JP4547958B2 - Manufacturing method of multilayer wiring board - Google Patents

Manufacturing method of multilayer wiring board Download PDF

Info

Publication number
JP4547958B2
JP4547958B2 JP2004091156A JP2004091156A JP4547958B2 JP 4547958 B2 JP4547958 B2 JP 4547958B2 JP 2004091156 A JP2004091156 A JP 2004091156A JP 2004091156 A JP2004091156 A JP 2004091156A JP 4547958 B2 JP4547958 B2 JP 4547958B2
Authority
JP
Japan
Prior art keywords
layer
resist pattern
forming
conductive layer
via hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004091156A
Other languages
Japanese (ja)
Other versions
JP2005277258A (en
Inventor
浩希 小林
直人 大野
浩二 市川
正孝 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2004091156A priority Critical patent/JP4547958B2/en
Publication of JP2005277258A publication Critical patent/JP2005277258A/en
Application granted granted Critical
Publication of JP4547958B2 publication Critical patent/JP4547958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、絶縁基材に配線層、ビアが形成された多層配線基板の製造方法に関し、特に、めっきで形成された導体層を物理研磨、もしくは化学研磨して配線層及びビアを形成する多層配線基板の製造方法に関する。   The present invention relates to a method for manufacturing a multilayer wiring board in which a wiring layer and a via are formed on an insulating substrate, and in particular, a multilayer in which a conductor layer formed by plating is physically polished or chemically polished to form a wiring layer and a via. The present invention relates to a method for manufacturing a wiring board.

近年、半導体素子をプリント配線基板に実装するためのインターポーザとして、多層回路基板が広く採用されている。この多層回路基板は表面に所定パターンの導体回路が形成された単位回路基板を複数枚積層してなっており、各単位回路基板の間はスルーホールやビアホールで導通が取られている。   In recent years, multilayer circuit boards have been widely adopted as interposers for mounting semiconductor elements on printed wiring boards. This multilayer circuit board is formed by laminating a plurality of unit circuit boards each having a predetermined pattern of conductor circuits formed on the surface, and the unit circuit boards are electrically connected by through holes or via holes.

その一方で、半導体大規模集積回路(LSI)等の半導体素子ではトランジスターの集積度が高まり、その動作速度はクロック周波数で1GHzに達するものが、また入出力端子数では1000を越えるものが出現するに至っている。   On the other hand, in a semiconductor element such as a semiconductor large-scale integrated circuit (LSI), the degree of integration of transistors is increased, and the operation speed reaches 1 GHz at the clock frequency, and the number of input / output terminals exceeds 1000. Has reached.

このため、多層回路基板にも高密度、高精細の配線形成技術が求められている。
高密度、高精細配線形成の有効な手段として、めっきを用いたセミアディティブ法がある(例えば参考文献1参照)。セミアディティブ法では、主に次の工程を経て配線層及びビアを得る。
For this reason, a high-density, high-definition wiring formation technology is also required for multilayer circuit boards.
As an effective means for forming high-density and high-definition wiring, there is a semi-additive method using plating (for example, see Reference 1). In the semi-additive method, a wiring layer and a via are obtained mainly through the following steps.

セミアディティブ法にて、配線層及びビアを形成するプロセスについて説明する。
図8(a)〜(e)及び図9(f)〜(g)に、配線層及びビアをセミアディティブ法にて形成するプロセスの一例を示す。
A process for forming wiring layers and vias by the semi-additive method will be described.
8A to 8E and FIGS. 9F to 9G show an example of a process for forming a wiring layer and a via by a semi-additive method.

まず、両面に配線層51及び52が形成されたコア基板30の両面に樹脂フィルム等をラミネートする等の方法で所定厚の絶縁層61を形成する。(図8(a)及び(b)参照)。
次に、絶縁層61の所定位置に、レーザー加工等によりビア用孔62を形成する(図8(c)参照)。
First, the insulating layer 61 having a predetermined thickness is formed by a method such as laminating a resin film or the like on both surfaces of the core substrate 30 on which the wiring layers 51 and 52 are formed on both surfaces. (See FIGS. 8A and 8B).
Next, a via hole 62 is formed at a predetermined position of the insulating layer 61 by laser processing or the like (see FIG. 8C).

次に、ビア用孔62のデスミア処理を行って、絶縁層上及びビア用孔側壁に無電解銅めっき等によりめっき下地導電層71を形成する(図8(d)参照)。
次に、めっき下地導電層71上の所定位置にパターめっき用のレジストパターン81を形成する(図8(e)参照)。
Next, a desmear process of the via hole 62 is performed, and a plating base conductive layer 71 is formed on the insulating layer and the via hole side wall by electroless copper plating or the like (see FIG. 8D).
Next, a resist pattern 81 for pattern plating is formed at a predetermined position on the plating base conductive layer 71 (see FIG. 8E).

次に、めっき下地導電層71を給電層にして電解銅めっきを行い、フィルドビア53及び所定厚の導体層54を形成する(図9(f)参照)。
最後に、レジストパターン81を専用の剥離液で除去し、レジストパターン81下部にあっためっき下地導電層71をエッチングして、配線層54aを得る(図9(g)参照)。
特開平7−15113号公報
Next, electrolytic copper plating is performed using the plating base conductive layer 71 as a power feeding layer to form a filled via 53 and a conductor layer 54 having a predetermined thickness (see FIG. 9F).
Finally, the resist pattern 81 is removed with a dedicated stripping solution, and the plating base conductive layer 71 under the resist pattern 81 is etched to obtain a wiring layer 54a (see FIG. 9G).
JP-A-7-15113

しかし、従来のセミアディティブ工法では、配線層のパターンによっては、配線の高さ、断面形状にばらつきが生じることがある。また、フィルドビアと配線層形成を同時に行う場合、配線の断面形状が矩形とならずに不均一になることがある。配線層の高さや断面
形状が不均一になると、配線層の電気的特性にばらつきを生じ、配線基板としての使用に耐え得ないものとなってしまう。
However, in the conventional semi-additive method, the wiring height and cross-sectional shape may vary depending on the wiring layer pattern. In addition, when the filled via and the wiring layer formation are performed simultaneously, the cross-sectional shape of the wiring may not be rectangular but may be non-uniform. If the height and cross-sectional shape of the wiring layer are not uniform, the electrical characteristics of the wiring layer will vary, making it unusable for use as a wiring board.

本発明は上記問題点に鑑み考案されたもので、微細パターンからなる配線層領域で、配線層の高さや断面形状が不均一にならず、接続信頼性に優れたビアオンビア構造の配線基板を容易に得ることができる多層配線基板の製造方法及び多層配線基板を提供することを目的とする。   The present invention has been devised in view of the above problems, and in a wiring layer region having a fine pattern, the wiring layer height and cross-sectional shape are not uneven, and a wiring board having a via-on-via structure excellent in connection reliability can be easily obtained. An object of the present invention is to provide a method for manufacturing a multilayer wiring board and a multilayer wiring board that can be obtained.

本発明は、上記課題を達成するために、まず請求項1においては、多層配線基板の製造方法であって、少なくとも以下の工程を有することを特徴とする多層配線基板の製造方法としたものである。
(a)絶縁基材の両面に導体層が形成された積層基材の一方の面から導体層及び絶縁基材を貫通し他方の面の導体層に達するビア用孔を形成する工程。
(b)両面に所定厚の感光層を形成し、パターン露光、現像等のパターニング処理によりレジストパターンを形成する工程。
(c)レジストパターン上、ビア用孔側壁及びビア用孔底面を含む全面にめっき下地導電層を形成する工程。
(d)めっき下地導電層を給電層にして電解めっきを行い、レジストパターンの高さ以上にめっき金属を析出させて導体層を形成する工程。
(e)物理研磨、または化学研磨により、レジストパターンの上部が露出するまで導体層及びめっき下地導電層を研磨する工程。
(f)レジストパターンを剥離液で剥離する工程。
(g)レジストパターン下部にあった導体層をエッチングにより除去する工程。
(h)絶縁層を形成する工程。
(i)絶縁層の所定位置にビア用孔を形成する工程。
(j)両面に所定厚のレジスト感光層を形成し、パターン露光、現像等のパターニング処理によりレジストパターンを形成する工程。
(k)レジストパターン上、ビア用孔側壁及びビア用孔底面を含む全面にめっき下地導電層を形成する工程。
(l)めっき下地導電層を給電層にして電解めっきを行い、レジストパターンの高さ以上にめっき金属を析出させて導体層を形成する工程。
(m)物理研磨、または化学研磨により、レジストパターンの上部が露出するまで導体層及びめっき下地導電層を研磨する工程。
(n)レジストパターンを剥離液で剥離する工程。
(p)上記(h)〜(n)の工程を所望の回数繰り返す工程。
In order to achieve the above object, the present invention provides a method for manufacturing a multilayer wiring board according to claim 1, wherein the method includes at least the following steps. is there.
(A) The process of forming the via hole which penetrates a conductor layer and an insulation base material from one surface of the lamination base material in which the conductor layer was formed in both surfaces of the insulation base material, and reaches the conductor layer of the other surface.
(B) A step of forming a photosensitive layer having a predetermined thickness on both surfaces and forming a resist pattern by patterning processing such as pattern exposure and development.
(C) A step of forming a plating base conductive layer on the entire surface including the via hole sidewall and the via hole bottom surface on the resist pattern.
(D) A step of performing electroplating using the plating base conductive layer as a power supply layer and depositing a plating metal at a height higher than the resist pattern to form a conductor layer.
(E) A step of polishing the conductor layer and the plating base conductive layer by physical polishing or chemical polishing until the upper portion of the resist pattern is exposed.
(F) A step of stripping the resist pattern with a stripping solution.
(G) A step of removing the conductor layer under the resist pattern by etching.
(H) A step of forming an insulating layer.
(I) A step of forming a via hole at a predetermined position of the insulating layer.
(J) A step of forming a resist photosensitive layer having a predetermined thickness on both surfaces and forming a resist pattern by patterning processing such as pattern exposure and development.
(K) A step of forming a plating base conductive layer on the entire surface including the via hole side wall and the via hole bottom surface on the resist pattern.
(L) A step of performing electroplating using the plating base conductive layer as a power feeding layer and depositing a plating metal at a height higher than the resist pattern to form a conductor layer.
(M) A step of polishing the conductor layer and the plating base conductive layer by physical polishing or chemical polishing until the upper portion of the resist pattern is exposed.
(N) A step of stripping the resist pattern with a stripping solution.
(P) A step of repeating the steps (h) to (n) a desired number of times.

また、請求項2においては、多層配線基板の製造方法であって、少なくとも以下の工程を有することを特徴とする多層配線基板の製造方法としたものである。
(a)絶縁基材の片面に導体層が形成された積層基材の一方の面から絶縁基材を貫通し他方の面の導体層に達するビア用孔を形成する工程。
(b)両面に所定厚の感光層を形成し、パターン露光、現像等のパターニング処理によりレジストパターンを形成する工程。
(c)レジストパターン上、ビア用孔側壁及びビア用孔底面を含む全面にめっき下地導電層を形成する工程。
(d)めっき下地導電層を給電層にして電解めっきを行い、レジストパターンの高さ以上にめっき金属を析出させて導体層を形成する工程。
(e)物理研磨、または化学研磨により、レジストパターンが露出するまで導体層及びめっき下地導電層を研磨する工程。
(f)レジストパターンを剥離液で剥離する工程。
(g)レジストパターン下部にあった導体層をエッチングにより除去する工程。
(h)絶縁層を形成する工程。
(i)絶縁層の所定位置にビア用孔を形成する工程。
(j)両面に所定厚のレジスト感光層を形成し、パターン露光、現像等のパターニング処理によりレジストパターンを形成する工程。
(k)レジストパターン上、ビア用孔側壁及びビア用孔底面を含む全面にめっき下地導電層を形成する工程。
(l)めっき下地導電層を給電層にして電解めっきを行い、レジストパターンの高さ以上にめっき金属を析出させて導体層を形成する工程。
(m)物理研磨、または化学研磨により、レジストパターンの上部が露出するまで導体層及びめっき下地導電層を研磨する工程。
(n)レジストパターンを剥離液で剥離する工程。
(p)上記(h)〜(n)の工程を所望の回数繰り返す工程。
According to a second aspect of the present invention, there is provided a method for manufacturing a multilayer wiring board, comprising at least the following steps.
(A) A step of forming a via hole penetrating the insulating base material from one side of the laminated base material on which the conductive layer is formed on one side of the insulating base material and reaching the conductive layer on the other side.
(B) A step of forming a photosensitive layer having a predetermined thickness on both surfaces and forming a resist pattern by patterning processing such as pattern exposure and development.
(C) A step of forming a plating base conductive layer on the entire surface including the via hole sidewall and the via hole bottom surface on the resist pattern.
(D) A step of performing electroplating using the plating base conductive layer as a power supply layer and depositing a plating metal at a height higher than the resist pattern to form a conductor layer.
(E) A step of polishing the conductor layer and the plating base conductive layer by physical polishing or chemical polishing until the resist pattern is exposed.
(F) A step of stripping the resist pattern with a stripping solution.
(G) A step of removing the conductor layer under the resist pattern by etching.
(H) A step of forming an insulating layer.
(I) A step of forming a via hole at a predetermined position of the insulating layer.
(J) A step of forming a resist photosensitive layer having a predetermined thickness on both surfaces and forming a resist pattern by patterning processing such as pattern exposure and development.
(K) A step of forming a plating base conductive layer on the entire surface including the via hole side wall and the via hole bottom surface on the resist pattern.
(L) A step of performing electroplating using the plating base conductive layer as a power feeding layer and depositing a plating metal at a height higher than the resist pattern to form a conductor layer.
(M) A step of polishing the conductor layer and the plating base conductive layer by physical polishing or chemical polishing until the upper portion of the resist pattern is exposed.
(N) A step of stripping the resist pattern with a stripping solution.
(P) A step of repeating the steps (h) to (n) a desired number of times.

本発明の多層配線基板の製造方法よれば、配線層の幅、高さ及び形状が均一でパターン再現性に優れ、且つ接続信頼性に優れたビアオンビア構造の多層配線基板を容易に得ることができる。   According to the method for manufacturing a multilayer wiring board of the present invention, a multilayer wiring board having a via-on-via structure in which the width, height and shape of the wiring layer are uniform, the pattern reproducibility is excellent, and the connection reliability is easily obtained. .

以下、本発明の実施の形態につき説明する。
図1(a)は、本発明の請求項1に係る多層配線基板の製造方法で作製された多層配線基板の一実施例を示す模式構成断面図を、図1(b)は、本発明の請求項2に係る多層配線基板の製造方法で作製された多層配線基板の一実施例を示す模式構成断面をそれぞれ示す。図1(a)の多層配線基板100は、絶縁基材11の両面に導体層21を有する積層基材10を用いて多層配線基板を、図1(b)の多層配線基板200は、絶縁基材11の片面に導体層21を有する積層基材20を用いて多層配線基板をそれぞれ作製したものである。
本発明の多層配線基板の製造方法では、めっきで形成された導体層を物理研磨、もしくは化学研磨して配線層及びビアを形成するので、表面が平滑な形状再現性に優れた配線層及び接続信頼性に優れたビアオンビア構造の多層配線基板を容易に得ることができる。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 (a) is a schematic cross-sectional view showing an embodiment of a multilayer wiring board manufactured by the method for manufacturing a multilayer wiring board according to claim 1 of the present invention, and FIG. The schematic structure cross section which shows one Example of the multilayer wiring board produced with the manufacturing method of the multilayer wiring board which concerns on Claim 2 is shown, respectively. A multilayer wiring board 100 in FIG. 1A is a multilayer wiring board using a laminated base material 10 having conductor layers 21 on both sides of an insulating base material 11, and a multilayer wiring board 200 in FIG. A multilayer wiring board is produced using a laminated base material 20 having a conductor layer 21 on one side of the material 11.
In the method for producing a multilayer wiring board according to the present invention, the conductor layer formed by plating is physically polished or chemically polished to form the wiring layer and the via, so that the wiring layer and connection having a smooth surface and excellent shape reproducibility are formed. A multilayer wiring board having a via-on-via structure with excellent reliability can be easily obtained.

以下、本発明の多層配線基板の製造方法について説明する。
図2(a)〜(e)、図3(f)〜(i)及び図4(j)〜(n)は、本発明の請求項1に係る多層配線基板の製造方法の一実施例を工程順に示す模式構成断面図である。
まず、絶縁基材11の両面に極薄銅箔を積層して導体層21を形成した積層基材10を準備する(図2(a)参照)。
次に、CO2レーザー、UVレーザー等を用いたレーザー加工により、積層基材10の一方の面から導体層21及び絶縁基材11を貫通し他方の面の導体層21に達するビア用孔12を形成し、ビア用孔12底及び内壁に付着した樹脂残渣を、ドライデスミア又は、ウェットデスミア処理にて除去する(図2(b)参照)。
Hereinafter, the manufacturing method of the multilayer wiring board of this invention is demonstrated.
2 (a) to 2 (e), FIGS. 3 (f) to (i) and FIGS. 4 (j) to (n) show an embodiment of a method for manufacturing a multilayer wiring board according to claim 1 of the present invention. It is a schematic structure sectional view shown in process order.
First, a laminated base material 10 is prepared in which ultrathin copper foils are laminated on both surfaces of an insulating base material 11 to form a conductor layer 21 (see FIG. 2A).
Next, via holes 12 that penetrate the conductor layer 21 and the insulating substrate 11 from one surface of the laminated substrate 10 and reach the conductor layer 21 on the other surface by laser processing using a CO 2 laser, a UV laser, or the like. The resin residue adhering to the bottom of the via hole 12 and the inner wall is removed by dry desmear or wet desmear treatment (see FIG. 2B).

次に、感光性のドライフィルムをラミネートする等の方法で感光層を形成し、パターン露光、現像等の一連のパターニング処理を行ってレジストパターン31を形成する(図2(c)参照)。   Next, a photosensitive layer is formed by a method such as laminating a photosensitive dry film, and a series of patterning processes such as pattern exposure and development are performed to form a resist pattern 31 (see FIG. 2C).

次に、スパッタ又は、DPS、無電解銅めっき等によりレジストパターン31上、導体層21上及びビア用孔12内に所定厚の銅薄膜層からなるめっき下地導電層41を形成する(図2(d)参照)。   Next, a plating base conductive layer 41 made of a copper thin film layer having a predetermined thickness is formed on the resist pattern 31, the conductor layer 21, and the via hole 12 by sputtering, DPS, electroless copper plating, or the like (FIG. 2 ( d)).

次に、めっき下地導電層41を給電層にしてフィルドビア用銅めっき液を用いて、電解銅めっきを行い、レジストパターン31を覆いつくすような厚みまでめっき銅を析出させ、導体層22を形成する(図2(e)参照)。   Next, electrolytic copper plating is performed using a filled via copper plating solution using the plating base conductive layer 41 as a power feeding layer, and the plated copper is deposited to a thickness that covers the resist pattern 31, thereby forming the conductor layer 22. (See FIG. 2 (e)).

次に、基板両面をバフ研磨等の物理研磨、またはエッチング等の化学研磨により、レジストパターン31の上部が露出するまで導体層21及びレジストパターン31上部のめっき下地導電層41を研磨処理し、研磨処理された配線層22a、ランド22b及びフィルドビア22cを形成する(図3(f)参照)。   Next, by polishing the both surfaces of the substrate by physical polishing such as buffing or chemical polishing such as etching, the conductive layer 21 and the plating base conductive layer 41 above the resist pattern 31 are polished and polished until the upper portion of the resist pattern 31 is exposed. The processed wiring layer 22a, land 22b, and filled via 22c are formed (see FIG. 3F).

次に、レジストパターン31を専用の剥離液で除去し、レジストパターン31の下部にあった導体層21をエッチングで除去して配線層及びランド間の絶縁性を確保し、絶縁基材11の両面に表面が平滑な形状再現性に優れた配線層22a及びランド22bが形成され、配線層22aとランド22bがフィルドビア22cにて電気的に接続された2層の配線基板を得る(図3(g)参照)。
Next, the resist pattern 31 is removed with a special stripping solution, and the conductor layer 21 under the resist pattern 31 is removed by etching to ensure insulation between the wiring layer and the land. A wiring layer 22a and a land 22b having a smooth surface and excellent shape reproducibility are formed, and a two-layer wiring board in which the wiring layer 22a and the land 22b are electrically connected by a filled via 22c is obtained (FIG. 3G )reference).

次に、両面に樹脂フィルムをラミネートする等の方法で、絶縁層13を形成する(図3(h)参照)。
次に、CO2レーザー、UVレーザー等を用いたレーザー加工により、絶縁層13の所定位置にビア用孔14を形成し、、ビア用孔14底及び内壁に付着した樹脂残渣を、ドライデスミア又は、ウェットデスミア処理にて除去する(図3(i)参照)。
Next, the insulating layer 13 is formed by a method such as laminating resin films on both surfaces (see FIG. 3H).
Next, a via hole 14 is formed at a predetermined position of the insulating layer 13 by laser processing using a CO 2 laser, a UV laser, etc., and the resin residue attached to the bottom and inner wall of the via hole 14 is removed by dry desmear or Then, it is removed by wet desmear treatment (see FIG. 3 (i)).

次に、感光性のドライフィルムをラミネートする等の方法で感光層を形成し、パターン露光、現像等の一連のパターニング処理を行ってレジストパターン32を形成する(図4(j)参照)。   Next, a photosensitive layer is formed by a method such as laminating a photosensitive dry film, and a series of patterning processes such as pattern exposure and development are performed to form a resist pattern 32 (see FIG. 4J).

次に、スパッタ又は、DPS、無電解銅めっき等によりレジストパターン32上、絶縁層13上及びビア用孔14内に所定厚の銅薄膜層からなるめっき下地導電層42を形成する(図4(k)参照)。   Next, a plating base conductive layer 42 made of a copper thin film layer having a predetermined thickness is formed on the resist pattern 32, the insulating layer 13 and the via hole 14 by sputtering, DPS, electroless copper plating or the like (FIG. 4 ( k)).

次に、めっき下地導電層42を給電層にしてフィルドビア用銅めっき液を用いて、電解銅めっきを行い、レジストパターン32を覆いつくすような厚みまでめっき銅を析出させ、導体層23を形成する(図4(l)参照)。   Next, electrolytic copper plating is performed using a filled via copper plating solution with the plating base conductive layer 42 as a power feeding layer, and the plated copper is deposited to a thickness that covers the resist pattern 32, thereby forming the conductor layer 23. (See FIG. 4 (l)).

次に、基板両面をバフ研磨等の物理研磨、またはエッチング等の化学研磨により、レジストパターン32の上部が露出するまで導体層23及びレジストパターン32上部のめっき下地導電層42を研磨処理し、研磨処理された配線層23a、ランド23b及びフィルドビア23cを形成する(図4(m)参照)。   Next, by polishing the both surfaces of the substrate by physical polishing such as buffing or chemical polishing such as etching, the conductive layer 23 and the plating base conductive layer 42 on the resist pattern 32 are polished and polished until the upper portion of the resist pattern 32 is exposed. The processed wiring layer 23a, land 23b, and filled via 23c are formed (see FIG. 4M).

次に、レジストパターン32を専用の剥離液で除去し、絶縁基材11の両面に表面が平滑な形状再現性に優れた配線層23a及びランド23bが形成され、配線層22aとランド22bがフィルドビア22cにて、ランド22bとランド23bとがフィルドビア23cにて電気的に接続された接続信頼性に優れたビアオンビア構造の4層の配線基板100を得る(図4(n)参照)。
さらに、必用であれば上記絶縁層、レジストパターン、めっき下地導電層、めっきよる導体層形成及び研磨処理、レジストパターン剥離工程を繰り返すことにより、所望の多層配線基板を得ることができる。
Next, the resist pattern 32 is removed with a special stripping solution, and the wiring layer 23a and the land 23b having a smooth surface and excellent shape reproducibility are formed on both surfaces of the insulating substrate 11, and the wiring layer 22a and the land 22b are filled vias. In 22c, a four-layer wiring board 100 having a via-on-via structure excellent in connection reliability in which the land 22b and the land 23b are electrically connected by the filled via 23c is obtained (see FIG. 4 (n)).
Furthermore, if necessary, a desired multilayer wiring board can be obtained by repeating the insulating layer, resist pattern, plating base conductive layer, conductor layer formation and polishing treatment by plating, and resist pattern peeling step.

図5(a)〜(e)、図6(f)〜(i)及び図7(j)〜(n)には、本発明の請求項2に係る多層配線基板の製造方法の一実施例を工程順に示す模式構成断面図である。
まず、絶縁基材11の片面に極薄銅箔を積層して導体層21を形成した積層基材20を準備する(図5(a)参照)。
次に、CO2レーザー、UVレーザー等を用いたレーザー加工により、積層基材20の一方の面から絶縁基材11を貫通し導体層21に達するビア用孔15を形成し、ビア用孔15底及び内壁に付着した樹脂残渣を、ドライデスミア又は、ウェットデスミア処理にて除去する(図5(b)参照)。
5 (a) to (e), FIGS. 6 (f) to (i) and FIGS. 7 (j) to (n) show an embodiment of a method for manufacturing a multilayer wiring board according to claim 2 of the present invention. FIG.
First, a laminated base material 20 is prepared in which an extremely thin copper foil is laminated on one side of the insulating base material 11 to form a conductor layer 21 (see FIG. 5A).
Next, via holes 15 that penetrate the insulating base material 11 from one surface of the laminated base material 20 and reach the conductor layer 21 are formed by laser processing using a CO 2 laser, a UV laser, or the like. Resin residues adhering to the bottom and the inner wall are removed by dry desmear or wet desmear treatment (see FIG. 5B).

次に、感光性のドライフィルムをラミネートする等の方法で感光層を形成し、パターン露光、現像等の一連のパターニング処理を行ってレジストパターン33を形成する(図5(c)参照)。   Next, a photosensitive layer is formed by a method such as laminating a photosensitive dry film, and a series of patterning processes such as pattern exposure and development are performed to form a resist pattern 33 (see FIG. 5C).

次に、スパッタ又は、DPS、無電解銅めっき等により、一方の面のレジストパターン33上、絶縁基材11上及びビア用孔12内に、他方の面のレジストパターン33上及び導体層21上に所定厚の銅薄膜層からなるめっき下地導電層43を形成する(図5(d)参照)。   Next, by sputtering, DPS, electroless copper plating or the like, on the resist pattern 33 on one side, on the insulating base material 11 and in the via hole 12, on the resist pattern 33 on the other side and on the conductor layer 21 Then, a plating base conductive layer 43 made of a copper thin film layer having a predetermined thickness is formed (see FIG. 5D).

次に、めっき下地導電層43を給電層にしてフィルドビア用銅めっき液を用いて、電解銅めっきを行い、レジストパターン33を覆いつくすような厚みまでめっき銅を析出させ、導体層24を形成する(図5(e)参照)。   Next, electrolytic copper plating is performed using a filled via copper plating solution with the plating base conductive layer 43 as a power feeding layer, and the plated copper is deposited to a thickness that covers the resist pattern 33, thereby forming the conductor layer 24. (See FIG. 5 (e)).

次に、基板両面をバフ研磨等の物理研磨、またはエッチング等の化学研磨により、レジストパターン33の上部が露出するまで導体層24及びレジストパターン33上部のめっき下地導電層43を研磨処理し、研磨処理された配線層24a、ランド24b及びフィルドビア24cを形成する(図6(f)参照)。   Next, the conductive layer 24 and the plating base conductive layer 43 above the resist pattern 33 are polished and polished by physical polishing such as buffing or chemical polishing such as etching on both surfaces of the substrate until the upper portion of the resist pattern 33 is exposed. The processed wiring layer 24a, land 24b, and filled via 24c are formed (see FIG. 6F).

次に、レジストパターン33を専用の剥離液で除去し、レジストパターン33の下部にあった導体層21をエッチングで除去して配線層及びランド間の絶縁性を確保し、絶縁基材11の両面に表面が平滑な形状再現性に優れた配線層24a及びランド24bが形成され、配線層24aとランド24bがフィルドビア24cにて電気的に接続された2層の配線基板を得る(図6(g)参照)。
Next, the resist pattern 33 is removed with a special stripping solution, and the conductor layer 21 under the resist pattern 33 is removed by etching to ensure insulation between the wiring layer and the land. A wiring layer 24a and a land 24b having a smooth surface and excellent shape reproducibility are formed, and a two-layer wiring board is obtained in which the wiring layer 24a and the land 24b are electrically connected by a filled via 24c (FIG. 6G )reference).

次に、両面に樹脂フィルムをラミネートする等の方法で、絶縁層16を形成する(図6(h)参照)。
次に、CO2レーザー、UVレーザー等を用いたレーザー加工により、絶縁層16の所定位置にビア用孔17を形成し、、ビア用孔17底及び内壁に付着した樹脂残渣を、ドライデスミア、又はウェットデスミア処理にて除去する(図6(i)参照)。
Next, the insulating layer 16 is formed by a method such as laminating a resin film on both surfaces (see FIG. 6H).
Next, a via hole 17 is formed at a predetermined position of the insulating layer 16 by laser processing using a CO 2 laser, a UV laser, etc., and the resin residue adhering to the bottom and inner wall of the via hole 17 is dry desmear, Or it removes by a wet desmear process (refer FIG.6 (i)).

次に、感光性のドライフィルムをラミネートする等の方法で感光層を形成し、パターン露光、現像等の一連のパターニング処理を行ってレジストパターン34を形成する(図7(j)参照)。   Next, a photosensitive layer is formed by a method such as laminating a photosensitive dry film, and a series of patterning processes such as pattern exposure and development are performed to form a resist pattern 34 (see FIG. 7J).

次に、スパッタ、DPS、無電解銅めっき等によりレジストパターン34上、絶縁層16上及びビア用孔17内に所定厚の銅薄膜層からなるめっき下地導電層44を形成する(図7(k)参照)。   Next, a plating base conductive layer 44 made of a copper thin film layer having a predetermined thickness is formed on the resist pattern 34, the insulating layer 16 and the via hole 17 by sputtering, DPS, electroless copper plating, or the like (FIG. 7 (k)). )reference).

次に、めっき下地導電層44を給電層にしてフィルドビア用銅めっき液を用いて、電解銅めっきを行い、レジストパターン34を覆いつくすような厚みまでめっき銅を析出させ、導体層25を形成する(図7(l)参照)。   Next, electrolytic copper plating is performed using a filled via copper plating solution with the plating base conductive layer 44 as a power feeding layer, and the plated copper is deposited to a thickness that covers the resist pattern 34, thereby forming the conductor layer 25. (See FIG. 7 (l)).

次に、基板両面をバフ研磨等の物理研磨、またはエッチング等の化学研磨により、レジストパターン34の上部が露出するまで導体層25及びレジストパターン34上部のめっき下地導電層44を研磨処理し、研磨処理された配線層25a、ランド25b及びフィルドビア25cを形成する(図7(m)参照)。   Next, by polishing the both surfaces of the substrate by physical polishing such as buffing or chemical polishing such as etching, the conductive layer 25 and the plating base conductive layer 44 on the resist pattern 34 are polished and polished until the upper portion of the resist pattern 34 is exposed. The processed wiring layer 25a, land 25b, and filled via 25c are formed (see FIG. 7M).

次に、レジストパターン34を専用の剥離液で除去し、絶縁基材11の両面に表面が平滑な形状再現性に優れた配線層25a及びランド25bが形成され、配線層24aとランド24bがフィルドビア24cにて、ランド24bとランド25bとがフィルドビア25cにて電気的に接続された接続信頼性に優れたビアオンビア構造の4層の配線基板200を得る(図7(n)参照)。
さらに、必用であれば上記絶縁層、レジストパターン、めっき下地導電層、めっきよる導体層形成及び研磨処理、レジストパターン剥離工程を繰り返すことにより、所望の多層配線基板を得ることができる。
Next, the resist pattern 34 is removed with a special stripping solution, and the wiring layer 25a and the land 25b having a smooth surface and excellent shape reproducibility are formed on both surfaces of the insulating substrate 11, and the wiring layer 24a and the land 24b are filled vias. In 24c, the land 24b and the land 25b are electrically connected by the filled via 25c to obtain a four-layer wiring board 200 having a via-on-via structure excellent in connection reliability (see FIG. 7 (n)).
Furthermore, if necessary, a desired multilayer wiring board can be obtained by repeating the insulating layer, resist pattern, plating base conductive layer, conductor layer formation and polishing treatment by plating, and resist pattern peeling step.

まず、25μm厚のポリイミドテープからなる絶縁基材11の両面に銅箔が積層された両面銅箔付きポリイミドテープの銅箔をエッチングして3μm厚の銅箔からなる導体層21を形成した積層基材10を準備した(図2(a)参照)。
次に、UVレーザーを用いたレーザー加工により、積層基材10の一方の面から導体層21及び絶縁基材11を貫通し他方の面の導体層21に達する100μm径のビア用孔12を形成し、ビア用孔12底及び内壁に付着した樹脂残渣を50℃に加熱された過マンガン酸カリウム水溶液によるデスミア処理にて除去した(図2(b)参照)。
First, a laminated base formed by etching a copper foil of a polyimide tape with double-sided copper foil in which copper foil is laminated on both sides of an insulating base material 11 made of polyimide tape having a thickness of 25 μm to form a conductor layer 21 made of copper foil having a thickness of 3 μm. A material 10 was prepared (see FIG. 2A).
Next, via holes 12 having a diameter of 100 μm are formed by laser processing using a UV laser so as to penetrate the conductor layer 21 and the insulating substrate 11 from one surface of the laminated substrate 10 and reach the conductor layer 21 on the other surface. The resin residue adhering to the bottom and inner wall of the via hole 12 was removed by desmear treatment with an aqueous potassium permanganate solution heated to 50 ° C. (see FIG. 2B).

次に、感光性のドライフィルムをラミネートして感光層を形成し、パターン露光、現像等の一連のパターニング処理を行ってレジストパターン31を形成した(図2(c)参照)。   Next, a photosensitive dry film was laminated to form a photosensitive layer, and a series of patterning processes such as pattern exposure and development were performed to form a resist pattern 31 (see FIG. 2C).

次に、無電解銅めっきによりレジストパターン31上、導体層21上及びビア用孔12内に0.5〜1.0μm厚の銅薄膜層からなるめっき下地導電層41を形成した(図2(d)参照)。   Next, a plating base conductive layer 41 made of a copper thin film layer having a thickness of 0.5 to 1.0 μm was formed on the resist pattern 31, the conductor layer 21, and the via hole 12 by electroless copper plating (FIG. 2 ( d)).

次に、めっき下地導電層41を給電層にして、硫酸銅5水和物濃度が230g/L、硫酸濃度が70g/L、塩素イオン濃度が60mg/Lの硫酸銅水溶液にエバラユージライト製キューブライトVF−MUを20ml/Lを加えた銅めっき液を用いて電解銅めっきを行い、レジストパターン31を覆いつくすような厚みまでめっき銅を析出させ、導体層22を形成した(図2(e)参照)。
ここで、電流密度は、はじめの15分間で1.5ASD、続く25分間で2.0ASDとした。
Next, using the plating base conductive layer 41 as a power feeding layer, a copper sulfate aqueous solution having a copper sulfate pentahydrate concentration of 230 g / L, a sulfuric acid concentration of 70 g / L, and a chlorine ion concentration of 60 mg / L is prepared by an Ebara Eugilite cube. Electrolytic copper plating was performed using a copper plating solution to which 20 ml / L of light VF-MU was added, and the plated copper was deposited to such a thickness as to cover the resist pattern 31 to form a conductor layer 22 (FIG. 2 (e )reference).
Here, the current density was 1.5 ASD for the first 15 minutes and 2.0 ASD for the next 25 minutes.

次に、過酸化水素水と硫酸の混合液からなるエッチング液を用いた化学研磨により、レ
ジストパターン31の上部が露出するまで導体層21及びレジストパターン31上部のめっき下地導電層41をエッチングし、5〜10μmの配線層22a、ランド22b及びフィルドビア22cを形成した(図3(f)参照)。
Next, the conductive underlayer 21 and the plating base conductive layer 41 above the resist pattern 31 are etched by chemical polishing using an etching solution composed of a mixed solution of hydrogen peroxide and sulfuric acid until the upper portion of the resist pattern 31 is exposed, A wiring layer 22a, a land 22b, and a filled via 22c of 5 to 10 μm were formed (see FIG. 3F).

次に、レジストパターン31を専用の剥離液で除去し、レジストパターン31の下部にあった導体層21をエッチングで除去し、絶縁基材11の両面に表面が平滑な形状再現性に優れた配線層22a及びランド22bが形成され、配線層22aとランド22bがフィルドビア22cにて電気的に接続された2層の配線基板を得た(図3(g)参照)。
Next, the resist pattern 31 is removed with a special stripping solution, and the conductor layer 21 located under the resist pattern 31 is removed by etching . The wiring having excellent surface reproducibility with smooth surfaces on both surfaces of the insulating base 11 A layer 22a and a land 22b were formed, and a two-layer wiring board in which the wiring layer 22a and the land 22b were electrically connected by a filled via 22c was obtained (see FIG. 3G).

次に、両面に樹脂フィルムをラミネートし絶縁層13を形成した(図3(h)参照)。次に、UVレーザーを用いたレーザー加工により、絶縁層13の所定位置に50μm径のビア用孔14を形成し、ビア用孔14底及び内壁に付着した樹脂残渣を50℃に加熱された過マンガン酸カリウム水溶液によるデスミア処理にて除去した(図3(i)参照)。   Next, a resin film was laminated on both surfaces to form an insulating layer 13 (see FIG. 3 (h)). Next, a via hole 14 having a diameter of 50 μm is formed at a predetermined position of the insulating layer 13 by laser processing using a UV laser, and the resin residue adhering to the bottom and inner wall of the via hole 14 is heated to 50 ° C. It removed by the desmear process by potassium manganate aqueous solution (refer FIG.3 (i)).

次に、感光性のドライフィルムをラミネートして感光層を形成し、パターン露光、現像等の一連のパターニング処理を行ってレジストパターン32を形成した(図4(j)参照)。   Next, a photosensitive dry film was laminated to form a photosensitive layer, and a series of patterning processes such as pattern exposure and development were performed to form a resist pattern 32 (see FIG. 4J).

次に、無電解銅めっきによりレジストパターン32上、絶縁層13上及びビア用孔14内に0.5〜1.0μm厚の銅薄膜層からなるめっき下地導電層42を形成した図4(k)参照)。   Next, FIG. 4 (k) in which a plating base conductive layer 42 composed of a copper thin film layer having a thickness of 0.5 to 1.0 μm is formed on the resist pattern 32, the insulating layer 13 and the via hole 14 by electroless copper plating. )reference).

次に、めっき下地導電層41を給電層にして、硫酸銅5水和物濃度が230g/L、硫酸濃度が70g/L、塩素イオン濃度が60mg/Lの硫酸銅水溶液にエバラユージライト製キューブライトVF−MUを20ml/Lを加えた銅めっき液を用いて電解銅めっきを行い、レジストパターン31を覆いつくすような厚みまでめっき銅を析出させ、導体層23を形成した(図4(l)参照)。
ここで、電流密度は、はじめの15分間で1.5ASD、続く25分間で2.0ASDとした。
Next, using the plating base conductive layer 41 as a power feeding layer, a copper sulfate aqueous solution having a copper sulfate pentahydrate concentration of 230 g / L, a sulfuric acid concentration of 70 g / L, and a chlorine ion concentration of 60 mg / L is prepared by an Ebara Eugilite cube. Electrolytic copper plating was performed using a copper plating solution to which 20 ml / L of light VF-MU was added, and plated copper was deposited to such a thickness as to cover the resist pattern 31 to form a conductor layer 23 (FIG. 4 (l )reference).
Here, the current density was 1.5 ASD for the first 15 minutes and 2.0 ASD for the next 25 minutes.

次に、過酸化水素水と硫酸の混合液からなるエッチング液を用いた化学研磨により、レジストパターン32の上部が露出するまで導体層21及びレジストパターン31上部のめっき下地導電層41をエッチングし、5〜10μmの配線層22a、ランド22b及びフィルドビア22cを形成した(図4(m)参照)。   Next, the conductive conductive layer 21 and the plating base conductive layer 41 above the resist pattern 31 are etched by chemical polishing using an etchant composed of a mixed solution of hydrogen peroxide and sulfuric acid until the upper portion of the resist pattern 32 is exposed, A wiring layer 22a, a land 22b, and a filled via 22c of 5 to 10 μm were formed (see FIG. 4M).

次に、レジストパターン32を専用の剥離液で除去し、絶縁基材11の両面に表面が平滑な形状再現性に優れた配線層23a及びランド23bが形成され、配線層22aとランド22bがフィルドビア22cにて、ランド22bとランド23bとがフィルドビア23cにて電気的に接続された接続信頼性に優れたビアオンビア構造の4層の配線基板100を得た(図4(n)参照)。
Next, the resist pattern 32 is removed with a special stripping solution, and the wiring layer 23a and the land 23b having a smooth surface and excellent shape reproducibility are formed on both surfaces of the insulating substrate 11, and the wiring layer 22a and the land 22b are filled vias. In 22c, a four-layer wiring board 100 having a via-on-via structure excellent in connection reliability in which the land 22b and the land 23b were electrically connected by the filled via 23c was obtained (see FIG. 4 (n)).

まず、25μm厚のポリイミドテープからなる絶縁基材11の片面に銅箔が積層された片面銅箔付きポリイミドテープの銅箔をエッチングして3μm厚の銅箔からなる導体層21を形成した積層基材20を準備した(図5(a)参照)。
次に、UVレーザーを用いたレーザー加工により、積層基材20の一方の面から絶縁基材11を貫通し他方の面の導体層21に達する100μm径のビア用孔15を形成し、ビア用孔15底及び内壁に付着した樹脂残渣を50℃に加熱された過マンガン酸カリウム水溶
液によるデスミア処理にて除去した(図5(b)参照)。
First, a laminated base formed by etching a copper foil of a polyimide tape with a single-sided copper foil in which a copper foil is laminated on one side of an insulating substrate 11 made of a polyimide tape having a thickness of 25 μm to form a conductor layer 21 made of a copper foil having a thickness of 3 μm. A material 20 was prepared (see FIG. 5A).
Next, by via laser processing using a UV laser, a via hole 15 having a diameter of 100 μm that penetrates the insulating base material 11 from one side of the laminated base material 20 and reaches the conductor layer 21 on the other side is formed. Resin residues adhering to the bottoms and inner walls of the holes 15 were removed by desmear treatment with an aqueous potassium permanganate solution heated to 50 ° C. (see FIG. 5B).

次に、感光性のドライフィルムをラミネートして感光層を形成し、パターン露光、現像等の一連のパターニング処理を行ってレジストパターン33を形成した(図5(c)参照)。   Next, a photosensitive dry film was laminated to form a photosensitive layer, and a series of patterning processes such as pattern exposure and development were performed to form a resist pattern 33 (see FIG. 5C).

次に、無電解銅めっきにより一方の面のレジストパターン33上及びビア用孔12内に、他方の面のレジストパターン33上及び導体層21上に0.5〜1.0μm厚の銅薄膜層からなるめっき下地導電層43を形成した(図5(d)参照)。   Next, a copper thin film layer having a thickness of 0.5 to 1.0 μm is formed on the resist pattern 33 on one side and in the via hole 12 by electroless copper plating, on the resist pattern 33 on the other side and on the conductor layer 21 A plating base conductive layer 43 made of (see FIG. 5D) was formed.

次に、めっき下地導電層43を給電層にして、硫酸銅5水和物濃度が230g/L、硫酸濃度が70g/L、塩素イオン濃度が60mg/Lの硫酸銅水溶液にエバラユージライト製キューブライトVF−MUを20ml/Lを加えた銅めっき液を用いて電解銅めっきを行い、レジストパターン33を覆いつくすような厚みまでめっき銅を析出させ、導体層24を形成した(図5(e)参照)。
ここで、電流密度は、はじめの15分間で1.5ASD、続く25分間で2.0ASDとした。
Next, using the plating base conductive layer 43 as a power feeding layer, a copper sulfate aqueous solution having a copper sulfate pentahydrate concentration of 230 g / L, a sulfuric acid concentration of 70 g / L, and a chlorine ion concentration of 60 mg / L is prepared by Ebara Eugilite Cube. Electrolytic copper plating was performed using a copper plating solution to which 20 ml / L of light VF-MU was added, and the plated copper was deposited to such a thickness as to cover the resist pattern 33, thereby forming a conductor layer 24 (FIG. 5 (e )reference).
Here, the current density was 1.5 ASD for the first 15 minutes and 2.0 ASD for the next 25 minutes.

次に、過酸化水素水と硫酸の混合液からなるエッチング液を用いた化学研磨により、レジストパターン31の上部が露出するまで導体層24及びレジストパターン33上部のめっき下地導電層43をエッチングし、5〜10μmの配線層24a、ランド24b及びフィルドビア24cを形成した(図6(f)参照)。   Next, the plating underlying conductive layer 43 on the conductor layer 24 and the resist pattern 33 is etched by chemical polishing using an etchant composed of a mixed solution of hydrogen peroxide and sulfuric acid until the upper portion of the resist pattern 31 is exposed, A wiring layer 24a, a land 24b, and a filled via 24c of 5 to 10 μm were formed (see FIG. 6F).

次に、レジストパターン31を専用の剥離液で除去し、レジストパターン31の下部にあった導体層21をエッチングで除去し、絶縁基材11の両面に表面が平滑な形状再現性に優れた配線層24a及びランド24bが形成され、配線層24aとランド24bがフィルドビア24cにて電気的に接続された2層の配線基板を得た(図6(g)参照)。
Next, the resist pattern 31 is removed with a special stripping solution, and the conductor layer 21 located under the resist pattern 31 is removed by etching . The wiring having excellent surface reproducibility with smooth surfaces on both surfaces of the insulating base 11 A layer 24a and a land 24b were formed, and a two-layer wiring board in which the wiring layer 24a and the land 24b were electrically connected by a filled via 24c was obtained (see FIG. 6G).

次に、両面に樹脂フィルムをラミネートし絶縁層13を形成した(図6(h)参照)。次に、UVレーザーを用いたレーザー加工により、絶縁層16の所定位置に50μm径のビア用孔17を形成し、ビア用孔17底及び内壁に付着した樹脂残渣を50℃に加熱された過マンガン酸カリウム水溶液によるデスミア処理にて除去した(図6(i)参照)。   Next, a resin film was laminated on both surfaces to form an insulating layer 13 (see FIG. 6H). Next, a via hole 17 having a diameter of 50 μm is formed at a predetermined position of the insulating layer 16 by laser processing using a UV laser, and the resin residue adhering to the bottom and inner wall of the via hole 17 is heated to 50 ° C. It removed by the desmear process by potassium manganate aqueous solution (refer FIG.6 (i)).

次に、感光性のドライフィルムをラミネートして感光層を形成し、パターン露光、現像等の一連のパターニング処理を行ってレジストパターン34を形成した(図7(j)参照)。   Next, a photosensitive dry film was laminated to form a photosensitive layer, and a series of patterning processes such as pattern exposure and development were performed to form a resist pattern 34 (see FIG. 7J).

次に、無電解銅めっきによりレジストパターン34上、絶縁層13上及びビア用孔17内に0.5〜1.0μm厚の銅薄膜層からなるめっき下地導電層44を形成した図7(k)参照)。   Next, FIG. 7 (k) in which a plating base conductive layer 44 made of a copper thin film layer having a thickness of 0.5 to 1.0 μm is formed on the resist pattern 34, the insulating layer 13, and the via hole 17 by electroless copper plating. )reference).

次に、めっき下地導電層44を給電層にして、硫酸銅5水和物濃度が230g/L、硫酸濃度が70g/L、塩素イオン濃度が60mg/Lの硫酸銅水溶液にエバラユージライト製キューブライトVF−MUを20ml/Lを加えた銅めっき液を用いて電解銅めっきを行い、レジストパターン34を覆いつくすような厚みまでめっき銅を析出させ、導体層25を形成した(図7(l)参照)。
ここで、電流密度は、はじめの15分間で1.5ASD、続く25分間で2.0ASDとした。
Next, using the plating base conductive layer 44 as a power feeding layer, a copper sulfate aqueous solution having a copper sulfate pentahydrate concentration of 230 g / L, a sulfuric acid concentration of 70 g / L, and a chlorine ion concentration of 60 mg / L is prepared by an Ebara Eugilite cube. Electrolytic copper plating was performed using a copper plating solution to which 20 ml / L of light VF-MU was added, and the plated copper was deposited to such a thickness as to cover the resist pattern 34, thereby forming the conductor layer 25 (FIG. 7 (l )reference).
Here, the current density was 1.5 ASD for the first 15 minutes and 2.0 ASD for the next 25 minutes.

次に、過酸化水素水と硫酸の混合液からなるエッチング液を用いた化学研磨により、レジストパターン34の上部が露出するまで導体層25及びレジストパターン34上部のめっき下地導電層44をエッチングし、5〜10μm厚の配線層25a、ランド25b及びフィルドビア25cを形成した(図7(m)参照)。   Next, the conductor layer 25 and the plating base conductive layer 44 on the resist pattern 34 are etched by chemical polishing using an etchant composed of a mixed solution of hydrogen peroxide and sulfuric acid until the upper portion of the resist pattern 34 is exposed, A wiring layer 25a, a land 25b, and a filled via 25c having a thickness of 5 to 10 μm were formed (see FIG. 7 (m)).

次に、レジストパターン34を専用の剥離液で除去し、絶縁基材11の両面に表面が平滑な形状再現性に優れた配線層25a及びランド25bが形成され、配線層22aとランド22bがフィルドビア22cにて、ランド24bとランド25bとがフィルドビア253cにて電気的に接続された接続信頼性に優れたビアオンビア構造の4層の配線基板200を得た(図7(o)参照)。 Next, the resist pattern 34 is removed with a special stripping solution, and the wiring layer 25a and the land 25b having a smooth surface and excellent shape reproducibility are formed on both surfaces of the insulating substrate 11, and the wiring layer 22a and the land 22b are filled vias. In 22c, a four-layer wiring board 200 having a via on via structure excellent in connection reliability in which the land 24b and the land 25b were electrically connected by the filled via 253c was obtained (see FIG. 7 (o)).

(a)は、本発明の請求項1に係る多層配線基板の製造方法で作製された多層配線基板の一実施例を示す模式構成断面図である。(A) is a schematic cross-sectional view showing an example of a multilayer wiring board manufactured by the method for manufacturing a multilayer wiring board according to claim 1 of the present invention.

(b)は、本発明の請求項2に係る多層配線基板の製造方法で作製された多層配線基板の一実施例を示す模式構成断面図である。
(a)〜(e)は、本発明の請求項1に係る多層配線基板の製造方法における工程の一部を模式的に示す構成断面図である。 (f)〜(i)は、本発明の請求項1に係る多層配線基板の製造方法における工程の一部を模式的に示す構成断面図である。 (j)〜(n)は、本発明の請求項1に係る多層配線基板の製造方法における工程の一部を模式的に示す構成断面図である。 (a)〜(e)は、本発明の請求項2に係る多層配線基板の製造方法における工程の一部を模式的に示す構成断面図である。 (f)〜(i)は、本発明の請求項2に係る多層配線基板の製造方法における工程の一部を模式的に示す構成断面図である。 (j)〜(n)は、本発明の請求項2に係る多層配線基板の製造方法における工程の一部を模式的に示す構成断面図である。 (a)〜(e)は、セミアディティブプロセスによる配線層、ビア形成における工程の一部を模式的に示す構成断面図である。 (f)〜(g)は、セミアディティブプロセスによる配線層、ビア形成における工程の一部を模式的に示す構成断面図である。
(B) is a schematic cross-sectional view showing an example of a multilayer wiring board produced by the method for manufacturing a multilayer wiring board according to claim 2 of the present invention.
(A)-(e) is a structure sectional drawing which shows typically a part of process in the manufacturing method of the multilayer wiring board based on Claim 1 of this invention. (F)-(i) is a structure sectional view showing typically a part of process in a manufacturing method of a multilayer wiring board concerning claim 1 of the present invention. (J)-(n) is a structure sectional view showing typically a part of process in a manufacturing method of a multilayer wiring board concerning claim 1 of the present invention. (A)-(e) is a structure sectional drawing which shows typically a part of process in the manufacturing method of the multilayer wiring board based on Claim 2 of this invention. (F)-(i) is a structure sectional drawing which shows typically a part of process in the manufacturing method of the multilayer wiring board based on Claim 2 of this invention. (J)-(n) is a structure sectional view showing typically a part of process in a manufacturing method of a multilayer wiring board concerning claim 2 of the present invention. (A)-(e) is a structure sectional drawing which shows typically a part of process in the wiring layer by a semi-additive process, and via | veer formation. (F)-(g) is a structure sectional drawing which shows typically a part of process in the wiring layer by a semi-additive process, and via | veer formation.

符号の説明Explanation of symbols

10、20……積層基材
11……絶縁基材
12、14、15、17、62……ビア用孔
13、16、61……絶縁層
15……デバイスホール
21……導体層
30……コア基板
31、32、33、34、81……レジストパターン
41、42、43、44、71……めっき下地導電層
22、23、24、25……導体層
22a、23a、24a、25a、51、52、54a……配線層
22b、23b、24b、25b……ランド
22c、23c、24c、25c、53……フィルドビア
54……導体層
10, 20 ... Laminated base material 11 ... Insulating base material 12, 14, 15, 17, 62 ... Via holes 13, 16, 61 ... Insulating layer 15 ... Device hole 21 ... Conductor layer 30 ... Core substrate 31, 32, 33, 34, 81... Resist pattern 41, 42, 43, 44, 71... Plating underlayer conductive layer 22, 23, 24, 25 ...... conductor layer 22 a, 23 a, 24 a, 25 a, 51 , 52, 54a... Wiring layers 22b, 23b, 24b, 25b... Land 22c, 23c, 24c, 25c, 53... Filled via 54.

Claims (2)

多層配線基板の製造方法であって、少なくとも以下の工程を有することを特徴とする多層配線基板の製造方法。
(a)絶縁基材の両面に導体層が形成された積層基材の一方の面から導体層及び絶縁基材を貫通し他方の面の導体層に達するビア用孔を形成する工程。
(b)両面に所定厚の感光層を形成し、パターン露光、現像等のパターニング処理によりレジストパターンを形成する工程。
(c)レジストパターン上、ビア用孔側壁及びビア用孔底面を含む全面にめっき下地導電層を形成する工程。
(d)めっき下地導電層を給電層にして電解めっきを行い、レジストパターンの高さ以上にめっき金属を析出させて導体層を形成する工程。
(e)物理研磨、または化学研磨により、レジストパターンの上部が露出するまで導体層及びめっき下地導電層を研磨する工程。
(f)レジストパターンを剥離液で剥離する工程。
(g)レジストパターン下部にあった導体層をエッチングにより除去する工程。
(h)絶縁層を形成する工程。
(i)絶縁層の所定位置にビア用孔を形成する工程。
(j)両面に所定厚のレジスト感光層を形成し、パターン露光、現像等のパターニング処理によりレジストパターンを形成する工程。
(k)レジストパターン上、ビア用孔側壁及びビア用孔底面を含む全面にめっき下地導電層を形成する工程。
(l)めっき下地導電層を給電層にして電解めっきを行い、レジストパターンの高さ以上にめっき金属を析出させて導体層を形成する工程。
(m)物理研磨、または化学研磨により、レジストパターンの上部が露出するまで導体層及びめっき下地導電層を研磨する工程。
(n)レジストパターンを剥離液で剥離する工程。
(p)上記(h)〜(n)の工程を所望の回数繰り返す工程。
A method for manufacturing a multilayer wiring board, comprising at least the following steps.
(A) The process of forming the via hole which penetrates a conductor layer and an insulation base material from one surface of the lamination base material in which the conductor layer was formed in both surfaces of the insulation base material, and reaches the conductor layer of the other surface.
(B) A step of forming a photosensitive layer having a predetermined thickness on both surfaces and forming a resist pattern by patterning processing such as pattern exposure and development.
(C) A step of forming a plating base conductive layer on the entire surface including the via hole sidewall and the via hole bottom surface on the resist pattern.
(D) A step of performing electroplating using the plating base conductive layer as a power supply layer and depositing a plating metal at a height higher than the resist pattern to form a conductor layer.
(E) A step of polishing the conductor layer and the plating base conductive layer by physical polishing or chemical polishing until the upper portion of the resist pattern is exposed.
(F) A step of stripping the resist pattern with a stripping solution.
(G) A step of removing the conductor layer under the resist pattern by etching.
(H) A step of forming an insulating layer.
(I) A step of forming a via hole at a predetermined position of the insulating layer.
(J) A step of forming a resist photosensitive layer having a predetermined thickness on both surfaces and forming a resist pattern by patterning processing such as pattern exposure and development.
(K) A step of forming a plating base conductive layer on the entire surface including the via hole side wall and the via hole bottom surface on the resist pattern.
(L) A step of performing electroplating using the plating base conductive layer as a power feeding layer and depositing a plating metal at a height higher than the resist pattern to form a conductor layer.
(M) A step of polishing the conductor layer and the plating base conductive layer by physical polishing or chemical polishing until the upper portion of the resist pattern is exposed.
(N) A step of stripping the resist pattern with a stripping solution.
(P) A step of repeating the steps (h) to (n) a desired number of times.
多層配線基板の製造方法であって、少なくとも以下の工程を有することを特徴とする多層配線基板の製造方法。
(a)絶縁基材の片面に導体層が形成された積層基材の一方の面から絶縁基材を貫通し他方の面の導体層に達するビア用孔を形成する工程。
(b)両面に所定厚の感光層を形成し、パターン露光、現像等のパターニング処理によりレジストパターンを形成する工程。
(c)レジストパターン上、ビア用孔側壁及びビア用孔底面を含む全面にめっき下地導電層を形成する工程。
(d)めっき下地導電層を給電層にして電解めっきを行い、レジストパターンの高さ以上にめっき金属を析出させて導体層を形成する工程。
(e)物理研磨、または化学研磨により、レジストパターンが露出するまで導体層及びめっき下地導電層を研磨する工程。
(f)レジストパターンを剥離液で剥離する工程。
(g)レジストパターン下部にあった導体層をエッチングにより除去する工程。
(h)絶縁層を形成する工程。
(i)絶縁層の所定位置にビア用孔を形成する工程。
(j)両面に所定厚のレジスト感光層を形成し、パターン露光、現像等のパターニング処理によりレジストパターンを形成する工程。
(k)レジストパターン上、ビア用孔側壁及びビア用孔底面を含む全面にめっき下地導電層を形成する工程。
(l)めっき下地導電層を給電層にして電解めっきを行い、レジストパターンの高さ以上にめっき金属を析出させて導体層を形成する工程。
(m)物理研磨、または化学研磨により、レジストパターンの上部が露出するまで導体層及びめっき下地導電層を研磨する工程。
(n)レジストパターンを剥離液で剥離する工程。
(p)上記(h)〜(n)の工程を所望の回数繰り返す工程。
A method for manufacturing a multilayer wiring board, comprising at least the following steps.
(A) A step of forming a via hole penetrating the insulating base material from one side of the laminated base material on which the conductive layer is formed on one side of the insulating base material and reaching the conductive layer on the other side.
(B) A step of forming a photosensitive layer having a predetermined thickness on both surfaces and forming a resist pattern by patterning processing such as pattern exposure and development.
(C) A step of forming a plating base conductive layer on the entire surface including the via hole sidewall and the via hole bottom surface on the resist pattern.
(D) A step of performing electroplating using the plating base conductive layer as a power supply layer and depositing a plating metal at a height higher than the resist pattern to form a conductor layer.
(E) A step of polishing the conductor layer and the plating base conductive layer by physical polishing or chemical polishing until the resist pattern is exposed.
(F) A step of stripping the resist pattern with a stripping solution.
(G) A step of removing the conductor layer under the resist pattern by etching.
(H) A step of forming an insulating layer.
(I) A step of forming a via hole at a predetermined position of the insulating layer.
(J) A step of forming a resist photosensitive layer having a predetermined thickness on both surfaces and forming a resist pattern by patterning processing such as pattern exposure and development.
(K) A step of forming a plating base conductive layer on the entire surface including the via hole side wall and the via hole bottom surface on the resist pattern.
(L) A step of performing electroplating using the plating base conductive layer as a power feeding layer and depositing a plating metal at a height higher than the resist pattern to form a conductor layer.
(M) A step of polishing the conductor layer and the plating base conductive layer by physical polishing or chemical polishing until the upper portion of the resist pattern is exposed.
(N) A step of stripping the resist pattern with a stripping solution.
(P) A step of repeating the steps (h) to (n) a desired number of times.
JP2004091156A 2004-03-26 2004-03-26 Manufacturing method of multilayer wiring board Expired - Fee Related JP4547958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004091156A JP4547958B2 (en) 2004-03-26 2004-03-26 Manufacturing method of multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004091156A JP4547958B2 (en) 2004-03-26 2004-03-26 Manufacturing method of multilayer wiring board

Publications (2)

Publication Number Publication Date
JP2005277258A JP2005277258A (en) 2005-10-06
JP4547958B2 true JP4547958B2 (en) 2010-09-22

Family

ID=35176556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004091156A Expired - Fee Related JP4547958B2 (en) 2004-03-26 2004-03-26 Manufacturing method of multilayer wiring board

Country Status (1)

Country Link
JP (1) JP4547958B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102256453B (en) * 2010-05-21 2013-12-25 富葵精密组件(深圳)有限公司 Multilayer circuit board manufacturing method
CN107094349B (en) * 2017-06-20 2019-08-27 广州兴森快捷电路科技有限公司 Printed circuit board and preparation method thereof
WO2022191180A1 (en) * 2021-03-10 2022-09-15 凸版印刷株式会社 Multilayer wiring board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655099A (en) * 1979-10-12 1981-05-15 Fujitsu Ltd Method of manufacturing printed board
JPH06132630A (en) * 1992-10-20 1994-05-13 Matsushita Electric Ind Co Ltd Manufacture of flexible circuit board
JPH07231146A (en) * 1994-02-15 1995-08-29 Ibiden Co Ltd Board for mounting semiconductor, and its manufacture
JP2002076620A (en) * 2000-08-31 2002-03-15 Fujitsu Ltd Multilayer circuit board and its manufacturing method
JP2003101221A (en) * 2001-09-20 2003-04-04 Ibiden Co Ltd Method for manufacturing multilayer printed wiring board
JP2004096007A (en) * 2002-09-03 2004-03-25 Furukawa Electric Co Ltd:The Multilayer substrate manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655099A (en) * 1979-10-12 1981-05-15 Fujitsu Ltd Method of manufacturing printed board
JPH06132630A (en) * 1992-10-20 1994-05-13 Matsushita Electric Ind Co Ltd Manufacture of flexible circuit board
JPH07231146A (en) * 1994-02-15 1995-08-29 Ibiden Co Ltd Board for mounting semiconductor, and its manufacture
JP2002076620A (en) * 2000-08-31 2002-03-15 Fujitsu Ltd Multilayer circuit board and its manufacturing method
JP2003101221A (en) * 2001-09-20 2003-04-04 Ibiden Co Ltd Method for manufacturing multilayer printed wiring board
JP2004096007A (en) * 2002-09-03 2004-03-25 Furukawa Electric Co Ltd:The Multilayer substrate manufacturing method

Also Published As

Publication number Publication date
JP2005277258A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP3807312B2 (en) Printed circuit board and manufacturing method thereof
JP2009124098A (en) Electric member and method for manufacturing printed circuit board using it
JP2009283739A (en) Wiring substrate and production method thereof
JP2009260204A (en) Printed circuit board and method of manufacturing the same
US20150101857A1 (en) Printed circuit board and method for manufacturing the same
US20200337156A1 (en) Multilayer printed wiring board and method of manufacturing the same
US6822332B2 (en) Fine line circuitization
KR100720049B1 (en) Multilayer wiring board and method of producing the same
US7629692B2 (en) Via hole having fine hole land and method for forming the same
JP4547958B2 (en) Manufacturing method of multilayer wiring board
US8197702B2 (en) Manufacturing method of printed circuit board
JP5188947B2 (en) Manufacturing method of multilayer wiring board
US6555016B2 (en) Method of making multilayer substrate
KR101987378B1 (en) Method of manufacturing printed circuit board
JP4483247B2 (en) Multilayer flexible wiring board manufacturing method and multilayer flexible wiring board
JP2005136282A (en) Multilayer wiring substrate and its manufacturing method
JP2007095910A (en) Manufacturing method of wiring board
KR100787385B1 (en) Method of electrolytic gold plating for printed circuit board without lead
KR100576652B1 (en) Method for making double sides wiring substrate
JP2005108941A (en) Multilayer wiring board and its manufacturing method
KR100813441B1 (en) Method of fabricating a printed circuit board having a fine line spacing pitch
JP2003273510A (en) Manufacturing method for printed substrate
KR101009118B1 (en) A method for manufacturing of landless printed circuit board
JP2003188535A (en) Double-sided flexible wiring board and manufacturing method therefor
JP3817291B2 (en) Printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

R150 Certificate of patent or registration of utility model

Ref document number: 4547958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140716

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees