JP4544294B2 - バルブタイミング調整装置 - Google Patents

バルブタイミング調整装置 Download PDF

Info

Publication number
JP4544294B2
JP4544294B2 JP2007307987A JP2007307987A JP4544294B2 JP 4544294 B2 JP4544294 B2 JP 4544294B2 JP 2007307987 A JP2007307987 A JP 2007307987A JP 2007307987 A JP2007307987 A JP 2007307987A JP 4544294 B2 JP4544294 B2 JP 4544294B2
Authority
JP
Japan
Prior art keywords
passage
advance
retard
spool
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007307987A
Other languages
English (en)
Other versions
JP2009133216A (ja
Inventor
俊希 藤吉
佐藤  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007307987A priority Critical patent/JP4544294B2/ja
Priority to US12/325,008 priority patent/US7987827B2/en
Publication of JP2009133216A publication Critical patent/JP2009133216A/ja
Application granted granted Critical
Publication of JP4544294B2 publication Critical patent/JP4544294B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/022Chain drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/34409Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear by torque-responsive means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/3443Solenoid driven oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34469Lock movement parallel to camshaft axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Description

本発明は、内燃機関においてクランク軸からのトルク伝達によりカム軸が開閉する動弁のバルブタイミングを調整するバルブタイミング調整装置に関する。
従来、クランク軸と連動して回転する第一回転体としてのハウジング並びにカム軸と連動して回転する第二回転体としてのベーンロータを備えた流体駆動式のバルブタイミング調整装置が、広く用いられている。このようなバルブタイミング調整装置の一種として特許文献1には、ハウジングのシューとベーンロータのベーンとの間において回転方向に形成した進角室又は遅角室に作動流体を供給することで、カム軸をクランク軸に対する進角側又は遅角側に駆動してバルブタイミングを調整する装置が開示されている。
具体的に、特許文献1に開示の装置では、進角室及び遅角室に対して、ポンプから作動流体が供給される供給通路及び作動流体を排出するドレン通路の各々の接続状態を、スプール弁により制御している。例えば、クランク軸に対するカム軸の位相(以下、「機関位相」という)を進角側に変化させる場合には、スプール弁のスプール移動により、進角室に対して供給通路を接続し且つ遅角通路に対してドレン通路を接続する。一方、機関位相を遅角側に変化させる場合には、スプール移動により各通路の接続関係を反転させるのである。
特開2006−63835号公報
さて、特許文献1に開示されるように、一般にバルブタイミング調整装置では、クランク軸に対してカム軸を進角させる側と遅角させる側とに変動するように、変動トルクが作用する。ここで変動トルクは、例えばカム軸によって開閉駆動される動弁からのスプリング反力等によって内燃機関の運転中に常に作用するものであり、内燃機関の回転状態に応じて大きさが変化することになる。
そのため、例えば機関位相を進角側に変化させる場合において、変動トルクのうちカム軸を進角させる側のトルクが作用するときには、ポンプからの流体供給量が少ないと、当該進角側のトルクの作用によって容積拡大する進角室では、作動流体が不足することになる。故に、変動トルクの向きが反転したときには、作動流体の不足分、カム軸の遅角を抑制し得なくなるので、結果的に進角時の応答性が低下してしまうことになったのである。
本発明は、以上説明した問題に鑑みてなされたものであって、その目的は、応答性の高いバルブタイミング調整装置を提供することにある。
請求項1に記載の発明は、内燃機関においてクランク軸からのトルク伝達によりカム軸が開閉する動弁のバルブタイミングを調整するバルブタイミング調整装置であって、クランク軸と連動して回転する第一回転体と、カム軸と連動して回転し、第一回転体との間において進角室及び遅角室を回転方向に形成し、進角室又は遅角室に作動流体が供給されることによりカム軸をクランク軸に対する進角側又は遅角側に駆動する第二回転体と、流体供給源から作動流体が供給される供給通路及び作動流体を排出するドレン通路を有し、進角室及び遅角室に対する供給通路及びドレン通路の各々の接続状態を制御する制御手段と、を備えるバルブタイミング調整装置において、制御手段は、往復移動するスプールを有し、機関位相を進角側に変化させる場合にスプールを進角位置に移動させることにより、進角室に対して供給通路を接続し且つ遅角室に対してドレン通路を接続し、機関位相を遅角側に変化させる場合にスプールを遅角位置に移動させることにより、遅角室に対して供給通路を接続し且つ進角室に対してドレン通路を接続するスプール弁と、少なくともスプールが進角位置又は遅角位置に移動した状態において、供給通路及びドレン通路の間を接続する接続通路と、接続通路に配設され、ドレン通路側から供給通路側に向かう作動流体流れを許容し且つ供給通路側からドレン通路側に向かう作動流体流れを規制する逆止弁と、を有することを特徴とする。
このような請求項1に記載の発明では、少なくとも機関位相を進角側又は遅角側に変化させる場合には、スプールが進角位置又は遅角位置への移動状態となり、進角室又は遅角室に接続の供給通路と、遅角室又は進角室に接続のドレン通路との間が接続通路によって接続される。故に、遅角室又は進角室からドレン通路に排出される作動流体については、供給通路側に向かう流れが、接続通路に配設の逆止弁によって許容されることになる。これにより、流体供給源から供給通路への流体供給量が少なくなっても、その分をドレン通路側から補うことができるので、変動トルクの作用により容積拡大する進角室又は遅角室に対して供給通路から供給の作動流体について、不足が生じることを抑制できる。また一方、供給通路に接続の進角室又は遅角室が変動トルクの作用により圧縮されて作動流体が供給通路に逆流したとしても、当該作動流体のドレン通路側に向かう流れを接続通路に配設の逆止弁が規制するので、排出側となる遅角室又は進角室に誤って作動流体が供給される事態を回避できる。以上によれば、供給通路に接続の進角室又は遅角室には十分な量の作動流体を供給しつつ、ドレン通路に接続の遅角室又は進角室からは作動流体を排出させて、応答性を高めることが可能となる。
さらに、請求項に記載の発明によると、接続通路は、スプールに形成され、当該スプールが進角位置及び遅角位置の少なくとも一方に移動することにより供給通路及びドレン通路の間を接続する。これによれば、遅角室又は進角室からドレン通路に排出される作動流体については、スプールに形成されることによってそれら各室に可及的に近付けられた接続通路を供給通路側に向かって流れることになるので、供給通路に届くまでの圧損が抑制され得る。故に、流体供給源から供給通路への流体供給量が少なくなったときには、十分な量の作動流体をドレン通路から供給通路に素早く送って、応答性の低下を防止することができるのである。
またさらに、請求項に記載の発明によると、制御手段は、スプールが進角位置に移動することにより遅角室に対して接続される上記ドレン通路としての第一ドレン通路と、スプールが進角位置に移動することにより供給通路及び第一ドレン通路の間を接続する上記接続通路としての第一接続通路と、第一接続通路に配設される上記逆止弁としての第一逆止弁と、スプールが遅角位置に移動することにより進角室に対して接続される上記ドレン通路としての第二ドレン通路と、スプールが遅角位置に移動することにより供給通路及び第二ドレン通路の間を接続する上記接続通路としての第二接続通路と、第二接続通路に配設される上記逆止弁としての第二逆止弁と、を有する。
このような請求項に記載の発明では、機関位相を進角側に変化させる場合には、スプールが進角位置へ移動することで、進角室及び遅角室にそれぞれ接続される供給通路及び第一ドレン通路の間が第一接続通路によって接続される。故に、遅角室から第一ドレン通路に排出される作動流体について、供給通路側に向かう流れが、第一接続通路に配設の第一逆止弁によって許容されることになる。これにより、流体供給源から供給通路への流体供給量が少なくなっても、その分を第一ドレン通路側から補うことができるので、変動トルクの作用によって容積拡大する進角室に対して供給通路から供給の作動流体に不足が生じることを抑制できる。また一方、進角室が変動トルクの作用により圧縮されて作動流体が供給通路に逆流したとしても、当該作動流体の第一ドレン通路側に向かう流れを第一接続通路に配設の第一逆止弁が規制するので、遅角室に誤って作動流体が供給される事態を回避できる。以上によれば、進角室には十分な量の作動流体を供給しつつ、遅角室からは作動流体を排出させて、進角応答性を高めることができるのである。
また、請求項に記載の発明では、機関位相を遅角側に変化させる場合には、スプールが遅角位置へ移動することで、遅角室及び進角室にそれぞれ接続される供給通路及び第二ドレン通路の間が第二接続通路によって接続される。故に、進角室から第二ドレン通路に排出される作動流体について、供給通路側に向かう流れが、第二接続通路に配設の第二逆止弁によって許容されることになる。これにより、流体供給源から供給通路への流体供給量が少なくなっても、その分を第二ドレン通路側から補うことができるので、変動トルクの作用によって容積拡大する遅角室に対して供給通路から供給の作動流体に不足が生じることを抑制できる。また一方、遅角室が変動トルクの作用により圧縮されて作動流体が供給通路に逆流したとしても、当該作動流体の第二ドレン通路側に向かう流れを第二接続通路に配設の第二逆止弁が規制するので、進角室に誤って作動流体が供給される事態を回避できる。以上によれば、遅角室には十分な量の作動流体を供給しつつ、進角室からは作動流体を排出させて、遅角応答性を高めることができるのである。
請求項に記載の発明によると、第一ドレン通路及び第二ドレン通路は互いに連通し、進角位置に移動したスプールの第二接続通路により供給通路及び第二ドレン通路の間が接続され、遅角位置に移動したスプールの第一接続通路により供給通路及び第一ドレン通路の間が接続される。
このような請求項に記載の発明では、機関位相を進角側に変化させる場合には、スプールが進角位置に移動することで、供給通路及び第二ドレン通路の間が第二接続通路によって接続される。このとき、第二ドレン通路に連通の第一ドレン通路は遅角室に接続されているので、遅角室から第一ドレン通路に排出される作動流体は、第二ドレン通路にも流入する。これにより、第二ドレン通路に流入した作動流体について、供給通路側に向かう流れが、第二接続通路に配設の第二逆止弁によって許容されることになるので、流体供給源から供給通路への流体供給量が少なくなっても、その分を第二ドレン通路側からも補うことが可能となる。故に、変動トルクの作用によって容積拡大する進角室に供給通路から十分な量の作動流体を供給して、進角応答性を高めることができるのである。
また、請求項に記載の発明では、機関位相を遅角側に変化させる場合には、スプールが遅角位置に移動することで、供給通路及び第一ドレン通路の間が第一接続通路によって接続される。このとき、第一ドレン通路に連通の第二ドレン通路は進角室に接続されているので、進角室から第二ドレン通路に排出される作動流体は、第一ドレン通路にも流入する。これにより、第一ドレン通路に流入した作動流体について、供給通路側に向かう流れが、第一接続通路に配設の第一逆止弁によって許容されることになるので、流体供給源から供給通路への流体供給量が少なくなっても、その分を第一ドレン通路側からも補うことが可能となる。故に、変動トルクの作用によって容積拡大する遅角室に供給通路から十分な量の作動流体を供給して、遅角応答性を高めることができるのである。
請求項に記載の発明によると、制御手段は、メイン逆止弁としての第一逆止弁及び第二逆止弁と、供給通路に配設され、流体供給源側からスプール弁側に向かう作動流体流れを許容し且つスプール弁側から流体供給源側に向かう作動流体流れを規制するサブ逆止弁と、を有する。これによれば、スプール弁を介して供給通路に接続された進角室又は遅角室が変動トルクの作用によって圧縮されたとしても、供給通路に配設のサブ逆止弁がスプール弁側から流体供給源側に向かう作動流体流れを規制することで、供給通路には作動流体が逆流し難くなる。したがって、流体供給源側からスプール弁側への作動流体流れがサブ逆止弁によって許容されることで作動流体が供給される進角室又は遅角室から、当該作動流体が流出することを抑制して、応答性を高めることができるのである。
以下、本発明の複数の実施形態を図面に基づいて説明する。
(第一実施形態)
図1は、本発明の第一実施形態によるバルブタイミング調整装置1を車両の内燃機関に適用した例を示している。バルブタイミング調整装置1は、「作動流体」として作動油を用いる流体駆動式であり、「動弁」としての吸気弁のバルブタイミングを調整する。
(基本部分)
以下、バルブタイミング調整装置1の基本部分について説明する。バルブタイミング調整装置1は、内燃機関のクランク軸(図示しない)の駆動力を内燃機関のカム軸2に伝達する駆動力伝達系に設置されて作動油により駆動される駆動部10と、駆動部10への作動油供給を制御する制御部30とを備えている。
(駆動部)
駆動部10においてハウジング12は、円筒状のスプロケット部12aと、仕切部として複数のシュー12b,12c,12dとを有している。
スプロケット部12aは、図示しないタイミングチェーンを介してクランク軸と連繋している。これにより内燃機関の運転中は、クランク軸からスプロケット部12aに駆動力が伝達されることで、ハウジング12がクランク軸と連動して図1の時計方向に回転する。
各シュー12b〜12dは、スプロケット部12aにおいて回転方向に略等間隔となる箇所から径方向内側に突出している。各シュー12b〜12dの突出側端面は、図1の紙面垂直方向から見て円弧形の凹面状であり、ベーンロータ14のボス部14aの外周壁面に摺接する。回転方向において隣り合うシュー12b〜12dの間には、それぞれ収容室50が形成される。
ベーンロータ14はハウジング12内に収容されており、軸方向においてハウジング12と摺接する。ベーンロータ14は、円柱状のボス部14aと、ベーン14b,14c,14dとを有している。
ボス部14aは、カム軸2に対して同軸上にボルト固定される。これによりベーンロータ14は、カム軸2と連動して図1の時計方向に回転すると共に、ハウジング12に対して相対回転可能となっている。
各ベーン14b〜14dは、ボス部14aにおいて回転方向に略等間隔となる箇所から径方向外側に突出し、それぞれ対応する収容室50内に収容されている。各ベーン14b〜14dの突出側端面は、図1の紙面垂直方向から見て円弧形の凸面状に形成され、スプロケット部12aの内周壁面に摺接する。
各ベーン14b〜14dは、それぞれ対応する収容室50を回転方向に二分することによって、進角室及び遅角室をハウジング12との間に形成している。具体的には、シュー12bとベーン14bの間に進角室52、シュー12cとベーン14cの間に進角室53、シュー12dとベーン14dの間に進角室54がそれぞれ形成されている。また、シュー12cとベーン14bの間に遅角室56、シュー12dとベーン14cの間に遅角室57、シュー12bとベーン14dの間に遅角室58がそれぞれ形成されている。
このような構成の駆動部10では、各進角室52〜54への作動油供給によりベーンロータ14がハウジング12に対して進角側に相対回転することで、カム軸2がクランク軸に対して進角側に駆動されることになる。したがって、この場合には、バルブタイミングが進角するのである。また、駆動部10では、各遅角室56〜58への作動油供給によりベーンロータ14がハウジング12に対して遅角側に相対回転することで、カム軸2がクランク軸に対して遅角側に駆動されることになる。したがって、この場合には、バルブタイミングが遅角するのである。
(制御部)
制御部30において、カム軸2及びその軸受(図示しない)を通して設けられる進角通路72は、進角室52〜54と連通している。また、カム軸2及びその軸受を通して設けられる遅角通路76は、遅角室56〜58と連通している。
供給通路80は、「流体供給源」であるポンプ4の吐出口と連通しており、ポンプ4によってオイルパン5から汲み上げられた作動油が吐出供給されるようになっている。ここで本実施形態のポンプ4は、クランク軸によって駆動されるメカポンプであり、故に内燃機関の運転中は、作動油が継続して供給通路80に供給されることとなる。また、ドレン通路82,83は、オイルパン5に作動油を排出可能に設けられている。
ポンプ4と反対側においてスプール弁100に接続される供給通路80には、ポンプ4からスプール弁100に向かう方向が開弁方向となるように、逆止弁90が配設されている。したがって、逆止弁90は開弁することにより、ポンプ4側からスプール弁100側に向かう作動油流れ、即ち供給通路80の下流側への作動油供給を許容する。一方、逆止弁90は閉弁することにより、スプール弁100側からポンプ4側に向かう作動油流れ、即ち供給通路80の下流側からの逆流を規制する。
スプール弁100は、ソレノイド120の発生する電磁駆動力を利用してスプールを往復直線駆動する電磁制御弁である。ここでスプール弁100には、進角通路72と連通する進角ポート112、遅角通路76と連通する遅角ポート114、供給通路80と連通してポンプ4からの作動油供給を受ける供給ポート116、並びに作動油排出のためにドレン通路82,83とそれぞれ連通するドレンポート118,119が設けられている。したがって、スプール弁100は、ソレノイド120への通電に応じてスプールを往復移動させることにより、進角ポート112及び遅角ポート114に対する供給ポート116及びドレンポート118,119の各々の接続状態を制御する。
制御回路180は、例えばマイクロコンピュータ等からなり、スプール弁100のソレノイド120と電気的に接続されている。制御回路180は、ソレノイド120への通電を制御する機能と共に、内燃機関の運転を制御する機能を備えている。
このような構成の制御部30では、制御回路180によって制御されたソレノイド120への通電に従ってスプール弁100のスプールが移動し、ポート112,114に対するポート116,118,119の接続状態が制御されることになる。その結果、進角ポート112に対して供給ポート116が接続されるときには、ポンプ4から供給通路80への供給作動油を、進角通路72を経由して進角室52〜54に供給可能となる。また、遅角ポート114に対して供給ポート116が接続されるときには、ポンプ4から供給通路80への供給作動油を、遅角通路76を経由して遅角室56〜58に供給可能となる。さらに、進角ポート112に対してドレンポート118が接続されるときには、進角室52〜54の作動油を、進角通路72を経由してドレン通路82からオイルパン5へ排出可能となる。またさらに、遅角ポート114に対してドレンポート119が接続されるときには、遅角室56〜58の作動油を、遅角通路76を経由してドレン通路83からオイルパン5へ排出可能となる。
以上、バルブタイミング調整装置1の基本部分について説明した。以下、バルブタイミング調整装置1の特徴部分について詳細に説明する。
(変動トルク)
第一実施形態において内燃機関の運転中は、カム軸2によって開閉駆動される吸気弁からのスプリング反力等に起因して生じる変動トルクが、カム軸2を通じて駆動部10のベーンロータ14に作用する。ここで、図2に例示するように変動トルクは、クランク軸に対してカム軸2を進角させる側に作用する負トルクと、クランク軸に対してカム軸2を遅角させる側に作用する正トルクとの間において、周期的に変動するものである。そして、特に本実施形態の変動トルクは、正トルクのピークトルクT+が負トルクのピークトルクT−よりも大きくなる傾向を示しており、それによって変動トルクの平均トルクTaveが正トルク側、即ちカム軸2の遅角側に偏るものとなっている。そのため、特に変動トルクの平均トルクTaveに抗したカム軸2の駆動、即ち進角側への駆動については、応答性が低下することが懸念されるが、後に詳述するように本実施形態では、そうした懸念は解消されることになる。尚、変動トルクの平均トルクTaveの遅角側への偏りについては、例えばカム軸2及びその軸受間のフリクション等に起因して現出する。
(スプール弁)
図3に示すように第一実施形態のスプール弁100は、スリーブ110、ソレノイド120、スプール130、駆動軸139及びリターンスプリング140を備えている。
スリーブ110は金属により円筒状に形成されており、一端部110aにソレノイド120が固定されている。スリーブ110には、ドレンポート118、進角ポート112、供給ポート116、遅角ポート114及びドレンポート119が、一端部110a側から他端部110b側に向かう軸方向にこの順で設けられている。
スプール130は金属により串状に形成されており、スリーブ110内に同軸上に収容されている。スプール130の一端部130aには、ソレノイド120によって電磁駆動される駆動軸139が同軸上に連結されており、それによってスプール130が駆動軸139と共に軸方向に往復移動可能となっている。スプール130には、進角支持ランド132、進角切換ランド134、遅角切換ランド136及び遅角支持ランド138が、一端部130a側から他端部130b側に向かう軸方向にこの順で設けられている。
進角支持ランド132は、ドレンポート118の端部110a側において、スリーブ110により常時摺動支持される。進角切換ランド134は、進角ポート112を挟む供給ポート116側及びドレンポート118側のうち少なくとも一方において、スリーブ110により摺動支持されるようになっている。ここで、図4に示すように進角切換ランド134が進角ポート112の供給ポート116側のみにて支持されるときには、進角ポート112に対してドレンポート118が進角切換ランド134及び進角支持ランド132の間隙を通じて接続されることになる。また、図3に示すように進角切換ランド134が進角ポート112のドレンポート118側のみにて支持されるときには、進角ポート112に対して供給ポート116が進角切換ランド134及び遅角切換ランド136の間隙を通じて接続されることになる。さらに、図5に示すように進角切換ランド134が進角ポート112の供給ポート116側及びドレンポート118側の双方にて支持されるときには、進角ポート112と他のポートとの接続状態が遮断されることになる。
図3に示すように遅角支持ランド138は、ドレンポート119の端部110b側において、スリーブ110により常時摺動支持される。遅角切換ランド136は、遅角ポート114を挟む供給ポート116側及びドレンポート119側のうち少なくとも一方において、スリーブ110により摺動支持されるようになっている。ここで、図3に示すように遅角切換ランド136が遅角ポート114の供給ポート116側のみにて支持されるときには、遅角ポート114に対してドレンポート119が遅角切換ランド136及び遅角支持ランド138の間隙を通じて接続されることになる。また、図4に示すように遅角切換ランド136が遅角ポート114のドレンポート119側のみにて支持されるときには、遅角ポート114に対して供給ポート116が遅角切換ランド136及び進角切換ランド134の間隙を通じて接続されることになる。さらに、図5に示すように遅角切換ランド136が遅角ポート114の供給ポート116側及びドレンポート119側の双方にて支持されるときには、遅角ポート114と他のポートとの接続状態が遮断されることになる。
リターンスプリング140は金属製の圧縮コイルスプリングからなり、スリーブ110内に同軸上に収容されている。リターンスプリング140は、スリーブ110においてソレノイド120とは反対側の端部110bとスプール130の遅角支持ランド138との間に介装されている。リターンスプリング140は、スプール130を軸方向のソレノイド120側に向かって付勢する復原力を、圧縮変形により発生する。また、これに対してソレノイド120は、スプール130を軸方向のリターンスプリング140側に向かって付勢する電磁駆動力を、通電により発生する。したがって、スプール弁100においては、リターンスプリング140が発生する復原力と、ソレノイド120が発生する電磁駆動力との釣り合いに応じて、スプール130が駆動されることとなる。
以上により、ソレノイド120への通電電流が所定の基準値Iよりも小さな値となるときには、図3に示すように、進角ポート112に対して供給ポート116が接続されると共に、遅角ポート114に対してドレンポート119が接続される。また、ソレノイド120への通電電流が基準値Iよりも大きな値となるときには、図4に示すように、進角ポート112に対してドレンポート118が接続されると共に、遅角ポート114に対して供給ポート116が接続される。さらに、ソレノイド120への通電電流が基準値Iとなるときには、図5に示すように、進角ポート112及び遅角ポート114に対して供給ポート116及びドレンポート118,119のいずれも遮断されるのである。
そして、このような構成の下、本実施形態では、図3に示すように逆止弁150をスプール130の接続通路170に配設しており、そこに大きな特徴がある。
具体的には、スプール130において進角切換ランド134から遅角支持ランド138に至る部分には、接続通路170が形成されている。接続通路170の一端部170aは、進角切換ランド134の外周面に開口しており、図3〜5に示すように進角ポート112には、常時対向して連通するようになっている。また、接続通路170の他端部170bは、図3〜図5に示すようにドレンポート119と常時連通する間隙を挟んだ遅角切換ランド136及び遅角支持ランド138の間において、スプール130の外周面に開口している。
接続通路170には、その一端部170aから他端部170bに向かう方向が閉弁方向となるように、逆止弁150が配設されている。ここで本実施形態の逆止弁150は、弁座152と弁体154と付勢部材156とを組み合わせて構成されている。
弁座152は、接続通路170の内周壁面のうち端部170b側に向かって縮径する円錐面によって、形成されている。金属製の弁体154はボール状を呈しており、接続通路170において弁座152の端部170a側に配置され、弁座152に対して軸方向に離着座可能となっている。付勢部材156は金属製の圧縮コイルスプリングからなり、接続通路170において弁座152と軸方向に対向する内壁面158と、弁体154との間に介装されている。付勢部材156は、弁体154を弁座152側に付勢する復原力を、圧縮変形によって発生する。
こうした構成により逆止弁150は、図3の如く閉弁して接続通路170の一端部170a側から他端部170b側に向かう作動油流れを規制する一方、図6の如く開弁して逆向きの作動油流れを許容するのである。
(バルブタイミング調整作動)
第一実施形態においてポンプ4が駆動される内燃機関の運転中は、制御回路180がクランク軸に対するカム軸2の機関位相について実位相及び目標位相を算出し、その算出結果に応じてスプール弁100のソレノイド120への通電電流を制御する。これにより、スプール弁100のスプール130が移動し、その移動位置に応じた作動油供給又は排出が進角室52〜54及び遅角室56〜58に対して実現されることで、バルブタイミングが調整されることになる。以下、本実施形態のバルブタイミング調整装置1によるバルブタイミング調整作動について、詳細に説明する。
(1)進角作動
以下、機関位相をクランク軸に対するカム軸2の進角側に変化させてバルブタイミングを進角させる場合の作動を、説明する。
内燃機関において車両のアクセルのオフ状態又は出力トルクが必要な低・中速高負荷状態を表す運転条件が成立すると、制御回路180は、ソレノイド120への通電電流を基準値Iよりも小さな値に制御する。その結果、スプール130は、進角ポート112に対して供給ポート116を接続し且つ遅角ポート114に対してドレンポート119を接続するように、図3,6の進角位置に移動する。この進角位置におけるスプール130の接続通路170は、一端部170aが進角ポート112と対向することで供給ポート116に接続されると共に、他端部170bが遅角ポート114と対向することでドレンポート119に接続される。即ち、接続通路170は、供給ポート116に連通する供給通路80と、ドレンポート119に連通するドレン通路83との間を接続する状態となる。
したがって、変動トルクのうち負トルクがベーンロータ14に作用しているときには、図6に示すように、ポンプ4から供給通路80への供給作動油が供給ポート116及び進角ポート112を通じて進角室52〜54に供給される。また、負トルクの作用を受けるベーンロータ14によって圧縮された遅角室56〜58の作動油は、遅角ポート114からドレンポート119に流入してドレン通路83からオイルパン5に排出されるが、それらポート119,114間から接続通路170にも流入する。このとき、逆止弁150は供給ポート116の供給作動油の圧力に抗して開弁することにより、ポート116,112側に向かう作動油流れを許容するので、接続通路170に流入した作動油を進角ポート112を通じて進角室52〜54に供給可能となる。故に、作動油供給量が減少したときには、その減少分をポート119,114側からの作動油によって補うことができるので、負トルクの作用によって容積拡大する進角室52〜54では、作動油の不足が抑制され得る。
これに対し、変動トルクのうち正トルクがベーンロータ14に作用して当該ロータ14により進角室52〜54が圧縮されるときには、図3に示すように作動油が進角ポート112から接続通路170及び供給通路80に逆流しようとする。しかし、このとき接続通路170では、ポート119,114側に向かう作動油流れが逆止弁150によって規制され、またそれと共に供給通路80では、ポンプ4側に向かう作動油流れが逆止弁90によって規制される。故に、進角室52〜54からの作動油流出が抑制され得るのみならず、遅角室56〜58への作動油供給が誤って実現される事態が回避され得る。
以上によれば、進角室52〜54には十分な量の作動油を供給しつつ、遅角室56〜58からは作動油を排出させることができるので、変動トルクの平均トルクが遅角側に偏っていても、確実に進角応答性を高めることができるのである。
(2)遅角作動
以下、機関位相をクランク軸に対するカム軸2の遅角側に変化させてバルブタイミングを遅角させる場合の作動を、説明する。
内燃機関において軽負荷となる通常運転状態を表す運転条件が成立すると、制御回路180は、ソレノイド120への通電電流を基準値Iよりも大きな値に制御する。その結果、スプール130は、遅角ポート114に対して供給ポート116を接続し且つ進角ポート112に対してドレンポート118を接続するように、図4,7の遅角位置に移動する。この遅角位置におけるスプール130の接続通路170は、一端部170aが進角ポート112と対向することでドレンポート118に接続される一方、他端部170bが遅角ポート114と対向しない状態となる。これにより、供給通路80に連通する供給ポート116と、各ドレン通路82に連通するドレンポート118との間は、遮断されることになる。
したがって、変動トルクのうち正トルクがベーンロータ14に作用しているときには、図7に示すように、ポンプ4から供給通路80への供給作動油が供給ポート116及び遅角ポート114を通じて遅角室56〜58に供給される。また、正トルクの作用を受けるベーンロータ14によって圧縮された進角室52〜54の作動油は、進角ポート112からドレンポート118に流入してドレン通路82からオイルパン5に排出されるが、進角ポート112に対向する接続通路170では、逆止弁150がドレンポート119側に向かう作動油流れを規制することになる。
これに対し、変動トルクのうち負トルクがベーンロータ14に作用して当該ロータ14により遅角室56〜58が圧縮されるときには、図4に示すように作動油が遅角ポート114から供給通路80に逆流しようとする。しかし、供給通路80では、逆止弁90がポンプ4側に向かう作動油流れを規制することになるので、遅角室56〜58からの作動油流出を抑制して遅角応答性を高めることも、可能となるのである。
(3)保持作動
以下、機関位相を所定の目標位相領域に保持してバルブタイミングを実質的に保持する場合の作動を、説明する。
車両のアクセルの保持状態等、内燃機関の安定運転状態を表す運転条件が成立すると、制御回路180は、ソレノイド120への通電電流を基準値Iに制御する。その結果、スプール130は、進角ポート112及び遅角ポート114に対して供給ポート116及びドレンポート118,119のいずれも遮断するように、図5の保持位置に移動する。この保持位置におけるスプール130の接続通路170は、一端部170aが進角ポート112と対向する一方で、他端部170bが遅角ポート114に対向しない状態となる。これにより、供給通路80に連通する供給ポート116と、各ドレン通路82,83に連通するドレンポート118,119との間は、遮断されることになる。
したがって、ポンプ4から供給通路80への供給作動油は、進角及び遅角ポート112,114に対する供給ポート116の遮断によって、進角室52〜54及び遅角室56〜58のいずれにも供給されなくなる。また、進角及び遅角ポート112,114に対してドレンポート118,119が遮断されることに加え、図5の如く正トルクの作用により圧縮された進角室52〜54の作動油が進角ポート112から接続通路170に逆流しようとしても、ドレンポート119側に向かう作動油流れが逆止弁150により規制されることから、進角室52〜54及び遅角室56〜58からの作動油流出が規制される。以上により、機関位相の変化が抑制されて、バルブタイミングの実質的な保持が可能となるのである。
以上の第一実施形態によれば、内燃機関に適したバルブタイミング調整を迅速に且つ適確に行うことができる
(第二実施形態)
本発明の第二実施形態は、第一実施形態の変形例である。図8,9に示すように、第二実施形態による制御部200のスプール弁202では、第一逆止弁210が第一接続通路220に配設されると共に、当該第一逆止弁210とは別の第二逆止弁230が第二接続通路240に配設されている。
具体的には、図9〜11に示すようにスプール弁202のスプール130に形成された第一接続通路220の一端部220aは、供給ポート116と常時連通する間隙を挟んだ進角切換ランド134及び遅角切換ランド136の間において、スプール130の外周面の複数個所に開口している。また、第一接続通路220の他端部220bは、ドレンポート119と常時連通する間隙を挟んだ遅角切換ランド136及び遅角支持ランド138の間において、スプール130の外周面の複数個所に開口している。
このような第一接続通路220には、その一端部220aから他端部220bに向かう方向が閉弁方向となるように、第一逆止弁210が配設されている。ここで本実施形態の第一逆止弁210は、弁座212と弁体214とリテーナ215と付勢部材216とを組み合わせて構成されている。
図9に示すように弁座212は、第一接続通路220の内周壁面のうち端部220b側に向かって縮径する円錐面によって、形成されている。金属製の弁体214はボール状を呈しており、第一接続通路220において弁座212の端部220a側に配置され、弁座212に対して軸方向に離着座可能となっている。金属製のリテーナ215は有底円筒状を呈しており、第一接続通路220において弁体214を挟んで弁座212と反対側に配置されている。リテーナ215の周壁部215aは、その外周面が第一接続通路220の内周壁面により軸方向に往復摺動可能に支持されていると共に、内周面によって弁体214を保持している。付勢部材216は金属製の圧縮コイルスプリングからなり、第一接続通路220においてリテーナ215を挟んで弁体214と反対側に配置されている。付勢部材216は、弁座212と軸方向に対向して配置される第二逆止弁230と、リテーナ215との間に介装されている。付勢部材216は、リテーナ215を介して弁体214を弁座212側に付勢するように、圧縮変形によって復原力を発生する。
こうした構成により第一逆止弁210は、図9の如く閉弁して第一接続通路220の一端部220a側から他端部220b側に向かう作動油流れを規制する一方、図12の如く開弁して逆向きの作動油流れを許容するのである。
一方、図9に示すように第二接続通路240の一端部240aは、第一接続通路220の一端部220aを共有する形態で、スプール130に形成されている。また、第二接続通路240の他端部240bは、図9〜図11に示すようにドレンポート118と常時連通する間隙を挟んだ進角切換ランド134及び進角支持ランド132の間において、スプール130の外周面の複数個所に開口している。
このような第二接続通路240には、その一端部240aから他端部240bに向かう方向が閉弁方向となるように、第二逆止弁230が配設されている。ここで本実施形態の第二逆止弁230は、第一逆止弁210に準じた構成、即ち弁座232と弁体234とリテーナ235と付勢部材216とを組み合わせた構成とされている。
但し、図9に示すように第二逆止弁230では、弁座232は、第二接続通路240の内周壁面のうち端部240b側に向かって縮径する円錐面によって、形成されている。弁体234は、第二接続通路240において弁座232の端部240a側に配置され、弁座232に対して軸方向に離着座可能となっている。リテーナ235は、第二接続通路240において弁体234を挟んで弁座232と反対側に配置され、外周面が第二接続通路240の内周壁面によって支持される周壁部235aの内周面に弁体234が保持されている。第一逆止弁210と共有状態にある付勢部材216は、第二接続通路240においてリテーナ235を挟んで弁体234と反対側に配置され、リテーナ235,215間に介装されている。付勢部材216は、リテーナ235を介して弁体234を弁座232側に付勢するように、圧縮変形によって復原力を発生することもできる。
こうした構成により第二逆止弁230は、図10の如く閉弁して第二接続通路240の一端部240a側から他端部240b側に向かう作動油流れを規制する一方、図13の如く開弁して逆向きの作動油流れを許容するのである。
以下、第二実施形態のバルブタイミング調整作動について、詳細に説明する。
(1)進角作動
スプール130が進角ポート112及び遅角ポート114に対してそれぞれ供給ポート116及びドレンポート119を接続する図9,12の進角位置では、各接続通路220,240の一端部220a,240aが供給ポート116に接続されると共に、各接続通路220,240の他端部220b,240bがそれぞれドレンポート119,118に接続される。これにより、第一接続通路220は、供給ポート116に連通する供給通路80と、ドレンポート119に連通するドレン通路83との間を接続する一方、第二接続通路240は、当該供給通路80と、ドレンポート118に連通するドレン通路82との間を接続する状態となる。
したがって、負トルクがベーンロータ14に作用しているときには、図12に示すように、ポンプ4からの供給作動油が供給ポート116及び進角ポート112を通じて進角室52〜54に供給されるが、それらポート116,112間から第二接続通路240にも流入する。しかし、このとき第二逆止弁230は、第二接続通路240に接続のドレンポート118側に向かう作動油流れを規制するので、ポンプ4からの供給作動油の一部がオイルパン5に排出される事態を回避し得る。また、負トルクの作用を受けるベーンロータ14によって圧縮された遅角室56〜58の作動油は、遅角ポート114からドレンポート119に流入してオイルパン5に排出されるが、それらポート119,114間から第一接続通路220にも流入する。このとき、第一逆止弁210は供給ポート116の供給作動油の圧力に抗して開弁することにより、供給ポート116側に向かう作動油流れを許容するので、第一接続通路220に流入した作動油を進角ポート112を通じて進角室52〜54に供給可能となる。故に、作動油供給量が減少するときにポート119,114側から作動油を補うことができるので、容積拡大する進角室52〜54において作動油不足が抑制され得る。
これに対し、正トルクがベーンロータ14に作用して当該ロータ14により進角室52〜54が圧縮されるときには、図9に示すように作動油が進角ポート112から各接続通路220,240及び供給通路80に逆流しようとする。しかし、このとき各接続通路220,240では、ポート119,114,118,112側に向かう作動油流れが、対応する逆止弁210,230によって規制され、またそれと共に供給通路80では、ポンプ4側に向かう作動油流れが逆止弁90によって規制される。故に、進角室52〜54からの作動油流出が抑制され得るのみならず、遅角室56〜58への作動油供給が誤って実現される事態が回避され得る。
以上によれば、進角室52〜54には十分な量の作動油を供給しつつ、遅角室56〜58からは作動油を排出させて、進角応答性を確実に高めることができるのである。
(2)遅角作動
スプール130が遅角ポート114及び進角ポート112に対してそれぞれ供給ポート116及びドレンポート118を接続する図10,13の遅角位置では、各接続通路220,240の一端部220a,240aが供給ポート116に接続されると共に、各接続通路220,240の他端部220b,240bがそれぞれドレンポート119,118に接続される。即ち、第一接続通路220は供給通路80及びドレン通路83間を接続し、第二接続通路240は供給通路80及びドレン通路82間を接続する状態となる。
したがって、正トルクがベーンロータ14に作用しているときには、図13に示すように、ポンプ4からの供給作動油が供給ポート116及び遅角ポート114を通じて遅角室56〜58に供給されるが、それらポート116,114間から第一接続通路220にも流入する。しかし、このとき第一逆止弁210は、第一接続通路220に接続のドレンポート119側に向かう作動油流れを規制するので、ポンプ4からの供給作動油の一部がオイルパン5に排出される事態を回避し得る。また、正トルクの作用を受けるベーンロータ14によって圧縮された進角室52〜54の作動油は、進角ポート112からドレンポート118に流入してオイルパン5に排出されるが、それらポート118,112間から第二接続通路240にも流入する。このとき、第二逆止弁230は供給ポート116の供給作動油の圧力に抗して開弁することにより、供給ポート116側に向かう作動油流れを許容するので、第二接続通路240に流入した作動油を遅角ポート114を通じて遅角室56〜58に供給可能となる。故に、作動油供給量が減少するときにポート118,112側から作動油を補うことができるので、正トルクの作用によって容積拡大する遅角室56〜58において作動油不足が抑制され得る。
これに対し、負トルクがベーンロータ14に作用して当該ロータ14により遅角室56〜58が圧縮されるときには、図10に示すように作動油が遅角ポート114から各接続通路220,240及び供給通路80に逆流しようとする。しかし、このとき各接続通路220,240では、ポート119,114,118,112側に向かう作動油流れが、対応する逆止弁210,230によって規制され、またそれと共に供給通路80では、ポンプ4側に向かう作動油流れが逆止弁90によって規制される。故に、遅角室56〜58からの作動油流出が抑制され得るのみならず、進角室52〜54への作動油供給が誤って実現される事態が回避され得る。
以上によれば、遅角室56〜58には十分な量の作動油を供給しつつ、進角室52〜54からは作動油を排出させることで、遅角応答性についても確実に高めることができるのである。
(3)保持作動
スプール130が進角ポート112及び遅角ポート114に対して供給ポート116及びドレンポート118のいずれも遮断する図11の保持位置では、各接続通路220,240の一端部220a,240aが供給ポート116に接続されると共に、各接続通路220,240の他端部220b,240bがそれぞれドレンポート119,118に接続される。即ち、第一接続通路220は供給通路80及びドレン通路83間を接続し、第二接続通路240は供給通路80及びドレン通路82間を接続する状態となるが、いずれの接続通路220,240も進角及び遅角ポート112,114に対しては遮断状態となる。
したがって、ポンプ4から供給通路80への供給作動油が進角室52〜54及び遅角室56〜58のいずれにも供給されなくなると共に、それら進角室52〜54及び遅角室56〜58からの作動油流出が規制される。故に、機関位相の変化が抑制されて、バルブタイミングの実質的な保持が可能となるのである。尚、このとき各接続通路220,240には、供給ポート116から作動油が流入するが、ポート119,114,118,112側に向かう作動油流れは、対応する逆止弁210,230によって規制されることとなる。
以上の第二実施形態によれば、内燃機関に適したバルブタイミング調整を迅速に且つ適確に行うことができるのである。尚、ここまで説明した第二実施形態では、ハウジング12が特許請求の範囲に記載の「第一回転体」に相当し、ベーンロータ14が特許請求の範囲に記載の「第二回転体」に相当し、制御部200が特許請求の範囲に記載の「制御手段」に相当し、ポンプ4が特許請求の範囲に記載の「流体供給源」に相当し、ドレン通路83が特許請求の範囲に記載の「第一ドレン通路」に相当し、ドレン通路82が特許請求の請求の範囲に記載の「第二ドレン通路」に相当し、第一逆止弁210及び第二逆止弁230がそれぞれ特許請求の範囲に記載の「メイン逆止弁」に相当し、逆止弁90が特許請求の範囲に記載の「サブ逆止弁」に相当する。
(第三実施形態)
本発明の第三実施形態は、第二実施形態の変形例である。図14,15に示すように第三実施形態による制御部300では、各ドレンポート118,119にそれぞれ連通するドレン通路302,303が互いに連通し、スプール弁304とは反対側の共通部306からオイルパン5へ作動油を排出可能となっている。
また、図15に示すようにスプール130に内蔵される各逆止弁210,230には、それぞれ個別に付勢部材316,336が設けられている。ここで第一逆止弁210の付勢部材316は、第一接続通路220において弁座212と向き合う内壁面318とリテーナ215との間に介装され、圧縮変形によって弁体214を弁座212側に付勢する。また、第二逆止弁230の付勢部材336は、第二接続通路240において弁座232と向き合う内壁面338とリテーナ235との間に介装され、圧縮変形によって弁体234を弁座232側に付勢する。
以下、第三実施形態のバルブタイミング調整作動のうち、第二実施形態と相違する進角作動及び遅角作動について、相違点を中心に説明する。
まず、進角作動について説明する。図16に示すように、スプール130の進角位置において負トルクがベーンロータ14に作用しているときには、圧縮された遅角室56〜58の作動油が遅角ポート114からドレンポート119及びドレン通路303に順次流入する。この流入油の一部はオイルパン5に排出されるが、その残りは、ドレン通路303に連通するドレン通路302から、第二接続通路240に接続のドレンポート118へと入り込む。このとき、第二逆止弁230は供給ポート116の供給作動油の圧力に抗して開弁することにより、供給ポート116側に向かう作動油流れを許容するので、ドレンポート118に入り込んだ作動油を進角ポート112を通じて進角室52〜54に供給可能となる。故に、作動油供給量が減少するときには、第二実施形態で説明した第一逆止弁210の作用によってポート119,114側からのみならず、ポート118,112側からも作動油を補うことができる。したがって、容積拡大する進角室52〜54に不足なく作動油を供給して、進角応答性を十分に高めることができるのである。
次に、遅角作動について説明する。図17に示すように、スプール130の遅角位置において正トルクがベーンロータ14に作用しているときには、圧縮された進角室52〜54の作動油が進角ポート112からドレンポート118及びドレン通路302に順次流入する。この流入油の一部はオイルパン5に排出されるが、その残りは、ドレン通路302に連通するドレン通路303から、第一接続通路220に接続のドレンポート119へと入り込む。このとき、第一逆止弁210は供給ポート116の供給作動油の圧力に抗して開弁することにより、供給ポート116側に向かう作動油流れを許容するので、ドレンポート119に入り込んだ作動油を遅角ポート114を通じて遅角室56〜58に供給可能となる。故に、作動油供給量が減少するときには、第二実施形態で説明した第二逆止弁230の作用によってポート118,112側からのみならず、ポート119,114側からも作動油を補うことができる。したがって、容積拡大する遅角室56〜58に不足なく作動油を供給して、遅角応答性を十分に高めることができるのである。
以上の第三実施形態によれば、内燃機関に適したバルブタイミング調整をより迅速に且つ適確に行うことができるのである。尚、ここまで説明した第三実施形態では、制御部300が特許請求の範囲に記載の「制御手段」に相当し、ドレン通路303が特許請求の範囲に記載の「第一ドレン通路」に相当し、ドレン通路302が特許請求の請求の範囲に記載の「第二ドレン通路」に相当する。
(第四実施形態)
本発明の第四実施形態は、第一実施形態の変形例である。図18,19に示すように第四実施形態による制御部400では、スプール弁402の外部に形成された接続通路410に逆止弁420が配設されている。
具体的には、接続通路410の一端部410aは、供給通路80において供給ポート116よりもポンプ4側に連通している。また、接続通路410の他端部410bは、ドレン通路83においてドレンポート119よりもオイルパン5側に連通している。したがって、図19〜21に示すように接続通路410は、供給通路80とドレン通路83との間を常時接続する形となっている。
このような接続通路410には、その一端部410aから他端部410bに向かう方向が閉弁方向となるように、逆止弁420が配設されている。したがって、逆止弁420は、図19の如く閉弁して接続通路410の一端部410a側から他端部410b側に向かう作動油流れを規制する一方、図22の如く開弁して逆向きの作動油流れを許容することになる。
以下、第四実施形態のバルブタイミング調整作動について、詳細に説明する。
(1)進角作動
図22に示すように、スプール130が進角ポート112及び遅角ポート114に対してそれぞれ供給ポート116及びドレンポート119を接続する進角位置において、負トルクがベーンロータ14に作用しているときには、ポンプ4から供給通路80への供給作動油が供給及び進角ポート116,112を通じて進角室52〜54に供給される。また、負トルクの作用を受けるベーンロータ14によって圧縮された遅角室56〜58の作動油は、遅角ポート114からドレンポート119に流入してドレン通路83からオイルパン5に排出されるが、ドレン通路83に接続の接続通路410にも流入する。このとき、逆止弁420は供給通路80の供給作動油の圧力に抗して開弁することにより、供給通路80側に向かう作動油流れを許容するので、接続通路410に流入した作動油をポート116,112を通じて進角室52〜54に供給可能となる。故に、作動油供給量が減少するときにドレン通路83側から作動油を補うことができるので、容積拡大する進角室52〜54において作動油不足が抑制され得る。
これに対し、正トルクがベーンロータ14に作用して当該ロータ14により進角室52〜54が圧縮されるときには、図19に示すように作動油が進角ポート112から供給通路80、さらに接続通路410へと逆流しようとする。しかし、このとき供給通路80では、ポンプ4側に向かう作動油流れが逆止弁90によって規制されると共に、接続通路410では、ドレン通路83側に向かう作動油流れが逆止弁420によって規制される。故に、進角室52〜54からの作動油流出が抑制され得るのみならず、遅角室56〜58への作動油供給がドレン通路83及びポート119,114を通じて誤って実現される事態が回避され得る。
以上によれば、進角室52〜54には十分な量の作動油を供給しつつ、遅角室56〜58からは作動油を排出させることができるので、変動トルクの平均トルクが遅角側に偏っていても、進角応答性を確実に高めることができるのである。
(2)遅角作動
図23に示すように、スプール130が遅角ポート114及び進角ポート112に対してそれぞれ供給ポート116及びドレンポート118を接続する遅角位置において、正トルクがベーンロータ14に作用しているときには、ポンプ4から供給通路80への供給作動油が供給及び遅角ポート116,114を通じて遅角室56〜58に供給される。このとき、供給通路80に接続の接続通路410には作動油が流入するが、逆止弁420によってドレン通路83側に向かう作動油流れが規制されるので、ポンプ4からの供給作動油の一部がオイルパン5に排出される事態を回避し得る。尚、このとき、正トルクの作用を受けるベーンロータ14によって圧縮された進角室52〜54の作動油は、進角ポート112からドレンポート118に流入してドレン通路82からオイルパン5に排出されることになる。
これに対し、負トルクがベーンロータ14に作用して当該ロータ14により遅角室56〜58が圧縮されるときには、図20に示すように作動油が遅角ポート114から供給通路80、さらに接続通路410へと逆流しようとする。しかし、このとき供給通路80では、ポンプ4側に向かう作動油流れが逆止弁90によって規制されると共に、接続通路410では、ドレン通路83側に向かう作動油流れが逆止弁420によって規制される。故に、遅角室56〜58からの作動油流出を抑制して遅角応答性を高めることも、可能となるのである。
(3)保持作動
図21に示すように、スプール130が遅角ポート114及び進角ポート112に対して供給ポート116及びドレンポート118のいずれも遮断する保持位置では、ポンプ4から供給通路80への供給作動油が進角室52〜54及び遅角室56〜58のいずれにも供給されなくなると共に、それら進角室52〜54及び遅角室56〜58からの作動油流出が規制される。故に、機関位相の変化が抑制されて、バルブタイミングの実質的な保持が可能となるのである。尚、このとき接続通路410には、供給ポート116から作動油が流入するが、ドレン通路83側に向かう作動油流れが逆止弁420によって規制されることとなる。
以上の第四実施形態によれば、内燃機関に適したバルブタイミング調整を迅速に且つ適確に行うことができるのである
(第五実施形態)
本発明の第五実施形態は、第四実施形態の変形例である。図24,25に示すように第五実施形態による制御部500では、各ドレンポート118,119にそれぞれ連通するドレン通路502,503が互いに連通し、スプール弁504とは反対側の共通部506からオイルパン5へ作動油を排出可能となっている。ここで本実施形態では、接続通路410が供給通路80とドレン通路503との間を常時接続している。
以下、第五実施形態のバルブタイミング調整作動のうち、第四実施形態と相違する遅角作動について、相違点を中心に説明する。
図25に示すようにスプール130の遅角位置において、正トルクがベーンロータ14に作用しているときには、圧縮された進角室52〜54の作動油が進角ポート112からドレンポート118及びドレン通路502に順次流入する。この流入油の一部はオイルパン5に排出されるが、その残りは、ドレン通路502に連通するドレン通路503から接続通路410に入り込む。このとき、逆止弁420は供給通路80の供給作動油の圧力に抗して開弁することにより、供給通路80側に向かう作動油流れを許容するので、接続通路410に入り込んだ作動油を供給及び遅角ポート116,114を通じて遅角室56〜58に供給可能となる。故に、作動油供給量が減少するときにドレン通路503側から作動油を補うことができるので、容積拡大する遅角室56〜58において作動油不足が抑制され得る。したがって、遅角応答性についても確実に高めることができるのである。
以上の第五実施形態によれば、内燃機関に適したバルブタイミング調整をより迅速に且つ適確に行うことができるのである
(第六実施形態)
本発明の第六実施形態は、第五実施形態の変形例である。図26,27に示すように第六実施形態による制御部600では、逆止弁620が配設される接続通路610について、供給ポート116に対する連通端部610aとは反対側の端部610bが、ドレン通路502においてドレンポート118よりもオイルパン5側と連通している。したがって、図27,28に示すように接続通路610は、供給通路80とドレン通路502との間を常時接続する形となっており、また逆止弁620の閉弁方向は、供給ポート116に対する連通端部610aから他端部610bに向かう方向となっている。
以下、第六実施形態のバルブタイミング調整作動のうち、第五実施形態と相違する進角作動及び遅角作動について、相違点を中心に説明する。
まず、進角作動について説明する。図29に示すように、スプール130の進角位置において負トルクがベーンロータ14に作用しているときには、圧縮された遅角室56〜58の作動油が遅角ポート114からドレンポート119及びドレン通路503に順次流入する。この流入油の一部はオイルパン5に排出されるが、その残りは、ドレン通路503に連通するドレン通路502から接続通路610に入り込む。このとき、逆止弁620は供給通路80の供給作動油の圧力に抗して開弁することにより、供給通路80側に向かう作動油流れを許容するので、接続通路610に入り込んだ作動油を供給及び進角ポート116,112を通じて進角室52〜54に供給可能となる。故に、作動油供給量が減少するときにドレン通路503側からドレン通路502を通じて作動油を補うことができるので、容積拡大する進角室52〜54において作動油不足が抑制され得る。
これに対し、進角位置において正トルクがベーンロータ14に作用して進角室52〜54が圧縮されるときには、図27に示すように作動油が進角ポート112から供給通路80、さらに接続通路610へと逆流しようとする。しかし、このとき供給通路80では、ポンプ4側に向かう作動油流れが逆止弁90によって規制されると共に、接続通路610では、ドレン通路502側に向かう作動油流れが逆止弁620によって規制される。故に、進角室52〜54からの作動油流出が抑制され得るのみならず、遅角室56〜58への作動油供給がドレン通路502,503及びポート119,114を通じて誤って実現される事態が回避され得る。
以上によれば、進角室52〜54には十分な量の作動油を供給しつつ、遅角室56〜58からは作動油を排出させることができるので、変動トルクの平均トルクが遅角側に偏っていても、進角応答性を確実に高めることができるのである。
次に、遅角作動について説明する。図30に示すように、スプール130の遅角位置において正トルクがベーンロータ14に作用しているときには、圧縮された進角室52〜54の作動油が進角ポート112からドレンポート118に流入してドレン通路502からオイルパン5に排出されるが、ドレン通路502に接続の接続通路610にも流入する。このとき、逆止弁620は供給通路80の供給作動油の圧力に抗して開弁することにより、供給通路80側に向かう作動油流れを許容するので、接続通路610に流入した作動油を供給及び遅角ポート116,114を通じて遅角室56〜58に供給可能となる。故に、作動油供給量が減少するときにドレン通路502側から作動油を補うことができるので、容積拡大する遅角室56〜58において作動油不足が抑制され得る。
これに対し、負トルクがベーンロータ14に作用して遅角室56〜58が圧縮されるときには、図28に示すように作動油が遅角ポート114から供給通路80、さらに接続通路610へと逆流しようとする。しかし、このとき供給通路80では、ポンプ4側に向かう作動油流れが逆止弁90によって規制されると共に、接続通路610では、ドレン通路502側に向かう作動油流れが逆止弁620によって規制される。故に、遅角室56〜58からの作動油流出を抑制することができる。
以上によれば、遅角室56〜58には十分な量の作動油を供給しつつ、進角室52〜54からは作動油を排出させることで、遅角応答性についても確実に高めることができるのである。
このように第六実施形態によれば、内燃機関に適したバルブタイミング調整をより迅速に且つ適確に行うことができるのである
(第七実施形態)
本発明の第七実施形態は、第五及び第六実施形態の変形例である。図31,32に示すように第七実施形態による制御部700は、第五実施形態の構成に第六実施形態の接続通路610及び逆止弁620を適用した形となっている。
以下、第七実施形態のバルブタイミング調整作動のうち、第五及び第六実施形態と相違する進角作動及び遅角作動について、相違点を中心に説明する。
まず、進角作動について説明する。図33に示すように、スプール130の進角位置において負トルクがベーンロータ14に作用しているときには、圧縮された遅角室56〜58の作動油が遅角ポート114からドレンポート119及びドレン通路503に順次流入する。この流入油の一部はオイルパン5に排出されるが、その残りは、ドレン通路503から接続通路410に入り込むと共に、ドレン通路503に連通するドレン通路502から接続通路610に入り込む。このとき、各逆止弁420,620は供給通路80の供給作動油の圧力に抗して開弁することにより、供給通路80側に向かう作動油流れを許容するので、各接続通路410,610に入り込んだ作動油を進角室52〜54に供給可能となる。故に、作動油供給量が減少するときには、ドレン通路503側からもドレン通路502側からも作動油を補うことができるので、容積拡大する進角室52〜54に不足なく作動油を供給して、進角応答性を十分に高めることができるのである。
次に、遅角作動について説明する。図34に示すように、スプール130の遅角位置において正トルクがベーンロータ14に作用しているときには、圧縮された進角室52〜54の作動油が進角ポート112からドレンポート118及びドレン通路502に順次流入する。この流入油の一部はオイルパン5に排出されるが、その残りは、ドレン通路502から接続通路610に入り込むと共に、ドレン通路502に連通するドレン通路503から接続通路410に入り込む。このとき、各逆止弁620,420は供給通路80の供給作動油の圧力に抗して開弁することにより、供給通路80側に向かう作動油流れを許容するので、各接続通路610,410に入り込んだ作動油を遅角室56〜58に供給可能となる。故に、作動油供給量が減少するときには、ドレン通路502側からもドレン通路503側からも作動油を補うことができるので、容積拡大する遅角室56〜58に不足なく作動油を供給して、遅角応答性を十分に高めることができるのである。
以上の第七実施形態によれば、内燃機関に適したバルブタイミング調整をより迅速に且つ適確に行うことができるのである
(他の実施形態)
以上、本発明の複数の実施形態について説明したが、本発明は、それらの実施形態に限定して解釈されるものではなく、その要旨を逸脱しない範囲内において種々の実施形態に適用することができる。
具体的に、第一〜第七実施形態においては、変動トルクの平均トルクTaveが実質的に零又は僅かに正トルク側(即ち、カム軸2の遅角側)に偏るようにしてもよい。さらに、第一〜第七実施形態において駆動部10には、例えばそうした変動トルクの平均トルクTaveの偏り側とは反対側にカム軸2を付勢するアシストスプリング等の弾性部材を設けるようにしてもよい。またさらに、第一〜第七実施形態において駆動部10は、ハウジング12がカム軸2と連動して回転し、ベーンロータ14がクランク軸と連動して回転するように構成してもよい。
第一〜第七実施形態においてスプール弁100,202,304,402,504については、ソレノイド120によりスプール130を駆動するように構成する以外にも、例えばピエゾアクチュエータや油圧アクチュエータによりスプール130を駆動するように構成してもよい。
第一実施形態においては、ポート114を進角通路72と連通させると共に、ポート112を遅角通路76と連通させるようにしてもよい。この場合、図3,6の位置が遅角作動のための遅角位置となり、また図4,7の位置が進角作動のための進角位置となる。さらに、第二実施形態においては、第三実施形態に準じて各逆止弁210,230にそれぞれ個別に付勢部材316,336を設けるようにしてもよい。
第一実施形態においては、第三実施形態に準じてドレン通路82,83同士を互いに連通させるようにしてもよい。さらに、第六及び第七実施形態においては、第四実施形態に準じてドレン通路502,503同士を直接的には連通させないようにしてもよい。
そして、本発明は、吸気弁のバルブタイミングを調整する装置以外にも、「動弁」としての排気弁のバルブタイミングを調製する装置や、吸気弁及び排気弁の双方のバルブタイミングを調整する装置にも、適用することもできる。
本発明の第一実施形態によるバルブタイミング調整装置を示す構成図である。 図1の駆動部に作用する変動トルクについて説明するための模式図である。 図1のスプール弁の詳細構成及び作動状態を模式的に示す断面図である。 図1のスプール弁の作動状態を模式的に示す断面図である。 図1のスプール弁の作動状態を模式的に示す断面図である。 図1のスプール弁の作動状態を模式的に示す断面図である。 図1のスプール弁の作動状態を模式的に示す断面図である。 本発明の第二実施形態によるバルブタイミング調整装置を示す構成図である。 図8のスプール弁の詳細構成及び作動状態を模式的に示す断面図である。 図8のスプール弁の作動状態を模式的に示す断面図である。 図8のスプール弁の作動状態を模式的に示す断面図である。 図8のスプール弁の作動状態を模式的に示す断面図である。 図8のスプール弁の作動状態を模式的に示す断面図である。 本発明の第三実施形態によるバルブタイミング調整装置を示す構成図である。 図14のスプール弁の詳細構成及び作動状態を模式的に示す断面図である。 図14のスプール弁の作動状態を模式的に示す断面図である。 図14のスプール弁の作動状態を模式的に示す断面図である。 本発明の第四実施形態によるバルブタイミング調整装置を示す構成図である。 図18のスプール弁の詳細構成及び作動状態を模式的に示す断面図である。 図18のスプール弁の作動状態を模式的に示す断面図である。 図18のスプール弁の作動状態を模式的に示す断面図である。 図18のスプール弁の作動状態を模式的に示す断面図である。 図18のスプール弁の作動状態を模式的に示す断面図である。 本発明の第五実施形態によるバルブタイミング調整装置を示す構成図である。 図24のスプール弁の詳細構成及び作動状態を模式的に示す断面図である。 本発明の第六実施形態によるバルブタイミング調整装置を示す構成図である。 図26のスプール弁の詳細構成及び作動状態を模式的に示す断面図である。 図26のスプール弁の作動状態を模式的に示す断面図である。 図26のスプール弁の作動状態を模式的に示す断面図である。 図26のスプール弁の作動状態を模式的に示す断面図である。 本発明の第七実施形態によるバルブタイミング調整装置を示す構成図である。 図31のスプール弁の詳細構成及び作動状態を模式的に示す断面図である。 図31のスプール弁の作動状態を模式的に示す断面図である。 図31のスプール弁の作動状態を模式的に示す断面図である。
符号の説明
1 バルブタイミング調整装置、2 カム軸、4 ポンプ(流体供給源)、5 オイルパン、10 駆動部、12 ハウジング(第一回転体)、12a スプロケット部、12b,12c,12d シュー、14 ベーンロータ(第二回転体)、14a ボス部、14b,14c,14d ベーン、30,400,500,600,700 制御部、50 収容室、52,53,54 進角室、56,57,58 遅角室、72 進角通路、76 遅角通路、80 供給通路、82,302 ドレン通路(第二ドレン通路)、83,303 ドレン通路(第一ドレン通路)、90 逆止弁(サブ逆止弁)、100,202,304,402,504 スプール弁、110 スリーブ、110a 端部、112 進角ポート、114 遅角ポート、116 供給ポート、118,119 ドレンポート、120 ソレノイド、130 スプール、132 進角支持ランド、134 進角切換ランド、136 遅角切換ランド、138 遅角支持ランド、139 駆動軸、140 リターンスプリング、150 逆止弁152,212,232 弁座、154,214,234 弁体、156,216,236,316,336 付勢部材、158,318,338 内壁面、170 接続通路、180 制御回路、200,300 制御部(制御手段)、210 第一逆止弁(メイン逆止弁)、215,235 リテーナ、220 第一接続通路、230 第二逆止弁(メイン逆止弁)、240 第二接続通路、410 接続通路、420 逆止弁、502,503 ドレン通路、610 接続通路、620 逆止弁

Claims (3)

  1. 内燃機関においてクランク軸からのトルク伝達によりカム軸が開閉する動弁のバルブタイミングを調整するバルブタイミング調整装置であって、
    前記クランク軸と連動して回転する第一回転体と、
    前記カム軸と連動して回転し、前記第一回転体との間において進角室及び遅角室を回転方向に形成し、前記進角室又は前記遅角室に作動流体が供給されることにより前記カム軸を前記クランク軸に対する進角側又は遅角側に駆動する第二回転体と、
    流体供給源から作動流体が供給される供給通路及び作動流体を排出するドレン通路を有し、前記進角室及び前記遅角室に対する前記供給通路及び前記ドレン通路の各々の接続状態を制御する制御手段と、を備えるバルブタイミング調整装置において、
    前記制御手段は、
    往復移動するスプールを有し、前記クランク軸に対する前記カム軸の位相を進角側に変化させる場合に前記スプールを進角位置に移動させることにより、前記進角室に対して前記供給通路を接続し且つ前記遅角室に対して前記ドレン通路を接続し、前記位相を遅角側に変化させる場合に前記スプールを遅角位置に移動させることにより、前記遅角室に対して前記供給通路を接続し且つ前記進角室に対して前記ドレン通路を接続するスプール弁と、
    少なくとも前記スプールが進角位置又は遅角位置に移動した状態において、前記供給通路及び前記ドレン通路の間を接続する接続通路と、
    前記接続通路に配設され、前記ドレン通路側から前記供給通路側に向かう作動流体流れを許容し且つ前記供給通路側から前記ドレン通路側に向かう作動流体流れを規制する逆止弁と、
    を有し、
    前記接続通路は、前記スプールに形成され、前記スプールが前記進角位置及び前記遅角位置の少なくとも一方に移動することにより前記供給通路及び前記ドレン通路の間を接続し、
    前記制御手段は、
    前記スプールが前記進角位置に移動することにより前記遅角室に対して接続される前記ドレン通路としての第一ドレン通路と、
    前記スプールが前記進角位置に移動することにより前記供給通路及び前記第一ドレン通路の間を接続する前記接続通路としての第一接続通路と、
    前記第一接続通路に配設される前記逆止弁としての第一逆止弁と、
    前記スプールが前記遅角位置に移動することにより前記進角室に対して接続される前記ドレン通路としての第二ドレン通路と、
    前記スプールが前記遅角位置に移動することにより前記供給通路及び前記第二ドレン通路の間を接続する前記接続通路としての第二接続通路と、
    前記第二接続通路に配設される前記逆止弁としての第二逆止弁と、
    を有することを特徴とするバルブタイミング調整装置。
  2. 前記第一ドレン通路及び前記第二ドレン通路は互いに連通し、
    前記進角位置に移動した前記スプールの前記第二接続通路により前記供給通路及び前記第二ドレン通路の間が接続され、前記遅角位置に移動した前記スプールの前記第一接続通路により前記供給通路及び前記第一ドレン通路の間が接続されることを特徴とする請求項に記載のバルブタイミング調整装置。
  3. 前記制御手段は、
    イン逆止弁としての前記第一逆止弁及び前記第二逆止弁と、
    前記供給通路に配設され、前記流体供給源側から前記スプール弁側に向かう作動流体流れを許容し且つ前記スプール弁側から前記流体供給源側に向かう作動流体流れを規制するサブ逆止弁と、
    を有することを特徴とする請求項1又は2に記載のバルブタイミング調整装置。
JP2007307987A 2007-11-28 2007-11-28 バルブタイミング調整装置 Expired - Fee Related JP4544294B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007307987A JP4544294B2 (ja) 2007-11-28 2007-11-28 バルブタイミング調整装置
US12/325,008 US7987827B2 (en) 2007-11-28 2008-11-28 Valve timing control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007307987A JP4544294B2 (ja) 2007-11-28 2007-11-28 バルブタイミング調整装置

Publications (2)

Publication Number Publication Date
JP2009133216A JP2009133216A (ja) 2009-06-18
JP4544294B2 true JP4544294B2 (ja) 2010-09-15

Family

ID=40668650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007307987A Expired - Fee Related JP4544294B2 (ja) 2007-11-28 2007-11-28 バルブタイミング調整装置

Country Status (2)

Country Link
US (1) US7987827B2 (ja)
JP (1) JP4544294B2 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5126157B2 (ja) * 2009-04-23 2013-01-23 株式会社デンソー 内燃機関の可変バルブタイミング制御装置
DE102009022869A1 (de) * 2009-05-27 2010-12-09 Hydraulik-Ring Gmbh Flügelzellennockenwellenverstellersystem
DE102009042202A1 (de) 2009-09-18 2011-04-14 Schaeffler Technologies Gmbh & Co. Kg Vorrichtung zur variablen Einstellung der Steuerzeiten von Gaswechselventilen einer Brennkraftmaschine
DE102009056023A1 (de) 2009-11-27 2011-06-01 Schaeffler Technologies Gmbh & Co. Kg Vorrichtung zur variablen Einstellung der Steuerzeiten von Gaswechselventilen einer Brennkraftmaschine
DE102009056021A1 (de) 2009-11-27 2011-06-01 Schaeffler Technologies Gmbh & Co. Kg Vorrichtung zur varibalen Einstellung der Steuerzeiten von Gaswechselventilen einer Brennkraftmaschine
DE102009056018A1 (de) 2009-11-27 2011-07-07 Schaeffler Technologies GmbH & Co. KG, 91074 Vorrichtung zur variablen Einstellung der Steuerzeiten von Gaswechselventilen einer Brennkraftmaschine
DE102009056020A1 (de) 2009-11-27 2011-06-01 Schaeffler Technologies Gmbh & Co. Kg Vorrichtung zur variablen Einstellung der Steuerzeiten von Gaswechselventilen einer Brennkraftmaschine
DE102009056024A1 (de) 2009-11-27 2011-06-01 Schaeffler Technologies Gmbh & Co. Kg Vorrichtung zur variablen Einstellung der Steuerzeiten von Gaswechselventilen einer Brennkraftmaschine
DE102010045358A1 (de) 2010-04-10 2011-10-13 Hydraulik-Ring Gmbh Schwenkmotornockenwellenversteller mit einem Hydraulikventil
DE102010019005B4 (de) 2010-05-03 2017-03-23 Hilite Germany Gmbh Schwenkmotorversteller
DE102010022896B4 (de) 2010-06-07 2021-11-11 Schaeffler Technologies AG & Co. KG Druckmittelbetätigbare Nockenwellenverstelleinrichtung für eine Brennkraftmaschine
DE102010061337B4 (de) * 2010-12-20 2015-07-09 Hilite Germany Gmbh Hydraulikventil für einen Schwenkmotorversteller
DE102011056264B4 (de) * 2011-12-12 2020-03-05 Hilite Germany Gmbh Hydraulikventil
US9598986B2 (en) * 2012-07-13 2017-03-21 Borgwarner Inc. Five-way oil control valve with integrated venting spool
EP2796673B1 (de) * 2013-04-22 2018-03-07 Hilite Germany GmbH Zentralventil für einen Schwenkmotorversteller
DE102013104051B4 (de) 2013-04-22 2016-09-22 Hilite Germany Gmbh Zentralventil für einen Schwenkmotorversteller
RU2659605C2 (ru) * 2013-06-04 2018-07-03 Ниссан Мотор Ко., Лтд. Устройство определения стопорения для механизма регулируемых фаз газораспределения и способ определения стопорения для механизма регулируемых фаз газораспределения
DE102014209327B4 (de) * 2014-05-16 2021-01-07 Vitesco Technologies GmbH Verfahren zum Einstellen eines Stellglieds für eine Nockenwelle einer Brennkraftmaschine
DE102014218299B4 (de) * 2014-09-12 2017-12-14 Schaeffler Technologies AG & Co. KG Nockenwellenversteller mit Zentralventil und ohne T-Abgang
US9587527B2 (en) 2014-11-04 2017-03-07 Delphi Technologies, Inc. Camshaft phaser
JP6690633B2 (ja) * 2017-01-19 2020-04-28 株式会社デンソー バルブタイミング調整装置およびチェック弁
JP6645448B2 (ja) * 2017-01-19 2020-02-14 株式会社デンソー バルブタイミング調整装置
JP6683142B2 (ja) * 2017-01-19 2020-04-15 株式会社デンソー バルブタイミング調整装置
JP6780573B2 (ja) * 2017-04-21 2020-11-04 株式会社デンソー バルブタイミング調整装置
EP3460209B1 (de) * 2017-09-19 2021-05-26 ECO Holding 1 GmbH Ölsteuerventil zur steuerung eines nockenwellenverstellers mit einem kolben, der durch einen externen aktuator positioniert wird
US10760454B2 (en) * 2017-09-19 2020-09-01 ECO Holding 1 GmbH Oil control valve to control a cam phaser with a spool positioned by an external actuator and having a groove
DE102018125095A1 (de) * 2017-10-11 2019-04-11 Borgwarner Inc. Nockenwellenverstellung mit nockendrehmoment- und motoröldruckbetätigung
US11339688B2 (en) 2020-01-29 2022-05-24 Borgwarner, Inc. Variable camshaft timing valve assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138744A (ja) * 2005-11-15 2007-06-07 Denso Corp バルブタイミング調整装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063835A (ja) 2004-08-25 2006-03-09 Denso Corp バルブタイミング調整装置
US7124722B2 (en) * 2004-12-20 2006-10-24 Borgwarner Inc. Remote variable camshaft timing control valve with lock pin control
EP1996819B1 (de) * 2006-03-17 2012-04-11 Hilite Germany GmbH Hydraulikkreis, insbesondere für nockenwellenversteller, und entsprechendes steuerelement

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138744A (ja) * 2005-11-15 2007-06-07 Denso Corp バルブタイミング調整装置

Also Published As

Publication number Publication date
US20090133652A1 (en) 2009-05-28
JP2009133216A (ja) 2009-06-18
US7987827B2 (en) 2011-08-02

Similar Documents

Publication Publication Date Title
JP4544294B2 (ja) バルブタイミング調整装置
JP4518149B2 (ja) バルブタイミング調整装置
JP6790925B2 (ja) 作動油制御弁、および、これを用いたバルブタイミング調整装置
JP5270525B2 (ja) 制御弁装置
JP2009103107A (ja) バルブタイミング調整装置
JP4492684B2 (ja) バルブタイミング調整装置
JP4624976B2 (ja) バルブタイミング調整装置
US9080471B2 (en) Cam torque actuated phaser with mid position lock
JP2009138611A (ja) バルブタイミング調整装置
JP5747520B2 (ja) バルブタイミング調整装置
JP2011169215A (ja) 制御弁装置
JP2009236045A (ja) バルブタイミング調整装置
EP2017437A1 (en) Valve timing adjuster
EP2017438B1 (en) Valve timing adjuster
WO2021106890A1 (ja) バルブタイミング調整装置
EP1398466B1 (en) Differential pressure control apparatus for camshaft phaser with locking pin
JP2012122454A (ja) バルブタイミング調整装置
JP2008069649A (ja) バルブタイミング調整装置
JP2008069651A (ja) バルブタイミング調整装置
JP4952568B2 (ja) バルブタイミング調整装置
JP7200914B2 (ja) バルブタイミング調整装置
JP2009167842A (ja) バルブタイミング調整装置
JP5012584B2 (ja) 逆止弁及びバルブタイミング調整装置
EP1985814B1 (en) Variable camshaft timing system
JP4463186B2 (ja) バルブタイミング調整装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4544294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees