formed, and to form a reflective / transmissive liquid crystal display device. .
[0042]
The reflective layer can be formed of an appropriate material such as a white sheet according to the related art. In particular, for example, a coating layer in which a powder of a highly reflective metal such as aluminum, silver, gold, copper, or chromium or an alloy thereof is contained in a binder resin, and the metal or dielectric multilayer film is vacuum-deposited. A layer formed by an appropriate thin film forming method such as a sputtering method, a reflective sheet in which the coating layer or the attached layer is supported by a substrate made of a film, a reflective layer having a high reflectivity made of a metal foil, etc. It is particularly preferable when a reflective / transmissive liquid crystal display device is formed.
[0043]
The reflective layer to be formed may exhibit a light diffusion function. It is possible to improve the directivity in the front direction by diffusing the reflected light on the diffuse reflection surface, and to improve visibility by preventing the generation of Newton rings due to close contact in the case of roughening. Can do.
[0044]
The light diffusive reflective layer can be formed on a film substrate having a surface with a fine concavo-convex structure by an appropriate method such as a surface roughening method such as sand blasting or matting, or a particle addition method. This can be done by a method of providing a reflective layer reflecting the above. The reflective layer of the fine concavo-convex structure reflecting the fine concavo-convex structure on the surface is formed by, for example, applying a metal film to the film substrate by an appropriate method such as a vacuum deposition method, an ion plating method, a sputtering method, or a deposition method. It can be performed by a method of attaching to the surface of the like.
[0045]
The optical film according to the present invention changes the optical path of incident light from the side surface direction by an illumination device or the like or the transmitted light in a direction excellent in verticality advantageous for visual recognition through an optical path conversion slope, and emits light efficiently. As shown in FIGS. 7 and 8, the liquid crystal display panel P having the illumination devices 5 and 51 disposed on one or more side surfaces as shown in FIGS. It is possible to form various devices such as a bright and easy to see transmissive type disposed on the ( front ) and a reflective / transmissive liquid crystal display device excellent in low power consumption.
[0046]
Incidentally, according to the above-described liquid crystal display device, most of the incident light from the side surface direction through the illumination device is based on the law of refraction through the cell substrates 21 and 28 above and below it based on the thickness ratio of each layer in the liquid crystal display panel. The light that is transmitted rearward through reflection and is incident on the optical path changing slope A1 of the optical film 1 while being prevented from being emitted (leakage) from the panel surface is efficiently optically changed in the viewing direction, particularly in the front direction. Can be transmitted rearward by total reflection and incident on the rearward optical path changing slope A1 and efficiently changed in the viewing direction to achieve display with excellent brightness on the entire panel display surface.
[0047]
In the above, the liquid crystal display panel P is an appropriate transmissive type having at least liquid crystal cells, that is, the liquid crystal 25 is sealed between the cell substrates 21 and 28 via the sealing material 24 as in the examples of FIGS. There can be used at least a liquid crystal cell, and incident light from the side where the optical film 1 is disposed can be emitted from the other side as display light through control by liquid crystal or the like, and the type is not particularly limited.
[0048]
Incidentally, specific examples of the liquid crystal cell described above include TN liquid crystal cell, STN liquid crystal cell, IPS liquid crystal cell, HAN liquid crystal cell, OCB liquid crystal cell and VA liquid crystal cell, twist type, non-twist type, guest host type and ferroelectricity. Examples of the liquid crystal cell include a liquid crystal cell or a light diffusion type liquid crystal cell, and the liquid crystal driving method may be an appropriate one such as an active matrix method or a passive matrix method. The liquid crystal is usually driven through transparent electrodes 22 and 27 provided inside a pair of cell substrates 21 and 28 as illustrated in FIGS.
[0049]
As the cell substrate, an appropriate transparent substrate can be used from glass, resin, etc., and in particular, a substrate made of an optically isotropic material is preferable from the viewpoint of display quality.
In addition, from the viewpoint of improvement in luminance and display quality, those having excellent colorless transparency such as an alkali-free glass plate with respect to a blue glass plate are preferable, and a resin substrate is more preferable in terms of lightness and the like. The thickness of the cell substrate is not particularly limited and can be appropriately determined according to the sealing strength of the liquid crystal. In general, the thickness is 10 μm to 5 mm, especially 50 μm to 2 mm, especially 100 μm to 1 mm, in view of the balance between light transmission efficiency and thin and light weight.
[0050]
When forming the liquid crystal cell, one or two or more appropriate functional layers such as an alignment film composed of a rubbing treatment film for aligning liquid crystals and a color filter for color display can be provided as necessary. . As shown in the figure, the alignment films 23 and 26 are usually formed on the transparent electrodes 22 and 27, and the color filter not shown is usually provided between the substrate and the transparent electrode on one of the cell substrates 21 and 28. It is done.
[0051]
The liquid crystal display panel is obtained by adding one or more appropriate optical layers such as polarizing plates 31 and 34, retardation plates 32 and 33, and a light diffusion layer to a liquid crystal cell as in the examples of FIGS. There may be. The purpose of the polarizing plate is to achieve display using linearly polarized light, and the purpose of the retardation plate is to improve display quality by compensating for the phase difference due to the birefringence of the liquid crystal.
The light diffusion layer expands the display range by diffusing the display light, equalizes the brightness by leveling the bright line light emission through the slope of the optical film, and enters the optical film by diffusing the transmitted light in the liquid crystal display panel. The purpose is to increase the amount of light.
[0052]
As the polarizing plate, any suitable one can be used and there is no particular limitation. Higher hydrophilicity such as polyvinyl alcohol film, partially formalized polyvinyl alcohol film, ethylene / vinyl acetate copolymer partially saponified film, etc. A highly polarizing film such as an absorbing polarizing film formed by adsorbing and stretching a dichroic substance such as iodine or a dichroic dye on a molecular film or a transparent protective layer provided on one or both sides thereof. It can be preferably used.
[0053]
For the formation of the transparent protective layer, those excellent in transparency, mechanical strength, thermal stability, moisture shielding properties, etc. are preferably used. Examples thereof include acetate resins, polyester resins, polyethersulfone resins, Polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, acrylic resins, polyether resins, polyvinyl chloride, polymers such as styrene resins, norbornene resins, acrylic resins, urethane resins, acrylic urethane resins And epoxy- and silicone-based thermosetting or ultraviolet curable resins. The transparent protective layer can be applied by a bonding method of a film or a coating method of a polymer liquid or the like.
[0054]
The polarizing plate to be used, particularly the polarizing plate on the viewing side, may be subjected to non-glare treatment or antireflection treatment for the purpose of preventing visual obstruction due to surface reflection of external light. The non-glare treatment can be performed by making the surface a fine concavo-convex structure by various methods such as a roughening method such as a sand blasting method or an embossing method, a blending method of transparent particles such as silica, It can be applied by a method of forming a coherent vapor deposition film. Further, the non-glare treatment and the antireflection treatment can also be applied to the above-described surface fine uneven structure and the adhesion method of the film provided with the interference film. The polarizing plate can be provided on both sides of the liquid crystal cell as shown in the figure, or can be provided only on one side of the liquid crystal cell.
[0055]
On the other hand, as a retardation plate, for example, a birefringent film obtained by stretching a film made of an appropriate polymer such as those exemplified in the transparent protective layer by an appropriate method such as uniaxial or biaxial, nematic or disco An appropriate film such as an alignment film of an appropriate liquid crystal polymer such as a tick system or an alignment layer of which an alignment layer is supported by a transparent substrate can be used. Those having a controlled refractive index may be used.
[0056]
As shown in the figure, the compensation retardation plates 32 and 33 are usually arranged between the polarizing plates 31 and 34 on the viewing side and / or the back side and the liquid crystal cell as required, and the retardation plate has a wavelength region. An appropriate one can be used according to the above. In addition, the retardation plate can be used by superposing two or more layers for the purpose of controlling optical characteristics such as retardation.
[0057]
Further, the light diffusion layer can also be provided by an appropriate method using a coating layer or a diffusion sheet having a surface fine concavo-convex structure according to the non-glare layer. The light diffusing layer can be arranged as an adhesive layer 35 that also serves as an adhesive between the polarizing plate 34 and the retardation plate 33 as shown in the figure in accordance with the above-described adhesive layer 12 containing the transparent particles, thereby reducing the thickness. be able to. The light diffusing layer can be arranged on the outer side (viewing side) than the polarizing plate. It is incident on the diffusion layer, which is advantageous in that reflection loss due to backscattering through the light diffusion layer can be suppressed.
[0058]
On the other hand, the illumination device arranged on the side surface of the liquid crystal display panel is intended to make light used as illumination light of the liquid crystal display device enter from the side surface of the liquid crystal display panel. Accordingly, the liquid crystal display device can be reduced in thickness and weight in combination with the optical film disposed on the back or front of the panel. An appropriate lighting device can be used. For example, a linear light source such as a (cold, hot) cathode tube, a point light source such as a light emitting diode, an array body in which the light source is arranged in a linear or planar shape, or a point An illuminating device that combines a light source and a linear light guide plate to convert incident light from a point light source into a linear light source via the linear light guide plate can be preferably used.
[0059]
7 and 8, the illumination devices 5 and 51 can be arranged on one or more side surfaces of the liquid crystal display panel P. When the lighting device is arranged on two or more side surfaces, the plurality of side surfaces may be a combination of opposing side surfaces as in the example of FIG. 8 or a combination of side surfaces that intersect vertically and horizontally. It may be a combination of three or more side surfaces used in combination.
[0060]
The illuminating device enables visual recognition in the transmission mode by lighting, and in the case of a reflection / transmission type liquid crystal display device, there is no need for lighting when viewing in the reflection mode by external light. It can be switched on and off. As the switching method, any method can be adopted, and any of the conventional methods can be adopted. Note that the illumination device may be of a different color light emission type capable of switching the emission color, or may be capable of emitting different color light through different types of illumination devices.
[0061]
As shown in the figure, the lighting devices 5 and 51 are combined with appropriate auxiliary means such as a reflector 52 surrounding the diverging light to guide the side surface of the liquid crystal display panel P as necessary. You can also. As the reflector, an appropriate reflection sheet such as a resin sheet, a white sheet, or a metal foil provided with a highly reflective metal thin film can be used. The reflector can also be used as a fixing means that also serves as an enclosure for the lighting device, for example, by bonding the end of the reflector to the end of a cell substrate or the like of the liquid crystal display panel.
[0062]
In the present invention, optical elements or components such as a liquid crystal cell, a polarizing plate, and a retardation plate forming the above-described liquid crystal display device may be laminated or integrated in whole or in part, or may be easily separated. It may be arranged in any state. It is preferable to be in a fixed state from the viewpoint of preventing a decrease in contrast due to suppression of interface reflection. An appropriate transparent adhesive such as a pressure-sensitive adhesive can be used for the adhesion and adhesion treatment, and the transparent adhesive layer can contain the above-described transparent particles and the like to form an adhesive layer exhibiting a diffusion function.
[0063]
In addition, the above-mentioned optical elements or parts, particularly those on the viewing side, may be treated with ultraviolet rays such as salicylic acid ester compounds, benzophenone compounds, benzotriazole compounds, cyanoacrylate compounds, nickel complex compounds, etc. Absorbency can also be given.
[0064]
【Example】
Example 1
An acrylic ultraviolet curable resin (Aronix UV-3701, manufactured by Toagosei Co., Ltd.) is dropped into a mold that has been processed into a predetermined shape with a dropper, and a 80 μm thick triacetyl cellulose (TAC) film ( The surface saponification treated product) is allowed to stand and contacted with a rubber roller to remove excess resin and air bubbles. After being cured by irradiating with ultraviolet rays with a metal halide lamp, it is peeled off from the mold and cut into a predetermined dimension to obtain a refractive index. A transparent film having an optical path changing means layer having a refractive index of 1.533 was obtained on a 1.49 TAC film, and an optical film was obtained by attaching an adhesive layer having a refractive index of 1.47 to the surface having no optical path changing means. .
[0065]
The optical film has a width of 60 mm and a depth of 45 mm, and has ridges parallel to the width direction and continuous prism-shaped recesses at a pitch of 210 μm (FIG. 1 c), and the inclination angle of the optical path conversion slope A 1 is 42. In the range of 5 to 43 degrees, the slope angle of the gentle slope A3 changes in the range of 1.8 to 3.5 degrees, the slope angle change of the nearest gentle slope is within 0.1 degree, The projection width with respect to the film surface is 10 to 16 μm, and the projected area ratio of the gentle slope / optical path changing slope with respect to the film surface is 12 times or more.
[0066]
Next, a normally white transmissive film formed by adhering a light diffusion film in which a TAC film is provided with an adhesive layer containing resin fine particles on the viewing side of a commercially available TN type liquid crystal cell and attaching a polarizing plate to the front and back of the cell. A cold cathode fluorescent lamp is placed on the side of a TN liquid crystal display panel, surrounded by a reflector made of a silver-deposited reflective sheet, and its both ends are bonded to the upper and lower surfaces of the panel, and the cold cathode fluorescent lamp is fixed. Adhering the optical film to the polarizing plate on the side through the adhesive layer so that the light path conversion slope faces the cold cathode tube in parallel, and a reflective plate made of a white polyester film is arranged on the back of the optical film to transmit the optical film A liquid crystal display device was obtained.
[0067]
Example 2
An optical path conversion means having an inclination angle of the optical path conversion slope A1 of about 42 degrees, an apex angle with the steep slope A2 of 70 degrees, and an area of the flat surface A4 of 10 times or more of the total projected area of the optical path conversion slope and the steep slope film surface. A transmissive liquid crystal display device was obtained according to Example 1 except that the optical film having FIG.
[0068]
Example 3
An optical path changing means (FIG. 1b) having a length of 80 .mu.m composed of an optical path changing slope A1 having an inclination angle of about 42 degrees and a projection width on the film surface of 10 .mu.m and a steep slope A2 having an inclination angle of about 55 degrees. In addition to the optical film (FIG. 6), which is arranged in a state substantially parallel to the optical path and the optical path changing means is gradually arranged with a higher density as the distance from the light incident side in the depth direction is increased, A transmissive liquid crystal display device was obtained according to Example 1. The area of the flat surface A4 is at least 10 times the total projected area of the optical path conversion slope and the steep slope with respect to the film surface.
[0069]
Example 4
An optical path changing means (FIG. 1a) having an isosceles triangle length of an optical path changing slope A1 having an inclination angle of about 42 degrees and a projection width on the film surface of 10 μm is provided with its length direction parallel to the width direction. And an optical film (FIG. 4) in which the optical path changing means is randomly arranged so as to gradually increase in density from the light incident side in the depth direction toward the central portion. A transmissive liquid crystal display device was obtained in accordance with Example 1 except that a cold cathode tube was disposed. The area of the flat surface A4 is 10 times or more the total area of the two optical path conversion slopes.
[0070]
Example 5
An optical path conversion means (FIG. 1e) having a length of 80 μm and having a substantially square cross section having two optical path conversion slopes A1 having an inclination angle of about 42 degrees and a projection width on the film surface of 10 μm is a width direction in the width direction. Other than using it as an optical film having a substantially parallel state and randomly arranging the optical path changing means so as to gradually increase the density from the light incident side in the depth direction toward the center part, In accordance with Example 4, a two-side incident transmission type liquid crystal display device was obtained. The area of the flat surface A4 is at least 10 times the area of the optical path changing means.
[0071]
Example 6
A reflective / transmissive liquid crystal display device was obtained in the same manner as in Example 2 except that an optical film provided with a reflective layer made of a silver vapor deposition film on the surface on which the optical path changing means was provided and the back reflector was omitted.
[0072]
Comparative Example 1
A transmissive liquid crystal display device (FIG. 10) was obtained according to Example 1 except that a scattering sheet obtained by sandblasting was used instead of the optical film. In addition, the scattering sheet arrange | positioned the rough surface as the visual recognition back side.
[0073]
Comparative Example 2
An optical path conversion means having an inclination angle of the optical path conversion slope of about 30 degrees, an apex angle with the steep slope of 70 degrees, and an area of the flat portion A4 that is 10 times or more the total projected area of the optical path conversion slope and the steep slope film surface (FIG. 1b) A transmissive liquid crystal display device was obtained in accordance with Example 1 except that the optical film was used.
[0074]
Comparative Example 3
A cold-cathode tube is placed on the side of a 1.2 mm thick light guide plate having a grainy rough surface on the rear side of the visual recognition, and is surrounded by a reflector made of a silver-deposited reflection sheet, and both ends thereof are placed on the light guide plate. A transmissive liquid crystal display device in which a commercially available normally white transmissive TN liquid crystal panel is disposed on a reflecting plate made of a white polyester film by adhering to the lower surface and a light diffusing plate disposed thereon. Got.
[0075]
Comparative Example 4
A reflective / transmissive liquid crystal display device was obtained in the same manner as in Example 6 except that the reflective film on the back surface was omitted using the scattering film of Comparative Example 1 provided with a reflective layer made of a silver vapor deposition film on the scattering surface.
[0076]
Comparative Example 5
Reflective and transmissive liquid crystal display device according to Example 6 except that the back reflector is omitted using the optical film of Comparative Example 2 in which a reflective layer made of a silver vapor deposition film is provided on the surface on which the optical path changing means is formed. Got.
[0077]
For the transmissive or reflective / transmissive liquid crystal display devices obtained in the evaluation test examples and comparative examples, the cold-cathode tube is turned on with no voltage applied to the liquid crystal display panel, and the front brightness at the center of the device in the transmissive mode Was examined with a luminance meter (Topcon, BM7). In addition, the front luminance in the white state in a reflection mode in which external light from a ring-shaped illumination with the cold cathode tube turned off was incident at an angle of 15 degrees was also examined. The results are shown in the following table.
[0078]
Figure 0004548628
[0079]
From the table, it can be seen that in the embodiment, the front brightness superior to that of Comparative Examples 1, 2, 4, and 5 is achieved in the transmission mode. This is because in Comparative Examples 1, 2, 4, and 5, light was emitted in the opposite direction to the light source in the transmission mode, and the emitted light was poor in luminance in the front direction and hardly contributed to display. Especially in Comparative Examples 1 and 4, the emitted light was scarce in any orientation.
[0080]
Moreover, in Examples 4 and 5, the brightness improvement by the two-lamp type is remarkable, and it can be seen that the brightness is higher than that of the side light type light guide plate of Comparative Example 3. In the method using the side light type light guide plate of Comparative Example 3, an increase in thickness due to the light guide plate appeared remarkably, and it was difficult to reduce the thickness. Further, even in visual observation in a state where a voltage is applied to the liquid crystal display panel in the transmissive mode, there was no problem in the examples and the display quality was good. Moreover, in the state which removed the light-diffusion film in Example 2, it was inferior to the case where a light-diffusion film exists in the point of visibility, but there was no fading in the point of front luminance.
[0081]
On the other hand, in the reflection mode, in the voltage application state to the liquid crystal display panel, the display in Example 6 and Comparative Examples 4 and 5 was free of image disturbance, but the comparison examples 4 and 5 were darker than Example 6. It was. As described above, in the embodiment, bright display is achieved in the transmissive mode, and bright display is also achieved in the reflective mode of Embodiment 6. Thus, the present invention avoids the increase in bulk and weight due to the light guide plate. It can be seen that a transmissive liquid crystal display device with good display quality and a reflective / transmissive liquid crystal display device can be formed while achieving a thin and lightweight film system.
[Brief description of the drawings]
FIG. 1 is an explanatory side view of an optical film example (optical path conversion slope). FIG. 2 is an explanatory plan view of an optical path conversion slope. FIG. 3 is an explanatory plan view of another optical path conversion slope. FIG. 5 is a side explanatory view of another optical film example. FIG. 6 is a side explanatory view of still another optical film example. FIG. 7 is an explanatory view of a transmission type (reflection / transmission type) liquid crystal display device example. Cross-sectional view [FIG. 8] Cross-sectional view of another transmissive type (reflection / transmission type) liquid crystal display device example [FIG. 9] An explanatory view of the relationship between refractive index and optical path [FIG. Sectional view of [Description of symbols]
1: Optical film 11: Transparent film 12: Adhesive layer 13: Optical path conversion means layer A: Optical path conversion means A1: Optical path conversion slope A3, 4: Flat surface 4: Reflective layer P: Liquid crystal display panel 5, 51: Illumination device 21 28: Cell substrate 25: Liquid crystal layer 31, 34: Polarizing plate 32, 33: Retardation plate

Claims (10)

透明フィルムの片面に粘着層を有し、かつ前記透明フィルムの他面に光路変換斜面および平坦面を具備する凹凸の繰り返し構造を有し、前記粘着層を介して光伝送部材に接着される光学フィルムであって、
前記透明フィルムは、厚さが300μm以下であり、
前記粘着層は、前記透明フィルムの表面層との屈折率差が0.1以内であり、
前記凹凸の繰り返し構造における前記光路変換斜面は、フィルム面に対する傾斜角が35〜48度で略一定方向を向き、
前記凹凸の繰り返し構造における前記平坦面は、前記フィルム面に対する傾斜角が5度以下であり、
前記凹凸の繰り返し構造における前記平坦面は、前記凹凸の繰り返し構造における前記光路変換斜面の凸側に接続され、
前記平坦面を、フィルム片面における占有面積に基づいて前記光路変換斜面の10倍以上有することを特徴とする光学フィルム。
Optical having an adhesive layer on one side of a transparent film, and having a repeating structure of irregularities having an optical path changing slope and a flat surface on the other side of the transparent film, and being bonded to an optical transmission member via the adhesive layer A film,
The transparent film has a thickness of 300 μm or less,
The adhesive layer has a refractive index difference with the surface layer of the transparent film within 0.1,
The optical path conversion slope in the repeating structure of the unevenness is oriented in a substantially constant direction with an inclination angle of 35 to 48 degrees with respect to the film surface,
The flat surface in the repeating structure of the unevenness has an inclination angle of 5 degrees or less with respect to the film surface,
The flat surface in the concave-convex repeating structure is connected to the convex side of the optical path changing slope in the concave-convex repeating structure,
An optical film characterized in that the flat surface has 10 times or more of the optical path changing slope based on the occupied area on one side of the film.
請求項1において、略一定方向を向く光路変換斜面がその一面を基準にそれとは反対方向を向く面を含む状態で2面以上あり、粘着層が剥離シートでカバーされた光学フィルム。  2. The optical film according to claim 1, wherein there are two or more optical path conversion inclined surfaces facing a substantially constant direction including a surface facing the opposite direction with respect to the one surface, and the adhesive layer is covered with a release sheet. 請求項1又は2において、光路変換斜面のフィルム面に対する傾斜角が38〜45度である光学フィルム。  3. The optical film according to claim 1 or 2, wherein an inclination angle of the optical path changing slope with respect to the film surface is 38 to 45 degrees. 請求項1から3のいずれか一項において、光路変換斜面が断面略二等辺三角形又はそれ以外の断面略三角形の溝構造に基づくものである光学フィルム。  The optical film according to any one of claims 1 to 3, wherein the optical path conversion inclined surface is based on a groove structure having a substantially isosceles triangle cross section or other substantially triangular cross section. 請求項1から4のいずれか一項において、光路変換斜面が断面略四角形又は断面略五角形の溝又は突起構造に基づくものである光学フィルム。  The optical film according to any one of claims 1 to 4, wherein the light path conversion inclined surface is based on a groove or protrusion structure having a substantially quadrangular cross section or a substantially pentagonal cross section. 請求項1から4のいずれか一項において、光路変換斜面を具備する凹凸構造がフィルム面に対する傾斜角38〜45度の光路変換斜面と当該傾斜角が5度以下で幅が光路変換斜面の10倍以上の平坦面からなり、かつフィルムの一端から他端にわたる断面略三角形の連続溝に基づくものである光学フィルム。5. The concavo-convex structure having an optical path conversion slope according to claim 1, wherein the concavo-convex structure has an optical path conversion slope with an inclination angle of 38 to 45 degrees with respect to the film surface, and the inclination angle is 5 degrees or less and the width is 10 of the optical path conversion slope. An optical film having a flat surface more than doubled and based on a continuous groove having a substantially triangular cross section extending from one end to the other end of the film. 請求項1からのいずれか一項において、光路変換斜面を具備する凹凸構造が断面略三〜五の多角形の不連続な溝に基づき、その不連続溝の長さが深さの5倍以上で、光路変換斜面がフィルム面に対する傾斜角38〜45度で溝の長さ方向に形成されており、フィルム片面に占める当該不連続溝部分の面積が10%以下である光学フィルム。6. The uneven structure according to any one of claims 1 to 5 , wherein the concavo-convex structure having an optical path changing slope is based on a polygonal discontinuous groove having a cross section of approximately 3 to 5, and the length of the discontinuous groove is five times the depth. The optical film in which the optical path changing slope is formed in the length direction of the groove at an inclination angle of 38 to 45 degrees with respect to the film surface, and the area of the discontinuous groove portion on one side of the film is 10% or less. 請求項1からのいずれか一項において、光路変換斜面を具備する凹凸構造を形成した面に反射層を密着配置してなる光学フィルム。The optical film according to any one of claims 1 to 7 , wherein a reflective layer is closely disposed on a surface on which a concavo-convex structure having an optical path conversion slope is formed. 請求項1からのいずれか一項において、光路変換斜面の稜線が透明フィルムの一辺に対して平行な又は±30度以内で傾斜する光学フィルム。The optical film according to any one of claims 1 to 8 , wherein the ridgeline of the optical path conversion slope is parallel to one side of the transparent film or inclined within ± 30 degrees. 請求項1からのいずれか一項において、粘着層が光拡散型のものである光学フィルム。The optical film according to any one of claims 1 to 9 , wherein the adhesive layer is of a light diffusion type.
JP2000004241A 2000-01-13 2000-01-13 Optical film Expired - Fee Related JP4548628B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2000004241A JP4548628B2 (en) 2000-01-13 2000-01-13 Optical film
TW090100717A TW526348B (en) 2000-01-13 2001-01-12 Optical film and liquid-crystal display device
EP04003308A EP1420272A3 (en) 2000-01-13 2001-01-12 Optical film and liquid-crystal display device
EP04003309A EP1420273B1 (en) 2000-01-13 2001-01-12 Optical film and liquid-crystal display device
KR1020010001874A KR100769779B1 (en) 2000-01-13 2001-01-12 Optical film and liquid-crystal display device
US09/758,165 US6747801B2 (en) 2000-01-13 2001-01-12 Optical film and liquid-crystal display device
EP01100736A EP1143270B1 (en) 2000-01-13 2001-01-12 Optical film and liquid-crystal display device
US10/735,209 US7227685B2 (en) 2000-01-13 2003-12-15 Optical film and liquid-crystal display device
US10/734,224 US6917473B2 (en) 2000-01-13 2003-12-15 Optical film and liquid-crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000004241A JP4548628B2 (en) 2000-01-13 2000-01-13 Optical film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010011646A Division JP2010122707A (en) 2010-01-22 2010-01-22 Optical film

Publications (2)

Publication Number Publication Date
JP2001194517A JP2001194517A (en) 2001-07-19
JP4548628B2 true JP4548628B2 (en) 2010-09-22

Family

ID=18533049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000004241A Expired - Fee Related JP4548628B2 (en) 2000-01-13 2000-01-13 Optical film

Country Status (1)

Country Link
JP (1) JP4548628B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7030945B2 (en) 2001-08-22 2006-04-18 Nitto Denko Corporation Liquid-crystal display device
TW589470B (en) 2001-10-04 2004-06-01 Mitsubishi Rayon Co Planar light source device and light guide therefor
US8107155B2 (en) * 2006-10-06 2012-01-31 Qualcomm Mems Technologies, Inc. System and method for reducing visual artifacts in displays
KR20090121502A (en) * 2008-05-22 2009-11-26 허봉구 Diffusion member for display apparatus
JP7152129B2 (en) 2015-02-27 2022-10-12 三星エスディアイ株式会社 Polarizing plate and liquid crystal display including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09269489A (en) * 1996-02-02 1997-10-14 Hitachi Ltd Manufacture of liquid crystal display device and light transmission plate for rear illuminating part
JPH10509537A (en) * 1995-09-22 1998-09-14 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Flat panel image display device
JPH11305010A (en) * 1998-02-17 1999-11-05 Dainippon Printing Co Ltd Antiglare film, polarizing element and display device
JPH11352900A (en) * 1998-04-06 1999-12-24 Casio Comput Co Ltd Display device
JP2000009937A (en) * 1998-06-25 2000-01-14 Nitto Denko Corp Optical member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509537A (en) * 1995-09-22 1998-09-14 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Flat panel image display device
JPH09269489A (en) * 1996-02-02 1997-10-14 Hitachi Ltd Manufacture of liquid crystal display device and light transmission plate for rear illuminating part
JPH11305010A (en) * 1998-02-17 1999-11-05 Dainippon Printing Co Ltd Antiglare film, polarizing element and display device
JPH11352900A (en) * 1998-04-06 1999-12-24 Casio Comput Co Ltd Display device
JP2000009937A (en) * 1998-06-25 2000-01-14 Nitto Denko Corp Optical member

Also Published As

Publication number Publication date
JP2001194517A (en) 2001-07-19

Similar Documents

Publication Publication Date Title
JP4609962B2 (en) Optical film
JP4439084B2 (en) Liquid crystal display
JP4442836B2 (en) Optical film
US6665029B2 (en) Optical path changing film and reflective liquid-crystal display device including same
JP4197572B2 (en) Reflective liquid crystal display
KR100769779B1 (en) Optical film and liquid-crystal display device
US6795136B2 (en) Liquid-crystal display device
JP4144829B2 (en) Reflective and transmissive liquid crystal display device
US6888595B2 (en) Reflector and liquid-crystal display device
KR100681103B1 (en) Optical path changing polarizer
JP2002071965A (en) Light guide plate, surface light source device, and reflection type liquid crystal display device
JP4548628B2 (en) Optical film
JP2010122707A (en) Optical film
JP4462517B2 (en) Optical film and liquid crystal display device
JP2003131227A (en) Liquid crystal display device
JP4462514B2 (en) Optical film and liquid crystal display device
JP4845920B2 (en) Reflective and transmissive liquid crystal display device
JP2001194529A (en) Optical path conversion polarizing plate
JP2004258358A (en) Reflective liquid crystal display device
JP4916054B2 (en) Transmission type liquid crystal display device
JP4968762B2 (en) External light / illumination type liquid crystal display device
JP4978918B2 (en) Liquid crystal display
JP2001350016A (en) Polarizing plate for conversion of optical path
JP2003131214A (en) Reflection type liquid crystal display device
JP2008262224A (en) Reflective liquid crystal display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100226

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160716

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees