JP4542601B2 - Photocatalyst coating liquid manufacturing method, antibacterial deodorant dry cleaning coating liquid, and photocatalyst-processed clothing. - Google Patents

Photocatalyst coating liquid manufacturing method, antibacterial deodorant dry cleaning coating liquid, and photocatalyst-processed clothing. Download PDF

Info

Publication number
JP4542601B2
JP4542601B2 JP2009018829A JP2009018829A JP4542601B2 JP 4542601 B2 JP4542601 B2 JP 4542601B2 JP 2009018829 A JP2009018829 A JP 2009018829A JP 2009018829 A JP2009018829 A JP 2009018829A JP 4542601 B2 JP4542601 B2 JP 4542601B2
Authority
JP
Japan
Prior art keywords
silver
particles
mineral particles
titanium oxide
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009018829A
Other languages
Japanese (ja)
Other versions
JP2010172831A (en
Inventor
謙一 原島
岳治 尾塩
聖一 蓮覚寺
勇 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sugino Machine Ltd
Original Assignee
Sugino Machine Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sugino Machine Ltd filed Critical Sugino Machine Ltd
Priority to JP2009018829A priority Critical patent/JP4542601B2/en
Publication of JP2010172831A publication Critical patent/JP2010172831A/en
Application granted granted Critical
Publication of JP4542601B2 publication Critical patent/JP4542601B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Paints Or Removers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、光触媒コーティング液の製造方法並びに抗菌消臭ドライクリーニング用コーティング液及び光触媒加工衣料に関する。 The present invention relates to a method for producing a photocatalyst coating liquid, and coating liquid for antibacterial deodorizing dry cleaning and to a photocatalyst processing clothing.

銀イオンはバクテリアなどの下等生物(雑菌)に対して強い殺菌力を示すため、抗菌剤として使用されている。また、酸化チタン(二酸化チタン)は光を照射することで汚れを分解する光触媒活性物質として使用されている。近年、銀と酸化チタンと鉱物とを組み合わせた粒子を液中に分散させた懸濁液からなる光触媒コーティング液が実用化されている。この光触媒コーティング液は、抗菌作用や消臭作用を施す目的で、カーテン布、シーツ、衣料などの生地や不織布等の繊維に塗布される。ここで抗菌作用とは雑菌の繁殖を阻止する作用であり、消臭作用とは老廃物(脂質や雑菌の死骸等)を分解して臭いを消す作用である。また、抗菌加工製品の抗菌性試験方法と抗菌効果の評価方法としては、JIS L1902が規定されている。   Silver ions are used as an antibacterial agent because they exhibit a strong bactericidal power against lower organisms (miscellaneous bacteria) such as bacteria. Titanium oxide (titanium dioxide) is used as a photocatalytically active substance that decomposes dirt when irradiated with light. In recent years, a photocatalytic coating liquid made of a suspension in which particles obtained by combining silver, titanium oxide, and mineral are dispersed in a liquid has been put into practical use. This photocatalyst coating solution is applied to fabrics such as curtain cloths, sheets, and clothing, and fibers such as nonwoven fabrics for the purpose of antibacterial action and deodorant action. Here, the antibacterial action is an action that inhibits the propagation of various bacteria, and the deodorizing action is an action that decomposes waste products (lipids, dead bodies of bacteria, etc.) and eliminates odors. Moreover, JIS L1902 is prescribed | regulated as an antibacterial test method and antibacterial effect evaluation method of an antibacterial processed product.

銀ナノ粒子を水に混ぜると凝集体を形成し均一な懸濁液とはならない。このため従来、銀をリン酸カルシウム(アパタイト)やアルミナシリカ等の鉱物粒子に担持させた銀担持鉱物粒子を水に混合して使用している。銀を鉱物に担持させる方法としては、銀を鉱物に練り込んで粒子を形成する方法や、イオン交換によって銀をアパタイトに担持させる方法が知られている(例えば特許文献2、特許文献4)。   When silver nanoparticles are mixed with water, aggregates are formed and the suspension is not uniform. For this reason, silver-supporting mineral particles in which silver is supported on mineral particles such as calcium phosphate (apatite) and alumina silica have been conventionally mixed with water. As a method for supporting silver on a mineral, a method of kneading silver into a mineral to form particles and a method of supporting silver on an apatite by ion exchange (for example, Patent Document 2 and Patent Document 4) are known.

しかしながら、銀を鉱物に練り込む方法は、鉱物粒子の内部に多くの銀が練り込まれてしまい、鉱物粒子の表層に出ている銀活性面が少ない。また、イオン交換によって銀をアパタイトに担持させる方法は、アパタイトの結晶構造が歪んだり破壊されるために担持された銀が脱落し易い。一部の商品では、コストを抑えるために高価な銀の使用量を少なくして、その結果、抗菌効果があると認められないような商品も市場に出回っているのが現状である。   However, in the method of kneading silver into minerals, a large amount of silver is kneaded inside the mineral particles, and there are few silver active surfaces appearing on the surface layer of the mineral particles. Further, in the method of supporting silver on apatite by ion exchange, the supported silver is easily dropped because the crystal structure of apatite is distorted or destroyed. In some products, the amount of expensive silver used is reduced to reduce costs, and as a result, there are products on the market that are not recognized as having an antibacterial effect.

銀担持鉱物粒子や酸化チタン粒子を水中に均一に分散させて懸濁液とするためには、これら粒子の粒径をナノサイズ(1μm未満)まで微粒化しなければならない。粒子を微粒化する方法としては、ボールミルなどの粉砕媒体を使用した湿式の機械的接触式粉砕(例えば特許文献2では単に湿式粉砕機と記述されている)や、同体摩擦粉砕(例えば特許文献4を参照)による方法が知られている。しかし、機械的接触式粉砕では、粒子自体が壊れる不具合や、粉砕媒体から発生するcontaminant(汚染物質:コンタミとも呼ばれる)が混入する不具合がある。また、同体摩擦粉砕では、粒子自体が壊れる危険がある。そこで、粒子の混合液をチャンバーノズルから高圧噴射することで、粒子自体を壊さず、コンタミの混入がない微粒化工法が開発され(特許文献8)、実用化された(非特許文献1)。   In order to uniformly disperse silver-carrying mineral particles and titanium oxide particles in water to form a suspension, the particle size of these particles must be atomized to nano size (less than 1 μm). As a method for atomizing the particles, wet mechanical contact pulverization using a pulverization medium such as a ball mill (for example, simply described as a wet pulverizer in Patent Document 2) or in-body friction pulverization (for example, Patent Document 4). Method) is known. However, the mechanical contact pulverization has a problem that the particles themselves are broken and a problem that contaminants (also called contaminants) generated from the pulverization medium are mixed. In the same body friction grinding, there is a risk that the particles themselves are broken. Therefore, a method of atomization by developing a mixture of particles from a chamber nozzle at a high pressure so as not to break the particles themselves and to prevent contamination (patent document 8) has been put into practical use (non-patent document 1).

衣料は、衛生面からクリーニング(洗濯)を行っており、クリーニング店では衣料の生地等を傷めない観点から、蒸気や揮発性の溶剤を用いて行うドライクリーニングが主流となっている。本明細書では、衣料を、衣服や下着に限定せずに、クリーニングが可能なタオル、カーテン、鞄等の繊維製品全般を衣料としている。   Clothing is cleaned (washed) from the hygiene aspect, and dry cleaning using steam or a volatile solvent has become the mainstream from the viewpoint of not damaging the clothing fabric and the like at a cleaning store. In this specification, clothes are not limited to clothes and underwear, and all textile products such as towels, curtains, and bags that can be cleaned are used as clothes.

従来の光触媒コーティング液では、銀を担持する担体として主にアパタイトが用いられている。これは、吸着力(付着力)の強いアパタイトを用いることで、繊維等の対象物にアパタイトを固着させて剥がれ難くさせるという考え方に基づいている。   In the conventional photocatalyst coating liquid, apatite is mainly used as a carrier for supporting silver. This is based on the idea that by using apatite having a strong adsorption force (adhesion force), the apatite is fixed to an object such as a fiber and is not easily peeled off.

特許文献1(特開2002−284614号公報)には、光触媒活性成分である二酸化チタン粒子の一部が光不活性な無機化合物(アパタイト)で覆われた光触媒粉末を用い、該光触媒粉末を固定するための有機バインダー成分をさらに含んでなる抗菌消臭用加工液が記載されている。   Patent Document 1 (Japanese Patent Laid-Open No. 2002-284614) uses a photocatalyst powder in which a part of titanium dioxide particles as a photocatalytic active component is covered with a photoinert inorganic compound (apatite), and the photocatalyst powder is fixed. An antibacterial deodorant processing liquid further comprising an organic binder component is described.

特許文献2(特開2002−370911号公報)には、無機担体に抗菌性金属を担持させてなる無機抗菌剤をホウ酸、ホウ酸アルカリ金属塩及びリン酸アルカリ金属塩から選ばれる無機分散剤にて水に分散させてなる繊維品の抗菌加工剤が記載されており、前記無機抗菌剤が抗菌性金属を担持させたゼオライト、銀を担持させたリン酸ジルコニウム、銀を担持させたシリカゲル、銀を担持させたアパタイト、銀を担持させた含水酸化チタン、銀を担持させたモンモリロナイト、銀を担持させたガラス粉末又は銀を担持させたチタン酸カリウムウィスカーから選ばれるとの記載がある。   Patent Document 2 (Japanese Patent Laid-Open No. 2002-370911) discloses an inorganic dispersant in which an inorganic antibacterial agent obtained by supporting an antibacterial metal on an inorganic carrier is selected from boric acid, alkali metal borate and alkali metal phosphate. An antibacterial finishing agent for textiles dispersed in water is described, and the inorganic antibacterial agent carries zeolite carrying an antibacterial metal, zirconium phosphate carrying silver, silica gel carrying silver, There is a description that it is selected from apatite supporting silver, hydrous titanium oxide supporting silver, montmorillonite supporting silver, glass powder supporting silver, or potassium titanate whisker supporting silver.

特許文献3(特開2003−199810号公報)には、チタニア粒子の表面を光に不活性なセラミックス(アルミナ、シリカ、ジルコニア、チタン酸ジルコニウム、マグネシア、カルシア、リン酸カルシウム、リン酸チタン、酸化鉄、フェライト、石膏、及び非晶質のチタニアの内から選ばれた少なくとも一種)で部分的に被覆してなる被覆チタニア粒子を、多孔質材料(活性炭、発泡プラスチックス、ガラス繊維成形体、合成繊維成形体、FRP成形体、プラスチックス−無機複合成形体、繊維成形体、活性アルミナ、ゼオライト、ガラス多孔体、金属多孔体、セラミックス多孔体、粘土成形体、及び無機層状化合物成形体の内から選ばれた少なくとも一種)に担持したことを特徴とする機能性吸着剤が記載されており、前記チタニア粒子が、白金、ロジウム、ルテニウム、パラジウム、銀、銅、鉄、及び亜鉛の内から選ばれた少なくとも一種の金属を、該チタニア粒子の表面に担持してなるチタニア粒子であるとの記載がある。   In Patent Document 3 (Japanese Patent Laid-Open No. 2003-199810), the surface of the titania particles is ceramics that are inert to light (alumina, silica, zirconia, zirconium titanate, magnesia, calcia, calcium phosphate, titanium phosphate, iron oxide, Coated titania particles partially coated with ferrite, gypsum, and amorphous titania) are made of porous materials (activated carbon, foamed plastics, glass fiber molded products, synthetic fiber molded products) Body, FRP molded body, plastics-inorganic composite molded body, fiber molded body, activated alumina, zeolite, porous glass body, porous metal body, ceramic porous body, clay molded body, and inorganic layered compound molded body. A functional adsorbent characterized in that it is supported on at least one kind) and said titania grains. But platinum, rhodium, ruthenium, palladium, silver, copper, iron, and at least one metal selected from among zinc, is described with the titania particles obtained by carried on the surface of the titania particles.

特許文献4(特開2002−180385号公報)には、染色剤と酸化チタン水溶液の混合液を繊維布地に含浸させる酸化チタン水溶液染色処理方法が記載されている。   Patent Document 4 (Japanese Patent Application Laid-Open No. 2002-180385) describes a titanium oxide aqueous solution dyeing method in which a fiber cloth is impregnated with a mixed solution of a dyeing agent and a titanium oxide aqueous solution.

特許文献5(特開2004−35672号公報)には、全組成物量に対して、重量%表示で、光触媒作用を有する酸化チタンを30〜60%、珪酸アルカリ塩を10〜35%、シリカを30〜50%含むコーティング剤用組成物が記載されており、他の成分として金属、金属酸化物、リン酸塩、カルシウムシリケート、金属シリコン、アパタイト、フッ素成分の何れか1以上を10重量%以下含むとの記載がある。   In Patent Document 5 (Japanese Patent Laid-Open No. 2004-35672), 30% to 60% of titanium oxide having a photocatalytic action, 10 to 35% of an alkali silicate salt, and silica in terms of% by weight with respect to the total amount of the composition. A composition for a coating agent containing 30 to 50% is described, and 10% by weight or less of any one or more of metal, metal oxide, phosphate, calcium silicate, metal silicon, apatite, and fluorine component as other components There is a description that it includes.

特許文献6(特開2004−285485号公報)には、水に難溶性または不溶性で平均粒径0.005〜400μmの粒子状吸着剤を0.001〜5%含有し、臭気物質の吸着による消臭効果を繊維製品に付与する繊維製品処理剤が記載されており、前記粒子状吸着剤が、金属酸化物、金属複水酸化物、金属リン酸塩、金属ケイ酸塩、二酸化ケイ素、ケイ酸誘導体、合成ゼオライト、粘土鉱物から選ばれる1種以上の成分を50%以上含有する単一組成物の粒子であって、二酸化ケイ素、ケイ酸アルミニウム、ケイ酸マグネシウム、ケイ酸カルシウム、ケイ酸ジルコニウム、酸化アルミニウムから選ばれる1種以上の成分を50%以上含有する単一組成物であって平均粒径0.005〜200μmの粒子、又は、リン酸ジルコニウム、リン酸チタン、リン酸カルシウム、酸化ジルコニウム、酸化ジルコニウム水和物、酸化銅、酸化銀から選ばれる1種以上の成分を70%以上含有する単一組成物であって平均粒径0.005〜200μmの粒子、又は、ハイドロタルサイト類、合成酸化チタン、雲母、シリカ被覆型酸化チタン、シリカ被覆型酸化亜鉛、アパタイト被覆型酸化チタン、酸化亜鉛よりなる群から選ばれる1種以上であって平均粒径0.005〜200μmの粒子、又は、モルデナイト、クリノゾイサイト、チャバザイト、エリオナイト、セピオライト、モンモリロナイト、ベントナイト、タルク、パーライト、活性白土、珪藻土であって平均粒径0.005〜200μmの粒子であるとの記載がある。   Patent Document 6 (Japanese Patent Laid-Open No. 2004-285485) contains 0.001 to 5% of a particulate adsorbent that is hardly soluble or insoluble in water and has an average particle size of 0.005 to 400 μm, and is based on adsorption of odorous substances. A fiber product treating agent that imparts a deodorizing effect to a fiber product is described, and the particulate adsorbent is a metal oxide, metal double hydroxide, metal phosphate, metal silicate, silicon dioxide, silica Particles of a single composition containing 50% or more of one or more components selected from acid derivatives, synthetic zeolites, and clay minerals, silicon dioxide, aluminum silicate, magnesium silicate, calcium silicate, zirconium silicate , A single composition containing 50% or more of one or more components selected from aluminum oxide and having an average particle size of 0.005 to 200 μm, or zirconium phosphate, phosphoric acid A single composition containing 70% or more of at least one component selected from titanium, calcium phosphate, zirconium oxide, zirconium oxide hydrate, copper oxide, and silver oxide, and having an average particle size of 0.005 to 200 μm, Or one or more selected from the group consisting of hydrotalcites, synthetic titanium oxide, mica, silica-coated titanium oxide, silica-coated zinc oxide, apatite-coated titanium oxide, and zinc oxide, with an average particle size of 0. 005-200 μm particles, or mordenite, clinozoite, chabazite, erionite, sepiolite, montmorillonite, bentonite, talc, perlite, activated clay, diatomaceous earth, and particles having an average particle size of 0.005-200 μm There is.

特許文献7(特開2006−20717号公報)には、膨潤性粘土鉱物のサポナイト、ヘクトライト、ベントナイト、モンモリロナイト、スメクタイト、バーミキュライト、雲母系層状珪酸塩鉱物、カオリン系層状珪酸塩鉱物又はタルク系層状珪酸塩鉱物と酸化チタンとが、同体摩擦粉砕によりナノ化された消臭材であって、銀イオン及び/又は銅イオンを含む消臭剤が記載されている。   Patent Document 7 (Japanese Patent Application Laid-Open No. 2006-20717) discloses swelling clay minerals saponite, hectorite, bentonite, montmorillonite, smectite, vermiculite, mica-based layered silicate mineral, kaolin-based layered silicate mineral, or talc-based layered layer. A deodorizing material in which a silicate mineral and titanium oxide are nano-sized by homogenous friction grinding, and a deodorizing agent containing silver ions and / or copper ions is described.

特許文献8(特許第3151706号公報)には、一対のノズル手段から噴射される高圧流体噴流同士を互いに衝突させることにより乳化分散流体又は/及び微粒子を得る噴流衝合装置が記載されており、前記第1と第2のノズル手段からの噴流を前記一点の先方で受け止めて噴流の流体力を分散させる噴流受け止め手段として回転自在な硬質ボールの記載がある。   Patent Document 8 (Patent No. 3151706) describes a jet collision device that obtains an emulsified dispersion fluid or / and fine particles by causing high-pressure fluid jets ejected from a pair of nozzle means to collide with each other. There is a description of a rotatable hard ball as jet receiving means for receiving a jet flow from the first and second nozzle means at the tip of the one point and dispersing the fluid force of the jet.

非特許文献1(湿式微粒化装置「スターバースト」によるナノ電子材料の微粒化, 原島謙一,工業調査会,電子材料 2008年9月号)には、株式会社スギノマシン製の湿式微粒化装置「スターバースト(装置の商品名)」による電子部品材料の微粒化の事例が記載されている。   Non-patent document 1 (Nanoelectronic material atomization by wet atomization device “Starburst”, Kenichi Harashima, Industrial Research Committee, Electronic Materials September 2008 issue) includes a wet atomization device manufactured by Sugino Machine Co., Ltd. “ An example of atomization of electronic component material by "Starburst (trade name of device)" is described.

特開2002−284614号公報JP 2002-284614 A 特開2002−370911号公報JP 2002-370911 A 特開2003−199810号公報JP 2003-199810 A 特開2002−180385号公報JP 2002-180385 A 特開2004−35672号公報JP 2004-35672 A 特開2004−285485号公報JP 2004-285485 A 特開2006−20717号公報JP 2006-20717 A 特許第3151706号公報Japanese Patent No. 3151706

湿式微粒化装置「スターバースト」によるナノ電子材料の微粒化, 原島謙一,工業調査会,電子材料 2008年9月号Atomization of nanoelectronic materials by wet atomizer "Starburst", Kenichi Harashima, Industrial Research Committee, Electronic Materials September 2008 Issue

しかしながら、銀を鉱物粒子に担持させる方法として上記特許文献に開示されている方法は、銀を鉱物に練り込んで粒子を形成する方法か、イオン交換によって銀をアパタイトに担持させる方法(特許文献2、特許文献4)であり、銀を鉱物に練り込む方法は、粒子の内部に多くの銀が練り込まれてしまい、イオン交換によって銀をアパタイトに担持させる方法は、アパタイトの結晶構造が歪んだり破壊されるために担持された銀が脱落し易い。そのため、鉱物粒子の表層に出ている銀活性面が少なくなってしまい、高価な銀を多く使用しないと抗菌効果が得られず、良質な銀担持鉱物粒子を経済的に製造することが難しいという問題点がある。   However, as a method of supporting silver on mineral particles, the method disclosed in the above-mentioned patent document is a method of kneading silver into mineral to form particles, or a method of supporting silver on apatite by ion exchange (Patent Document 2). 4), a method in which silver is kneaded into a mineral, a large amount of silver is kneaded inside the particles, and a method in which silver is supported on apatite by ion exchange causes distortion of the crystal structure of apatite. Since it is destroyed, the supported silver tends to fall off. Therefore, the silver active surface appearing on the surface layer of the mineral particles is reduced, the antibacterial effect is not obtained unless a lot of expensive silver is used, and it is difficult to economically produce high-quality silver-carrying mineral particles. There is a problem.

また、銀担持鉱物粒子や酸化チタン粒子を微粒化する方法として上記特許文献に開示されている方法は、粉砕媒体を使用した湿式の機械的接触式粉砕(特許文献2では単に湿式粉砕機と記述されている)か、同体摩擦粉砕(特許文献4)である。しかし、機械的接触式粉砕では、粒子自体が壊れる不具合や、粉砕媒体から発生するコンタミが混入する不具合がある。また、同体摩擦粉砕では、粒子自体が壊れる不具合がある。そして、銀担持鉱物粒子や酸化チタン粒子を水に均一に分散した懸濁液とすることが困難であるため、無機分散剤が添加されている(特許文献1、特許文献2)。しかし、無機分散剤を添加することで、触媒活性度の低下が懸念される。なお、特許文献4と5は、酸化チタン皮膜を形成するための方法であるから、粒子の微粒化とはその目的や構成が大きく異なる。   In addition, as a method for atomizing silver-carrying mineral particles and titanium oxide particles, the method disclosed in the above patent document is a wet mechanical contact type pulverization using a pulverization medium (described in Patent Document 2 as simply a wet pulverizer). Or the same body friction pulverization (Patent Document 4). However, the mechanical contact type pulverization has a problem that the particles themselves are broken and a problem that contamination generated from the pulverization medium is mixed. Moreover, in the same body friction grinding | pulverization, there exists a malfunction which particle | grains break. And since it is difficult to make it the suspension which disperse | distributed the silver carrying mineral particle | grains and the titanium oxide particle uniformly in water, the inorganic dispersing agent is added (patent document 1, patent document 2). However, there is a concern about the decrease in catalyst activity by adding an inorganic dispersant. Since Patent Documents 4 and 5 are methods for forming a titanium oxide film, the purpose and configuration thereof are greatly different from the atomization of particles.

従来の光触媒コーティング液では、銀を担持する担体としてアパタイトが用いられている(特許文献3、特許文献6)。これは、吸着力(付着力)の強いアパタイトを用いることで、繊維等の対象物に固着させて剥がれ難くさせるという考え方に基づいている。
しかし、本発明者らは鋭意研究の結果、アパタイトは、銀を担持する担体として好ましくない場合があることが判明した。つまり、アパタイトは衣料の繊維に固着すると剥がれ難い性質があるが、銀や酸化チタンはクリーニング(ドライクリーニング)によって洗い流され易いため、クリーニング後は、抗菌作用や消臭作用のないアパタイトが衣料に残ることとなる。銀や酸化チタンが洗い流された衣料は、残ったアパタイトが老廃物等を吸着するため臭いが発生し易くなる。またアパタイトを使用した触媒コーティング液を繰り返し衣料に塗布すると、アパタイトの蓄積によって衣料が硬くこわばってしまい、着心地が悪くなってしまうという問題点を発見した。つまり、光触媒コーティング液をクリーニングによって除去したい場合には、アパタイトが銀担持鉱物粒子として適していないという新たな課題がみつかったのである。
In the conventional photocatalyst coating liquid, apatite is used as a carrier for supporting silver (Patent Documents 3 and 6). This is based on the idea of using an apatite with a strong adsorption force (adhesion force) so that it is fixed to an object such as a fiber and hardly peels off.
However, as a result of intensive studies, the present inventors have found that apatite may not be preferable as a carrier supporting silver. In other words, apatite has the property that it is difficult to peel off when it adheres to the fiber of clothing, but silver and titanium oxide are easily washed away by cleaning (dry cleaning), so after cleaning, apatite that has no antibacterial or deodorizing action remains in the clothing. It will be. In clothing from which silver or titanium oxide has been washed away, the remaining apatite adsorbs wastes and the like, so that odor is likely to occur. In addition, when a catalyst coating solution using apatite was repeatedly applied to clothing, it was found that the clothing became hard and stiff due to accumulation of apatite, resulting in poor comfort. That is, when the photocatalyst coating liquid is to be removed by cleaning, a new problem has been found that apatite is not suitable as silver-carrying mineral particles.

そこで本発明の目的は、衣料の繊維に付着するがクリーニングによって剥がれる適度な吸着性を有する鉱物粒子の表層に効率良く銀を担持させた銀担持鉱物粒子と酸化チタン粒子を水に均一に分散させた懸濁液からなる光触媒コーティング液の製造方法並びに抗菌消臭ドライクリーニング用コーティング液及び光触媒加工衣料を提供することにある。 Accordingly, an object of the present invention is to uniformly disperse silver-carrying mineral particles and titanium oxide particles in which silver is efficiently carried on the surface layer of mineral particles having an appropriate adsorptive property that adheres to clothing fibers but peels off by cleaning in water. and a method of manufacturing a photocatalytic coating liquid consisting of a suspension, as well as a coating solution and photocatalytic working clothes antibacterial deodorizing dry cleaning.

本発明の光触媒コーティング液の製造方法は、炭酸水素ナトリウム水溶液又は炭酸ナトリウム水溶液を浸み込ませた粘土鉱物粒子を、硝酸銀と置換反応させて当該粘土鉱物粒子の表層に銀化合物を生成し、これを焼成温度が400から500℃で焼成し粉砕することで前記粘土鉱物粒子の表層に銀を担持させた銀担持鉱物粒子とし、前記銀担持鉱物粒子と酸化チタン粒子をそれぞれ微粒化手段によって微粒化するとともに分散手段によって水に均一に分散させて前記銀担持鉱物粒子と酸化チタン粒子と水との懸濁液を製造することを特徴とする。 The method for producing a photocatalyst coating liquid according to the present invention includes a clay mineral particle soaked with an aqueous sodium hydrogen carbonate solution or an aqueous sodium carbonate solution, and a silver nitrate is formed on the surface layer of the clay mineral particle by substitution reaction with silver nitrate. Is calcined at a firing temperature of 400 to 500 ° C. and pulverized to form silver-carrying mineral particles in which silver is supported on the surface layer of the clay mineral particles, and the silver-carrying mineral particles and titanium oxide particles are each atomized by atomization means. In addition, a suspension of the silver-carrying mineral particles, titanium oxide particles, and water is produced by uniformly dispersing in water by a dispersing means.

粘土鉱物粒子は、適度な吸着性を持つ。炭酸水素ナトリウム又は炭酸ナトリウムと、硝酸銀との置換反応によれば有害ガスが発生することがない。本発明によれば、炭酸水素ナトリウム水溶液又は炭酸ナトリウム水溶液を浸み込ませた粘土鉱物粒子を、硝酸銀と置換反応させて当該粘土鉱物粒子の表層に銀化合物を生成し、これを所定の焼成温度で焼成し粉砕することで前記粘土鉱物粒子の表層に銀を担持させた銀担持鉱物粒子とするので、適度な吸着性を持つ粘土鉱物粒子の表層に効率良く銀を担持させた銀担持鉱物粒子とすることができる。そして、前記銀担持鉱物粒子と酸化チタン粒子をそれぞれ微粒化手段によって微粒化するとともに分散手段によって水に均一に分散させて前記銀担持鉱物粒子と酸化チタン粒子と水との懸濁液を製造する。前記微粒化手段としては、例えば同体摩擦粉砕が挙げられる。前記分散手段としては、例えば無機分散剤の添加が挙げられる。   Clay mineral particles have moderate adsorptivity. According to the substitution reaction between sodium hydrogen carbonate or sodium carbonate and silver nitrate, no harmful gas is generated. According to the present invention, a clay mineral particle soaked with a sodium hydrogen carbonate aqueous solution or a sodium carbonate aqueous solution is subjected to a substitution reaction with silver nitrate to produce a silver compound on the surface layer of the clay mineral particle, which is subjected to a predetermined firing temperature. The silver-carrying mineral particles in which silver is supported on the surface layer of the clay mineral particles by firing and pulverizing with the above, the silver-carrying mineral particles in which silver is efficiently supported on the surface layer of the clay mineral particles having moderate adsorptivity It can be. Then, the silver-carrying mineral particles and the titanium oxide particles are each atomized by the atomizing means and uniformly dispersed in water by the dispersing means to produce a suspension of the silver-carrying mineral particles, titanium oxide particles, and water. . Examples of the atomization means include in-body friction pulverization. Examples of the dispersing means include addition of an inorganic dispersant.

本発明の光触媒コーティング液の製造方法は、前記焼成温度が400から500℃であることを特徴とする。
前記粘土鉱物粒子上に吸着保持された炭酸水素ナトリウム(NaHCO)と硝酸銀(AgNO)との置換反応により重炭酸銀(AgHCO)が生成される。重炭酸銀(AgHCO)が生成された前記粘土鉱物粒子を約120℃の温度で乾燥させ、約200℃の温度で加熱すると、熱分解反応によって水蒸気(HO)と炭酸ガス(CO)が放出されて、前記粘土鉱物粒子の表層に担持され固定された酸化銀(AgO)が出来る。
また、前記粘土鉱物粒子上に吸着保持された炭酸ナトリウム(NaCO)と硝酸銀(AgNO)との置換反応により炭酸銀(AgCO)が生成される。炭酸銀(AgCO)が生成された前記粘土鉱物粒子を約120℃の温度で乾燥させ、約200℃の温度で加熱すると、熱分解反応によって炭酸ガス(CO)が放出されて、前記粘土鉱物粒子の表層に担持され固定された酸化銀(AgO)が出来る。
そして、酸化銀(AgO)が形成された前記粘土鉱物粒子を400から500℃の温度で焼成する。酸化銀(AgO)を400から500℃の温度で加熱することで酸素(O)が放出されて前記粘土鉱物粒子の表層に銀(Ag)が担持された銀担持鉱物粒子となる。そして好ましくは前記焼成温度が440から450℃であり、さらに好ましくは前記焼成温度が442から444℃である。なお、上記化学反応過程について、発明を実施するための形態にてその詳細を説明する。
The method for producing a photocatalyst coating liquid of the present invention is characterized in that the baking temperature is 400 to 500 ° C.
Silver bicarbonate (AgHCO 3 ) is produced by a substitution reaction between sodium bicarbonate (NaHCO 3 ) adsorbed and held on the clay mineral particles and silver nitrate (AgNO 3 ). When the clay mineral particles in which silver bicarbonate (AgHCO 3 ) is produced are dried at a temperature of about 120 ° C. and heated at a temperature of about 200 ° C., water vapor (H 2 O) and carbon dioxide (CO 2 ) are produced by a thermal decomposition reaction. ) Is released to form silver oxide (Ag 2 O) supported and fixed on the surface layer of the clay mineral particles.
Further, silver carbonate (Ag 2 CO 3 ) is generated by a substitution reaction between sodium carbonate (Na 2 CO 3 ) adsorbed and held on the clay mineral particles and silver nitrate (AgNO 3 ). When the clay mineral particles in which silver carbonate (Ag 2 CO 3 ) is produced are dried at a temperature of about 120 ° C. and heated at a temperature of about 200 ° C., carbon dioxide gas (CO 2 ) is released by a thermal decomposition reaction, Silver oxide (Ag 2 O) supported and fixed on the surface layer of the clay mineral particles can be formed.
Then, the clay mineral particles on which silver oxide (Ag 2 O) is formed are fired at a temperature of 400 to 500 ° C. By heating silver oxide (Ag 2 O) at a temperature of 400 to 500 ° C., oxygen (O 2 ) is released to form silver-carrying mineral particles in which silver (Ag) is supported on the surface layer of the clay mineral particles. And preferably the said calcination temperature is 440 to 450 degreeC, More preferably, the said calcination temperature is 442 to 444 degreeC. The chemical reaction process will be described in detail in the form for carrying out the invention.

本発明の光触媒コーティング液の製造方法は、前記懸濁液に紫外線を照射することを特徴とする。
本発明によれば、前記懸濁液に紫外線を照射することで、前記焼成の過程で、充分熱の行き渡らない場所の前記粘土鉱物粒子、言い換えると所定の焼成温度に達していない場所の前記粘土鉱物粒子の表層で残留していた酸化銀(AgO)を銀(Ag)に還元できる。
The method for producing a photocatalyst coating liquid of the present invention is characterized in that the suspension is irradiated with ultraviolet rays.
According to the present invention, by irradiating the suspension with ultraviolet rays, the clay mineral particles in a place where heat is not sufficiently distributed in the firing process, in other words, the clay in a place where the predetermined firing temperature is not reached. Silver oxide (Ag 2 O) remaining on the surface layer of mineral particles can be reduced to silver (Ag).

本発明の光触媒コーティング液の製造方法は、前記微粒化手段及び前記分散手段を湿式微粒化装置が兼用しており、前記銀担持鉱物粒子と水との混合液と、前記酸化チタン粒子と水との混合液を、それぞれ前記湿式微粒化装置のチャンバーノズルからの圧力を30から245MPaの間で調整し高圧噴射することで微粒化するとともに水に均一に分散させることを特徴とする。 In the method for producing a photocatalyst coating liquid of the present invention, the atomization means and the dispersion means are also used by a wet atomization apparatus, and a mixed liquid of the silver-carrying mineral particles and water, the titanium oxide particles and water, The liquid mixture is atomized by adjusting the pressure from the chamber nozzle of the wet atomization apparatus between 30 and 245 MPa and spraying at high pressure, and is uniformly dispersed in water.

前記微粒化手段として同体摩擦粉砕を適用した場合には、粒子自体が壊れる危険がある。前記分散手段として無機分散剤を添加した場合には、触媒活性度しかし、無機分散剤を添加することで、触媒活性度の低下が懸念される。
本発明によれば、前記微粒化手段及び前記分散手段を湿式微粒化装置が兼用しており、前記銀担持鉱物粒子と水との混合液と、前記酸化チタン粒子と水との混合液を、それぞれ前記湿式微粒化装置のチャンバーノズルから所定の圧力で高圧噴射することで微粒化するとともに水に均一に分散させるので、粒子自体を壊さずコンタミの混入がない状態で、前記銀担持鉱物粒子と前記酸化チタン粒子をそれぞれ別個に微粒化し、水に均一に分散させる。したがって、無機分散剤を添加することが不要であり、触媒活性度を低下させ難い。
When the same body friction pulverization is applied as the atomizing means, there is a risk that the particles themselves are broken. When an inorganic dispersant is added as the dispersing means, catalyst activity, however, there is a concern that catalyst activity may be reduced by adding an inorganic dispersant.
According to the present invention, the atomization means and the dispersion means are also used in a wet atomization apparatus, the mixture liquid of the silver-supporting mineral particles and water, and the mixture liquid of the titanium oxide particles and water, Each of the silver-carrying mineral particles is atomized by high-pressure jetting at a predetermined pressure from the chamber nozzle of the wet atomization apparatus and uniformly dispersed in water, so that the particles themselves are not broken and contaminated. The titanium oxide particles are atomized separately and uniformly dispersed in water. Therefore, it is not necessary to add an inorganic dispersant and it is difficult to reduce the catalyst activity.

本発明の光触媒コーティング液の製造方法は、前記銀担持鉱物粒子と水との混合液を前記湿式微粒化装置によって第1の懸濁液とし、前記酸化チタン粒子と水との混合液を前記湿式微粒化装置によって第2の懸濁液とし、前記銀担持鉱物粒子のメジアン粒径と前記酸化チタン粒子のメジアン粒径とを異ならせ、前記第1の懸濁液と第2の懸濁液を所定比率で調合することを特徴とする。   In the method for producing a photocatalyst coating liquid of the present invention, a mixed liquid of the silver-carrying mineral particles and water is made into a first suspension by the wet atomization apparatus, and a mixed liquid of the titanium oxide particles and water is used as the wet liquid. A second suspension is obtained by a pulverization apparatus, the median particle diameter of the silver-carrying mineral particles and the median particle diameter of the titanium oxide particles are made different, and the first suspension and the second suspension are It mix | blends by a predetermined ratio, It is characterized by the above-mentioned.

本発明によれば、前記銀担持鉱物粒子と水との混合液を前記湿式微粒化装置によって第1の懸濁液とし、前記酸化チタン粒子と水との混合液を前記湿式微粒化装置によって第2の懸濁液とし、前記銀担持鉱物粒子のメジアン粒径と前記酸化チタン粒子のメジアン粒径とを異ならせ、前記第1の懸濁液と第2の懸濁液を所定比率で調合することで、前記銀担持鉱物粒子と酸化チタン粒子とが重なり合うことが殆どなく、銀の抗菌作用と酸化チタンの消臭作用が効果的に発揮される。そして、前記第1の懸濁液と第2の懸濁液を所定比率で調合することで、銀の抗菌効果と酸化チタンの消臭効果の性能を適宜調整することができる。このようにして得られた前記懸濁液は、密封容器に入れて長期間(およそ1ヶ月間)放置した状態でも均一な分散状態を維持する。   According to the present invention, the liquid mixture of the silver-carrying mineral particles and water is made into the first suspension by the wet atomization apparatus, and the liquid mixture of the titanium oxide particles and water is changed by the wet atomization apparatus. 2, the median particle size of the silver-carrying mineral particles and the median particle size of the titanium oxide particles are made different, and the first suspension and the second suspension are prepared at a predetermined ratio. Thus, the silver-carrying mineral particles and the titanium oxide particles hardly overlap each other, and the antibacterial action of silver and the deodorizing action of titanium oxide are effectively exhibited. And the performance of the antibacterial effect of silver and the deodorizing effect of titanium oxide can be appropriately adjusted by blending the first suspension and the second suspension at a predetermined ratio. The suspension thus obtained maintains a uniform dispersion state even when left in a sealed container for a long period (approximately one month).

本発明の光触媒コーティング液の製造方法は、前記銀担持鉱物粒子と前記酸化チタン粒子のメジアン粒径が7から900nmの範囲であり、前記銀担持鉱物粒子のメジアン粒径が前記酸化チタン粒子のメジアン粒径の2倍から10倍の範囲となるよう前記湿式微粒化装置のチャンバーノズルからの圧力調整し高圧噴射する作業を1回行うか又は複数回繰り返すことを特徴とする。 The method for producing a photocatalyst coating liquid of the present invention is such that the median particle size of the silver-carrying mineral particles and the titanium oxide particles is in the range of 7 to 900 nm, and the median particle size of the silver-carrying mineral particles is the median of the titanium oxide particles. and repeating or more times to adjust the pressure from the chamber nozzle of the wet atomization apparatus to be a range of 10 times 2 times the particle size carried out once the task of high-pressure injection.

本発明によれば、前記湿式微粒化装置のチャンバーノズルからの圧力を30から245MPaの間で調整することで、前記銀担持鉱物粒子と前記酸化チタン粒子のメジアン粒径を7から900nmの範囲とし、前記銀担持鉱物粒子のメジアン粒径が前記酸化チタン粒子のメジアン粒径の2倍から10倍の範囲とするので、前記銀担持鉱物粒子と酸化チタン粒子とが重なり合うことが殆どなく、銀の抗菌作用と酸化チタンの消臭作用が十分に発揮される。   According to the present invention, the median particle size of the silver-carrying mineral particles and the titanium oxide particles is in the range of 7 to 900 nm by adjusting the pressure from the chamber nozzle of the wet atomization apparatus between 30 and 245 MPa. Since the median particle size of the silver-carrying mineral particles is in the range of 2 to 10 times the median particle size of the titanium oxide particles, the silver-carrying mineral particles and the titanium oxide particles hardly overlap each other. Antibacterial action and deodorizing action of titanium oxide are fully exhibited.

本発明によれば、前記湿式微粒化装置のチャンバーノズルから前記混合液を所定の圧力で高圧噴射する作業を複数回繰り返すことで、前記銀担持鉱物粒子と前記酸化チタン粒子のメジアン粒径を7から900nmの範囲とした上で粒径のばらつきを抑え、前記銀担持鉱物粒子のメジアン粒径が前記酸化チタン粒子のメジアン粒径の2倍から10倍の範囲とするので、前記銀担持鉱物粒子と酸化チタン粒子とが重なり合うことが殆どなく、銀の抗菌作用と酸化チタンの消臭作用が十分に発揮される。前記湿式微粒化装置のチャンバーノズルから前記混合液を所定の圧力で高圧噴射する作業を繰り返す回数が多くなるに従って前記銀担持鉱物粒子(又は前記酸化チタン粒子)の粒径のばらつきが小さくなる。   According to the present invention, the median particle size of the silver-carrying mineral particles and the titanium oxide particles is set to 7 by repeating the operation of high-pressure injection of the mixed liquid at a predetermined pressure from the chamber nozzle of the wet atomizer. In addition, the dispersion of the particle size is suppressed in the range of 900 nm to 900 nm, and the median particle size of the silver-carrying mineral particles is in the range of 2 to 10 times the median particle size of the titanium oxide particles. And titanium oxide particles hardly overlap each other, and the antibacterial action of silver and the deodorizing action of titanium oxide are sufficiently exhibited. As the number of repetitions of the operation of high-pressure spraying the mixed liquid at a predetermined pressure from the chamber nozzle of the wet atomization apparatus increases, the variation in the particle diameter of the silver-supporting mineral particles (or the titanium oxide particles) decreases.

本発明によって得られた抗菌消臭用の光触媒コーティング液は、置換反応によって粘土鉱物からなる粒子の表層に銀を担持させた銀担持鉱物粒子と水との混合液と、酸化チタン粒子と水との混合液を、チャンバーノズルからの圧力を30から245MPaの間で調整し高圧噴射する湿式微粒化装置によって微粒化するとともに水に均一に分散させた銀担持鉱物粒子と酸化チタン粒子の懸濁液であって、前記粘土鉱物が、カオリナイト、ハロイサイト、スメクタイト、ベントナイト、雲母、バーミキュライト、緑泥石、モンモリロナイト、活性白土、シリカ、シリカゲル、アルミナゲル、珪藻土のうちいずれか1種、若しくは2種以上からなり、前記銀担持鉱物粒子と前記酸化チタン粒子のメジアン粒径が7から900nmの範囲であり、前記銀担持鉱物粒子のメジアン粒径が前記酸化チタン粒子のメジアン粒径の2倍から10倍の範囲であるそして好ましくは、前記銀担持鉱物粒子のメジアン粒径が前記酸化チタン粒子のメジアン粒径の5倍から10倍の範囲であり、さらに好ましくは、前記銀担持鉱物粒子のメジアン粒径が約900nmであり、前記酸化チタン粒子のメジアン粒径が約90nmである。 The photocatalytic coating liquid for antibacterial deodorization obtained by the present invention is a mixed liquid of silver-carrying mineral particles and water in which silver is supported on the surface layer of particles made of clay mineral by a substitution reaction, titanium oxide particles and water, A suspension of silver-carrying mineral particles and titanium oxide particles in which the mixture liquid is atomized by a wet atomization apparatus that adjusts the pressure from the chamber nozzle between 30 to 245 MPa and sprayed at a high pressure and is uniformly dispersed in water. The clay mineral is any one or more of kaolinite, halloysite, smectite, bentonite, mica, vermiculite, chlorite, montmorillonite, activated clay, silica, silica gel, alumina gel, diatomaceous earth. The median particle size of the silver-carrying mineral particles and the titanium oxide particles is in the range of 7 to 900 nm, Median particle size of the carrier mineral particles is in the range from 10 times 2 times the median particle size of the titanium oxide particles. Preferably, the median particle size of the silver-carrying mineral particles is in the range of 5 to 10 times the median particle size of the titanium oxide particles, and more preferably, the median particle size of the silver-carrying mineral particles is about 900 nm. The median particle size of the titanium oxide particles is about 90 nm.

本発明によれば、粘土鉱物粒子の表層に効率良く銀を担持させた銀担持鉱物粒子と、酸化チタン粒子をそれぞれ微粒化して、無機分散剤を添加せずに水に均一に分散させた懸濁液であって、前記銀担持鉱物粒子と酸化チタン粒子とが重なり合うことが殆どなく、銀の抗菌作用と酸化チタンの消臭作用が十分に発揮される懸濁液となり、製造コストも抑えられる。   According to the present invention, the silver-carrying mineral particles that efficiently carry silver on the surface of the clay mineral particles and the titanium oxide particles are each atomized and dispersed uniformly in water without adding an inorganic dispersant. It is a turbid liquid, the silver-supporting mineral particles and the titanium oxide particles hardly overlap each other, and it becomes a suspension that sufficiently exhibits the antibacterial action of silver and the deodorizing action of titanium oxide, and the production cost can be reduced. .

これら本発明に係る前記粘土鉱物としては、カオリナイト、ハロイサイト、スメクタイト、ベントナイト、タルク、雲母、バーミキュライト、緑泥石、モンモリロナイト、活性白土、シリカ、シリカゲル、アルミナゲル、ゼオライト、珪藻土のうちいずれか1種、若しくは2種以上からなる粘土鉱物が適用される。   These clay minerals according to the present invention include any one of kaolinite, halloysite, smectite, bentonite, talc, mica, vermiculite, chlorite, montmorillonite, activated clay, silica, silica gel, alumina gel, zeolite, and diatomaceous earth. Alternatively, a clay mineral composed of two or more kinds is applied.

これらの前記粘土鉱物はアパタイトよりも吸着性が弱いが適度な吸着性があり、衣料の繊維に付着するがクリーニングによって剥がれる適度な吸着性を有する。そして、これら前記粘土鉱物は膨潤性を有するため、炭酸水素ナトリウム水溶液又は炭酸ナトリウム水溶液を浸み込ませることが容易である。前記粘土鉱物の中では、特にスメクタイト、ベントナイト、モンモリロナイト、活性白土、シリカゲル、アルミナゲルが好ましい。前記懸濁液が薄い白色(又は薄い乳白色)となるので、衣料に塗布したときに目立たず、特にワイシャツやシーツなどの白色の衣料の外観を損ねることがない。   These clay minerals are moderately adsorbable but less adsorbable than apatite, and have moderate adsorbability that adheres to clothing fibers but peels off by cleaning. And since the said clay mineral has swelling property, it is easy to immerse the sodium hydrogencarbonate aqueous solution or the sodium carbonate aqueous solution. Among the clay minerals, smectite, bentonite, montmorillonite, activated clay, silica gel, and alumina gel are particularly preferable. Since the suspension becomes light white (or light milky white), it does not stand out when applied to clothing, and in particular, the appearance of white clothing such as shirts and sheets is not impaired.

本発明によって得られた光触媒コーティング液を抗菌消臭ドライクリーニング用コーティング液とし、また、当該抗菌消臭ドライクリーニング用コーティング液を衣料にスプレー塗布して前記銀担持鉱物粒子及び前記酸化チタン粒子を前記衣料の繊維に付着させた光触媒加工衣料とすることで、衣料の繊維に付着するがクリーニングによって剥がれる適度な吸着性を有する鉱物粒子の表層に効率良く銀を担持させた銀担持鉱物粒子と酸化チタン粒子を微粒化して、無機分散剤を添加せずに水に均一に分散させた懸濁液からなる抗菌消臭ドライクリーニング用コーティング液及び光触媒加工衣料が実現する。 The photocatalyst coating liquid obtained by the present invention is used as an antibacterial deodorant dry cleaning coating liquid, and the antibacterial deodorant dry cleaning coating liquid is spray-applied on clothing to provide the silver-carrying mineral particles and the titanium oxide particles as described above. By making photocatalyst-treated garments attached to clothing fibers, silver-carrying mineral particles and titanium oxide that efficiently carry silver on the surface of the mineral particles that adhere to clothing fibers but have suitable adsorptive properties that peel off by cleaning A coating liquid for antibacterial deodorizing and dry cleaning and a photocatalyst-processed garment comprising a suspension in which particles are atomized and uniformly dispersed in water without adding an inorganic dispersant are realized.

本発明によれば、炭酸水素ナトリウム水溶液又は炭酸ナトリウム水溶液を浸み込ませた粘土鉱物粒子を、硝酸銀と置換反応させて当該粘土鉱物粒子の表層に銀化合物を生成し、これを所定の焼成温度で焼成し粉砕することで前記粘土鉱物粒子の表層に銀を担持させた銀担持鉱物粒子とするので、適度な吸着性を持つ粘土鉱物粒子の表層に効率良く銀を担持させた銀担持鉱物粒子とすることができる。そして、前記銀担持鉱物粒子と酸化チタン粒子をそれぞれ微粒化手段によって微粒化するとともに分散手段によって水に均一に分散させて前記銀担持鉱物粒子と酸化チタン粒子と水との懸濁液を製造する。   According to the present invention, a clay mineral particle soaked with a sodium hydrogen carbonate aqueous solution or a sodium carbonate aqueous solution is subjected to a substitution reaction with silver nitrate to produce a silver compound on the surface layer of the clay mineral particle, which is subjected to a predetermined firing temperature. The silver-carrying mineral particles in which silver is supported on the surface layer of the clay mineral particles by firing and pulverizing with the above, the silver-carrying mineral particles in which silver is efficiently supported on the surface layer of the clay mineral particles having an appropriate adsorptivity It can be. Then, the silver-carrying mineral particles and the titanium oxide particles are each atomized by the atomizing means and uniformly dispersed in water by the dispersing means to produce a suspension of the silver-carrying mineral particles, titanium oxide particles, and water. .

前記粘土鉱物粒子上に吸着保持された炭酸水素ナトリウム(NaHCO)と硝酸銀(AgNO)との置換反応により重炭酸銀(AgHCO)が生成される。重炭酸銀(AgHCO)が生成された前記粘土鉱物粒子を約120℃の温度で乾燥させ、約200℃の温度で加熱すると、熱分解反応によって水蒸気(HO)と炭酸ガス(CO)が放出されて、前記粘土鉱物粒子の表層に担持され固定された酸化銀(AgO)が出来る。
また、前記粘土鉱物粒子上に吸着保持された炭酸ナトリウム(NaCO)と硝酸銀(AgNO)との置換反応により炭酸銀(AgCO)が生成される。炭酸銀(AgCO)が生成された前記粘土鉱物粒子を約120℃の温度で乾燥させ、約200℃の温度で加熱すると、熱分解反応によって炭酸ガス(CO)が放出されて、前記粘土鉱物粒子の表層に担持され固定された酸化銀(AgO)が出来る。
そして、酸化銀(AgO)が形成された前記粘土鉱物粒子を400から500℃の温度で焼成する。酸化銀(AgO)を400から500℃の温度で加熱することで酸素(O)が放出されて前記粘土鉱物粒子の表層に銀(Ag)が担持された銀担持鉱物粒子となる。
本発明によれば、前記懸濁液に紫外線を照射することで、前記焼成の過程で、充分熱の行き渡らない場所の前記粘土鉱物粒子、言い換えると所定の焼成温度に達していない場所の前記粘土鉱物粒子の表層で残留していた酸化銀(AgO)を銀(Ag)に還元できる。
Silver bicarbonate (AgHCO 3 ) is produced by a substitution reaction between sodium bicarbonate (NaHCO 3 ) adsorbed and held on the clay mineral particles and silver nitrate (AgNO 3 ). When the clay mineral particles in which silver bicarbonate (AgHCO 3 ) is produced are dried at a temperature of about 120 ° C. and heated at a temperature of about 200 ° C., water vapor (H 2 O) and carbon dioxide (CO 2 ) are produced by a thermal decomposition reaction. ) Is released to form silver oxide (Ag 2 O) supported and fixed on the surface layer of the clay mineral particles.
Further, silver carbonate (Ag 2 CO 3 ) is generated by a substitution reaction between sodium carbonate (Na 2 CO 3 ) adsorbed and held on the clay mineral particles and silver nitrate (AgNO 3 ). When the clay mineral particles in which silver carbonate (Ag 2 CO 3 ) is produced are dried at a temperature of about 120 ° C. and heated at a temperature of about 200 ° C., carbon dioxide gas (CO 2 ) is released by a thermal decomposition reaction, Silver oxide (Ag 2 O) supported and fixed on the surface layer of the clay mineral particles can be formed.
Then, the clay mineral particles on which silver oxide (Ag 2 O) is formed are fired at a temperature of 400 to 500 ° C. By heating silver oxide (Ag 2 O) at a temperature of 400 to 500 ° C., oxygen (O 2 ) is released to form silver-carrying mineral particles in which silver (Ag) is supported on the surface layer of the clay mineral particles.
According to the present invention, by irradiating the suspension with ultraviolet rays, the clay mineral particles in a place where heat is not sufficiently distributed in the firing process, in other words, the clay in a place where the predetermined firing temperature is not reached. Silver oxide (Ag 2 O) remaining on the surface layer of mineral particles can be reduced to silver (Ag).

本発明によれば、前記微粒化手段及び前記分散手段を湿式微粒化装置が兼用しており、前記銀担持鉱物粒子と水との混合液と、前記酸化チタン粒子と水との混合液を、それぞれ前記湿式微粒化装置のチャンバーノズルから所定の圧力で高圧噴射することで微粒化するとともに水に均一に分散させるので、粒子自体を壊さずコンタミの混入がない状態で、前記銀担持鉱物粒子と前記酸化チタン粒子をそれぞれ別個に微粒化し、水に均一に分散させる。したがって、無機分散剤を添加することが不要であり、触媒活性度を低下させ難い。
本発明によれば、前記銀担持鉱物粒子と水との混合液を前記湿式微粒化装置によって第1の懸濁液とし、前記酸化チタン粒子と水との混合液を前記湿式微粒化装置によって第2の懸濁液とし、前記銀担持鉱物粒子のメジアン粒径と前記酸化チタン粒子のメジアン粒径とを異ならせ、前記第1の懸濁液と第2の懸濁液を所定比率で調合することで、前記銀担持鉱物粒子と酸化チタン粒子とが重なり合うことが殆どなく、銀の抗菌作用と酸化チタンの消臭作用が効果的に発揮される。そして、前記第1の懸濁液と第2の懸濁液を所定比率で調合することで、銀の抗菌効果と酸化チタンの消臭効果の性能を適宜調整することができる。このようにして得られた前記懸濁液は、密封容器に入れて長期間(およそ1ヶ月間)放置した状態でも均一な分散状態を維持する。
本発明によれば、前記湿式微粒化装置のチャンバーノズルからの圧力を30から245MPaの間で調整することで、前記銀担持鉱物粒子と前記酸化チタン粒子のメジアン粒径を7から900nmの範囲とし、前記銀担持鉱物粒子のメジアン粒径が前記酸化チタン粒子のメジアン粒径の2倍から10倍の範囲とするので、前記銀担持鉱物粒子と酸化チタン粒子とが重なり合うことが殆どなく、銀の抗菌作用と酸化チタンの消臭作用が十分に発揮される。
本発明によれば、前記湿式微粒化装置のチャンバーノズルから前記混合液を所定の圧力で高圧噴射する作業を複数回繰り返すことで、前記銀担持鉱物粒子と前記酸化チタン粒子のメジアン粒径を7から900nmの範囲とした上で粒径のばらつきを抑え、前記銀担持鉱物粒子のメジアン粒径が前記酸化チタン粒子のメジアン粒径の2倍から10倍の範囲とするので、前記銀担持鉱物粒子と酸化チタン粒子とが重なり合うことが殆どなく、銀の抗菌作用と酸化チタンの消臭作用が十分に発揮される。前記湿式微粒化装置のチャンバーノズルから前記混合液を所定の圧力で高圧噴射する作業を繰り返す回数が多くなるに従って前記銀担持鉱物粒子(又は前記酸化チタン粒子)の粒径のばらつきが小さくなる。
According to the present invention, the atomization means and the dispersion means are also used in a wet atomization apparatus, the mixture liquid of the silver-supporting mineral particles and water, and the mixture liquid of the titanium oxide particles and water, Each of the silver-carrying mineral particles and the silver-carrying mineral particles are in a state where they are atomized by high-pressure jetting from a chamber nozzle of the wet-type atomization apparatus at a predetermined pressure and are uniformly dispersed in water. The titanium oxide particles are atomized separately and uniformly dispersed in water. Therefore, it is not necessary to add an inorganic dispersant and it is difficult to reduce the catalyst activity.
According to the present invention, the liquid mixture of the silver-carrying mineral particles and water is made into the first suspension by the wet atomization apparatus, and the liquid mixture of the titanium oxide particles and water is changed by the wet atomization apparatus. 2, the median particle size of the silver-carrying mineral particles and the median particle size of the titanium oxide particles are made different, and the first suspension and the second suspension are prepared at a predetermined ratio. Thus, the silver-carrying mineral particles and the titanium oxide particles hardly overlap each other, and the antibacterial action of silver and the deodorizing action of titanium oxide are effectively exhibited. And the performance of the antibacterial effect of silver and the deodorizing effect of titanium oxide can be appropriately adjusted by blending the first suspension and the second suspension at a predetermined ratio. The suspension thus obtained maintains a uniform dispersion state even when left in a sealed container for a long period (approximately one month).
According to the present invention, the median particle size of the silver-carrying mineral particles and the titanium oxide particles is in the range of 7 to 900 nm by adjusting the pressure from the chamber nozzle of the wet atomization apparatus between 30 and 245 MPa. Since the median particle size of the silver-carrying mineral particles is in the range of 2 to 10 times the median particle size of the titanium oxide particles, the silver-carrying mineral particles and the titanium oxide particles hardly overlap each other. Antibacterial action and deodorizing action of titanium oxide are fully exhibited.
According to the present invention, the median particle size of the silver-carrying mineral particles and the titanium oxide particles is set to 7 by repeating the operation of high-pressure injection of the mixed liquid at a predetermined pressure from the chamber nozzle of the wet atomization apparatus. And the dispersion of the particle size is suppressed, and the median particle size of the silver-carrying mineral particles is in the range of 2 to 10 times the median particle size of the titanium oxide particles. And titanium oxide particles hardly overlap each other, and the antibacterial action of silver and the deodorizing action of titanium oxide are sufficiently exhibited. As the number of repetitions of the operation of high-pressure spraying the mixed liquid at a predetermined pressure from the chamber nozzle of the wet atomization apparatus increases, the variation in the particle diameter of the silver-supporting mineral particles (or the titanium oxide particles) decreases.

本発明によれば、粘土鉱物粒子の表層に効率良く銀を担持させた銀担持鉱物粒子と、酸化チタン粒子をそれぞれ微粒化して、無機分散剤を添加せずに水に均一に分散させた懸濁液であって、前記銀担持鉱物粒子と酸化チタン粒子とが重なり合うことが殆どなく、銀の抗菌作用と酸化チタンの消臭作用が十分に発揮される懸濁液となり、製造コストも抑えられる。   According to the present invention, the silver-carrying mineral particles that efficiently carry silver on the surface of the clay mineral particles and the titanium oxide particles are each atomized and dispersed uniformly in water without adding an inorganic dispersant. It is a turbid liquid, the silver-supporting mineral particles and the titanium oxide particles hardly overlap each other, and it becomes a suspension that sufficiently exhibits the antibacterial action of silver and the deodorizing action of titanium oxide, and the production cost can be reduced. .

これら本発明に係る前記粘土鉱物としては、カオリナイト、ハロイサイト、スメクタイト、ベントナイト、タルク、雲母、バーミキュライト、緑泥石、モンモリロナイト、活性白土、シリカ、シリカゲル、アルミナゲル、ゼオライト、珪藻土のうちいずれか1種、若しくは2種以上からなる粘土鉱物が適用される。
これらの前記粘土鉱物はアパタイトよりも吸着性が弱いが適度な吸着性があり、衣料の繊維に付着するがクリーニングによって剥がれる適度な吸着性を有する。そして、これら前記粘土鉱物は膨潤性を有するため、炭酸水素ナトリウム水溶液又は炭酸ナトリウム水溶液を浸み込ませることが容易である。前記粘土鉱物の中では、特にスメクタイト、ベントナイト、モンモリロナイト、活性白土、シリカゲル、アルミナゲルが好ましい。前記懸濁液が薄い白色(又は薄い乳白色)となるので、衣料に塗布したときに目立たず、特にワイシャツやシーツなどの白色の衣料の外観を損ねることがない。
These clay minerals according to the present invention include any one of kaolinite, halloysite, smectite, bentonite, talc, mica, vermiculite, chlorite, montmorillonite, activated clay, silica, silica gel, alumina gel, zeolite, and diatomaceous earth. Alternatively, a clay mineral composed of two or more kinds is applied.
These clay minerals are moderately adsorbable but less adsorbable than apatite, and have moderate adsorbability that adheres to clothing fibers but peels off by cleaning. And since the said clay mineral has swelling property, it is easy to immerse the sodium hydrogencarbonate aqueous solution or the sodium carbonate aqueous solution. Among the clay minerals, smectite, bentonite, montmorillonite, activated clay, silica gel, and alumina gel are particularly preferable. Since the suspension becomes light white (or light milky white), it does not stand out when applied to clothing, and in particular, the appearance of white clothing such as shirts and sheets is not impaired.

本発明によって得られた光触媒コーティング液を抗菌消臭ドライクリーニング用コーティング液とし、また、当該抗菌消臭ドライクリーニング用コーティング液を衣料にスプレー塗布して前記銀担持鉱物粒子及び前記酸化チタン粒子を前記衣料の繊維に付着させた光触媒加工衣料とすることで、衣料の繊維に付着するがクリーニングによって剥がれる適度な吸着性を有する鉱物粒子の表層に効率良く銀を担持させた銀担持鉱物粒子と酸化チタン粒子を微粒化して、無機分散剤を添加せずに水に均一に分散させた懸濁液からなる抗菌消臭ドライクリーニング用コーティング液及び光触媒加工衣料が実現する。 The photocatalyst coating liquid obtained by the present invention is used as an antibacterial deodorant dry cleaning coating liquid, and the antibacterial deodorant dry cleaning coating liquid is spray-applied to clothing to provide the silver-supporting mineral particles and the titanium oxide particles as described above. Silver supported mineral particles and titanium oxide that efficiently carry silver on the surface layer of mineral particles that have moderate adsorbability that adheres to clothing fibers but peels off by cleaning by making photocatalyst-treated clothing attached to clothing fibers A coating liquid for antibacterial deodorizing and dry cleaning and a photocatalyst-processed garment comprising a suspension in which particles are atomized and uniformly dispersed in water without adding an inorganic dispersant are realized.

本発明を適用した実施形態の光触媒コーティング液の製造手順を示す製造工程フロー図である。It is a manufacturing process flowchart which shows the manufacturing procedure of the photocatalyst coating liquid of embodiment to which this invention is applied. 本発明を適用した実施形態の粘土鉱物粒子に銀化合物が吸着保持された試料の示唆熱と重量変化との関係を表した測定データチャートである。It is a measurement data chart showing the relationship between the suggested heat and weight change of a sample in which a silver compound is adsorbed and held on clay mineral particles of an embodiment to which the present invention is applied. 本発明にて使用する湿式微粒化装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the wet atomization apparatus used by this invention. 上記湿式微粒化装置のシングルノズルチャンバーの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the single nozzle chamber of the said wet atomization apparatus. 上記湿式微粒化装置の斜向衝突チャンバーの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the oblique collision chamber of the said wet atomization apparatus. 上記湿式微粒化装置のボール衝突チャンバーの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the ball collision chamber of the said wet atomization apparatus. 本発明を適用した実施例の銀担持鉱物粒子と水との混合液における銀の分布状態を観察した図である。It is the figure which observed the distribution state of silver in the liquid mixture of the silver carrying mineral particle of the Example to which this invention is applied, and water. 上記実施例の銀担持鉱物粒子を上記湿式微粒化装置によって微粒化及び分散した第1の懸濁液における銀の分布状態を観察した図である。It is the figure which observed the distribution state of the silver in the 1st suspension which atomized and disperse | distributed the silver carrying mineral particle of the said Example by the said wet atomization apparatus. 上記実施例の銀担持鉱物粒子の表面状態を観察した図である。It is the figure which observed the surface state of the silver carrying | support mineral particle of the said Example. 本発明を適用した実施例の酸化チタン粒子を上記湿式微粒化装置によって微粒化及び分散した第2の懸濁液と上記実施例の第1の懸濁液とを調合して上記湿式微粒化装置によって微粒化及び分散した第3の懸濁液における酸化チタンの分布状態を観察した図である。A second suspension obtained by atomizing and dispersing the titanium oxide particles of the embodiment to which the present invention is applied by the wet atomization apparatus and the first suspension of the embodiment are mixed to prepare the wet atomization apparatus. It is the figure which observed the distribution state of the titanium oxide in the 3rd suspension atomized and disperse | distributed by. 上記実施例の第3の懸濁液における銀の分布状態を観察した図である。It is the figure which observed the distribution state of silver in the 3rd suspension liquid of the said Example. 本発明を適用した実施例の銀担持鉱物粒子の微粒化前の粒径分布を示す分布図である。It is a distribution map which shows the particle size distribution before atomization of the silver carrying | support mineral particle of the Example to which this invention is applied. 上記実施例の銀担持鉱物粒子の微粒化後の粒径分布を示す分布図である。It is a distribution map which shows the particle size distribution after atomization of the silver carrying | support mineral particle of the said Example. 本発明を適用した実施例の酸化チタン粒子の微粒化前の粒径分布を示す分布図である。It is a distribution map which shows the particle size distribution before atomization of the titanium oxide particle of the Example to which this invention is applied. 上記実施例の酸化チタン粒子の微粒化後の粒径分布を示す分布図である。It is a distribution map which shows the particle size distribution after atomization of the titanium oxide particle of the said Example. 本発明を適用した実施例の抗菌消臭ドライクリーニング用コーティング液を白布にスプレー塗布した状態を観察した図である。It is the figure which observed the state which spray-coated the antibacterial deodorant dry cleaning coating liquid of the Example which applied this invention to the white cloth. 上記実施例の抗菌消臭ドライクリーニング用コーティング液を白布にスプレー塗布した試料にメチレンブルー分解試験を行った試験結果を示すグラフ図である。It is a graph which shows the test result which performed the methylene blue decomposition | disassembly test to the sample which apply | coated the coating liquid for antibacterial deodorizing dry cleaning of the said Example to white cloth.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1は、本発明を適用した実施形態の光触媒コーティング液の製造手順を示す製造工程フロー図である。図1のステップS1からステップS9は、本発明に係る銀担持鉱物粒子の製造工程を示しており、図1のステップS10からステップS14は、本発明に係る懸濁液の製造工程を示している。   FIG. 1 is a manufacturing process flow chart showing a manufacturing procedure of a photocatalyst coating liquid according to an embodiment to which the present invention is applied. Steps S1 to S9 in FIG. 1 show a process for producing silver-carrying mineral particles according to the present invention, and steps S10 to S14 in FIG. 1 show a process for producing a suspension according to the present invention. .

(本発明に係る銀担持鉱物粒子の製造方法)
本発明に係る銀担持鉱物粒子の製造方法について、以下に説明する。本発明に係る粘土鉱物としては、カオリナイト、ハロイサイト、スメクタイト、ベントナイト、タルク、雲母、バーミキュライト、緑泥石、モンモリロナイト、活性白土、シリカ、シリカゲル、アルミナゲル、珪藻土のうちいずれか1種、若しくは2種以上からなる粘土鉱物が適用される。これら前記粘土鉱物はアパタイトよりも吸着性が弱いが適度な吸着性があり、衣料の繊維に付着するがクリーニングによって剥がれる適度な吸着性を有する。そして、これら前記粘土鉱物は膨潤性を有するため、炭酸水素ナトリウム水溶液又は炭酸ナトリウム水溶液を浸み込ませることが容易である。前記粘土鉱物の中では、特にスメクタイト、ベントナイト、モンモリロナイト、活性白土、シリカゲル、アルミナゲルが好ましい。前記懸濁液が薄い白色(又は薄い乳白色)となるので、衣料に塗布したときに目立たず、特にワイシャツやシーツなどの白色の衣料の外観を損ねることがない。
(Method for producing silver-carrying mineral particles according to the present invention)
The method for producing silver-carrying mineral particles according to the present invention will be described below. The clay mineral according to the present invention includes any one or two of kaolinite, halloysite, smectite, bentonite, talc, mica, vermiculite, chlorite, montmorillonite, activated clay, silica, silica gel, alumina gel, and diatomaceous earth. The clay mineral consisting of the above is applied. These clay minerals are moderately adsorbable but less adsorbable than apatite, and have moderate adsorbability that adheres to clothing fibers but peels off by cleaning. And since the said clay mineral has swelling property, it is easy to immerse the sodium hydrogencarbonate aqueous solution or the sodium carbonate aqueous solution. Among the clay minerals, smectite, bentonite, montmorillonite, activated clay, silica gel, and alumina gel are particularly preferable. Since the suspension becomes light white (or light milky white), it does not stand out when applied to clothing, and in particular, the appearance of white clothing such as shirts and sheets is not impaired.

図1に示す、本発明に係る銀担持鉱物粒子の製造工程は、容器に炭酸水素ナトリウム水溶液(又は炭酸ナトリウム水溶液)を入れて、粘土鉱物粒子を浸漬する浸漬工程(S1)と、濾紙等の濾過手段によって液体を濾過する濾過工程(S2)と、濾過されなかった物質として、炭酸水素ナトリウム水溶液(又は炭酸ナトリウム水溶液)を浸み込ませた粘土鉱物粒子を取り出して別の容器に移す取り出し工程(S3)と、前記物質に蒸留水を加えて攪拌液とする攪拌工程(S4)と、硝酸銀水溶液を前記攪拌液の攪拌下で滴下し置換反応させる置換反応工程(S5)と、液体を濾過する濾過工程(S6)と、濾過されなかった沈殿物として、重炭酸銀(又は炭酸銀)がその表層に生成された粘土鉱物粒子を取り出して水洗する取り出し工程(S7)と、沈殿物を焼成する焼成工程(S8)と、焼成物を粉砕する粉砕工程(S9)からなる。   The silver-carrying mineral particle production process according to the present invention shown in FIG. 1 includes an immersion process (S1) in which a sodium hydrogen carbonate aqueous solution (or sodium carbonate aqueous solution) is placed in a container and the clay mineral particles are immersed, Filtration step (S2) of filtering the liquid by filtration means, and extraction step of taking out clay mineral particles soaked with sodium hydrogen carbonate aqueous solution (or sodium carbonate aqueous solution) as an unfiltered substance and transferring it to another container (S3), a stirring step (S4) in which distilled water is added to the substance to make a stirring solution, a substitution reaction step (S5) in which a silver nitrate aqueous solution is dropped and stirred under stirring of the stirring solution, and the liquid is filtered Filtration step (S6), and as a precipitate that has not been filtered, silver bicarbonate (or silver carbonate) is taken out and the clay mineral particles produced on its surface are taken out and washed with water (S A) firing step of firing the precipitate and (S8), consists of pulverizing step of pulverizing the fired product (S9).

本発明に係る炭酸水素ナトリウム(NaHCO)と硝酸銀(AgNO)との置換反応について図1に示すフロー図の工程順に説明する。まず前記粘土鉱物粒子を炭酸水素ナトリウム水溶液に浸漬して(S1)、濾紙等の濾過手段によって液体を濾過すると(S2)、前記粘土鉱物粒子(例えばスメクタイト)に炭酸水素ナトリウム(NaHCO)が吸着保持された吸着物質が得られる。次にこの吸着物質を別の容器に移し、蒸留水を加えて(S4)、攪拌しながら硝酸銀(AgNO)の水溶液を滴下すると、置換反応によって重炭酸銀(AgHCO)と硝酸ナトリウム(NaNO)が生成される(S5)。このときの化学反応式を(化式1)に記す。 The substitution reaction of sodium hydrogen carbonate (NaHCO 3 ) and silver nitrate (AgNO 3 ) according to the present invention will be described in the order of steps in the flowchart shown in FIG. First, the clay mineral particles are immersed in a sodium hydrogen carbonate aqueous solution (S1), and the liquid is filtered by a filtering means such as filter paper (S2). Then, sodium hydrogen carbonate (NaHCO 3 ) is adsorbed on the clay mineral particles (for example, smectite). A retained adsorbent is obtained. Next, this adsorbed material is transferred to another container, distilled water is added (S4), and an aqueous solution of silver nitrate (AgNO 3 ) is added dropwise with stirring, whereby silver bicarbonate (AgHCO 3 ) and sodium nitrate (NaNO) are added by a substitution reaction. 3 ) is generated (S5). The chemical reaction formula at this time is shown in (Formula 1).

(化式1)
AgNO + NaHCO → AgHCO + NaNO
(Formula 1)
AgNO 3 + NaHCO 3 → AgHCO 3 + NaNO 3

上記の置換反応は、前記粘土鉱物粒子上に吸着保持された炭酸水素ナトリウム(NaHCO)あるいは液中の炭酸水素ナトリウム(NaHCO)と硝酸銀(AgNO)との反応である。このうち、液中で生じた重炭酸銀(AgHCO)の微細粒子は、前記粘土鉱物粒子上に生じた重炭酸銀(AgHCO)上にその大部分が移動析出する。 The above substitution reaction, the clay mineral particles sodium hydrogen adsorbed held on (NaHCO 3) or sodium hydrogen carbonate solution (NaHCO 3) and the reaction of silver nitrate (AgNO 3). Among these, most of the fine particles of silver bicarbonate (AgHCO 3 ) generated in the liquid move and precipitate on the silver bicarbonate (AgHCO 3 ) generated on the clay mineral particles.

上記の置換反応(S5)によって前記粘土鉱物粒子上に重炭酸銀(AgHCO)が吸着保持された沈殿物が容器に沈殿するので、濾紙等により液体を濾過して硝酸ナトリウム(NaNO)を除去する(S6)。そして、濾過されなかった前記沈殿物を取り出して水洗し(S7)、約120℃の温度で乾燥させ、約200℃の温度で加熱すると、熱分解反応によって水蒸気(HO)と炭酸ガス(CO)が放出されて、前記粘土鉱物粒子の表層に担持され固定された酸化銀(AgO)が出来る。このときの化学反応式を(化式2)に記す。 The precipitate in which silver bicarbonate (AgHCO 3 ) is adsorbed and held on the clay mineral particles is precipitated in the container by the above substitution reaction (S5), so the liquid is filtered by filter paper or the like to remove sodium nitrate (NaNO 3 ). Remove (S6). Then, the unfiltered precipitate is taken out, washed with water (S7), dried at a temperature of about 120 ° C., and heated at a temperature of about 200 ° C. When steam (H 2 O) and carbon dioxide ( CO 2 ) is released to form silver oxide (Ag 2 O) supported and fixed on the surface layer of the clay mineral particles. The chemical reaction formula at this time is shown in (Formula 2).

(化式2)
2AgHCO → AgO + 2CO + H
(Formula 2)
2AgHCO 3 → Ag 2 O + 2CO 2 + H 2 O

そして、酸化銀(AgO)が形成された前記粘土鉱物粒子を400から500℃の温度で焼成する(S8)。酸化銀(AgO)を400から500℃の温度で加熱することで酸素(O)が放出されるとともに、前記粘土鉱物粒子(担体)上での体積の急激な減少による微粒化によって、銀(Ag)が微粒子として前記粘土鉱物粒子の表層に担持され固着する。 Then, the clay mineral particles formed with silver oxide (Ag 2 O) are fired at a temperature of 400 to 500 ° C. (S8). By heating silver oxide (Ag 2 O) at a temperature of 400 to 500 ° C., oxygen (O 2 ) is released, and by atomization due to a rapid decrease in volume on the clay mineral particles (support), Silver (Ag) is supported and fixed as fine particles on the surface layer of the clay mineral particles.

前記粘土鉱物粒子の表層に銀が担持され固定された状態で、ボールミル等の粉砕手段によって粉砕する(S9)。粉砕することで、前記粘土鉱物粒子の表層に銀を担持させ固定させた銀担持鉱物粒子となる。   In a state where silver is supported and fixed on the surface layer of the clay mineral particles, it is pulverized by a pulverizing means such as a ball mill (S9). By pulverizing, silver-carrying mineral particles in which silver is supported and fixed on the surface layer of the clay mineral particles are obtained.

次に、本発明に係る炭酸ナトリウム(NaCO)と硝酸銀(AgNO)との置換反応について図1に示すフロー図の工程順に説明する。まず前記粘土鉱物粒子を炭酸ナトリウム水溶液に浸漬して浸漬して(S1)、濾紙等の濾過手段によって液体を濾過すると(S2)、前記粘土鉱物粒子(例えばスメクタイト)に炭酸ナトリウム(NaCO)が吸着保持された吸着物質が得られる。次にこの吸着物質を別の容器に移し、蒸留水を加えて(S4)、攪拌しながら硝酸銀(AgNO)の水溶液を滴下すると、置換反応によって炭酸銀(AgCO)と硝酸ナトリウム(NaNO)が生成される(S5)。このときの化学反応式を(化式3)に記す。 Next, the substitution reaction between sodium carbonate (Na 2 CO 3 ) and silver nitrate (AgNO 3 ) according to the present invention will be described in the order of steps in the flowchart shown in FIG. First, the clay mineral particles are immersed in an aqueous sodium carbonate solution (S1), and the liquid is filtered by a filtering means such as filter paper (S2). Then, sodium carbonate (Na 2 CO 3 ) is added to the clay mineral particles (for example, smectite). ) Is adsorbed and retained. Next, this adsorbed material is transferred to another container, distilled water is added (S4), and an aqueous solution of silver nitrate (AgNO 3 ) is added dropwise with stirring, and silver carbonate (Ag 2 CO 3 ) and sodium nitrate ( NaNO 3 ) is generated (S5). The chemical reaction formula at this time is shown in (Formula 3).

(化式3)
2AgNO + NaCO → AgCO + 2NaNO
(Formula 3)
2AgNO 3 + Na 2 CO 3 → Ag 2 CO 3 + 2NaNO 3

上記の置換反応は、前記粘土鉱物粒子上に吸着保持された炭酸ナトリウム(NaCO)あるいは液中の炭酸ナトリウム(NaCO)と硝酸銀(AgNO)との反応である。このうち、液中で生じた炭酸銀(AgCO)の微細粒子は、前記粘土鉱物粒子上に生じた炭酸銀(AgCO)上にその大部分が移動析出する。 The above substitution reaction is the reaction of sodium carbonate of the clay adsorbent retained sodium carbonate on mineral particles (Na 2 CO 3) or in the liquid and (Na 2 CO 3) and silver nitrate (AgNO 3). Among these, most of the fine particles of silver carbonate (Ag 2 CO 3 ) generated in the liquid move and precipitate on the silver carbonate (Ag 2 CO 3 ) generated on the clay mineral particles.

上記の置換反応(S5)によって前記粘土鉱物粒子上に炭酸銀(AgCO)が吸着保持された沈殿物が容器に沈殿するので、濾紙等により濾過して硝酸ナトリウム(NaNO)を除去する(S6)。そして、濾過されなかった前記沈殿物を取り出して水洗し(S7)、約120℃の温度で乾燥させ、約200℃の温度で加熱すると、熱分解反応によって炭酸ガス(CO)が放出されて、前記粘土鉱物粒子の表層に担持され固定された酸化銀(AgO)が出来る。このときの化学反応式を(化式4)に記す。 The precipitate in which silver carbonate (Ag 2 CO 3 ) is adsorbed and held on the clay mineral particles by the above substitution reaction (S5) precipitates in the container, and is filtered through filter paper to remove sodium nitrate (NaNO 3 ). (S6). Then, the unfiltered precipitate is taken out, washed with water (S7), dried at a temperature of about 120 ° C., and heated at a temperature of about 200 ° C. to release carbon dioxide (CO 2 ) by the thermal decomposition reaction. And silver oxide (Ag 2 O) supported and fixed on the surface layer of the clay mineral particles. The chemical reaction formula at this time is shown in (Formula 4).

(化式4)
AgCO → AgO + CO
(Formula 4)
Ag 2 CO 3 → Ag 2 O + CO 2

そして、酸化銀(AgO)が形成された前記粘土鉱物粒子を400から500℃の温度で焼成する(S8)。酸化銀(AgO)を400から500℃の温度で加熱することで酸素(O)が放出されるとともに、前記粘土鉱物粒子(担体)上での体積の急激な減少による微粒化によって、銀(Ag)が微粒子として前記粘土鉱物粒子の表層に担持され固着する。 Then, the clay mineral particles formed with silver oxide (Ag 2 O) are fired at a temperature of 400 to 500 ° C. (S8). By heating silver oxide (Ag 2 O) at a temperature of 400 to 500 ° C., oxygen (O 2 ) is released, and by atomization due to a rapid decrease in volume on the clay mineral particles (support), Silver (Ag) is supported and fixed as fine particles on the surface layer of the clay mineral particles.

前記粘土鉱物粒子の表層に銀が担持され固定された状態で、ボールミル等の粉砕手段によって粉砕する(S9)。粉砕することで、前記粘土鉱物粒子の表層に銀を担持させ固定させた銀担持鉱物粒子となる。   In a state where silver is supported and fixed on the surface layer of the clay mineral particles, it is pulverized by a pulverizing means such as a ball mill (S9). By pulverizing, silver-carrying mineral particles in which silver is supported and fixed on the surface layer of the clay mineral particles are obtained.

図2は、上述した炭酸水素ナトリウム(NaHCO)と硝酸銀(AgNO)との置換反応によってスメクタイト上に重炭酸銀(AgHCO)が吸着保持された沈殿物(吸着保持担体)を試料として、加熱しながら当該試料の重量変化を示唆熱天秤(TG−DTA)によって測定し、示唆熱と重量変化の関係を表した測定データチャートである。図2の横軸は加熱温度(Temperature、単位:℃)を示しており、図2の縦軸は重量の微分値(DTG、単位:%/s)、重量変化率(Weight、単位:%)、並びに熱流の微分値(Heat Flow、単位:μV)を示している。図2には上から順に、重量の微分曲線、重量減少率曲線、熱量の微分曲線が示される。 FIG. 2 shows, as a sample, a precipitate (adsorption holding carrier) in which silver bicarbonate (AgHCO 3 ) is adsorbed and held on smectite by the substitution reaction of sodium hydrogen carbonate (NaHCO 3 ) and silver nitrate (AgNO 3 ) described above. It is the measurement data chart which measured the weight change of the said sample with the suggestion thermobalance (TG-DTA), heating, and represented the relationship between suggestion heat and a weight change. The horizontal axis of FIG. 2 indicates the heating temperature (Temperature, unit: ° C.), and the vertical axis of FIG. 2 indicates the weight differential value (DTG, unit:% / s), weight change rate (Weight, unit:%). , And the differential value of heat flow (Heat Flow, unit: μV). FIG. 2 shows a weight differential curve, a weight loss rate curve, and a calorie differential curve in order from the top.

図2に示す示唆熱による重量変化について説明する。前記スメクタイト上に重炭酸銀(AgHCO)が吸着保持された吸着保持担体を試料として、加熱温度を120℃から1000℃まで段階的に加熱しながら前記試料の重量を測定した。加熱温度が198.7℃にて、熱分解反応によって水蒸気(HO)と炭酸ガス(CO)が放出されて前記試料の重量が初期値よりも約8%減少し、前記スメクタイトの表層に担持され固定された酸化銀(AgO)が出来る。前記急激な化学反応は、上述の(化式2)で表される化学反応であり、熱流の微分曲線の急峻な変化からも明らかである。そして、前記試料への加熱温度をさらに高くしてゆくと、前記試料の重量が僅かずつ減少してゆき、加熱温度が442.3℃では前記試料の重量が初期値よりも約12%減少する。 The weight change due to the suggested heat shown in FIG. 2 will be described. Using the adsorption holding carrier in which silver bicarbonate (AgHCO 3 ) was adsorbed and held on the smectite as a sample, the weight of the sample was measured while heating the heating temperature stepwise from 120 ° C to 1000 ° C. When the heating temperature is 198.7 ° C., water vapor (H 2 O) and carbon dioxide (CO 2 ) are released by the pyrolysis reaction, and the weight of the sample is reduced by about 8% from the initial value. Silver oxide (Ag 2 O) supported and fixed on the substrate can be formed. The abrupt chemical reaction is a chemical reaction represented by the above (Formula 2), and is also apparent from a steep change in the differential curve of heat flow. As the heating temperature of the sample is further increased, the weight of the sample is gradually decreased. When the heating temperature is 442.3 ° C., the weight of the sample is reduced by about 12% from the initial value. .

前記試料への加熱温度をさらに高くしてゆくと、加熱温度が442.3℃から444.2℃にかけて急激な化学反応によって酸素ガス(O)が放出されて、前記スメクタイトの表層に担持され固定された酸化銀(AgO)が銀(Ag)になる。この急激な化学反応は、熱流の微分曲線の急峻な変化からも明らかである。 When the heating temperature of the sample is further increased, oxygen gas (O 2 ) is released by a rapid chemical reaction from the heating temperature of 442.3 ° C. to 444.2 ° C., and is supported on the surface of the smectite. The fixed silver oxide (Ag 2 O) becomes silver (Ag). This abrupt chemical reaction is also evident from the steep change in the differential curve of heat flow.

(本発明に係る湿式微粒化装置について)
本発明に係る湿式微粒化装置について、以下に説明する。図3は、本発明にて使用する湿式微粒化装置100の概略構成を示すブロック図である。原料液10は、例えば銀担持鉱物粒子1aと水との混合液10である。湿式微粒化装置100は、高圧ポンプ102を油圧駆動及び制御する油圧発生・制御部101と、原料液1を加圧する高圧ポンプ102と、原料液10を投入する原料タンク103と、投入され加圧された原料液10内の粒子1aを噴射させ加速して衝突させることで銀担持鉱物粒子1aを微細化して銀担持鉱物微粒子1bとするとともに分散させる衝突チャンバー40と、衝突チャンバー40にて微粒化され分散された銀担持鉱物微粒子1bを有する懸濁液2を冷却する熱交換器105からなる。湿式微粒化装置100は、粒子1aの混合液10をチャンバーノズルから高圧噴射することで、粒子1a自体を壊さず、コンタミの混入がない状態で、微粒化して微粒子1bとするとともに均一に分散して懸濁液20とする。
(About the wet atomization apparatus according to the present invention)
The wet atomization apparatus according to the present invention will be described below. FIG. 3 is a block diagram showing a schematic configuration of the wet atomization apparatus 100 used in the present invention. The raw material liquid 10 is, for example, a mixed liquid 10 of silver-carrying mineral particles 1a and water. The wet atomization apparatus 100 includes a hydraulic pressure generation / control unit 101 that hydraulically drives and controls the high-pressure pump 102, a high-pressure pump 102 that pressurizes the raw material liquid 1, and a raw material tank 103 that inputs the raw material liquid 10. The sprayed particles 1a in the raw material liquid 10 are jetted, accelerated, and collided to refine the silver-carrying mineral particles 1a into silver-carrying mineral fine particles 1b and to disperse them in the collision chamber 40. And a heat exchanger 105 for cooling the suspension 2 having the dispersed silver-carrying mineral fine particles 1b. The wet atomization apparatus 100 sprays the liquid mixture 10 of the particles 1a from the chamber nozzle at a high pressure so that the particles 1a themselves are not broken, and the particles 1a are atomized and dispersed uniformly without contamination. To make a suspension 20.

原料液10は、例えば粒子1aと水との混合液10である。原料タンク103に混合液10を投入し、高圧ポンプ102にて混合液10を加圧して、衝突チャンバー40内の微細ノズルから混合液10を噴射させ加速して衝突させることで粒子1aを微細化して微粒子1bとするとともに、微粒子1bが均一に分散した懸濁液20とし、衝突チャンバー40内の噴射によって温度が上昇した懸濁液20を、熱交換器105にて常温まで冷却して排出する(図3)。衝突チャンバー40には、用途によって、シングルノズルチャンバー、斜向衝突チャンバー、ボール衝突チャンバー、スリットチャンバー、多液噴射反応チャンバー、分離チャンバー等の種類がある。   The raw material liquid 10 is, for example, a mixed liquid 10 of particles 1a and water. The mixed liquid 10 is put into the raw material tank 103, the mixed liquid 10 is pressurized by the high-pressure pump 102, the mixed liquid 10 is injected from the fine nozzle in the collision chamber 40, accelerated, and collided to make the particles 1a fine. Then, the suspension 20 in which the particulates 1b are uniformly dispersed is used as the particulates 1b, and the suspension 20 whose temperature is increased by the injection in the collision chamber 40 is cooled to a normal temperature by the heat exchanger 105 and discharged. (Figure 3). The collision chamber 40 includes various types such as a single nozzle chamber, an oblique collision chamber, a ball collision chamber, a slit chamber, a multi-liquid injection reaction chamber, and a separation chamber depending on applications.

図4は、シングルノズルチャンバー41の概略構成を示す模式図である。シングルノズルチャンバー41は、混合液10を1つの微細ノズル411から液中に噴射させ粒子1aを加速してチャンバー内壁に衝突させ、出口412から懸濁液20を排出するタイプである。微細ノズル411は、単結晶ダイヤモンド等を使用しており、微細ノズル411を粒子1aが通過するときの剪断力と、液中噴射によるキャビテーション衝撃力によって、微粒化と分散を行う。シングルノズルチャンバー41は、局所的に力を加えると割れ易い粒子や板状の粒子が積層した粒子をほぐして分散させる。   FIG. 4 is a schematic diagram showing a schematic configuration of the single nozzle chamber 41. The single nozzle chamber 41 is a type in which the mixed liquid 10 is injected into the liquid from one fine nozzle 411 to accelerate the particles 1a to collide with the inner wall of the chamber and discharge the suspension 20 from the outlet 412. The fine nozzle 411 uses single crystal diamond or the like, and atomizes and disperses by a shearing force when the particles 1a pass through the fine nozzle 411 and a cavitation impact force by in-liquid injection. The single nozzle chamber 41 loosens and disperses particles that are easily cracked when a force is applied locally or a laminate of plate-like particles.

図5は、斜向衝突チャンバー42の概略構成を示す模式図である。斜向衝突チャンバー42は、混合液10を対向配置された1対の微細ノズル421から液中に噴射させ粒子1aを加速して互いに対向衝突(対面衝突)させ、出口422から懸濁液20を排出するタイプである。微細ノズル421は、単結晶ダイヤモンド等を使用しており、微細ノズル421を粒子1aが通過するときの剪断力と、液中噴射によるキャビテーション衝撃力と、粒子1a同士が対向衝突するときの衝撃力と、対向噴流での相対速度増加による剪断力によって、微粒化と分散を行う。斜向衝突チャンバー42は、シングルノズルチャンバー41よりも微粒化処理能力が高い。   FIG. 5 is a schematic diagram showing a schematic configuration of the oblique collision chamber 42. In the oblique collision chamber 42, the mixed liquid 10 is injected into the liquid from a pair of fine nozzles 421 arranged to face each other, and the particles 1a are accelerated to collide with each other (face-to-face collision), and the suspension 20 is discharged from the outlet 422. It is a type to discharge. The fine nozzle 421 uses single crystal diamond or the like. The shearing force when the particle 1a passes through the fine nozzle 421, the cavitation impact force caused by submerged injection, and the impact force when the particles 1a collide with each other. Then, atomization and dispersion are performed by a shearing force due to an increase in relative velocity in the opposed jet. The oblique collision chamber 42 has higher atomization processing capability than the single nozzle chamber 41.

図6は、ボール衝突チャンバー43の概略構成を示す模式図である。ボール衝突チャンバー43は、混合液10を1つの微細ノズル431から液中に噴射させ粒子1aを加速してセラミックボール433に衝突させ、出口432から懸濁液20を排出するタイプである。微細ノズル431は、単結晶ダイヤモンド等を使用しており、セラミックボール433は窒化珪素等からなる。微細ノズル431を粒子1aが通過するときの剪断力と、液中噴射によるキャビテーション衝撃力と、粒子1aがセラミックボール433に対向衝突するときの衝撃力によって、微粒化と分散を行う。ボール衝突チャンバー43の微細ノズル431は、斜向衝突チャンバー42の微細ノズル421よりもノズル径を大きくすることができるので、粒径の大きな粒子1aの微粒化処理に適している。   FIG. 6 is a schematic diagram showing a schematic configuration of the ball collision chamber 43. The ball collision chamber 43 is a type in which the mixed liquid 10 is injected into the liquid from one fine nozzle 431 to accelerate the particles 1a to collide with the ceramic balls 433 and discharge the suspension 20 from the outlet 432. The fine nozzle 431 uses single crystal diamond or the like, and the ceramic ball 433 is made of silicon nitride or the like. Atomization and dispersion are performed by a shearing force when the particle 1a passes through the fine nozzle 431, a cavitation impact force by in-liquid injection, and an impact force when the particle 1a collides against the ceramic ball 433. The fine nozzle 431 of the ball collision chamber 43 can be made larger in nozzle diameter than the fine nozzle 421 of the oblique collision chamber 42, and thus is suitable for the atomization processing of the particle 1a having a large particle diameter.

(本発明に係る懸濁液の製造方法)
図1は、本発明を適用した実施形態の光触媒コーティング液の製造手順を示す製造工程フロー図である。図1のステップS1からステップS9は、上述した本発明に係る銀担持鉱物粒子の製造工程を示しており、図1のステップS10からステップS14は、本発明に係る懸濁液の製造工程を示している。
(Method for producing suspension according to the present invention)
FIG. 1 is a manufacturing process flow chart showing a manufacturing procedure of a photocatalyst coating liquid according to an embodiment to which the present invention is applied. Steps S1 to S9 in FIG. 1 show the above-described production process of the silver-carrying mineral particles according to the present invention, and steps S10 to S14 in FIG. 1 show the production process of the suspension according to the present invention. ing.

本発明に係る懸濁液の製造方法について以下に説明する。図1に示す、本発明に係る懸濁液の製造工程は、粉砕工程(S9)にて粉砕された銀担持鉱物粒子1aに蒸留水を所定の濃度となるように加えた混合液11を湿式微粒化装置100に投入して微粒化及び分散処理を行い銀担持鉱物微粒子1bが均一に分散した第1の懸濁液21とする微粒化・分散工程(S10)と、懸濁液21に紫外線を照射して残留酸化銀を銀に還元する紫外線照射工程(S11)と、別ラインにて、酸化チタン粒子2aに蒸留水を所定の濃度となるように加えた混合液12を湿式微粒化装置100に投入して微粒化及び分散処理を行い酸化チタン微粒子2bが均一に分散した第2の懸濁液22とする微粒化・分散工程(S12)と、第1の懸濁液21と第2の懸濁液22を所定比率で調合し攪拌する調合・攪拌工程(S13)と、第1の懸濁液1bと第2の懸濁液2bを所定比率で調合した第3の懸濁液23を湿式微粒化装置100に投入してさらなる微粒化及び分散処理を行い第4の懸濁液24とする微粒化・分散工程(S14)からなる。   The method for producing a suspension according to the present invention will be described below. In the suspension production process according to the present invention shown in FIG. 1, the mixed liquid 11 obtained by adding distilled water to a predetermined concentration to the silver-carrying mineral particles 1a pulverized in the pulverization step (S9) is wet. A fine atomizing / dispersing step (S10) in which the first suspension 21 in which the silver-carrying mineral fine particles 1b are uniformly dispersed by performing the atomization and dispersion treatment by being charged into the atomization apparatus 100 and the suspension 21 with ultraviolet rays And a wet atomization apparatus for adding a mixed solution 12 in which distilled water is added to titanium oxide particles 2a to a predetermined concentration in a separate line with an ultraviolet irradiation step (S11) in which residual silver oxide is reduced to silver by irradiation A finely pulverizing / dispersing process (S12) for making the second suspension 22 in which the titanium oxide fine particles 2b are uniformly dispersed by performing the pulverization and dispersion treatment to the 100, the first suspension 21 and the second suspension A mixing / stirring step (S) 3) and the third suspension 23 prepared by mixing the first suspension 1b and the second suspension 2b at a predetermined ratio is put into the wet atomization apparatus 100 to perform further atomization and dispersion processing. It consists of the atomization and dispersion | distribution process (S14) used as the 4th suspension liquid 24. FIG.

図1に示す、本発明に係る懸濁液の製造工程は、粉砕工程(S9)にて粉砕された銀担持鉱物粒子1aに蒸留水を所定の濃度となるように加えた混合液11を湿式微粒化装置100に投入して、予め条件出しを行った設定圧力にて微粒化及び分散処理を行い銀担持鉱物微粒子1bが均一に分散した第1の懸濁液21とする(S10)。湿式微粒化装置100にて微粒化及び分散処理を行うことで、銀担持鉱物微粒子1bにOH基が付いて表面改質され、粒子1b同士の斥力(反発力)が保たれ分散状態が安定する。1回の処理で目標の粒子径(メジアン粒径)に達しない場合や、上記表面改質が不十分な場合には、再度原料タンク103へ戻し、微粒化及び分散処理を必要回数まで繰り返す。そして、懸濁液21に紫外線を照射して銀担持鉱物微粒子1bの表層の残留酸化銀を銀に還元する(S11)。   In the suspension production process according to the present invention shown in FIG. 1, the mixed liquid 11 obtained by adding distilled water to a predetermined concentration to the silver-carrying mineral particles 1a pulverized in the pulverization step (S9) is wet. The first suspension 21 in which the silver-carrying mineral fine particles 1b are uniformly dispersed is obtained by introducing into the atomization apparatus 100 and performing atomization and dispersion processing at a preset pressure for which conditions have been determined in advance (S10). By carrying out atomization and dispersion treatment with the wet atomization apparatus 100, the silver-carrying mineral fine particles 1b are surface-modified with OH groups, and the repulsive force (repulsive force) between the particles 1b is maintained and the dispersion state is stabilized. . If the target particle size (median particle size) is not reached in one process, or if the surface modification is insufficient, the process returns to the raw material tank 103 again, and the atomization and dispersion processes are repeated as many times as necessary. Then, the suspension 21 is irradiated with ultraviolet rays to reduce the residual silver oxide on the surface layer of the silver-carrying mineral fine particles 1b to silver (S11).

また別ラインにて、酸化チタン粒子2aに蒸留水を所定の濃度となるように加えた混合液12を湿式微粒化装置100に投入して微粒化及び分散処理を行い酸化チタン微粒子2bが均一に分散した第2の懸濁液22とする(S12)。湿式微粒化装置100にて微粒化及び分散処理を行うことで、酸化チタン微粒子2bにOH基が付いて表面改質され、粒子2b同士の斥力(反発力)が保たれ分散状態が安定する。1回の処理で目標の粒子径(メジアン粒径)に達しない場合や、上記表面改質が不十分な場合には、再度原料タンク103へ戻し、微粒化及び分散処理を必要回数まで繰り返す。   In a separate line, the mixed liquid 12 in which distilled water is added to the titanium oxide particles 2a so as to have a predetermined concentration is introduced into the wet atomization apparatus 100, and atomization and dispersion treatment are performed to make the titanium oxide particles 2b uniform. Dispersed second suspension 22 is obtained (S12). By performing the atomization and dispersion treatment in the wet atomization apparatus 100, the titanium oxide fine particles 2b are surface-modified with OH groups, and the repulsive force (repulsive force) between the particles 2b is maintained and the dispersion state is stabilized. If the target particle size (median particle size) is not reached in one process, or if the surface modification is insufficient, the process returns to the raw material tank 103 again, and the atomization and dispersion processes are repeated as many times as necessary.

次に、第1の懸濁液21と第2の懸濁液22を用途に応じて所定比率で調合し攪拌して第3の懸濁液23とする(S13)。例えば抗菌能力を高めるためには、第1の懸濁液21の比率を高めればよい。例えば光触媒活性度を高めるためには第2の懸濁液22の比率を高めればよい。   Next, the first suspension 21 and the second suspension 22 are prepared at a predetermined ratio according to the application and stirred to obtain a third suspension 23 (S13). For example, in order to increase the antibacterial ability, the ratio of the first suspension 21 may be increased. For example, in order to increase the photocatalytic activity, the ratio of the second suspension 22 may be increased.

そして、第1の懸濁液21と第2の懸濁液22を所定比率で調合した第3の懸濁液23を湿式微粒化装置100に投入してさらなる微粒化及び分散処理を行い第4の懸濁液24とする(S14)。湿式微粒化装置100にて微粒化及び分散処理を行うことで、上述した表面改質効果も期待できる。なお、ステップS14は、懸濁液の条件によって適宜省略することができる。   Then, the third suspension 23 prepared by mixing the first suspension 21 and the second suspension 22 at a predetermined ratio is put into the wet atomization apparatus 100 to perform further atomization and dispersion processing. Suspension 24 (S14). By performing atomization and dispersion treatment with the wet atomization apparatus 100, the above-described surface modification effect can be expected. Step S14 can be omitted as appropriate depending on the conditions of the suspension.

このようにして得られた懸濁液23(24)は、密封容器に入れて長期間(およそ1ヶ月間)放置した状態でも均一な分散状態を維持する。そして、用途に応じて懸濁液23(24)に適宜蒸留水を加えて濃度を調節し光触媒コーティング液25とする。   The suspension 23 (24) thus obtained maintains a uniform dispersion state even when left in a sealed container for a long period (approximately one month). And according to a use, distilled water is added to suspension 23 (24) suitably, a density | concentration is adjusted, and it is set as the photocatalyst coating liquid 25. FIG.

本発明による光触媒コーティング液25は、例えば市販のスプレー容器に入れて抗菌消臭ドライクリーニング用コーティング液26とする。この抗菌消臭ドライクリーニング用コーティング液26を衣料にスプレー塗布して前記銀担持鉱物微粒子1b及び前記酸化チタン微粒子2bを前記衣料の繊維に付着させた光触媒加工衣料とする   The photocatalyst coating liquid 25 according to the present invention is used as an antibacterial deodorant dry cleaning coating liquid 26 in, for example, a commercially available spray container. This antibacterial and deodorant dry cleaning coating solution 26 is spray-applied on clothing to produce a photocatalyst-treated clothing in which the silver-carrying mineral fine particles 1b and the titanium oxide fine particles 2b are adhered to the fibers of the clothing.

(本発明の実施例)
炭酸水素ナトリウム水溶液にスメクタイトを浸漬し、硝酸銀と置換反応させてスメクタイト粒子の表層に重炭酸銀を生成し、アルミナ製の加熱容器に入れて、約450℃の焼成温度で焼成し、ボールミルで粉砕することでスメクタイト粒子の表層に銀を担持させた銀担持鉱物粒子1aを作製した。この銀担持鉱物粒子1aに蒸留水を加えて攪拌し混合液11とした。
(Example of the present invention)
Smectite is immersed in an aqueous solution of sodium hydrogen carbonate, and substituted with silver nitrate to produce silver bicarbonate on the surface layer of the smectite particles, placed in a heating vessel made of alumina, fired at a firing temperature of about 450 ° C., and pulverized with a ball mill As a result, silver-carrying mineral particles 1a in which silver was supported on the surface layer of the smectite particles were produced. Distilled water was added to the silver-carrying mineral particles 1a and stirred to obtain a mixed solution 11.

図7は、混合液11における銀の元素分布状態を観察した図である。銀の分布に塊が見られ、分布が不均一であることがわかる。図12は、微粒化前の銀担持鉱物粒子1aの粒径分布を示す分布図である。銀担持鉱物粒子1aのメジアン粒径は6.138μmである。粒径ばらつきが大きいことがわかる。   FIG. 7 is a diagram observing the element distribution state of silver in the mixed solution 11. Lumps are seen in the silver distribution, indicating that the distribution is non-uniform. FIG. 12 is a distribution diagram showing the particle size distribution of the silver-carrying mineral particles 1a before atomization. The median particle size of the silver-carrying mineral particles 1a is 6.138 μm. It can be seen that the particle size variation is large.

混合液11を、湿式微粒化装置100として株式会社スギノマシン製のスターバースト装置(装置商品名)に投入して微粒化及び分散処理を行い銀担持鉱物微粒子1bが均一に分散した第1の懸濁液21とした。上記スターバースト装置の条件は、圧力220MPa、ノズル径φ0.12mmのシングルノズルチャンバーを用いて、チャンバーノズルから前記混合液を所定の圧力で高圧噴射する作業を5回繰り返した。そして得られた懸濁液21に紫外線を照射して残留酸化銀を銀に還元した。   The mixed liquid 11 is charged into a starburst apparatus (product name) manufactured by Sugino Machine Co., Ltd. as a wet atomization apparatus 100, and is subjected to atomization and dispersion treatment. It was set as the turbid liquid 21. The conditions of the starburst apparatus were such that a single nozzle chamber having a pressure of 220 MPa and a nozzle diameter of φ0.12 mm was used, and the operation of high-pressure injection of the mixed liquid from the chamber nozzle at a predetermined pressure was repeated five times. The resulting suspension 21 was irradiated with ultraviolet rays to reduce the residual silver oxide to silver.

図8は、懸濁液21における銀元素の分布状態を観察した図である。銀の分布が均一であることがわかる。図13は、微粒化後の銀担持鉱物微粒子1bの粒径分布を示す分布図である。銀担持鉱物微粒子1bのメジアン粒径は0.896μmである。粒径ばらつきが小さいことがわかる。図9は、上記銀担持鉱物粒子1bの表面状態を観察した図である。数十nmの微粒子が揃っていることがわかる。   FIG. 8 is a diagram observing the distribution state of the silver element in the suspension 21. It can be seen that the distribution of silver is uniform. FIG. 13 is a distribution diagram showing the particle size distribution of the silver-carrying mineral fine particles 1b after atomization. The median particle diameter of the silver-carrying mineral fine particles 1b is 0.896 μm. It can be seen that the particle size variation is small. FIG. 9 is a view of the surface state of the silver-carrying mineral particles 1b. It can be seen that fine particles of several tens of nm are aligned.

別ラインにて、酸化チタン粒子2a(日本アエロジル株式会社製の商品名P25)に蒸留水を加えて攪拌し混合液12とした。図14は、酸化チタン粒子2aの粒径分布を示す分布図である。酸化チタン粒子2aのメジアン粒径は2.567μmである。粒径ばらつきが大きいことがわかる。   In another line, distilled water was added to the titanium oxide particles 2a (trade name P25 manufactured by Nippon Aerosil Co., Ltd.) and stirred to obtain a mixed solution 12. FIG. 14 is a distribution diagram showing the particle size distribution of the titanium oxide particles 2a. The median particle size of the titanium oxide particles 2a is 2.567 μm. It can be seen that the particle size variation is large.

混合液12を、湿式微粒化装置100として株式会社スギノマシン製のスターバースト装置(装置商品名)に投入して微粒化及び分散処理を行い酸化チタン微粒子2bが均一に分散した第2の懸濁液22とした。上記スターバースト装置の条件は、圧力220MPa、ノズル径φ0.12mmのシングルノズルチャンバーを用いて、チャンバーノズルから前記混合液を所定の圧力で高圧噴射する作業を5回繰り返した。   A second suspension in which the titanium oxide fine particles 2b are uniformly dispersed by introducing the mixed liquid 12 into a starburst device (product name) manufactured by Sugino Machine Co., Ltd. as a wet atomizer 100 and performing atomization and dispersion treatment. It was set as the liquid 22. The conditions of the starburst apparatus were such that a single nozzle chamber having a pressure of 220 MPa and a nozzle diameter of φ0.12 mm was used, and the operation of high-pressure injection of the mixed liquid from the chamber nozzle at a predetermined pressure was repeated five times.

図15は、微粒化後の酸化チタン微粒子2bの粒径分布を示す分布図である。酸化チタン微粒子2bのメジアン粒径は0.096μmである。粒径ばらつきが小さいことがわかる。   FIG. 15 is a distribution diagram showing the particle size distribution of the fine titanium oxide particles 2b after atomization. The median particle size of the titanium oxide fine particles 2b is 0.096 μm. It can be seen that the particle size variation is small.

そして、第1の懸濁液21と第2の懸濁液22を所定比率で調合した第3の懸濁液23を、湿式微粒化装置100として株式会社スギノマシン製のスターバースト装置(装置商品名)に投入して微粒化及び分散処理を行い第4の懸濁液24とした。上記スターバースト装置の条件は、圧力220MPa、ノズル径φ0.12mmのシングルノズルチャンバーを用いて、チャンバーノズルから前記混合液を所定の圧力で高圧噴射する作業を5回繰り返した。図10は、懸濁液24におけるチタン元素の分布状態を観察した図である。酸化チタンの分布が均一であることがわかる。図11は、懸濁液24における銀元素の分布状態を観察した図である。銀の分布が均一であることがわかる。   Then, the third suspension 23 prepared by mixing the first suspension 21 and the second suspension 22 at a predetermined ratio is used as a wet atomization device 100 as a starburst device manufactured by Sugino Machine Co., Ltd. The fourth suspension 24 was prepared by performing atomization and dispersion treatment. The conditions of the starburst apparatus were such that a single nozzle chamber having a pressure of 220 MPa and a nozzle diameter of φ0.12 mm was used, and the operation of high-pressure injection of the mixed liquid from the chamber nozzle at a predetermined pressure was repeated five times. FIG. 10 is a diagram observing the distribution state of the titanium element in the suspension 24. It can be seen that the distribution of titanium oxide is uniform. FIG. 11 is a diagram observing the distribution state of the silver element in the suspension 24. It can be seen that the distribution of silver is uniform.

このようにして得られた懸濁液24を、ガラス密封容器に入れて1ヶ月間放置したが、目視確認により沈殿物や凝集物がないことが確認できたので、均一な分散状態が維持されていると考えられる。懸濁液24に適宜蒸留水を加えて濃度を調節し光触媒コーティング液25とした。この光触媒コーティング液25を市販のスプレー容器に入れて抗菌消臭ドライクリーニング用コーティング液26とした。   The suspension 24 thus obtained was placed in a glass sealed container and allowed to stand for one month. However, since it was confirmed by visual confirmation that there was no precipitate or aggregate, a uniform dispersion state was maintained. It is thought that. Distilled water was appropriately added to the suspension 24 to adjust the concentration to obtain a photocatalyst coating solution 25. This photocatalyst coating solution 25 was put in a commercially available spray container to prepare an antibacterial deodorant dry cleaning coating solution 26.

(光触媒性能評価試験)
上記抗菌消臭ドライクリーニング用コーティング液26を白布にスプレー塗布しコートした。図16は、上記抗菌消臭ドライクリーニング用コーティング液26を白布にスプレー塗布した状態を観察した図である。目視でコート後変化が認められない程度の量を均一に白布に塗布し、試料No.1と試料No.2を作成した。そして、紫外線を白布に照射して、吸光度測定器を用いて光触媒によるメチレンブルーの経時的分解を測定した。メチレンブルー分解試験を行った試験結果を図17に示す。
(Photocatalyst performance evaluation test)
The antibacterial and deodorant dry cleaning coating liquid 26 was spray-coated on a white cloth and coated. FIG. 16 is a view observing a state in which the antibacterial and deodorant dry cleaning coating liquid 26 is sprayed on a white cloth. Apply an amount to the white cloth so that no change is observed after coating. 1 and sample no. 2 was created. Then, the white cloth was irradiated with ultraviolet rays, and the time-dependent degradation of methylene blue by the photocatalyst was measured using an absorbance meter. The test results of the methylene blue decomposition test are shown in FIG.

図17の横軸は紫外線照射時間(UV照射時間)を表し、縦軸はメチレンブルー濃度(MB濃度)を表す。図17に示す測定グラフの傾斜から、微量の二酸化チタンでも有機物分解が起こっていることが確かめられた。分解活性指数は19.74 nmol/L/min.であった。   The horizontal axis in FIG. 17 represents the ultraviolet irradiation time (UV irradiation time), and the vertical axis represents the methylene blue concentration (MB concentration). From the slope of the measurement graph shown in FIG. 17, it was confirmed that organic matter decomposition occurred even with a small amount of titanium dioxide. The degradation activity index was 19.74 nmol / L / min. Met.

上記試料No.1と試料No.2を、財団法人日本紡績協会に提出し、抗菌性試験を実施した。試験菌株は黄色ぶどう球菌ATCC6538P、試験方法はJIS L1902:2008定量試験(菌液吸収法)による。試験結果を表1に示す。   Sample No. above. 1 and sample no. 2 was submitted to the Japan Spinning Association and an antibacterial test was conducted. The test strain is Staphylococcus aureus ATCC 6538P, and the test method is based on JIS L1902: 2008 quantitative test (bacterial fluid absorption method). The test results are shown in Table 1.

Figure 0004542601
Figure 0004542601

JIS L1902によれば、抗菌と呼ぶためには黄色ぶどう球菌の静菌活性値が2.0以上であると規定されている。表1に示す試料No.1と試料No.2の静菌活性値は、それぞれ5.2以上、5.6以上となっており、抗菌性能が十分あると判断する。   According to JIS L1902, it is defined that the bacteriostatic activity value of Staphylococcus aureus is 2.0 or more in order to call it antibacterial. Sample No. shown in Table 1 1 and sample no. The bacteriostatic activity values of 2 are 5.2 or more and 5.6 or more, respectively, and it is judged that the antibacterial performance is sufficient.

以上、本発明は、上述した実施の形態に限定されるものではない。上記粘土鉱物としてシリカゲルを使用した場合でも、良好な実験結果が得られた。このように、本発明は、その趣旨を逸脱しない範囲で適宜変更が可能であることは言うまでもない。   As described above, the present invention is not limited to the embodiment described above. Even when silica gel was used as the clay mineral, good experimental results were obtained. Thus, it goes without saying that the present invention can be modified as appropriate without departing from the spirit of the present invention.

10、11、12 混合液(原料)、
20、21、22、23、24 懸濁液、
25 光触媒コーティング液、
1a 微粒化及び分散処理前の銀担持鉱物粒子(粒子)、
1b 微粒化及び分散処理後の銀担持鉱物粒子(微粒子)、
2a 微粒化及び分散処理前の酸化チタン粒子、
2b 微粒化及び分散処理後の酸化チタン粒子、
40 衝突チャンバー、
100 湿式微粒化装置

10, 11, 12 Mixed liquid (raw material),
20, 21, 22, 23, 24 suspension,
25 photocatalyst coating solution,
1a Silver-carrying mineral particles (particles) before atomization and dispersion treatment,
1b Silver-carrying mineral particles (fine particles) after atomization and dispersion treatment,
2a Titanium oxide particles before atomization and dispersion treatment,
2b Titanium oxide particles after atomization and dispersion treatment,
40 collision chamber,
100 Wet atomizer

Claims (7)

カオリナイト、ハロイサイト、スメクタイト、ベントナイト、タルク、雲母、バーミキュライト、緑泥石、モンモリロナイト、活性白土のいずれか1種、若しくは2種以上からなる粘土鉱物粒子に、炭酸水素ナトリウム水溶液又は炭酸ナトリウム水溶液を浸み込ませ
硝酸銀と置換反応させて前記粘土鉱物粒子の表層に銀化合物を生成し、これを焼成温度が400から500℃で焼成し粉砕することで前記粘土鉱物粒子の表層に銀を担持させた銀担持鉱物粒子とし、前記銀担持鉱物粒子と酸化チタン粒子をそれぞれ微粒化手段によって微粒化するとともに分散手段によって水に均一に分散させて前記銀担持鉱物粒子と酸化チタン粒子と水との懸濁液を製造することを特徴とする光触媒コーティング液の製造方法。
Soak sodium bicarbonate or sodium carbonate in clay mineral particles of kaolinite, halloysite, smectite, bentonite, talc, mica, vermiculite, chlorite, montmorillonite, activated clay, or two or more types. was written,
Silver nitrate and by substitution reaction to produce a silver compound on the surface layer of the clay mineral particles, supported silver minerals silver supported on the surface of the clay mineral particles by firing temperature which is fired pulverized at 500 ° C. 400 A suspension of the silver-carrying mineral particles, titanium oxide particles, and water is prepared by atomizing the silver-carrying mineral particles and titanium oxide particles by the atomization means and uniformly dispersing in water by the dispersion means. A method for producing a photocatalyst coating liquid, comprising:
前記懸濁液に紫外線を照射することを特徴とする請求項1記載の光触媒コーティング液の製造方法。   The method for producing a photocatalyst coating liquid according to claim 1, wherein the suspension is irradiated with ultraviolet rays. 前記微粒化手段及び前記分散手段を湿式微粒化装置が兼用しており、前記銀担持鉱物粒子と水との混合液と、前記酸化チタン粒子と水との混合液を、それぞれ前記湿式微粒化装置のチャンバーノズルからの圧力を30から245MPaの間で調整し高圧噴射することで微粒化するとともに水に均一に分散させることを特徴とする請求項1記載の光触媒コーティング液の製造方法。   The wet atomization device serves as both the atomization means and the dispersion means, and the wet atomization device is configured to mix the mixed liquid of the silver-carrying mineral particles and water and the mixed solution of the titanium oxide particles and water, respectively. The method for producing a photocatalyst coating liquid according to claim 1, wherein the pressure from the chamber nozzle is adjusted between 30 and 245 MPa and sprayed at a high pressure to atomize and uniformly disperse in water. 前記銀担持鉱物粒子と水との混合液を前記湿式微粒化装置によって第1の懸濁液とし、前記酸化チタン粒子と水との混合液を前記湿式微粒化装置によって第2の懸濁液とし、前記銀担持鉱物粒子のメジアン粒径と前記酸化チタン粒子のメジアン粒径とを異ならせ、前記第1の懸濁液と第2の懸濁液を所定比率で調合することを特徴とする請求項3記載の光触媒コーティング液の製造方法。   The liquid mixture of the silver-carrying mineral particles and water is used as the first suspension by the wet atomization apparatus, and the liquid mixture of the titanium oxide particles and water is used as the second suspension by the wet atomization apparatus. The first suspension and the second suspension are mixed at a predetermined ratio by making the median particle size of the silver-carrying mineral particles different from the median particle size of the titanium oxide particles. Item 4. A method for producing a photocatalyst coating liquid according to Item 3. 前記銀担持鉱物粒子と前記酸化チタン粒子のメジアン粒径が7から900nmの範囲であり、前記銀担持鉱物粒子のメジアン粒径が前記酸化チタン粒子のメジアン粒径の2倍から10倍の範囲となるよう前記湿式微粒化装置のチャンバーノズルからの圧力を調整し高圧噴射する作業を1回行うか又は複数回繰り返すことを特徴とする請求項4記載の光触媒コーティング液の製造方法。   The median particle size of the silver-carrying mineral particles and the titanium oxide particles is in the range of 7 to 900 nm, and the median particle size of the silver-carrying mineral particles is in the range of 2 to 10 times the median particle size of the titanium oxide particles. The method for producing a photocatalyst coating liquid according to claim 4, wherein the operation of adjusting the pressure from the chamber nozzle of the wet atomization apparatus and performing high-pressure injection is performed once or repeated a plurality of times. 請求項1ないしのうちいずれか1項記載の光触媒コーティング液の製造方法により製造された光触媒コーティング液からなる抗菌消臭ドライクリーニング用コーティング液。 A coating liquid for antibacterial deodorizing and dry cleaning comprising a photocatalytic coating liquid produced by the method for producing a photocatalytic coating liquid according to any one of claims 1 to 5 . 請求項記載の抗菌消臭ドライクリーニング用コーティング液を衣料にスプレー塗布して前記銀担持鉱物粒子及び前記酸化チタン粒子を前記衣料の繊維に付着させた光触媒加工衣料。
A photocatalyst-processed garment in which the antibacterial and deodorant dry cleaning coating liquid according to claim 6 is spray-applied to the garment to adhere the silver-carrying mineral particles and the titanium oxide particles to the fibers of the garment.
JP2009018829A 2009-01-29 2009-01-29 Photocatalyst coating liquid manufacturing method, antibacterial deodorant dry cleaning coating liquid, and photocatalyst-processed clothing. Expired - Fee Related JP4542601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009018829A JP4542601B2 (en) 2009-01-29 2009-01-29 Photocatalyst coating liquid manufacturing method, antibacterial deodorant dry cleaning coating liquid, and photocatalyst-processed clothing.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009018829A JP4542601B2 (en) 2009-01-29 2009-01-29 Photocatalyst coating liquid manufacturing method, antibacterial deodorant dry cleaning coating liquid, and photocatalyst-processed clothing.

Publications (2)

Publication Number Publication Date
JP2010172831A JP2010172831A (en) 2010-08-12
JP4542601B2 true JP4542601B2 (en) 2010-09-15

Family

ID=42704292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009018829A Expired - Fee Related JP4542601B2 (en) 2009-01-29 2009-01-29 Photocatalyst coating liquid manufacturing method, antibacterial deodorant dry cleaning coating liquid, and photocatalyst-processed clothing.

Country Status (1)

Country Link
JP (1) JP4542601B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9144237B2 (en) 2012-08-10 2015-09-29 Tsukasa Sakurada Sterilizing and deodorizing agents, their method of manufacture and uses

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016002384A (en) * 2014-06-18 2016-01-12 n−tech株式会社 Antibacterial/deodorant composition
JP6632286B2 (en) * 2015-09-18 2020-01-22 アシザワ・ファインテック株式会社 Method for lowering thermal expansion coefficient of resin molding
JP7064751B2 (en) * 2017-02-27 2022-05-11 株式会社イリス Titanium oxide coating method
JP6953965B2 (en) 2017-09-29 2021-10-27 信越化学工業株式会社 A member having a photocatalyst / alloy fine particle dispersion having antibacterial / antifungal properties, a method for producing the same, and a photocatalyst / alloy thin film on the surface.
JP7423840B1 (en) 2023-03-22 2024-01-29 株式会社アデランス Manufacturing method of photocatalyst coating agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061310A (en) * 1998-08-18 2000-02-29 Nisshin Steel Co Ltd NOx DECOMPOSING/REMOVING MATERIAL, DECOMPOSING/REMOVING BODY, AND ITS PRODUCTION
JP2002151000A (en) * 2000-11-13 2002-05-24 Hitachi Ltd Fluorescent lamp having photocatalyst antibacterial film and its manufacturing method
JP2004346201A (en) * 2003-05-22 2004-12-09 Toto Ltd Aqueous coating composition, antibacterial member and method for forming coating film
JP2006077367A (en) * 2004-09-10 2006-03-23 Kyodo Printing Co Ltd Deodorant coating and deodorant decorative paper
JP2006089380A (en) * 2004-09-21 2006-04-06 Catalysts & Chem Ind Co Ltd Method for producing antibacterial and deodorizing colloidal solution of titanium oxide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279885A (en) * 1997-04-08 1998-10-20 Nitsupan Kenkyusho:Kk Functional coating composition
JPH10323569A (en) * 1997-05-27 1998-12-08 Kunio Kitajima Photocatalytic ceramic material and its production
JPH11323192A (en) * 1998-05-15 1999-11-26 Mitsubishi Materials Corp Photocatalytic membrane having antistatic effect and photocatalytic coating for forming same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061310A (en) * 1998-08-18 2000-02-29 Nisshin Steel Co Ltd NOx DECOMPOSING/REMOVING MATERIAL, DECOMPOSING/REMOVING BODY, AND ITS PRODUCTION
JP2002151000A (en) * 2000-11-13 2002-05-24 Hitachi Ltd Fluorescent lamp having photocatalyst antibacterial film and its manufacturing method
JP2004346201A (en) * 2003-05-22 2004-12-09 Toto Ltd Aqueous coating composition, antibacterial member and method for forming coating film
JP2006077367A (en) * 2004-09-10 2006-03-23 Kyodo Printing Co Ltd Deodorant coating and deodorant decorative paper
JP2006089380A (en) * 2004-09-21 2006-04-06 Catalysts & Chem Ind Co Ltd Method for producing antibacterial and deodorizing colloidal solution of titanium oxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9144237B2 (en) 2012-08-10 2015-09-29 Tsukasa Sakurada Sterilizing and deodorizing agents, their method of manufacture and uses
US10051859B2 (en) 2012-08-10 2018-08-21 Tsukasa Sakurada Sterilizing agents, their method of manufacture and uses

Also Published As

Publication number Publication date
JP2010172831A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP4542601B2 (en) Photocatalyst coating liquid manufacturing method, antibacterial deodorant dry cleaning coating liquid, and photocatalyst-processed clothing.
Siddiqui et al. Nigella sativa seed based nanocomposite-MnO2/BC: An antibacterial material for photocatalytic degradation, and adsorptive removal of Methylene blue from water
Khan et al. Adsorptive scavenging of cationic dyes from aquatic phase by H3PO4 activated Indian jujube (Ziziphus mauritiana) seeds based activated carbon: Isotherm, kinetics, and thermodynamic study
Nabil et al. Polyfunctional cotton fabrics with catalytic activity and antibacterial capacity
JP7425497B2 (en) Methods for producing materials that have a bactericidal effect, methods for producing products that have a bactericidal effect, and agents that have a bactericidal and deodorizing effect
Abdulla et al. Silver based hybrid nanocomposite: A novel antibacterial material for water cleansing
Attia et al. Synthesis of effective multifunctional textile based on silica nanoparticles
Ahmad et al. Enhanced sequestration of methylene blue and crystal violet dye onto green synthesis of pectin modified hybrid (Pect/AILP-Kal) nanocomposite
KR101935499B1 (en) Composition and method to form a self decontaminating surface
Sriwong et al. Rubber sheet strewn with TiO2 particles: photocatalytic activity and recyclability
Yu et al. Remarkably improvement in antibacterial activity by synergistic effect in n-Cu@ T-ZnO nanocomposites
KR20040039431A (en) Cleaning agent, antibacterial material, environment clarifying material, functional adsorbent
Negarestani et al. Design and preparation magnetic bio-surfactant rhamnolipid-layered double hydroxide nanocomposite as an efficient and recyclable adsorbent for the removal of Rifampin from aqueous solution
CN101014371A (en) Air revitilization methods and systems
CN105593429A (en) Antimycotic, antibiotic, antiviral, and preservative-free non-woven fabric product, diaper, wet tissue, and method for manufacturing antimycotic, antibiotic, antiviral, and preservative-free non-woven fabric product
Kumar et al. Durable antibacterial cotton fabric via spray-coating of photocatalytic MoS2
Baysal et al. Nanofibrous MgO composites: Structures, properties, and applications
Zhai et al. Viscosity simulation of glass microfiber and an unusual air filter with high-efficiency antibacterial functionality enabled by ZnO/graphene-modified glass microfiber
CN104436860B (en) Copper fiber filter screen for load photocatalyst and manufacturing method thereof
JP2017047135A (en) Environment cleaning agent, environment cleaning method, and production method for environment cleaning agent
KR100460539B1 (en) Functional ceramic particle colloid, Method for manufacturing thereof, and Article manufactured thereby
JP2003212754A (en) Bathing agent composition
KR101925796B1 (en) Eco-friendly converged composition for thin-layer dot coating of synthetic chemical fabric
Perelshtein et al. Making the hospital a safer place by the sonochemical coating of textiles by antibacterial nanoparticles
JP2021021322A (en) Composite base material and method of manufacturing the same, method of manufacturing composite building material panel, and coating apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100625

R150 Certificate of patent or registration of utility model

Ref document number: 4542601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160702

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees