JP4542075B2 - Composition comprising polymer compound having specific light characteristics and electron accepting compound or electron donating compound, ultraviolet transmitting material and light-resistant polymer material comprising the composition, and charge transport using the composition material - Google Patents

Composition comprising polymer compound having specific light characteristics and electron accepting compound or electron donating compound, ultraviolet transmitting material and light-resistant polymer material comprising the composition, and charge transport using the composition material Download PDF

Info

Publication number
JP4542075B2
JP4542075B2 JP2006259550A JP2006259550A JP4542075B2 JP 4542075 B2 JP4542075 B2 JP 4542075B2 JP 2006259550 A JP2006259550 A JP 2006259550A JP 2006259550 A JP2006259550 A JP 2006259550A JP 4542075 B2 JP4542075 B2 JP 4542075B2
Authority
JP
Japan
Prior art keywords
compound
polymer
group
aromatic
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006259550A
Other languages
Japanese (ja)
Other versions
JP2006348311A (en
Inventor
環 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2006259550A priority Critical patent/JP4542075B2/en
Publication of JP2006348311A publication Critical patent/JP2006348311A/en
Application granted granted Critical
Publication of JP4542075B2 publication Critical patent/JP4542075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、特異な光特性を有する高分子化合物と、電子受容性化合物又は電子供与性化合物からなる組成物、該組成物からなる紫外線透過材料及び耐光性高分子材料、並びに、該組成物を用いた電荷輸送材料に関し、特に、側鎖にC、H及び/又はC、H、X(Xはヘテロ原子である)からなる芳香族性を有する環状部分(以下芳香環とする)を含む官能基を有し、スタック構造を取って淡色効果を示したり、効率の良いエキシマー発光を可能とする高分子化合物と、電子受容性化合物又は電子供与性化合物からなる組成物、該組成物からなる紫外線透過材料及び耐光性高分子材料、並びに、該組成物を用いた電荷輸送材料に関する。   The present invention relates to a composition comprising a polymer compound having specific light characteristics, an electron-accepting compound or an electron-donating compound, an ultraviolet transmitting material and a light-resistant polymer material comprising the composition, and the composition. Regarding the charge transport material used, in particular, a functional group containing an aromatic cyclic part (hereinafter referred to as an aromatic ring) consisting of C, H and / or C, H, X (X is a heteroatom) in the side chain. A composition comprising a polymer compound having a group and exhibiting a light-color effect by taking a stack structure and enabling efficient excimer light emission, and an electron-accepting compound or an electron-donating compound, and an ultraviolet ray comprising the composition The present invention relates to a transmissive material, a light-resistant polymer material, and a charge transport material using the composition.

DNAの塩基を構成する複素環は紫外線の光(260mm付近)を強く吸収する一方、2重らせんの中では塩基の複素環は積み重なり(スタック構造)、光の吸収が減少するという淡色効果が知られている(非特許文献1)。しかしながらこのような高分子材料の合成は困難であり、また、光特性を制御する事も困難である。例えば、特許文献1に記載されているように、トリフェニルメチル基をエステル基として持つメタクリル酸エステルを重合することによって、側鎖が芳香環を持つ官能基であるポリマーを得ることができることが知られていた。しかしながら、この場合には側鎖の官能基における芳香環同士が互いに平行となりえず、十分に重なり合った構造を取ることが困難であるために、光特性を発現させることは困難であった。
William Rhodea,JACS,83,3690(1961) 特許第2659245号
The heterocycles that make up the DNA base strongly absorb ultraviolet light (around 260mm), while in the double helix, the base heterocycles are stacked (stacked structure), and the light-colored effect of reducing light absorption is known. (Non-Patent Document 1). However, it is difficult to synthesize such a polymer material, and it is also difficult to control optical characteristics. For example, as described in Patent Document 1, it is known that a polymer whose side chain is a functional group having an aromatic ring can be obtained by polymerizing a methacrylic acid ester having a triphenylmethyl group as an ester group. It was done. However, in this case, the aromatic rings in the functional group of the side chain cannot be parallel to each other, and it is difficult to obtain a sufficiently overlapping structure, so that it is difficult to express optical characteristics.
William Rhodea, JACS, 83, 3690 (1961) Patent No. 2659245

また、ポリ(N-ビニルカルバゾール)は、側鎖が芳香環を持つ官能基であるポリマーであり、フィルム状態ではカルバゾールエキシマーに由来する青色発光を示すことが知られていた(非特許文献2および非特許文献3)。しかしながら、このポリマーの側鎖にある官能基が安定したスタック構造を取ることができないため、効率の良いエキシマー発光は起こらない。
また、ジベンゾフルベンが重合することは知られているが、得られる高分子は溶解性や他の高分子との相溶性が劣る上、その詳細な光特性は知られていない(非特許文献4)。
Yokoyama,M.Macromolecules,8,(1975),101 Itaya,A, Chem Phys lett 138,(1987),231 中野、第48回高分子討論会予稿集、48(7),1279(1999)
Poly (N-vinylcarbazole) is a polymer whose side chain is a functional group having an aromatic ring, and is known to exhibit blue light emission derived from a carbazole excimer in a film state (Non-patent Documents 2 and Non-patent document 3). However, since the functional group in the side chain of this polymer cannot take a stable stack structure, efficient excimer emission does not occur.
Further, although it is known that dibenzofulvene is polymerized, the obtained polymer is inferior in solubility and compatibility with other polymers, and its detailed optical properties are not known (Non-patent Document 4). ).
Yokoyama, M. Macromolecules, 8, (1975), 101 Itaya, A, Chem Phys lett 138, (1987), 231 Nakano, Proceedings of the 48th Polymer Symposium, 48 (7), 1279 (1999)

本発明者は、ジベンゾフルベンを含む高分子の光特性について研究した結果、置換基を有するジベンゾフルベンを使用した場合に得られる高分子は溶解性が改善されること、及び、これらの高分子化合物に電子受容性化合物又は電子供与性化合物を添加した組成物が、耐光性高分子材料、紫外線透過材料、電界発光材料、レーザー発光材料、或いは、電荷輸送材料となり得ることを見出し、本発明に到達した。   As a result of studying the optical properties of polymers containing dibenzofulvene, the present inventor has found that the polymer obtained when dibenzofulvene having a substituent is improved in solubility, and these polymer compounds The present inventors have found that a composition in which an electron-accepting compound or an electron-donating compound is added to can be a light-resistant polymer material, an ultraviolet light transmitting material, an electroluminescent material, a laser light emitting material, or a charge transport material. did.

従って本発明の第1の目的は、安定なスタック構造を取って大きな淡色効果を示す高分子化合物に、電子受容性化合物又は電子供与性化合物を添加してなる組成物を提供することにある。
本発明の第2の目的は、安定なスタック構造を取って大きな淡色効果を示す高分子化合物に、電子受容性化合物又は電子供与性化合物を添加してなる、紫外線透過材料を提供することにある。
本発明の第3の目的は、安定なスタック構造を取って大きな淡色効果を示す高分子化合物に、電子受容性化合物又は電子供与性化合物を添加してなる、耐光性高分子材料を提供することにある。
更に本発明の第4の目的は、高い電荷移動度を有する電荷輸送材料を提供することにある。
Accordingly, a first object of the present invention is to provide a composition obtained by adding an electron-accepting compound or an electron-donating compound to a polymer compound having a stable stack structure and showing a large light color effect.
A second object of the present invention is to provide an ultraviolet transmitting material obtained by adding an electron-accepting compound or an electron-donating compound to a polymer compound that has a stable stack structure and exhibits a large light color effect. .
A third object of the present invention is to provide a light-resistant polymer material obtained by adding an electron-accepting compound or an electron-donating compound to a polymer compound that has a stable stack structure and exhibits a large light color effect. It is in.
A fourth object of the present invention is to provide a charge transport material having high charge mobility.

本発明の上記の諸目的は、下記構造式1で表される、側鎖にCとH及び/又はC、H及びヘテロ原子からなる芳香環を含む官能基を有すると共に数平均分子量が250〜1,000,000の高分子化合物であって、前記芳香環に起因するモル吸光係数が、前記芳香環を導入する為に用いられた重合性単量体における該芳香環に起因するモル吸光係数より30%以上小さいことを特徴とする高分子化合物に、電子受容性化合物又は電子供与性化合物を添加してなる組成物、該組成物からなる紫外線透過材料及び耐光性高分子材料、並びに、該組成物を用いた電荷輸送材料によって達成された。   The above-mentioned objects of the present invention include a functional group containing an aromatic ring composed of C and H and / or C, H and a hetero atom in a side chain represented by the following structural formula 1, and a number average molecular weight of 250 to 1,000,000 high molecular compound, wherein the molar extinction coefficient attributable to the aromatic ring is 30% or more than the molar extinction coefficient attributable to the aromatic ring in the polymerizable monomer used to introduce the aromatic ring A composition obtained by adding an electron-accepting compound or an electron-donating compound to a polymer compound characterized by being small, an ultraviolet-transmitting material and a light-resistant polymer material comprising the composition, and the composition Achieved by the charge transport material.

構造式1

Figure 0004542075
但し、Arは芳香環、R1及びR2は置換基、R5及びR6は水素原子、アルキル基、芳香族基、-CN及びエステル基の中から選択される基、Xはなし、-CH2-、-CH2-CH2-、-CH=CH-、-C(=O)-、及びヘテロ原子の中から選択される何れかであり、mは2以上の整数である。 Structural formula 1
Figure 0004542075
Where Ar is an aromatic ring, R 1 and R 2 are substituents, R 5 and R 6 are hydrogen atoms, alkyl groups, aromatic groups, groups selected from —CN and ester groups, X is none, —CH 2- , -CH 2 -CH 2- , -CH = CH-, -C (= O)-, or a hetero atom, and m is an integer of 2 or more.

本発明の高分子化合物の数平均分子量は250〜10,000であることが好ましく、特に250〜5,000であることが好ましい。また、芳香環に起因する高分子化合物のモル吸光係数は、重合性単量体における芳香環に起因するモル吸光係数より40%以上小さいことが好ましい。   The number average molecular weight of the polymer compound of the present invention is preferably 250 to 10,000, particularly preferably 250 to 5,000. The molar extinction coefficient of the polymer compound derived from the aromatic ring is preferably 40% or more smaller than the molar extinction coefficient attributable to the aromatic ring in the polymerizable monomer.

本発明における、C、Hからなる芳香環を含む官能基とは、フェニル基やナフチル基等の1つもしくは複数のベンゼン環からなる官能基、フルオレンのような環状炭化水素基に芳香環がついた構造を持つ官能基、もしくは、これらの芳香環に置換基を導入した官能基のことであり、C、H、Xからなる芳香環を含む官能基とは、上記C、Hからなる芳香環や環状炭化水素基の代りにC、H及びヘテロ原子からなる芳香環が導入されている場合である。ヘテロ原子は、直接環を形成する原子として入っていても、環と共役系を形成するように、環の置換基等として導入されていても良い。本発明においては、上記C、Hからなる芳香環とC、H及びヘテロ原子からなる芳香環が同時に含まれていても良い。何れにしても、本発明の高分子の状態で芳香環が互いに積み重なるスタック構造を取り易くなることが好ましい。上記の観点から、本発明において特に好ましい芳香環はフルオレン環である。このフルオレン環には適宜置換基を導入することができる。尚、ここでスタック構造とは、側鎖の官能基中の芳香環同士が積層している構造を意味する。   In the present invention, the functional group containing an aromatic ring composed of C and H is a functional group composed of one or a plurality of benzene rings such as a phenyl group and a naphthyl group, and an aromatic ring is attached to a cyclic hydrocarbon group such as fluorene. Or a functional group having a substituent introduced into these aromatic rings, and a functional group containing an aromatic ring consisting of C, H, and X is an aromatic ring consisting of the above C and H Or an aromatic ring composed of C, H and a heteroatom is introduced instead of a cyclic hydrocarbon group. Heteroatoms may be introduced directly as atoms forming a ring, or may be introduced as a ring substituent or the like so as to form a conjugated system with the ring. In the present invention, the aromatic ring composed of C and H and the aromatic ring composed of C, H and a hetero atom may be contained at the same time. In any case, it is preferable that it becomes easy to take a stack structure in which aromatic rings are stacked in the polymer state of the present invention. From the above viewpoint, a particularly preferred aromatic ring in the present invention is a fluorene ring. A substituent can be appropriately introduced into the fluorene ring. Here, the stack structure means a structure in which aromatic rings in the functional group of the side chain are laminated.

このように芳香環同士が重なり合っている時は、当然両芳香環同士が相互作用する。重なり合う芳香環の面間距離が小さい程上記相互作用は大きくなり、高分子化合物としての光特性の特異性も増す。
例えば、平面構造を取る芳香環の場合には、その面間距離が0.5nm以下になった場合にお互いの電子同士が十分に相互作用することができる。0.5nm以上では、その芳香環間でのエネルギー移動や電子移動の効率が悪くなる。従って、本発明の高分子化合物における芳香環同士の面間距離は0.5nm以下であることが好ましい。
When the aromatic rings are overlapped with each other as described above, the aromatic rings naturally interact with each other. The smaller the distance between the surfaces of the overlapping aromatic rings, the larger the interaction, and the more specific optical properties as a polymer compound.
For example, in the case of an aromatic ring having a planar structure, the electrons can sufficiently interact with each other when the inter-plane distance is 0.5 nm or less. If it is 0.5 nm or more, the efficiency of energy transfer and electron transfer between the aromatic rings becomes poor. Therefore, the inter-surface distance between the aromatic rings in the polymer compound of the present invention is preferably 0.5 nm or less.

上記芳香環の面間距離は、高分子化合物の重合度にも依存する。特にエキシマー発光特性を持たせるという観点から、重合度は4以上であることが好ましい。重合度が4以下では、エキシマー発光以外に重合性単量体と同じ発光波長に発光を示すことがある。従って、本発明の高分子化合物には、通常のポリマーの他にオリゴマーも包含される。このような重合度を考慮すると、本発明の高分子化合物の分子量は250〜1,000,000であることが必要であるが、製造容易性も加味すると250〜10,000であることが好ましく、高分子化合物としての取り扱い容易性や発光特性をも考慮すると250〜5,000であることが好ましい。   The distance between the surfaces of the aromatic rings also depends on the degree of polymerization of the polymer compound. In particular, the degree of polymerization is preferably 4 or more from the viewpoint of providing excimer emission characteristics. When the degree of polymerization is 4 or less, in addition to excimer emission, light may be emitted at the same emission wavelength as the polymerizable monomer. Accordingly, the polymer compound of the present invention includes oligomers in addition to ordinary polymers. In consideration of such a degree of polymerization, the molecular weight of the polymer compound of the present invention needs to be 250 to 1,000,000, but it is preferably 250 to 10,000 in consideration of manufacturability. Considering ease of handling and light emission characteristics, it is preferably 250 to 5,000.

本発明においては、上記芳香環のスタック構造を取り易くしたり安定化させ、或は芳香環同士の相互作用を大きくする為に、本発明の高分子化合物に電子受容性化合物又は電子供与性化合物を添加した組成物とすることが好ましい。   In the present invention, the polymer compound of the present invention is added to an electron-accepting compound or an electron-donating compound in order to facilitate and stabilize the aromatic ring stack structure or to increase the interaction between the aromatic rings. It is preferable to use a composition to which is added.

上記の電子受容性化合物とは、本発明の高分子化合物より電子親和力の強い化合物を意味し、その具体例としては、例えば、I2、Br2、Cl2、ICl、ICl3、IBr、IF等のハロゲン類、BF3、PF5、AsF5、SbF5、SO3、BBr5、BF4-、PF6-、AsF6-、SbF6-、ClO4-等のルイス酸、HNO3、H2SO4、HClO4、HF、HCl、FSO3H、CFSO3H等のプロトン酸、FeCl3、MoCl5、WCl5、SnCl4、MoF5、FeOCl、RuF5、TaBr5、SnI4、LnCl3(Ln=La,Ce,Pr,Nd,Sm)等の遷移金属ハロゲン、9-フルオレニリデンアセトニトリル、9-フルオレニリデンマロニトリル、2,4,7-トリニトロ-9-フルオレニリデンアセトニトリル、2,4,7-トリニトロ-9-フルオレニリデンマロニトリル、o-ジニトロベンゼン、m-ジニトロベンゼン、p-ジニトロベンゼン、2,4,7-トリニトロベンゼン、2,4,7-トリニトロトルエン、TCNQ、TCNE、DDQ等が挙げられる。 The electron accepting compound means a compound having a stronger electron affinity than the polymer compound of the present invention, and specific examples thereof include, for example, I 2 , Br 2 , Cl 2 , ICl, ICl 3 , IBr, IF Halogens such as BF 3 , PF 5 , AsF 5 , SbF 5 , SO 3 , BBr 5 , BF 4 −, PF 6 −, AsF 6 −, SbF 6 −, ClO 4 − etc. Lewis acid, HNO 3 , Protic acids such as H 2 SO 4 , HClO 4 , HF, HCl, FSO 3 H, CFSO 3 H, FeCl 3 , MoCl 5 , WCl 5 , SnCl 4 , MoF 5 , FeOCl, RuF 5 , TaBr 5 , SnI 4 , Transition metal halogens such as LnCl 3 (Ln = La, Ce, Pr, Nd, Sm), 9-fluorenylideneacetonitrile, 9-fluorenylidenemalonitrile, 2,4,7-trinitro-9-fluorenylideneacetonitrile 2,4,7-trinitro-9-fluorenylidenemalonitrile, o-dinitrobenzene, m-dinitrobenzene, p-dinitrobenzene, 2,4,7-trinitrobenzene, 2,4,7-trinitrotoluene, TCNQ, TCNE, DDQ, etc. And the like.

また、前記電子供与性化合物とは、本発明の高分子化合物よりイオン化ポテンシャルの小さい化合物のことを意味し、その具体例としては例えば、ヘキサメチルベンゼン、アルカリ金属、アンモニウムイオン、ランタノイドなどが挙げられる。   The electron donating compound means a compound having a smaller ionization potential than the polymer compound of the present invention, and specific examples thereof include hexamethylbenzene, alkali metal, ammonium ion, lanthanoid and the like. .

本発明の高分子化合物を得るための重合性単量体としては、CとH又はC、H、Xからなる芳香環を含む重合性単量体の少なくとも1種が必要であり、必要に応じて、上記芳香環を含まない重合性単量体を併用しても良い。CとH又はC、H、Xからなる芳香環を含む重合性単量体としては、下記一般式(1)で表される重合性単量体を使用することが好ましい。   As the polymerizable monomer for obtaining the polymer compound of the present invention, at least one kind of polymerizable monomer containing an aromatic ring composed of C and H or C, H, and X is necessary, and if necessary In addition, a polymerizable monomer containing no aromatic ring may be used in combination. As the polymerizable monomer containing an aromatic ring composed of C and H or C, H, and X, a polymerizable monomer represented by the following general formula (1) is preferably used.

Figure 0004542075
但し、R1、R2、R3、R4は置換基であって、例えば、水素原子、アルキル基、-OR、芳香族基、-NRR’、-SR、ハロゲン
Figure 0004542075
の群のなかから選択された基であり、これらは同一であっても異なっても良いが、全てが同時に水素原子とはならないことが好ましい。
また、X1は、なし(両端の原子が直結している)、-CH2-、-CH2-CH2-、-CH=CH-、-CO-、-S-、-O-,-Si(R)(R’)-、-NR-、及び-N(COR)-から選択される何れかであることが好ましい。R5及びR6は、水素原子、アルキル基、芳香族基、-CN、エステル基の群から選択される基であることが好ましく、これらは同一であっても異なっていても良い。尚、R及びR’はH又は炭素数1〜50のアルキル基である。また、点線部分の・・・Ar1・・・及び・・・Ar2・・・は芳香族性を示す環状部分であり、ヘテロ原子X2を含むヘテロ環であっても良い。また、・・・Ar1・・・と・・・Ar2・・・は同一であっても異なっていても良い。上記X2の例としては、N、O、S、Si、Ge、Sn、Pb、P、As、Sb、Bi、Se、Teを挙げることができるが、本発明においてはN、O、Si、Geが好ましく、特にN又はOであることが好ましい。
Figure 0004542075
However, R 1 , R 2 , R 3 , R 4 are substituents such as a hydrogen atom, an alkyl group, -OR, an aromatic group, -NRR ', -SR, halogen
Figure 0004542075
These groups may be the same or different, but it is preferable that all of them are not hydrogen atoms at the same time.
Moreover, X 1 is without (both ends of the atoms are directly connected), - CH 2 -, - CH 2 -CH 2 -, - CH = CH -, - CO -, - S -, - O -, - It is preferably any one selected from Si (R) (R ′) —, —NR—, and —N (COR) —. R 5 and R 6 are preferably groups selected from the group consisting of a hydrogen atom, an alkyl group, an aromatic group, —CN, and an ester group, and these may be the same or different. R and R ′ are H or an alkyl group having 1 to 50 carbon atoms. In addition,... Ar 1 ... And Ar 2 ... In the dotted line portion are cyclic portions showing aromaticity, and may be a heterocycle containing a hetero atom X 2 . In addition,... Ar 1 ... And Ar 2 . Examples of X 2 include N, O, S, Si, Ge, Sn, Pb, P, As, Sb, Bi, Se, and Te. In the present invention, N, O, Si, Ge is preferable, and N or O is particularly preferable.

本発明においては、上記重合性単量体の中でも、特に、下記式で表されるものが好ましい。

Figure 0004542075
R1、R2、R3、R4は置換基であり、例えば、水素原子、アルキル基、-OR、芳香族基、-NRR’、-SR又はハロゲンであり、R1〜R4の全てが同時に水素原子とはならないことが好ましい。但し、R5及びR6は、水素原子、直鎖アルキル基、芳香族基、-CN、又はエステル基であり、nは0、1、又は2である。
Figure 0004542075
R1、R2、R3、R4は置換基であって、例えば水素原子、アルキル基、-OR、芳香族基、-NRR’、-SR又はハロゲンであり、R1〜R4の全てが同時に水素原子とはならないことが好ましい。但し、R5及びR6は、水素原子、アルキル基、芳香族基、-CN、又はエステル基であり、nは0、1、又は2である。
また、X1は、-S-、-O-、-Si(R)(R’)-又は-NR-であり、R及びR’はH又は炭素数1〜50のアルキル基である。 In the present invention, among the polymerizable monomers, those represented by the following formula are particularly preferable.
Figure 0004542075
R 1 , R 2 , R 3 and R 4 are substituents, for example, a hydrogen atom, an alkyl group, —OR, an aromatic group, —NRR ′, —SR or halogen, and all of R 1 to R 4 Are preferably not simultaneously hydrogen atoms. Here, R 5 and R 6 are a hydrogen atom, a linear alkyl group, an aromatic group, —CN, or an ester group, and n is 0, 1, or 2.
Figure 0004542075
R 1 , R 2 , R 3 and R 4 are substituents, for example, a hydrogen atom, an alkyl group, —OR, an aromatic group, —NRR ′, —SR or halogen, and all of R 1 to R 4 Are preferably not simultaneously hydrogen atoms. However, R 5 and R 6 are a hydrogen atom, an alkyl group, an aromatic group, —CN, or an ester group, and n is 0, 1, or 2.
X 1 is —S—, —O—, —Si (R) (R ′) — or —NR—, and R and R ′ are H or an alkyl group having 1 to 50 carbon atoms.

Figure 0004542075
R1、R2、R3、R4は置換基であって、例えば水素原子、アルキル基、-OR、芳香族基、-NRR’、-SR又はハロゲンであり、R1〜R4の全てが同時に水素原子となることはない。但し、R5及びR6は、水素原子、直鎖アルキル基、芳香族基、-CN、又はエステル基であり、nは0、1、又は2である。
これらの中でも、特に下記ジベンゾフルベンが好ましい。
Figure 0004542075
R 1 , R 2 , R 3 and R 4 are substituents, for example, a hydrogen atom, an alkyl group, —OR, an aromatic group, —NRR ′, —SR or halogen, and all of R 1 to R 4 Are not simultaneously hydrogen atoms. Here, R 5 and R 6 are a hydrogen atom, a linear alkyl group, an aromatic group, —CN, or an ester group, and n is 0, 1, or 2.
Among these, the following dibenzofulvene is particularly preferable.

Figure 0004542075
R1、R2、R3、R4は置換基であって、例えば水素原子、アルキル基、-OR、芳香族基、-NRR’、-SR、ハロゲン
Figure 0004542075
R 1 , R 2 , R 3 and R 4 are substituents such as a hydrogen atom, an alkyl group, -OR, an aromatic group, -NRR ', -SR, halogen

Figure 0004542075
が挙げられる。尚、R及びR'はH又は炭素数1〜50のアルキル基である。
また、R1、R2が-C5H11でR3、R4が水素原子である場合、R1、R2が-C12H25でR3、R4が水素原子である場合、R1、R2が-C18H37でR3、R4が水素原子である場合、R1、R2が-C(O)C4H9でR3、R4が水素原子である場合、及び、R1、R2が-C(O)C11H23でR3、R4が水素原子の組み合わせであることが、溶解性に優れた高分子化合物を得る観点から特に好ましい。
Figure 0004542075
Is mentioned. R and R ′ are H or an alkyl group having 1 to 50 carbon atoms.
Also, when R 1 and R 2 are -C 5 H 11 and R 3 and R 4 are hydrogen atoms, R 1 and R 2 are -C 12 H 25 and R 3 and R 4 are hydrogen atoms, When R 1 and R 2 are —C 18 H 37 and R 3 and R 4 are hydrogen atoms, R 1 and R 2 are —C (O) C 4 H 9 and R 3 and R 4 are hydrogen atoms In this case, it is particularly preferable that R 1 and R 2 are —C (O) C 11 H 23 and R 3 and R 4 are a combination of hydrogen atoms from the viewpoint of obtaining a polymer compound having excellent solubility.

必須成分である、CとH又はC、H、Xからなる芳香環を含む重合性単量体は、Bull. Chem. Soc. Jpn.,59,97-103(1986)に記載されている方法によって得ることが出来る。即ち、例えば芳香環がフルオレン環である場合には、フルオレン誘導体をCrO3により酸化した後、ウィッティヒ試薬と反応させることによって得ることが出来る。 The polymerizable monomer containing an aromatic ring composed of C and H or C, H, and X as an essential component is a method described in Bull. Chem. Soc. Jpn., 59, 97-103 (1986). Can be obtained by That is, for example, when the aromatic ring is a fluorene ring, it can be obtained by oxidizing a fluorene derivative with CrO 3 and then reacting with a Wittig reagent.

また、R1,R2,R3,R4にカルボニル基を導入する方法としては、例えばフリーデル−クラフツ反応を用い、AlCl3とCS2の存在化でフルオレン若しくはその類似化合物とバレロイルクロライドを反応させることにより得られる化合物を、n-BuLiのような塩基の存在下でパラホルムアルデヒドと反応させ、その後、t-BuOKと反応させることによって得ることが出来る。これにより、例えば、X1がなし、-CH2-、-CH2-CH2-又は-CH=CH-であり、R1

Figure 0004542075
でR2〜R6が水素原子である化合物や、R1及びR4
Figure 0004542075
でR2、R3、R5及びR6が水素原子である化合物が得られる。 In addition, as a method for introducing a carbonyl group into R 1 , R 2 , R 3 , R 4 , for example, using Friedel-Crafts reaction, fluorene or a similar compound and valeroyl chloride are obtained in the presence of AlCl 3 and CS 2. The compound obtained by reacting can be obtained by reacting with paraformaldehyde in the presence of a base such as n-BuLi and then reacting with t-BuOK. Thus, for example, X 1 is absent, —CH 2 —, —CH 2 —CH 2 — or —CH═CH—, and R 1 is
Figure 0004542075
In which R 2 to R 6 are hydrogen atoms, or R 1 and R 4 are
Figure 0004542075
In which R 2 , R 3 , R 5 and R 6 are hydrogen atoms.

また、アルキル基を導入する方法としては、例えば、フリーデル−クラフツ反応を用いて、フルオレンやその類似化合物(以下フルオレン等とする)とバレロイルクロライドをAlCl3とCS2の存在化で反応させることにより得られる化合物を、ヒドラジン・モノハイドレートとジエチレングリコールの存在下で、130℃、2時間加熱する。次いでKOHを添加し、200℃で3時間加熱することにより得られる化合物をCrO3により酸化した後、ウィッティヒ試薬と反応させることにより目的物を得ることが出来る。これにより、X1がなし、-CH2-又は-CH=CH-であり、R1が-C5H11でR2〜R6が水素原子である化合物や、R1及びR4が-C5H11でR2、R3、R5、R6が水素原子である化合物が得られる。 As a method for introducing an alkyl group, for example, fluorene or a similar compound (hereinafter referred to as fluorene or the like) and valeroyl chloride are reacted in the presence of AlCl 3 and CS 2 using Friedel-Crafts reaction. The compound thus obtained is heated at 130 ° C. for 2 hours in the presence of hydrazine monohydrate and diethylene glycol. Next, KOH is added and the compound obtained by heating at 200 ° C. for 3 hours is oxidized with CrO 3 and then reacted with a Wittig reagent to obtain the desired product. Accordingly, a compound in which X 1 is absent, —CH 2 — or —CH═CH—, R 1 is —C 5 H 11 and R 2 to R 6 are hydrogen atoms, or R 1 and R 4 are — A compound in which R 2 , R 3 , R 5 and R 6 are hydrogen atoms in C 5 H 11 is obtained.

R5及びR6に官能基を導入する方法としては、例えばフルオレン等とジブロモマロン酸エステル、またはフルオレン等とジヨウドマロン酸エステル、またはフルオレン等とジクロロマロン酸エステル、またはフルオレン等とジアルキルジブロモメタン、またはフルオレン等とジアリールジブロモメタンを、n-BuLi等の塩基の存在下で、ジオキサン等の有機溶剤中でt-BuOKと反応させる方法が挙げられる。これにより導入できる基としては、アルキル基、芳香族基、-CN、エステル基等が挙げられる。R5とR6の少なくとも一方が水素原子でない場合には、得られるモノマーの安定性が向上するので好ましい。R5とR6の好ましい組み合わせとしては、エステル基とエステル基、シアノ基とシアノ基、芳香族基と芳香族基、アルキル基とアルキル基等が挙げられる。アルキル基としては、特に直鎖アルキル基が好ましい。 Examples of the method for introducing a functional group into R 5 and R 6 include fluorene and the like and dibromomalonic acid ester, or fluorene and the like and diiodomalonic acid ester, or fluorene and the like and dichloromalonic acid ester, or fluorene and the like and dialkyldibromomethane, or An example is a method in which fluorene or the like and diaryldibromomethane are reacted with t-BuOK in an organic solvent such as dioxane in the presence of a base such as n-BuLi. Examples of the group that can be introduced by this include an alkyl group, an aromatic group, -CN, and an ester group. It is preferable that at least one of R 5 and R 6 is not a hydrogen atom, because the stability of the resulting monomer is improved. Preferable combinations of R 5 and R 6 include an ester group and an ester group, a cyano group and a cyano group, an aromatic group and an aromatic group, an alkyl group and an alkyl group, and the like. As the alkyl group, a linear alkyl group is particularly preferable.

各X1に対応する単量体は、例えばX1が-CH2-の場合にはジヒドロアントラセンを出発原料とするというように、各X1に対応する出発原料を適宜選択し、フルオレン等の場合と同様の反応を行わせることによって容易に得ることができる。 For the monomer corresponding to each X 1 , for example, when X 1 is —CH 2 —, the starting material corresponding to each X 1 is appropriately selected, such as dihydroanthracene as the starting material, and fluorene or the like It can be easily obtained by carrying out the same reaction as in the case.

このようにして得られた重合性単量体の重合方法としては、ラジカル重合、アニオン重合、カチオン重合など、既知の重合方法を用いることができる。ラジカル重合開始剤としては、光照射によりラジカル重合を開始できるもの、あるいは、加熱によりラジカルを発生する化合物であればよい。特に、光照射によりラジカル重合を開始できるものが好ましく、例えば、直接開裂型ラジカル重合開始剤として、アリールアルキルケトン、オキシムケトン、アシルホスフィンオキシド、アリールアルキルケトン、チオ安息香酸S-フェニル、チタノセン、水素引き抜き型ラジカル重合開始剤として、芳香族ケトン、チオキサントン、ベンジルとキノン誘導体、3-ケトクマリン等を挙げることができる。   As a polymerization method of the polymerizable monomer thus obtained, known polymerization methods such as radical polymerization, anionic polymerization, and cationic polymerization can be used. The radical polymerization initiator may be any compound that can initiate radical polymerization by light irradiation or a compound that generates radicals by heating. In particular, those capable of initiating radical polymerization by light irradiation are preferred. For example, as a direct cleavage type radical polymerization initiator, arylalkyl ketone, oxime ketone, acylphosphine oxide, arylalkyl ketone, thiobenzoic acid S-phenyl, titanocene, hydrogen Examples of the pulling-type radical polymerization initiator include aromatic ketones, thioxanthones, benzyl and quinone derivatives, and 3-ketocoumarins.

複合型ラジカル重合開始剤としては、有機過酸化物/電子供与型色素、ビスイミダゾール、オニウム塩/電子供与型色素、N-フェニルグリシン/電子吸引型色素、N-フェニルグリシン/ジフェニルヨードニウム塩/増感剤等が挙げられる。   Complex radical polymerization initiators include organic peroxides / electron-donating dyes, bisimidazoles, onium salts / electron-donating dyes, N-phenylglycine / electron-withdrawing dyes, N-phenylglycine / diphenyliodonium salts / amplifiers. Examples include sensitizers.

また、アニオン重合開始剤としては、アルカリ金属、アルカリ土類金属、アンモニウムのような対イオンと、炭素、窒素、酸素、硫黄のようなアニオンからなるアニオン重合開始剤が用いられる。このようなアニオン重合開始剤の例としては、例えば、RMgX、R2Mg、RCaX、Al(C2H5)3、LiAlH4、NaR、KR(Rは、ブチル、ベンジル、フェニル基などの炭素数1から50、好ましくは1から20のアルキル基、アルアルキル基または芳香族基、本明細書では、上記の化合物を表示する限りにおいて、Xはハロゲンを表す。)等が挙げられる。また、例えば(R1)(R2)NM(R1,R2は炭素数1から50、好ましくは1から20のアルキル基、アルアルキル基または芳香族基Mは対イオン)で表されるような、2級アミンから得られるアニオン重合開始剤を用いることもできる。 Moreover, as an anionic polymerization initiator, the anionic polymerization initiator which consists of counter ions, such as an alkali metal, alkaline-earth metal, and ammonium, and anions, such as carbon, nitrogen, oxygen, and sulfur, is used. Examples of such anionic polymerization initiators include, for example, RMGx, R 2 Mg, RCaX, Al (C 2 H 5 ) 3 , LiAlH 4 , NaR, KR (R is carbon such as butyl, benzyl, phenyl group, etc. And an alkyl group, an aralkyl group or an aromatic group having a number of 1 to 50, preferably 1 to 20, and in the present specification, X represents halogen as long as the above-mentioned compound is represented. In addition, for example, (R 1 ) (R 2 ) NM (where R 1 and R 2 are alkyl groups having 1 to 50 carbon atoms, preferably 1 to 20 carbon atoms, aralkyl groups or aromatic groups M are counter ions) Such an anionic polymerization initiator obtained from a secondary amine can also be used.

本発明のポリマーは、固相重合、溶液重合、塊状重合、乳化重合、シード乳化重合、懸濁重合、分散重合等の重合方法を用いて重合することができる。
例えば、真空乾燥した後窒素置換を行ったアンプル管にTHFに溶解したモノマーを入れ、-78℃に冷却する。その溶液にモノマーの約1/20等量のn-BuLiを添加し、24時間反応させる。その後、MeOHでn-BuLiを不活性化した後、溶液と等量のMeOHを添加する。このようにして生じた沈殿物を遠心分離により回収し、THFに溶解するといった方法が挙げられる。
The polymer of the present invention can be polymerized using a polymerization method such as solid phase polymerization, solution polymerization, bulk polymerization, emulsion polymerization, seed emulsion polymerization, suspension polymerization or dispersion polymerization.
For example, a monomer dissolved in THF is placed in an ampule tube that has been vacuum dried and purged with nitrogen, and cooled to -78 ° C. About 1/20 equivalent of n-BuLi of monomer is added to the solution and allowed to react for 24 hours. Then, after deactivating n-BuLi with MeOH, an amount of MeOH equivalent to the solution is added. A method in which the precipitate thus produced is recovered by centrifugation and dissolved in THF.

また、本発明においては、本発明の重合性単量体の少なくとも1種を重合又は共重合させることができるだけではなく、これらと共重合可能な他の単量体と共重合させることもできる。このような他の単量体としては、例えば、R-C=C-R’や、R-C≡C-R’(R,R’:有機基)のような重合性不飽和結合をもつ化合物や、ビニル基として、(メタ)アクリロイル基を持つ化合物、その他のラジカル重合性二重結合を持つ化合物等が挙げられる。   In the present invention, at least one of the polymerizable monomers of the present invention can be polymerized or copolymerized, and can also be copolymerized with other monomers copolymerizable therewith. Examples of such other monomers include compounds having a polymerizable unsaturated bond such as RC = C—R ′, RC≡C—R ′ (R, R ′: organic group), vinyl Examples of the group include a compound having a (meth) acryloyl group and other compounds having a radical polymerizable double bond.

ビニル基として(メタ)アクリロイル基を持つ化合物の具体例としては、(メタ)アクリル酸;アクリル酸エチルエステル、(メタ)アクリル酸n-プロピルエステル、(メタ)アクリル酸イソプロピルエステル、(メタ)アクリル酸n-ブチルエステル、(メタ)アクリル酸sec-ブチルエステル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、メタクリル酸シクロヘキシルエステル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸n-オクチルエステル、(メタ)アクリル酸イソオクチルエステル、(メタ)アクリル酸2-エチルヘキシルエステル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソノニルエステル、(メタ)アクリル酸ヒドロキシエチルエステル、(メタ)アクリル酸イソミリスチルエステル、(メタ)アクリル酸イソステアリルエステル、(メタ)アクリル酸ステアリルエステル、(メタ)アクリル酸ラウリルエステル、グリシジル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、(メタ)アクリル酸n-ブトキシエチル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸トリプロモフェニル、(メタ)アクリル酸2,3−ジクロロプロピル、ε-(ポリ)カプロラクトンアクリレート、テトラヒドロフラニルアクリレート等に代表される(メタ)アクリル酸アルキルエステル類;等が挙げられる。   Specific examples of the compound having a (meth) acryloyl group as a vinyl group include: (meth) acrylic acid; acrylic acid ethyl ester, (meth) acrylic acid n-propyl ester, (meth) acrylic acid isopropyl ester, (meth) acrylic Acid n-butyl ester, (meth) acrylic acid sec-butyl ester, (meth) acrylic acid pentyl, (meth) acrylic acid hexyl, methacrylic acid cyclohexyl ester, (meth) acrylic acid heptyl, (meth) acrylic acid n-octyl Ester, (Meth) acrylic acid isooctyl ester, (meth) acrylic acid 2-ethylhexyl ester, (meth) acrylic acid decyl, (meth) acrylic acid isononyl ester, (meth) acrylic acid hydroxyethyl ester, (meth) acrylic Acid myristyl ester, (meth) acrylic Acid isostearyl ester, (meth) acrylic acid stearyl ester, (meth) acrylic acid lauryl ester, glycidyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, (meth) acrylic acid n-butoxyethyl, (meth) acrylic Phenoxyethyl acid, tetrahydrofurfuryl (meth) acrylate, benzyl (meth) acrylate, tripromophenyl (meth) acrylate, 2,3-dichloropropyl (meth) acrylate, ε- (poly) caprolactone acrylate, tetrahydrofura (Meth) acrylic acid alkyl esters represented by nyl acrylate and the like.

更に、イソシアネート基を持つ化合物と活性水素を持つ(メタ)アクリルモノマーとの反応等により得られるウレタンアクリレート、エポキシ基を持つ化合物をアクリル酸、または、水酸基を持つ(メタ)アクリルモノマーとの反応等によって得られるエポキシエステル化合物;ポリエステルアクリレート;エチレングリコールやプロピレングリコールとのアルキレングリコールとアクリル酸との反応によって得られるアルキレングリコールモノ(メタ)アクリレート類、ジアルキレングリコールモノ(メタ)アクリレート類、ポリアルキレングリコール(メタ)アクリレート類、アルキレングリコールジ(メタ)アクリレート類、ポリアルキレングリコールジ(メタ)アクリレート類、グリセリンモノ(メタ)アクリレート類、グリセリンジ(メタ)アクリレート類、グリセリントリ(メタ)アクリレート類;トリメチロールアルカントリ(メタ)アクリレート類;アクリルアミド類;シリコンアクリレート;ポリブタジエンアクリレート;エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1、4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、1,9-ノナンジオールジメタクリレート、トリメチロールプロパン、トリメタクリレート、グリセリンジメタクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、ビスフェノールAのエチレンオキサイド付加物ジメタクリレート等;トリメチロールプロパントリメタクリレート、トリメチロールプロパンPO変性トリメタクリレート、トリメチロールプロパンEO変性トリメタクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールテトラアクリレート等も使用することができる。   Further, urethane acrylate obtained by reaction of a compound having an isocyanate group and a (meth) acrylic monomer having active hydrogen, a reaction of a compound having an epoxy group with acrylic acid or a (meth) acrylic monomer having a hydroxyl group, etc. Polyester acrylate; alkylene glycol mono (meth) acrylates, dialkylene glycol mono (meth) acrylates, polyalkylene glycols obtained by reaction of alkylene glycol and acrylic acid with ethylene glycol or propylene glycol (Meth) acrylates, alkylene glycol di (meth) acrylates, polyalkylene glycol di (meth) acrylates, glycerol mono (meth) acrylates, glycerol (Meth) acrylates, glycerin tri (meth) acrylates; trimethylolalkane tri (meth) acrylates; acrylamides; silicon acrylates; polybutadiene acrylates; ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, 1,4-butanediol dimethacrylate 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, trimethylolpropane, trimethacrylate, glycerin dimethacrylate, 2-hydroxy-3-acryloyloxypropyl methacrylate, bisphenol A ethylene oxide adduct di Methacrylate, etc .; trimethylolpropane trimethacrylate, trimethylolpropane PO modified trimethacrylate, trimethylolpropane EO modified Li methacrylate, pentaerythritol triacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, can be ditrimethylolpropane tetraacrylate, also pentaerythritol tetraacrylate used.

その他のラジカル重合性二重結合を持つ化合物としては、例えば、アクリル酸N,N-ジメチルアミノエチル、アクリル酸N,N-ジエチルアミノエチル、アクリル酸N,t-ブチルアミノエチル等のアクリル酸アミノアルキルエステル;(メタ)アクリロニトリル;ブタジエン;イソプレン;塩化ビニル;塩化ビニリデン;酢酸ビニル;ビニルケトン;N-ビニルピロリドン;ビニルピリジン;(メタ)アクリルアミド;ビニルカルバゾール等;ジビニルベンゼン;α-メチルスチレン、ビニルトルエン、クロロスチレン、t-ブチルスチレン;メチルビニルエーテル、エチルビニルエーテル、イソブチルビニルエーテル等に代表されるビニルエーテル系単量体;フマル酸;マレイン酸;イタコン酸;フタル酸;フマル酸のモノアルキルエステル、フマル酸のジアルキルエステル;マレイン酸のモノアルキルエステル、マレイン酸のジアルキルエステル;イタコン酸のモノアルキルエステル、イタコン酸のジアルキルエステル;フタル酸のモノアルキルエステル、フタル酸のジアルキルエステルが挙げられる。   Examples of other compounds having radically polymerizable double bonds include aminoalkyl acrylates such as N, N-dimethylaminoethyl acrylate, N, N-diethylaminoethyl acrylate, N, t-butylaminoethyl acrylate, etc. (Meth) acrylonitrile; butadiene; isoprene; vinyl chloride; vinylidene chloride; vinyl acetate; vinyl ketone; N-vinylpyrrolidone; vinylpyridine; (meth) acrylamide; vinylcarbazole, etc .; divinylbenzene; α-methylstyrene, vinyltoluene, Chlorostyrene, t-butylstyrene; vinyl ether monomers represented by methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether, etc .; fumaric acid; maleic acid; itaconic acid; phthalic acid; monoalkyl ester of fumaric acid, dial of fumaric acid Examples include kill esters; monoalkyl esters of maleic acid, dialkyl esters of maleic acid; monoalkyl esters of itaconic acid, dialkyl esters of itaconic acid; monoalkyl esters of phthalic acid, and dialkyl esters of phthalic acid.

以上のようにして得られる本発明に用いられる高分子化合物は、側鎖にC、H及び/又はC、H、Xからなる芳香環を有することになるが、この芳香環が容易にスタック構造を取るので淡色効果を生じ、前記芳香環に起因する吸光係数が、該芳香環を導入する為に用いた重合性単量体の、対応する吸光係数の70%以下となる。従って、本発明に用いられる高分子化合物は、紫外線透過材料となり得ると共に耐光性高分子材料として有用である。また、エキシマー発光を利用して、レーザー発光材料や、電界発光材料としての応用の可能性もある。特に、青色〜紫外にかけてエキシマー発光させることも可能であるので、その産業上の利用可能性は大きい。   The polymer compound used in the present invention obtained as described above has an aromatic ring composed of C, H and / or C, H, X in the side chain, and this aromatic ring can easily be stacked. Therefore, a light color effect is produced, and the extinction coefficient due to the aromatic ring is 70% or less of the corresponding extinction coefficient of the polymerizable monomer used for introducing the aromatic ring. Therefore, the polymer compound used in the present invention can be an ultraviolet light transmissive material and is useful as a light-resistant polymer material. In addition, there is a possibility of application as a laser light emitting material or an electroluminescent material using excimer light emission. In particular, since it is possible to emit excimer light from blue to ultraviolet, its industrial applicability is great.

以下、実施例及び比較例によって本発明を更に詳述するが、本発明はこれによって限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in full detail, this invention is not limited by this.

<モノマーの合成>
フレームドライした後窒素置換を行った、メカニカルスターラーおよび塩化水素トラップ付きの3リットルの4つ口フラスコに、フルオレン(和光純薬社製)30.1g、AlCl3(和光純薬社製)100gとCS2 400mlを入れて攪拌した。次いでバレロイルクロライド(和光純薬社製)64mlを30分かけてゆっくりと滴下した後、その反応混合溶液を室温で8時間攪拌し、氷の入った2リットルのマイヤーフラスコにゆっくりと攪拌しながら注ぎ入れて反応を停止させた。HClで中和した後、塩化メチレンを用いて有機層を2回抽出し、抽出した有機層を2重量%のNaOH水溶液で2回、飽和食塩水で1回洗浄し、MgSO4を用いて乾燥した。乾燥後の溶液をセライト濾過し、減圧下で濃縮して茶色の粘ちょうな液体61gを得た。これを酢酸エチルに溶解した後再結晶し、赤色の固体52gを得た。こうして得られた化合物を化合物1とする。得られた化合物1のNMRスペクトルは下記の通りであった。
1H-NMR(500MHz、CDCl3、CHCl3) d 8.164(s,2H), 8.028(d,J=8.0Hz,2H), 7.880(d,J=8.0Hz,2H) , 4.002(s,2H), 3.019(t,J=7.5Hz,4H), 1.752(quin,J=7.5Hz,4H), 1.435(sex,J=7.5Hz,4H), 0.970(t,J=7.5Hz,6H)
13C-NMR (125MHz, CDCl3、CHCl3)d 200.289 144.798 136.420 127.484 124.837 120.617 38.534 36.931 26.592 22.494 13.948
<Synthesis of monomer>
A 3-liter 4-neck flask with a mechanical stirrer and a hydrogen chloride trap after frame drying and nitrogen substitution was added to 30.1 g of fluorene (manufactured by Wako Pure Chemical Industries, Ltd.), 100 g of AlCl 3 (manufactured by Wako Pure Chemical Industries, Ltd.) and CS 2 400 ml was added and stirred. Next, 64 ml of valeroyl chloride (manufactured by Wako Pure Chemical Industries, Ltd.) was slowly added dropwise over 30 minutes, and the reaction mixture was stirred at room temperature for 8 hours, while slowly stirring into a 2 liter Meyer flask containing ice. The reaction was stopped by pouring. After neutralization with HCl, the organic layer was extracted twice with methylene chloride, and the extracted organic layer was washed twice with 2 wt% NaOH aqueous solution and once with saturated brine, and dried with MgSO 4. did. The dried solution was filtered through Celite and concentrated under reduced pressure to obtain 61 g of a brown viscous liquid. This was dissolved in ethyl acetate and recrystallized to obtain 52 g of a red solid. The compound thus obtained is referred to as Compound 1. The NMR spectrum of Compound 1 obtained was as follows.
1 H-NMR (500 MHz, CDCl 3 , CHCl 3 ) d 8.164 (s, 2H), 8.028 (d, J = 8.0Hz, 2H), 7.880 (d, J = 8.0Hz, 2H), 4.002 (s, 2H ), 3.019 (t, J = 7.5Hz, 4H), 1.752 (quin, J = 7.5Hz, 4H), 1.435 (sex, J = 7.5Hz, 4H), 0.970 (t, J = 7.5Hz, 6H)
13 C-NMR (125 MHz, CDCl 3 , CHCl 3 ) d 200.289 144.798 136.420 127.484 124.837 120.617 38.534 36.931 26.592 22.494 13.948

1リットルのナスフラスコに環流管付きのDean-Starkトラップをつけ、得られた化合物1を30.4g、ヒドラジンモノハイドレート(和光純薬社製)44.2ml、及びジエチレングリコール(和光純薬社製)400mlを入れ、130℃で2時間加熱した後、KOH(和光純薬社製)20.6gを入れ、200℃で更に3時間加熱した。反応液を室温に戻した後水を入れて反応を停止させ、有機層をエーテルで2回抽出した。その有機層を1N-HCl、飽和炭酸水素ナトリウム水、水(2回)および飽和食塩水で順次洗浄した後、MgSO4を用いて乾燥した。乾燥した溶液を濾過し、減圧下で濃縮して黄色の固体27.7gを得た。得られた個体から、シリカゲルクロマトグラフィー(ヘキサン)によって白色の固体26.2gを得た。これを化合物2とする。化合物2のNMRスペクトルは下記の通りであった。
1H-NMR(500MHz、CDCl3、CHCl3) d 7.694(d,J=7.5Hz,2H),7.174(d,J=7.5Hz,2H),3.840(s,2H), 3.019(t,J=7.5Hz,4H),1.697-1.636(m,4H),1.370-1.340(m,8H), 0.912(t,J=7.0Hz,6H)
13C-NMR(125MHz, CDCl3、CHCl3) d 143.326 141.220 139.419 126.897 124.989 119.220 36.695 36.115 31.575 31.521 22.586 14.055
Anal.Calcd. for C23H30 C,90.13;H,9.87. Found;C,90.40;H10.0
Dean-Stark trap with reflux tube attached to a 1 liter eggplant flask, 30.4 g of the obtained compound 1, 44.2 ml of hydrazine monohydrate (manufactured by Wako Pure Chemical Industries), and 400 ml of diethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd.) After heating at 130 ° C. for 2 hours, 20.6 g of KOH (manufactured by Wako Pure Chemical Industries, Ltd.) was added and further heated at 200 ° C. for 3 hours. The reaction solution was returned to room temperature, water was added to stop the reaction, and the organic layer was extracted twice with ether. The organic layer was washed successively with 1N-HCl, saturated aqueous sodium hydrogen carbonate, water (twice) and saturated brine, and dried over MgSO 4 . The dried solution was filtered and concentrated under reduced pressure to give 27.7 g of a yellow solid. From the obtained solid, 26.2 g of a white solid was obtained by silica gel chromatography (hexane). This is designated Compound 2. The NMR spectrum of Compound 2 was as follows.
1 H-NMR (500 MHz, CDCl 3 , CHCl 3 ) d 7.694 (d, J = 7.5 Hz, 2H), 7.174 (d, J = 7.5 Hz, 2H), 3.840 (s, 2H), 3.019 (t, J = 7.5Hz, 4H), 1.697-1.636 (m, 4H), 1.370-1.340 (m, 8H), 0.912 (t, J = 7.0Hz, 6H)
13 C-NMR (125 MHz, CDCl 3 , CHCl 3 ) d 143.326 141.220 139.419 126.897 124.989 119.220 36.695 36.115 31.575 31.521 22.586 14.055
Anal.Calcd.for C 23 H 30 C, 90.13; H, 9.87. Found; C, 90.40; H10.0

フレームドライした後窒素置換を行った1リットルの3つ口フラスコに、化合物2を5.0g、トルエン280ml、及びTMEDA7.4mlを入れ、0℃で10分間攪拌した。その反応混合溶液にn-BuLi/ヘキサン(1.6M、31ml)(和光純薬社製)を10分かけて滴下し、更に5分間攪拌した。その溶液にパラホルムアルデヒド(和光純薬社製)1.58g、及びトルエン20mlを入れ、0℃で80分間攪拌した後、その反応混合溶液に水を加えて反応を停止させ、次いで酢酸エチルで有機層を2回抽出した。抽出した有機層を飽和食塩水で洗浄した後、MgSO4を用いて乾燥した。乾燥後の溶液を濾過し、減圧下で濃縮し、黄色の液体8.5gを得た。この液体から、シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=15:1)によって、ピンク色の固体3.1gを得た。これを化合物3とする。得られた化合物3のNMRスペクトルは下記の通りであった。
1H-NMR(500MHz、CDCl3、CHCl3)、d 7.6621(d,J=7.5Hz,2H), 7.394(s,2H), 7.191(d,J=8.0Hz,2H), 4.045(s,3H),2.669(t,J=7.5Hz,4H), 1.660(quin,J=7.0Hz,4H),1.363-1.334(m,8H), 0.901(t,J=7.0Hz,6H)
13C-NMR(125MHz, CDCl3、CHCl3)d 144.363 141.685 139.251 127.736 124.623 119.449 65.287 50.148 36.161 31.605 31.483 22.563 14.055
Into a 1 liter three-necked flask subjected to flame drying and purged with nitrogen, 5.0 g of Compound 2, 280 ml of toluene, and 7.4 ml of TMEDA were added and stirred at 0 ° C. for 10 minutes. To the reaction mixture, n-BuLi / hexane (1.6 M, 31 ml) (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise over 10 minutes, and the mixture was further stirred for 5 minutes. To the solution, 1.58 g of paraformaldehyde (manufactured by Wako Pure Chemical Industries, Ltd.) and 20 ml of toluene were added and stirred at 0 ° C. for 80 minutes. Then, water was added to the reaction mixture to stop the reaction, and then the organic layer was washed with ethyl acetate. Was extracted twice. The extracted organic layer was washed with saturated brine, and then dried using MgSO 4 . The dried solution was filtered and concentrated under reduced pressure to obtain 8.5 g of a yellow liquid. From this liquid, 3.1 g of a pink solid was obtained by silica gel chromatography (hexane / ethyl acetate = 15: 1). This is referred to as Compound 3. The NMR spectrum of the obtained compound 3 was as follows.
1 H-NMR (500 MHz, CDCl 3 , CHCl 3 ), d 7.6621 (d, J = 7.5 Hz, 2H), 7.394 (s, 2H), 7.191 (d, J = 8.0 Hz, 2H), 4.045 (s, 3H), 2.669 (t, J = 7.5Hz, 4H), 1.660 (quin, J = 7.0Hz, 4H), 1.363-1.334 (m, 8H), 0.901 (t, J = 7.0Hz, 6H)
13 C-NMR (125 MHz, CDCl 3 , CHCl 3 ) d 144.363 141.685 139.251 127.736 124.623 119.449 65.287 50.148 36.161 31.605 31.483 22.563 14.055

環流管付き200mlナスフラスコに、化合物3を1.62g、MeOH 30ml及びTHF230mlを入れ、0℃で10分間攪拌した。その反応混合溶液にt-BuOKを1.63g入れ、環流温度で5分間攪拌した後水を加えて反応を停止させた。次いで、反応液からヘキサンを用いて有機層を2回抽出し、抽出した有機層を飽和食塩水で洗浄した後、MgSO4を用いて乾燥した。乾燥後の溶液をセライト濾過し、減圧下で濃縮し、黄色の液体1.57gを得た。この黄色の液体から、シリカゲルクロマトグラフィーを用いて、黄色の液体1.4gを得た。これを化合物4とする。
化合物4の構造式

Figure 0004542075
1.62 g of Compound 3, 30 ml of MeOH, and 230 ml of THF were placed in a 200 ml eggplant flask equipped with a reflux tube and stirred at 0 ° C. for 10 minutes. 1.63 g of t-BuOK was added to the reaction mixture, stirred for 5 minutes at reflux temperature, and water was added to stop the reaction. Subsequently, the organic layer was extracted twice from the reaction solution using hexane, and the extracted organic layer was washed with saturated brine, and then dried using MgSO 4 . The dried solution was filtered through Celite and concentrated under reduced pressure to obtain 1.57 g of a yellow liquid. From this yellow liquid, 1.4 g of a yellow liquid was obtained using silica gel chromatography. This is designated Compound 4.
Structural formula of compound 4
Figure 0004542075

<ポリマーの合成>
真空乾燥した後窒素置換を行ったアンプル管に、THF8mlに化合物4を0.4g溶解させた溶液を入れ、-78℃に冷却した後、化合物4の1/5等量のn-BuLiを添加して24時間反応させた。反応後にMeOHを加えて反応を停止させた後、溶液と等量のMeOHを添加し、生じた沈殿物を遠心分離により回収した(0.38g)。このようにして得られたポリマーをポリマー1とする。このポリマー1の数平均分子量は1,000であった。
<Polymer synthesis>
A solution of 0.4 g of compound 4 dissolved in 8 ml of THF was placed in an ampoule tube that had been vacuum-dried and then purged with nitrogen. After cooling to −78 ° C., 1/5 equivalent of n-BuLi of compound 4 was added. For 24 hours. After the reaction, MeOH was added to stop the reaction, an amount of MeOH equivalent to the solution was added, and the resulting precipitate was collected by centrifugation (0.38 g). The polymer thus obtained is designated as Polymer 1. The number average molecular weight of this polymer 1 was 1,000.

n-BuLiの量を1/10等量添加したことを除き、ポリマー1の場合と全く同様に合成したポリマーをポリマー2とする。このポリマー2の数平均分子量は2,000であった。   A polymer synthesized in exactly the same manner as in the case of polymer 1 except that 1/10 equivalent of the amount of n-BuLi was added is referred to as polymer 2. The number average molecular weight of this polymer 2 was 2,000.

n-BuLiの量を1/15等量添加したことを除き、ポリマー1の場合と全く同様に合成したポリマーをポリマー3とする。このポリマー3の数平均分子量は3,000であった。   A polymer synthesized in exactly the same manner as in the case of polymer 1 except that the amount of n-BuLi was added in an amount of 1/15 equivalent is referred to as polymer 3. The number average molecular weight of this polymer 3 was 3,000.

n-BuLiの量を1/25等量添加したことを除き、ポリマー1の場合と全く同様に合成したポリマーをポリマー4とする。このポリマー4の数平均分子量は5,000であった。   A polymer synthesized in exactly the same manner as in the case of polymer 1 except that the amount of n-BuLi was added in an amount of 1/25 equivalent is designated as polymer 4. The number average molecular weight of this polymer 4 was 5,000.

<モノマーの合成>
フレームドライした後窒素置換を行った1リットルの3つ口フラスコに、フルオレン5.0g、トルエン280ml及びTMEDA7.4mlを入れ、0℃で10分間攪拌した後、n-BuLi/ヘキサン(1.6M、31ml)(和光純薬社製)を10分かけて滴下し、更に5分間攪拌した。次いで、その溶液にパラホルムアルデヒド(和光純薬社製)1.58g及びトルエン20mlを入れ、0℃で80分間攪拌した後、水を加えて反応を停止させた。次に、反応液から酢酸エチルを用いて有機層を2回抽出した。抽出した有機層を飽和食塩水で洗浄した後、MgSO4で乾燥した後濾過し、減圧下で濃縮し、黄色の液体8.5gを得た。この黄色の液体から、シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=15:1)を用いて、ピンク色の固体3.1gを得た。これを化合物5とする。
<Synthesis of monomer>
Into a 1 liter three-necked flask that has been subjected to flame drying and then purged with nitrogen, 5.0 g of fluorene, 280 ml of toluene and 7.4 ml of TMEDA are placed, stirred at 0 ° C. for 10 minutes, and then n-BuLi / hexane (1.6 M, 31 ml). ) (Manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise over 10 minutes and the mixture was further stirred for 5 minutes. Next, 1.58 g of paraformaldehyde (manufactured by Wako Pure Chemical Industries, Ltd.) and 20 ml of toluene were added to the solution and stirred at 0 ° C. for 80 minutes, and then water was added to stop the reaction. Next, the organic layer was extracted twice from the reaction solution using ethyl acetate. The extracted organic layer was washed with saturated brine, dried over MgSO 4 , filtered, and concentrated under reduced pressure to give 8.5 g of a yellow liquid. From this yellow liquid, 3.1 g of a pink solid was obtained by silica gel chromatography (hexane / ethyl acetate = 15: 1). This is designated Compound 5.

環流管付きの200mlナスフラスコに、化合物5を1.62g、MeOH30ml及びTHF230mlを入れ、0℃で10分間攪拌した後t-BuOK1.63gを入れて環流温度で更に5分間攪拌した。次いで反応混合溶液に水を入れて反応を停止させた後、ヘキサンを用いて有機層を2回抽出した。抽出した有機層を飽和食塩水で洗浄した後、MgSO4を用いて乾燥し、次いで溶液をセライト濾過し、減圧下で濃縮して黄色の液体1.57gを得た。この液体からシリカゲルクロマトグラフィーを用いて、黄色の液体1.4gを得た。これを化合物6とする。
化合物6の構造式

Figure 0004542075
A 200 ml eggplant flask equipped with a reflux tube was charged with 1.62 g of compound 5, 30 ml of MeOH and 230 ml of THF, stirred for 10 minutes at 0 ° C., then 1.63 g of t-BuOK, and further stirred for 5 minutes at the reflux temperature. Next, water was added to the reaction mixture to stop the reaction, and then the organic layer was extracted twice with hexane. The extracted organic layer was washed with saturated brine, dried over MgSO 4 , and then the solution was filtered through Celite and concentrated under reduced pressure to give 1.57 g of a yellow liquid. From this liquid, 1.4 g of a yellow liquid was obtained using silica gel chromatography. This is referred to as Compound 6.
Structural formula of compound 6
Figure 0004542075

<ポリマーの合成>
比較例1
真空乾燥し次いで窒素置換を行ったアンプル管に、THF8mlに化合物6を0.4g溶解した溶液を入れ、-78℃に冷却した後、化合物6の約1/5等量のn-BuLiを添加し、24時間反応させた。MeOHを加えて反応を停止させた後、溶液と等量のMeOHを添加して生じた沈殿物を、遠心分離により回収した。こうして得られたポリマーをポリマー5とする。このポリマー5の数平均分子量は1,000であった。
<Polymer synthesis>
Comparative Example 1
A solution of 0.4 g of compound 6 dissolved in 8 ml of THF was placed in an ampule tube that had been vacuum dried and then purged with nitrogen, cooled to −78 ° C., and then about 1/5 equivalent of n-BuLi of compound 6 was added. For 24 hours. After stopping the reaction by adding MeOH, a precipitate formed by adding an amount of MeOH equivalent to the solution was collected by centrifugation. The polymer thus obtained is designated as Polymer 5. The number average molecular weight of this polymer 5 was 1,000.

比較例2
n-BuLiの量を1/10等量添加したことを除き、ポリマー5の場合と全く同様に合成したポリマーをポリマー6とする。このポリマー6の数平均分子量は2,000であった。
Comparative Example 2
A polymer synthesized in exactly the same manner as in the case of polymer 5 except that 1/10 equivalent of n-BuLi is added is referred to as polymer 6. The number average molecular weight of this polymer 6 was 2,000.

比較例3
n-BuLiの量を1/15等量添加したことを除き、ポリマー5の場合と全く同様に合成したポリマーをポリマー7とする。このポリマー7の数平均分子量は3,000であった。
Comparative Example 3
A polymer synthesized in exactly the same manner as in the case of polymer 5 except that the amount of n-BuLi was added in an amount of 1/15 equivalent is referred to as polymer 7. The number average molecular weight of this polymer 7 was 3,000.

比較例4
n-BuLiの量を1/25等量添加したことを除き、ポリマー5の場合と全く同様に合成したポリマーをポリマー8とする。このポリマー8の数平均分子量は5,000であった。
Comparative Example 4
A polymer synthesized in exactly the same manner as in the case of polymer 5 except that 1/25 equivalent of n-BuLi was added is referred to as polymer 8. The number average molecular weight of this polymer 8 was 5,000.

THFへの溶解性
得られたポリマー1から8を、THF100gに対して5g添加し、室温で1時間攪拌して溶解性を調べた。完全に溶解したものを○、僅かに溶け残りがあるものを△、ほとんど溶けないものを×として評価した結果を表1に示す。
Solubility in THF 5 g of the obtained polymers 1 to 8 were added to 100 g of THF, and the mixture was stirred for 1 hour at room temperature to examine the solubility. Table 1 shows the results of evaluation where the completely dissolved product was evaluated as ◯, the slightly dissolved residue as Δ, and the hardly dissolved as ×.

Figure 0004542075
上記の結果は、置換基を持たないフルオレン環を有する高分子化合物は、分子量が大きくなるにつれて、急激に溶解性が悪くなるのに対し、-C5H11を置換基として有するフルオレン環を有する場合には、溶解性が改善されることを実証するものである。
Figure 0004542075
The above results indicate that the polymer compound having a fluorene ring without a substituent group has a fluorene ring having -C 5 H 11 as a substituent, whereas the solubility rapidly decreases as the molecular weight increases. In some cases, it demonstrates that the solubility is improved.

ジベンゾフルベンの合成
9-ヒドロキシメチルフルオレン10gとKOH1gをメタノール90mlに溶解し、60℃で1時間反応させた後メタノールを揮発させた。このようにして得られた固体から、ヘキサンと水を用いてジベンゾフルベンを抽出分離し、ジベンゾフルベンを含むヘキサン相が中性になるまで水で洗浄した。ヘキサン相を分離した後ヘキサンを揮発させ、得られた固体をヘキサン−ジエチルエーテルの混合溶媒(4/6 v/v)から再結晶させることにより、ジベンゾフルベンを得た。得られたジベンゾフルベンの融点は50-52℃であった。
Synthesis of dibenzofulvene
10 g of 9-hydroxymethylfluorene and 1 g of KOH were dissolved in 90 ml of methanol, reacted at 60 ° C. for 1 hour, and then the methanol was volatilized. Dibenzofulvene was extracted and separated from the solid thus obtained using hexane and water, and washed with water until the hexane phase containing dibenzofulvene became neutral. After separating the hexane phase, hexane was volatilized, and the obtained solid was recrystallized from a mixed solvent of hexane-diethyl ether (4/6 v / v) to obtain dibenzofulvene. The melting point of the obtained dibenzofulvene was 50-52 ° C.

ジベンゾフルベンの重合
得られたジベンゾフルベン0.5モルをTHFに溶解し、重合開始剤としてn-BuLiを0.025モル用い、-78℃で24時間反応させることによりジベンゾフルベンの重合体を得た。その後、ジベンゾフルベンの2量体から17量体までの重合物を、重合度に応じてGPCにより分離した。
Polymerization of dibenzofulvene 0.5 mol of the obtained dibenzofulvene was dissolved in THF, and 0.025 mol of n-BuLi was used as a polymerization initiator and reacted at -78 ° C for 24 hours to obtain a polymer of dibenzofulvene. Thereafter, dibenzofulvene dimer to 17-mer polymers were separated by GPC depending on the degree of polymerization.

モル吸光係数の測定
THF溶液の室温における吸光度を測定することにより、モル吸光係数を測定した(図1参照)。
Measurement of molar extinction coefficient
The molar extinction coefficient was measured by measuring the absorbance of the THF solution at room temperature (see FIG. 1).

蛍光スペクトルの測定
THF溶液について、室温で、267nmの励起光を用いて発光スペクトルを測定した(図2参照)。
Measurement of fluorescence spectrum
The emission spectrum of the THF solution was measured at room temperature using 267 nm excitation light (see FIG. 2).

吸光スペクトルの測定から、重合度が3以上の重合体は、モノマーの265nmのモル吸光係数と比較して、モル吸光係数が約40%小さくなったことが確認された。このことから、このジベンゾフルベンの重合体のフルオレン環がスタック構造を取っていることが実証された。また、吸収端がモノマーの吸収端306nmから318nmへとシフトした。更に、蛍光スペクトルの測定から、重合度が4以上の場合に、モノマーの発光ピーク波長305nm(ピーク幅295nm〜375nm)とは異なる波長400nm(ピーク幅340〜550nm)にエキシマー発光による発光ピークが観察された。このことからも、このジベンゾフルベンの重合体におけるフルオレン環がスタック構造を取っていることが分かる。   From the measurement of the absorption spectrum, it was confirmed that the polymer having a polymerization degree of 3 or more had a molar extinction coefficient of about 40% smaller than that of the monomer at 265 nm. This demonstrated that the fluorene ring of the dibenzofulvene polymer has a stack structure. Further, the absorption edge shifted from 306 nm to 318 nm of the monomer absorption edge. Furthermore, from the measurement of the fluorescence spectrum, when the degree of polymerization is 4 or more, an emission peak due to excimer emission is observed at a wavelength 400 nm (peak width 340 to 550 nm) different from the emission peak wavelength 305 nm (peak width 295 to 375 nm) of the monomer. It was done. This also shows that the fluorene ring in the dibenzofulvene polymer has a stack structure.

(共重合)
<2,7-ジ-t-ブチルジベンゾフルベンの合成>
フレームドライした後窒素置換を行った、メカニカルスターラー及び塩化水素ガストラップ付き1リットルの3つ口フラスコに、フルオレン(30.4764g,183.5928mmol)、FeCl3(0.5eq.,14.7517g)、及びCS2(300ml)を入れて攪拌した。その中にt-BuCl(2.5eq.,50ml)を10分間かけて滴下した。その反応混合溶液を室温で7時間攪拌した後、水を入れてクエンチした。次いで塩化メチレンを用いて有機層を2回抽出し、抽出した有機層を飽和炭酸水素ナトリウム及び飽和食塩水で洗浄した後、MgSO4で乾燥した。得られた溶液をろ過し、減圧下で濃縮して粗生成物(49.4598g,茶色の固体)を得、該粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン)によって精製し、目的生成物2,7-ジ-t-ブチルフルオレン(43.6058g,85%,白色の固体)を得た。反応に用いるものはこれ以上の精製を行なわず、分析データの測定にはEtOHから再結晶した試料を用いた。mp:120.1-120.6℃。
1H-NMR (500MHz,CDCl3,CHCl3) δ:7.68 (d, J=8.0Hz, 2H), 7.58 (s, 2H), 7.41 (d, J=8.0Hz, 2H), 3.88 (s, 2H), 1.40(s, 18H); 13C-NMR (125MHz, CDCl3) δ:149.42, 143.25, 139.12, 123.76, 121.84, 119.07, 37.08, 34.80, 31.62; IR (KBr):2959, 2895, 2868, 1473, 1358, 1261, 1163, 817, 716cm-1; HRMS (EI) Calcd. for C21H26:278.2034. Found:278.2038.
(Copolymerization)
<Synthesis of 2,7-di-t-butyldibenzofulvene>
A 1-liter three-necked flask equipped with a mechanical stirrer and a hydrogen chloride gas trap after flame drying was replaced with fluorene (30.4764 g, 183.55928 mmol), FeCl 3 (0.5 eq., 14.7517 g), and CS 2 (300 ml) was added and stirred. Into this, t-BuCl (2.5 eq., 50 ml) was added dropwise over 10 minutes. The reaction mixture was stirred at room temperature for 7 hours and then quenched with water. Next, the organic layer was extracted twice using methylene chloride, and the extracted organic layer was washed with saturated sodium hydrogen carbonate and saturated brine, and then dried over MgSO 4 . The resulting solution was filtered and concentrated under reduced pressure to give a crude product (49.4598 g, brown solid), which was purified by silica gel column chromatography (hexane) to give the desired product 2,7 -Di-t-butylfluorene (43.6058 g, 85%, white solid) was obtained. The sample used for the reaction was not further purified, and a sample recrystallized from EtOH was used for measurement of analytical data. mp: 120.1-120.6 ° C.
1 H-NMR (500 MHz, CDCl 3 , CHCl 3 ) δ: 7.68 (d, J = 8.0Hz, 2H), 7.58 (s, 2H), 7.41 (d, J = 8.0Hz, 2H), 3.88 (s, 2H), 1.40 (s, 18H); 13 C-NMR (125 MHz, CDCl 3 ) δ: 149.42, 143.25, 139.12, 123.76, 121.84, 119.07, 37.08, 34.80, 31.62; IR (KBr): 2959, 2895, 2868 , 1473, 1358, 1261, 1163, 817, 716 cm -1 ; HRMS (EI) Calcd. For C 21 H 26 : 278.2034. Found: 278.2038.

フレームドライし、窒素置換を行った1リットルの3つ口フラスコに、上で得られた2,7-ジ-t-ブチルフルオレン(10.0083g,36.9712mmol)、トルエン(570ml)、及びN,N,N’,N’-テトラメチルエチレンジアミン(17ml)を入れ、0℃で10分間攪拌した。その反応混合溶液にn-BuLiのヘキサン溶液(1.6M,68ml)を10分かけて滴下し、さらに5分間攪拌した。得られた溶液にパラフォルムアルデヒド(3.2467g)、及びトルエン(30ml)を入れ、0℃で150分攪拌し、次いで反応混合溶液を水でクエンチし、有機層を酢酸エチルを用いて2回抽出した。   To a 1-liter three-necked flask subjected to flame drying and nitrogen substitution, 2,7-di-t-butylfluorene (10.0083 g, 36.9712 mmol) obtained above, toluene (570 ml), and N, N , N ′, N′-Tetramethylethylenediamine (17 ml) was added and stirred at 0 ° C. for 10 minutes. To the reaction mixture, n-BuLi in hexane (1.6M, 68 ml) was added dropwise over 10 minutes, and the mixture was further stirred for 5 minutes. Paraformaldehyde (3.2467 g) and toluene (30 ml) were added to the resulting solution, stirred at 0 ° C. for 150 minutes, then the reaction mixture was quenched with water, and the organic layer was extracted twice with ethyl acetate. did.

得られた有機層を飽和炭酸水素ナトリウム及び飽和食塩水で洗浄した後硫酸マグネシウムで乾燥した。その溶液を濾過し、減圧下で濃縮し、粗成生物(21.0154g, 黄色の液体)を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=15:1)により精製し、2,7-ジ-t-ブチル-9-ヒドロキシメチルフルオレン(6.7477g, 59%, 薄黄色の固体)を単離した。mp:101.5-103.0℃。
1H-NMR(500MHz,CDCl3, TMS) δ:7.64 (d, J=8.0Hz, 2H), 7.61 (d, J=2.0Hz,2H), 7.34 (dd, J=8.0, 2.0Hz,2H), 4.06(s, 3H), 1.54(br s, 1H), 1.37(s, 18H); 13C-NMR (125MHz, CDCl3) δ:149.89, 144.29, 138.93, 124.66, 121.39, 119.26, 65.33, 50.47, 34.87, 31.61; IR (KBr):3322, 2955, 2866, 1476, 1361, 1259, 1058, 817, 735cm-1; HRMS (EI) Calcd. for C22H28O:308.2140. Found:308.2138.
The obtained organic layer was washed with saturated sodium hydrogen carbonate and saturated brine, and then dried over magnesium sulfate. The solution was filtered and concentrated under reduced pressure to give a crude product (21.0154 g, yellow liquid). The obtained crude product was purified by silica gel column chromatography (hexane: ethyl acetate = 15: 1), and 2,7-di-t-butyl-9-hydroxymethylfluorene (6.7477 g, 59%, light yellow Solid) was isolated. mp: 101.5-103.0 ° C.
1 H-NMR (500 MHz, CDCl 3 , TMS) δ: 7.64 (d, J = 8.0 Hz, 2H), 7.61 (d, J = 2.0 Hz, 2H), 7.34 (dd, J = 8.0, 2.0 Hz, 2H ), 4.06 (s, 3H), 1.54 (br s, 1H), 1.37 (s, 18H); 13 C-NMR (125 MHz, CDCl 3 ) δ: 149.89, 144.29, 138.93, 124.66, 121.39, 119.26, 65.33, 50.47, 34.87, 31.61; IR (KBr): 3322, 2955, 2866, 1476, 1361, 1259, 1058, 817, 735cm -1 ; HRMS (EI) Calcd. For C 22 H 28 O: 308.2140. Found: 308.2138.

還流管付きの200mlナスフラスコに2,7-ジ-t-ブチル-9-ヒドロキシメチルフルオレン(2.0383g,6.6179mmol)、MeOH(40ml)、THF(40ml)、及びt-BuOK(2.3048g)を入れ、還流温度で10分間攪拌した。その反応混合溶液を水でクエンチし、ヘキサンを用いて有機層を2回抽出し、飽和食塩水で洗浄した後、MgSO4で乾燥した。 In a 200 ml eggplant flask with a reflux tube, 2,7-di-t-butyl-9-hydroxymethylfluorene (2.0383 g, 6.6179 mmol), MeOH (40 ml), THF (40 ml), and t-BuOK (2.3048 g) And stirred at reflux temperature for 10 minutes. The reaction mixture was quenched with water, the organic layer was extracted twice with hexane, washed with saturated brine, and dried over MgSO 4 .

得られた溶液をろ過し、減圧下で濃縮して粗生成物(1.8975g,黄色の固体)を得た。得られた粗成生物をシリカゲルカラムクロマトグラフィー(ヘキサン)により精製し、2,7-ジ-t-ブチルジベンゾフルベン(1.7840g,93%,黄色の固体)を単離した。mp:158.6-160.5℃。
1H-NMR (500MHz, CDCl3, TMS) δ:7.74 (d, J=1.0Hz, 2H), 7.56 (d, J=8.0Hz, 2H), 7.39 (dd, J=8.0, 2.0 Hz, 2H), 6.05 (s, 2H), 1.38 (s, 18H); 13C-NMR (125MHz, CDCl3) δ:149.81, 144.02, 138.12, 137.70, 125.97, 119.04, 117.68, 106.47, 34.89, 31.52; IR (KBr):2959, 1474, 1361, 1253, 1102, 888, 823, 754, 684cm-1; HRMS (EI) Calcd. for C22H26:290.2034. Found:290.2029; Anal. Calcd. for C22H20: C, 90.98; H, 9.02. Found: C, 91.02; H, 9.07.
The resulting solution was filtered and concentrated under reduced pressure to obtain a crude product (1.8975 g, yellow solid). The resulting crude product was purified by silica gel column chromatography (hexane) to isolate 2,7-di-t-butyldibenzofulvene (1.7840 g, 93%, yellow solid). mp: 158.6-160.5 ° C.
1 H-NMR (500 MHz, CDCl 3 , TMS) δ: 7.74 (d, J = 1.0 Hz, 2H), 7.56 (d, J = 8.0 Hz, 2H), 7.39 (dd, J = 8.0, 2.0 Hz, 2H ), 6.05 (s, 2H), 1.38 (s, 18H); 13 C-NMR (125 MHz, CDCl 3 ) δ: 149.81, 144.02, 138.12, 137.70, 125.97, 119.04, 117.68, 106.47, 34.89, 31.52; IR ( KBr): 2959, 1474, 1361, 1253, 1102, 888, 823, 754, 684cm -1 ; HRMS (EI) Calcd. For C 22 H 26 : 290.2034. Found: 290.2029; Anal. Calcd. For C 22 H 20 : C, 90.98; H, 9.02. Found: C, 91.02; H, 9.07.

<2,7-ジ-t-ブチルジベンゾフルベンとジベンゾフルベンの共重合による可溶性π-スタックポリマーの合成>
フレームドライした後窒素置換したアンプルに、2,7-ジ-t-ブチルジベンゾフルベン(499.6mg,1.7202mmol)、DBFのTHF溶液(0.87M,1.8ml)、及びTHF(3.9ml)を入れた。反応混合溶液を-78℃に冷却し、n-BuLiのヘキサン溶液(1.6M, 0.05ml)を入れて重合を開始し、-78℃で24時間重合させた。24時間後、反応混合溶液にその温度でMeOH(0.2ml)を加えて重合を停止させた。反応混合物をCDCl3に入れて1H-NMR測定し、溶媒を内部標準としてモノマーの転化率を求めた(モノマー転化率:DBF=>99%,2,7-t-ブチルジベンゾフルベン=6%)。反応混合溶液から溶媒を除去した後、THF不溶分(117.6mg,15%)と可溶分に分け、THF可溶部にMeOHを加えて再沈殿させ、MeOH不溶分(156.0mg, 20%)を得た。THF可溶でMeOHに不溶な部分:分子量、Mn=7900,Mw/Mn=1.13[GPC,vs.ポリスチレン];吸収スペクトル、ε=22792(222nm),ε=10714(264nm),淡色化率49%(264nm)[THF,23℃][参考データ(モノマー単位モデル、2,7-ジ-t-ブチルフルオレン):ε=28988(222nm),ε=26477(264nm)][参考データ(モノマー単位モデル、フルオレン)、:ε=19638(222nm),ε=20486(264nm);発光スペクトル、λmax=397nm[λEx.=265nm,THF,23℃] [参考データ(モノマー単位モデル、2,7-ジ-t-ブチルフルオレン):λmax=311nm][参考データ(モノマー単位モデル、フルオレン)、λmax=311nm]
<Synthesis of soluble π-stack polymer by copolymerization of 2,7-di-t-butyldibenzofulvene and dibenzofulvene>
2,7-di-t-butyldibenzofulvene (499.6 mg, 1.7202 mmol), DBF in THF (0.87 M, 1.8 ml), and THF (3.9 ml) were placed in an ampoule that had been frame-dried and purged with nitrogen. . The reaction mixture was cooled to −78 ° C., and n-BuLi in hexane (1.6 M, 0.05 ml) was added to initiate polymerization, and polymerization was carried out at −78 ° C. for 24 hours. After 24 hours, MeOH (0.2 ml) was added to the reaction mixture at that temperature to terminate the polymerization. The reaction mixture was put into CDCl 3 and subjected to 1 H-NMR measurement, and the monomer conversion was determined using the solvent as an internal standard (monomer conversion: DBF => 99%, 2,7-t-butyldibenzofulvene = 6% ). After removing the solvent from the reaction mixture, it was divided into THF insolubles (117.6 mg, 15%) and solubles, MeOH was added to the THF soluble part to reprecipitate, MeOH insolubles (156.0 mg, 20%) Got. THF soluble and insoluble in MeOH: molecular weight, Mn = 7900, Mw / Mn = 1.13 [GPC, vs. polystyrene]; absorption spectrum, ε = 22792 (222 nm), ε = 10714 (264 nm), lightening rate 49 % (264nm) [THF, 23 ℃] [Reference data (monomer unit model, 2,7-di-t-butylfluorene): ε = 28988 (222nm), ε = 26477 (264nm)] [Reference data (monomer unit Model, fluorene): ε = 19638 (222 nm), ε = 20486 (264 nm); emission spectrum, λ max = 397 nm [λ Ex. = 265 nm, THF, 23 ° C.] [Reference data (monomer unit model, 2,7 -Di-t-butylfluorene): λ max = 311nm] [Reference data (monomer unit model, fluorene), λ max = 311nm]

(側鎖に置換基のあるポリマー1)
<2,7-ジ-n-ペンチルジベンゾフルベンの合成>
フレームドライした後窒素置換を行った、メカニカルスターラー及び塩化水素ガストラップ付き3リットルの4つ口フラスコに、フルオレン(30.0855g,181.2380mmol)、AlCl3(100.1639g)、及びCS2(400ml)を入れて攪拌した。その中にバレロイドクロライド(64ml)を30分かけてゆっくりと滴下した。この工程ではかなりの塩化水素ガスが発生した。得られた反応混合溶液を室温で8時間攪拌した後、その反応混合溶液を氷の入った2リットルのマイヤーにゆっくりと攪拌しなが注ぎ入れてクエンチし、塩化メチレンを用いて有機層を2回抽出し、その有機層を2重量%のNaOH水溶液で2回、次いで飽和食塩水で洗浄し、MgSO4で乾燥した。次いで該有機層溶液をセライトろ過し、減圧下で濃縮して粗生成物(61.0123g,茶色の固体)を得た。得られた粗生成物を酢酸エチルで再結晶し、2,7-ジ(1-オキソペンチル)フルオレン(52.4458g,87%,赤色の固体)を得た。mp:147.3-149.1℃。
1H-NMR(500MHz, CDCl3, TMS) δ:8.18 (s, 2H), 8.04 (d, J=8.0Hz, 2H), 7.90 (d, J=8.0Hz, 2H), 4.02 (s,2H), 3.03 (t, J=7.0Hz, 4H),0.76(quin, J=7.0Hz, 4H), 1.44 (sex, J=7.0Hz, 4H), 0.98 (t, J=7.0Hz, 6H); 13C-NMR (125MHz, CDCl3) δ:200.29, 144.77, 144.46, 136.44, 127.43, 124.81, 120.59, 38.51, 36.92, 26.58, 22.49, 13.93; IR (KBr):2957, 2937, 2895, 2870, 1680, 1605, 1213, 1137, 843, 798, 754, 731cm-1; HRMS (EI) Calcd. for C23H26O2:334.1933. Found:334.1933.
(Polymer 1 having a substituent in the side chain)
<Synthesis of 2,7-di-n-pentyldibenzofulvene>
Flame-dried and purged with nitrogen, a 3-liter four-necked flask with a mechanical stirrer and hydrogen chloride gas trap was charged with fluorene (30.0855 g, 181.2380 mmol), AlCl 3 (100.1639 g), and CS 2 (400 ml). Stir in. Valeroid chloride (64 ml) was slowly added dropwise over 30 minutes. Considerable hydrogen chloride gas was generated in this process. The resulting reaction mixture was stirred at room temperature for 8 hours, and then the reaction mixture was quenched by pouring into a 2 liter Meyer with ice while slowly stirring, and the organic layer was diluted with methylene chloride. The organic layer was washed twice with 2% by weight NaOH aqueous solution and then with saturated brine and dried over MgSO 4 . The organic layer solution was then filtered through Celite and concentrated under reduced pressure to obtain a crude product (61.0123 g, brown solid). The obtained crude product was recrystallized from ethyl acetate to obtain 2,7-di (1-oxopentyl) fluorene (52.4458 g, 87%, red solid). mp: 147.3-149.1 ° C.
1 H-NMR (500 MHz, CDCl 3 , TMS) δ: 8.18 (s, 2H), 8.04 (d, J = 8.0 Hz, 2H), 7.90 (d, J = 8.0 Hz, 2H), 4.02 (s, 2H ), 3.03 (t, J = 7.0Hz, 4H), 0.76 (quin, J = 7.0Hz, 4H), 1.44 (sex, J = 7.0Hz, 4H), 0.98 (t, J = 7.0Hz, 6H); 13 C-NMR (125 MHz, CDCl 3 ) δ: 200.29, 144.77, 144.46, 136.44, 127.43, 124.81, 120.59, 38.51, 36.92, 26.58, 22.49, 13.93; IR (KBr): 2957, 2937, 2895, 2870, 1680 , 1605, 1213, 1137, 843, 798, 754, 731 cm -1 ; HRMS (EI) Calcd. For C 23 H 26 O 2 : 334.1933. Found: 334.1933.

1リットルのナスフラスコに還流管付きのDean-Starkトラップを付け、2,7-ジ(1-オキソペンチル)フルオレン(30.4129g,91.0566mmol)、ヒドラジン・1水和物(44.2ml)、及びジエチレングリコール(400ml)を入れて130℃で加熱した。2時間後、KOH(20.5628g)を入れ、200℃で加熱した。3時間後に反応溶液を室温に戻し、水を入れ、有機層をエーテルを用いて2回抽出した。その有機層を1N-HCl、飽和炭酸水素ナトリウム水、次いで水で2回、及び飽和食塩水で洗浄した後、MgSO4で乾燥した。得られた溶液をろ過し、減圧下で濃縮して粗生成物(27.6591g,黄色の固体)を得た。該粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン)により精製し、2,7-ジ-n-ペンチルフルオレン(26.2137g,94%,白色の固体)を得た。mp:98.9-99.6℃。
1H-NMR(500MHz, CDCl3, TMS) δ:7.63 (d, J=8.0Hz, 2H), 7.33 (s, 2H), 7.16 (d, J=8.0Hz, 2H), 3.83 (s,2H), 2.67-2.64 (m, 4H),1.68-1.62 (m, 4H), 1.53-1.33 (m, 8H), 0.91-0.88 (m, 6H);13C-NMR (125MHz, CDCl3) δ:143.33, 141.24, 139.43, 126.91, 124.80, 119.23, 36.70, 36.12, 31.56, 31.51, 22.59, 14.06; IR (KBr):2953, 2925, 2870, 2855, 1467, 1420, 2397, 864, 811 cm-1; HRMS (EI) Calcd. for C23H30:306.2348, Found:306.2339; Anal.
Calcd. for C23H30: C, 90.13; H, 9.87. Found: C, 90.40; H, 10.0.
1-liter eggplant flask with Dean-Stark trap with reflux tube, 2,7-di (1-oxopentyl) fluorene (30.4129g, 91.0566mmol), hydrazine monohydrate (44.2ml), and diethylene glycol (400 ml) was added and heated at 130 ° C. After 2 hours, KOH (20.5628 g) was added and heated at 200 ° C. After 3 hours, the reaction solution was returned to room temperature, water was added, and the organic layer was extracted twice with ether. The organic layer was washed with 1N-HCl, saturated aqueous sodium hydrogen carbonate, then twice with water, and saturated brine, and then dried over MgSO 4 . The resulting solution was filtered and concentrated under reduced pressure to obtain a crude product (27.6591 g, yellow solid). The crude product was purified by silica gel column chromatography (hexane) to obtain 2,7-di-n-pentylfluorene (26.2137 g, 94%, white solid). mp: 98.9-99.6 ° C.
1 H-NMR (500 MHz, CDCl 3 , TMS) δ: 7.63 (d, J = 8.0 Hz, 2H), 7.33 (s, 2H), 7.16 (d, J = 8.0 Hz, 2H), 3.83 (s, 2H ), 2.67-2.64 (m, 4H), 1.68-1.62 (m, 4H), 1.53-1.33 (m, 8H), 0.91-0.88 (m, 6H); 13 C-NMR (125 MHz, CDCl 3 ) δ: 143.33, 141.24, 139.43, 126.91, 124.80, 119.23, 36.70, 36.12, 31.56, 31.51, 22.59, 14.06; IR (KBr): 2953, 2925, 2870, 2855, 1467, 1420, 2397, 864, 811 cm -1 ; HRMS (EI) Calcd. For C 23 H 30 : 306.2348, Found: 306.2339; Anal.
Calcd. For C 23 H 30 : C, 90.13; H, 9.87. Found: C, 90.40; H, 10.0.

フレームドライし、窒素置換を行った1リットルの3つ口フラスコに、2,7-ジ-n-ペンチルフルオレン(5.0407g,16.4727mmol)、トルエン(280ml)、及びN,N,N’,N’-テトラメチルエチレンジアミン(7.4ml)を入れ、0℃で10分間攪拌した。その反応混合溶液にn-BuLiのヘキサン溶液(1.6M,31ml)を10分かけて滴下し、その温度で5分間攪拌した。その溶液にパラフォルムアルデヒド(1.5844g)、及びトルエン(20ml)を入れ、0℃で80分間攪拌した。その反応混合溶液を水でクエンチし、酢酸エチルを用いて有機層を2回抽出した。抽出した有機層を飽和食塩水で洗浄し、MgSO4で乾燥した後ろ過し、減圧下で濃縮して粗生成物(8.5301g, 黄色の液体)を得た。該粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=15:1)により精製し、9-ヒドロキシメチル-2,7-ジ-n-ペンチルフルオレン(3.1360g,57%,肌色の固体)を得た。mp:61.3-63.7℃。
1H-NMR (500MHz, CDCl3, TMS) δ:7.62 (d, J=8.0Hz, 2H), 7.39 (s, 2H), 7.19 (d, J=8.0Hz, 2H),4.05 (s, 3H), 2.68-2.65 (m, 4H), 1.69-1.63 (m, 4H), 1.51(br s, 1H), 1.36-1.33 (m, 8H), 0.91-0.89 (m, 6H); 13C-NMR (125MHz, CDCl3) δ:144.36, 141.69, 139.25, 127.74, 124.62, 119.45, 65.29, 50.15, 36.16, 31.61, 31.48, 22.56, 14.06; IR (KBr):3311, 2926, 2855, 1467, 1418, 1062, 023,896,809,732 cm-1; HRMS (EI) Calcd. for C24H32O:336.2453. Found:336.2446.
Flame-dried, nitrogen-substituted 1 liter three-necked flask, 2,7-di-n-pentylfluorene (5.0407 g, 16.4727 mmol), toluene (280 ml), and N, N, N ′, N '-Tetramethylethylenediamine (7.4 ml) was added and stirred at 0 ° C. for 10 minutes. A hexane solution of n-BuLi (1.6 M, 31 ml) was added dropwise to the reaction mixture over 10 minutes, and the mixture was stirred at that temperature for 5 minutes. Paraformaldehyde (1.5844 g) and toluene (20 ml) were added to the solution and stirred at 0 ° C. for 80 minutes. The reaction mixture was quenched with water and the organic layer was extracted twice with ethyl acetate. The extracted organic layer was washed with saturated brine, dried over MgSO 4 , filtered, and concentrated under reduced pressure to obtain a crude product (8.5301 g, yellow liquid). The crude product was purified by silica gel column chromatography (hexane: ethyl acetate = 15: 1) to obtain 9-hydroxymethyl-2,7-di-n-pentylfluorene (3.1360 g, 57%, skin-colored solid). Obtained. mp: 61.3-63.7 ° C.
1 H-NMR (500 MHz, CDCl 3 , TMS) δ: 7.62 (d, J = 8.0Hz, 2H), 7.39 (s, 2H), 7.19 (d, J = 8.0Hz, 2H), 4.05 (s, 3H ), 2.68-2.65 (m, 4H), 1.69-1.63 (m, 4H), 1.51 (br s, 1H), 1.36-1.33 (m, 8H), 0.91-0.89 (m, 6H); 13 C-NMR (125MHz, CDCl 3 ) δ: 144.36, 141.69, 139.25, 127.74, 124.62, 119.45, 65.29, 50.15, 36.16, 31.61, 31.48, 22.56, 14.06; IR (KBr): 3311, 2926, 2855, 1467, 1418, 1062 , 023,896,809,732 cm -1 ; HRMS (EI) Calcd. For C 24 H 32 O: 336.2453. Found: 336.2446.

還流管付きの200mlナスフラスコに9-ヒドロキシメチル-2,7-ジ-n-ペンチルフルオレン(1.6210g,4.8171mmol)、MeOH(30ml)、及びTHF(230ml)を入れ、0℃で10分間攪拌した。その反応混合溶液にt-BuOK(1.6330g)をその温度で入れ、還流温度で5分間攪拌した。次いで反応混合溶液に水を入れてクエンチし、ヘキサンを用いて有機層を2回抽出し、飽和食塩水で洗浄した後、MgSO4で乾燥した。その溶液をセライトろ過した後減圧下で濃縮し、粗生成物(1.5743g,黄色の液体)を得た。該粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン)により精製し、2,7-ジ-n-ペンチルジベンゾフルベン(1.4020g,91%,黄色の液体)を得た。尚、この化合物は、溶媒の無いオイル状態で室温で放置すると重合を開始してしまうため、すばやく抽出してカラムクロマトで精製し、重合に用いた。
1H-NMR (500MHz, CDCl3, CHCl3)δ:7.56 (d, J=8.0Hz, 2H), 7.54(s,2H),7.19 (d, J=8.0Hz, 2H), 6.05 (s, 2H), 2.71-2.68 (m,4H),1.72-1.66 (m, 4H), 1.39-1.37 (m, 8H), 0.95-0.92 (m, 6H). 13C-NMR (125MHz, CDCl3) δ:143.66, 141.59, 138.28, 138.06, 128.98, 120.90, 119.17, 106.81, 36.16, 31.54, 31.40, 22.57, 14.04; IR (neat) 2929, 2855, 1465, 1376, 1298, 889, 817, 754cm-1; HRMS (EI) Calcd. for C24H30:318.2348. Found:318.2363.
9-Hydroxymethyl-2,7-di-n-pentylfluorene (1.6210 g, 4.8171 mmol), MeOH (30 ml), and THF (230 ml) were placed in a 200 ml eggplant flask equipped with a reflux tube and stirred at 0 ° C. for 10 minutes. did. To the reaction mixture was added t-BuOK (1.6330 g) at that temperature and stirred at reflux temperature for 5 minutes. Next, the reaction mixture solution was quenched with water, and the organic layer was extracted twice with hexane, washed with saturated brine, and dried over MgSO 4 . The solution was filtered through celite and concentrated under reduced pressure to obtain a crude product (1.5743 g, yellow liquid). The crude product was purified by silica gel column chromatography (hexane) to obtain 2,7-di-n-pentyldibenzofulvene (1.4020 g, 91%, yellow liquid). In addition, since this compound will start superposition | polymerization when it is left at room temperature in the oil state without a solvent, it extracted quickly, refine | purified with column chromatography, and used for superposition | polymerization.
1 H-NMR (500 MHz, CDCl 3 , CHCl 3 ) δ: 7.56 (d, J = 8.0 Hz, 2H), 7.54 (s, 2H), 7.19 (d, J = 8.0 Hz, 2H), 6.05 (s, 2H), 2.71-2.68 (m, 4H), 1.72-1.66 (m, 4H), 1.39-1.37 (m, 8H), 0.95-0.92 (m, 6H). 13 C-NMR (125 MHz, CDCl 3 ) δ : 143.66, 141.59, 138.28, 138.06, 128.98, 120.90, 119.17, 106.81, 36.16, 31.54, 31.40, 22.57, 14.04; IR (neat) 2929, 2855, 1465, 1376, 1298, 889, 817, 754cm -1 ; HRMS (EI) Calcd. For C 24 H 30 : 318.2348. Found: 318.2363.

<2,7-ジ-n-ペンチルジベンゾフルベンの重合による可溶性π-スタックポリマーの合成>
フレームドライした後窒素置換したアンプルに、2,7-ジ-n-ペンチルジベンゾフルベンの乾燥ヘキサン溶液(0.97M,1.65ml,1.60mmol)を入れ、減圧下でヘキサンを留去した。乾燥THF(2.6ml)を入れてモノマーを溶解し、溶液を-78℃に冷却した。n-BuLiのヘキサン溶液 (1.6M,0.1ml)を入れて重合を開始し、24時間重合させた。反応混合溶液を-78℃に保ったままMeOH(0.2ml)を加え、重合を停止させた。反応混合物の一部をCDCl3で希釈して1H-NMR測定を行い、内部標準としての溶媒のピークの吸収と残存モノマーのビニルプロトンの吸収の強度比から、モノマーの転化率を決定した(モノマー転化率:>99%)。反応混合溶液から溶媒を留去して得られた粗生成物をTHFに溶解した後MeOHで再沈殿させ、MeOH不溶部(320.8mg, 62%)を得た。MeOH不溶部:分子量、Mn=3100, Mw /Mn =1.24 (GPC, vs. ポリスチレン);吸収スペクトル,ε= 12751 (282nm),ε= 12701 (274nm), 淡色化率 55% (274nm) [THF, 25℃] [参考データ(モノマー単位モデル、2,7-ジ-n-ペンチルフルオレン):ε= 20436 (282nm),ε= 28315 (274nm) [THF, r.t.]];発光スペクトル, λmax= 404nm,) [λEx.= 282nm, THF, r.t.] ] [参考データ(モノマー単位モデル、2,7-ジ-n-ペンチルフルオレン):λmax=315nm][Ex.= 282nm, THF, r.t.]。溶解性:トルエン、クロロホルム、THFに溶解。
<Synthesis of soluble π-stack polymer by polymerization of 2,7-di-n-pentyldibenzofulvene>
A dry hexane solution (0.97M, 1.65 ml, 1.60 mmol) of 2,7-di-n-pentyldibenzofulvene was placed in an ampoule that had been subjected to flame drying and purged with nitrogen, and hexane was distilled off under reduced pressure. Dry THF (2.6 ml) was added to dissolve the monomer and the solution was cooled to -78 ° C. A hexane solution (1.6 M, 0.1 ml) of n-BuLi was added to initiate polymerization, and polymerization was performed for 24 hours. While maintaining the reaction mixture at −78 ° C., MeOH (0.2 ml) was added to terminate the polymerization. A portion of the reaction mixture was diluted with CDCl 3 and subjected to 1 H-NMR measurement, and the monomer conversion rate was determined from the intensity ratio between the absorption of the solvent peak as the internal standard and the absorption of the vinyl proton of the remaining monomer ( Monomer conversion:> 99%). The crude product obtained by distilling off the solvent from the reaction mixture was dissolved in THF and then reprecipitated with MeOH to obtain a MeOH insoluble part (320.8 mg, 62%). MeOH insoluble part: molecular weight, Mn = 3100, Mw / Mn = 1.24 (GPC, vs. polystyrene); absorption spectrum, ε = 12751 (282nm), ε = 12701 (274nm), lightening rate 55% (274nm) [THF [Reference data (monomer unit model, 2,7-di-n-pentylfluorene): ε = 20436 (282nm), ε = 28315 (274nm) [THF, rt]]; Emission spectrum, λ max = 404nm,) [λ Ex. = 282nm, THF, rt]] [Reference data (monomer unit model, 2,7-di-n-pentylfluorene): λ max = 315nm] [Ex. = 282nm, THF, rt] . Solubility: Dissolved in toluene, chloroform and THF.

(側鎖に置換基のあるポリマー2).
フレームドライした後窒素置換を行った滴下漏斗付き1リットル3つ口フラスコに、2,7-ジブロモフルオレン(25.1251g,77.5442mmol)、NiCl2dppp(4.2480g)及びEt2O(300ml)を入れ、0℃で15分間攪拌した。その反応混合溶液に3-メチルプロピルマグネシウムブロミドのEt2O溶液(1.53M,302ml)を入れ、0℃で10分間攪拌した後、室温で40時間攪拌した。その反応混合溶液を2リットルの氷入りマイヤーにゆっくりと注ぎ入れてクエンチし、酢酸エチルを用いて2回抽出し、その有機層を飽和炭酸水素ナトリウム水溶液及び飽和食塩水で洗浄し、無水MgSO4で乾燥した。その溶液をセライトろ過し、減圧下で濃縮して粗生成物(22.3459g,茶色の固体)を得た。該粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン)で濾過し(17.2926g)、それをEtOH可溶分(16.9854g)及び不溶分(0.3072g)に分けた。EtOH可溶分をEtOHから再結晶し2,7-ジ(2-メチルプロピル)フルオレン(5.6111g,26%,うす黄色の固体)を得た。mp:76.0-77.5℃。
1H-NMR (500MHz, CDCl3,CHCl3) δ:7.65 (d, J=8.0Hz, 2H), 7.31 (s, 2H), 7.13 (d, J=8.0Hz, 2H), 3.84 (s,2H), 2.54 (t, J=7.0Hz, 4H), 1.87-1.95 (m, 2H), 0.93 (d, J=7.0Hz, 12H); 13C-NMR (125MHz, CDCl3) δ:143.18, 139.99, 139.47, 127.62, 125.69, 119.07, 45.62, 36.70, 30.48, 22.41; IR (KBr):2950, 2922, 2866, 1465, 839, 800, 745, 703cm-1; HRMS (EI) Calcd. for C21H26:278.2034. Found:278.2029.
(Polymer 2 having a substituent in the side chain).
Place 2,7-dibromofluorene (25.1251 g, 77.5442 mmol), NiCl 2 dppp (4.2480 g), and Et 2 O (300 ml) into a 1-liter three-necked flask equipped with a dropping funnel that has been subjected to flame drying and purged with nitrogen. And stirred at 0 ° C. for 15 minutes. An Et 2 O solution of 3-methylpropylmagnesium bromide (1.53M, 302 ml) was added to the reaction mixture solution, stirred at 0 ° C. for 10 minutes, and then stirred at room temperature for 40 hours. The reaction mixture was quenched by slowly pouring into 2 liters of ice Meyer, extracted twice with ethyl acetate, the organic layer washed with saturated aqueous sodium bicarbonate and saturated brine, and anhydrous MgSO 4 Dried. The solution was filtered through Celite and concentrated under reduced pressure to obtain a crude product (22.3459 g, brown solid). The crude product was filtered through silica gel column chromatography (hexane) (17.2926 g), which was divided into EtOH soluble (16.9854 g) and insoluble (0.3072 g). EtOH solubles were recrystallized from EtOH to obtain 2,7-di (2-methylpropyl) fluorene (5.6111 g, 26%, light yellow solid). mp: 76.0-77.5 ° C.
1 H-NMR (500 MHz, CDCl 3 , CHCl 3 ) δ: 7.65 (d, J = 8.0Hz, 2H), 7.31 (s, 2H), 7.13 (d, J = 8.0Hz, 2H), 3.84 (s, 2H), 2.54 (t, J = 7.0Hz, 4H), 1.87-1.95 (m, 2H), 0.93 (d, J = 7.0Hz, 12H); 13 C-NMR (125 MHz, CDCl 3 ) δ: 143.18, 139.99, 139.47, 127.62, 125.69, 119.07, 45.62, 36.70, 30.48, 22.41; IR (KBr): 2950, 2922, 2866, 1465, 839, 800, 745, 703cm -1 ; HRMS (EI) Calcd. For C 21 H 26 : 278.2034. Found: 278.2029.

フレームドライし、窒素置換を行った2リットルの2つ口フラスコに、2,7-ジ(2-メチルプロピル)フルオレン(10.0194g,35.9853mmol)、トルエン(600ml)、及びN,N,N’,N’-テトラメチルエチレンジアミン(16.3ml)を入れ、0℃で15分間攪拌した。その反応混合溶液にn-BuLiのヘキサン溶液(1.6M,68ml)を入れ、さらに5分間攪拌した。次いでその溶液にパラフォルムアルデヒド(3.3552g)を入れ、0℃で70分攪拌した後水を加えてクエンチし、酢酸エチルを用いて有機層を2回抽出した。その有機層を飽和食塩水で洗浄し、MgSO4で乾燥した後ろ過し、減圧下で濃縮して粗生成物(25.1026g,黄色の液体)を得た。該粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=20:1)により精製し、目的生成物9-ヒドロキシメチル-2,7-ジ(2-メチルプロピル)フルオレン(6.3921g,58%,白色の固体)を得た。mp:104.6-105.4℃。
1H-NMR (500MHz, CDCl3,CHCl3) δ:7.63 (d, J=8.0Hz, 2H), 7.63 (s, 2H), 7.16 (d, J=8.0Hz, 2H), 4.07-4.04 (m,3H), 2.55 (d, J=7.0Hz, 4H), 1.94-1.86 (m, 2H), 1.50-1.48 (m, 1H), 0.94-0.92 (m, 12H); 13C-NMR (125MHz, CDCl3) δ:144.25, 140.44, 139.30, 128.48, 125.34, 119.30, 65.35, 50.16, 45.63, 30.46, 22.42, 22.38; IR (KBr):3347, 2952, 2922, 1467, 1059, 1025, 887, 838, 791, 636cm-1; HRMS (EI) Calcd. for C22H28O:308.2140. Found:308.2139.
In a 2-liter 2-necked flask that was flame-dried and purged with nitrogen, 2,7-di (2-methylpropyl) fluorene (10.0194 g, 35.9853 mmol), toluene (600 ml), and N, N, N ′ , N′-tetramethylethylenediamine (16.3 ml) was added, and the mixture was stirred at 0 ° C. for 15 minutes. A n-BuLi hexane solution (1.6 M, 68 ml) was added to the reaction mixture, and the mixture was further stirred for 5 minutes. Next, paraformaldehyde (3.3552 g) was added to the solution, stirred at 0 ° C. for 70 minutes, quenched by adding water, and the organic layer was extracted twice with ethyl acetate. The organic layer was washed with saturated brine, dried over MgSO 4 , filtered, and concentrated under reduced pressure to give a crude product (25.1026 g, yellow liquid). The crude product was purified by silica gel column chromatography (hexane: ethyl acetate = 20: 1) to give the desired product 9-hydroxymethyl-2,7-di (2-methylpropyl) fluorene (6.3921 g, 58%, (White solid) was obtained. mp: 104.6-105.4 ° C.
1 H-NMR (500 MHz, CDCl 3 , CHCl 3 ) δ: 7.63 (d, J = 8.0Hz, 2H), 7.63 (s, 2H), 7.16 (d, J = 8.0Hz, 2H), 4.07-4.04 ( m, 3H), 2.55 (d, J = 7.0Hz, 4H), 1.94-1.86 (m, 2H), 1.50-1.48 (m, 1H), 0.94-0.92 (m, 12H); 13 C-NMR (125 MHz , CDCl 3 ) δ: 144.25, 140.44, 139.30, 128.48, 125.34, 119.30, 65.35, 50.16, 45.63, 30.46, 22.42, 22.38; IR (KBr): 3347, 2952, 2922, 1467, 1059, 1025, 887, 838 791, 636 cm -1 ; HRMS (EI) Calcd. For C 22 H 28 O: 308.2140. Found: 308.2139.

還流管付きの200mlナスフラスコに9-ヒドロキシメチル-2,7-ジ(2-メチルプロピル)フルオレン(4.0273g,13.0563mmol)、MeOH(50ml)、及びTHF(50ml)を入れ、0℃で10分間攪拌した。その反応混合溶液にt-BuOK(4.4273g)をその温度で入れ、還流温度で10分間攪拌した後水を入れてクエンチし、ヘキサンを用いて2回有機層を抽出し、飽和食塩水で洗浄した後、MgSO4で乾燥した。次いで溶液をろ過した後、減圧下で濃縮して粗生成物(3.7852g,黄色の固体)を得た。該粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン)により精製し、2,7-ジ(2-メチルプロピル)ジベンゾフルベン(3.5023g,92%,薄黄色の固体)を得た。mp:71.9-73.7℃。
1H-NMR (500MHz, CDCl3,CHCl3) δ:7.54 (d, J=8.0Hz, 2H), 7.49 (s, 2H), 7.14 (d, J=8.0Hz, 2H), 6.02 (s,2H), 2.54 (d, J=7.0Hz, 4H), 1.96-1.88 (m, 2H), 0.94 (d, J=7.0Hz, 12H); 13C-NMR (125MHz, CDCl3) δ:143.68, 140.39, 138.17, 138.11, 129.71, 121.58, 119.03, 106.81, 45.65, 30.42, 22.38; IR (KBr):2947, 1463, 1427, 896, 833, 801, 754, 667cm-1; HRMS (EI) Calcd. for C22H26:290.2034. Found:290.2028.
9-Hydroxymethyl-2,7-di (2-methylpropyl) fluorene (4.0273 g, 13.0563 mmol), MeOH (50 ml), and THF (50 ml) were placed in a 200 ml eggplant flask equipped with a reflux tube. Stir for minutes. T-BuOK (4.4273 g) was added to the reaction mixture solution at that temperature, and the mixture was stirred at reflux temperature for 10 minutes and then quenched with water. The organic layer was extracted twice with hexane and washed with saturated brine. And dried over MgSO 4 . The solution was then filtered and concentrated under reduced pressure to obtain a crude product (3.7852 g, yellow solid). The crude product was purified by silica gel column chromatography (hexane) to obtain 2,7-di (2-methylpropyl) dibenzofulvene (3.5023 g, 92%, light yellow solid). mp: 71.9-73.7 ° C.
1 H-NMR (500 MHz, CDCl 3 , CHCl 3 ) δ: 7.54 (d, J = 8.0 Hz, 2H), 7.49 (s, 2H), 7.14 (d, J = 8.0 Hz, 2H), 6.02 (s, 2H), 2.54 (d, J = 7.0Hz, 4H), 1.96-1.88 (m, 2H), 0.94 (d, J = 7.0Hz, 12H); 13 C-NMR (125 MHz, CDCl 3 ) δ: 143.68, 140.39, 138.17, 138.11, 129.71, 121.58, 119.03, 106.81, 45.65, 30.42, 22.38; IR (KBr): 2947, 1463, 1427, 896, 833, 801, 754, 667cm -1 ; HRMS (EI) Calcd. For C 22 H 26 : 290.2034. Found: 290.2028.

<2,7-ジ-イソブチルジベンゾフルベンの重合による可溶性π-スタックポリマーの合成>
フレームドライした後窒素置換したアンプル管中で、2,7-ジ-イソブチルベンゾフルベン(233mg,0.80mmol) を乾燥トルエン(1.3ml)に溶解した。溶液を-78℃に冷却した後n-BuLi(1.6M,0.05ml)を加えて重合を開始させ、-78℃で24時間重合させた。反応混合溶液を-78℃に保ったまま、MeOH(0.2ml)を加えて重合を停止した。反応混合物の一部をCDCl3で希釈して1H-NMR測定を行い、内部標準としての溶媒のピークの吸収と残存モノマーのビニルプロトンの吸収の強度比からモノマーの転化率を決定した(モノマー転化率:>99%)。反応混合溶液から溶媒を留去して得られた粗生成物をTHFに溶解した後MeOHで再沈殿させ、MeOH不溶部(210.7mg,89%)を得た。MeOH不溶部:分子量、Mn=3150,Mw/Mn=1.17(GPC, vs. polystyrene);吸収スペクトル,ε= 11486 (294nm), ε= 10813 (274nm), 淡色化率 64% (264nm) [THF, 25℃] [参考データ(モノマー単位モデル、2,7-ジイソブチルフルオレン):ε= 7075 (294nm),ε= 30021 (274nm) [THF, r.t.]];発光スペクトル,λmax= 405nm,) [λEx.= 294nm, THF, r.t.] ] [参考データ(モノマー単位モデル、2,7-ジイソブチルフルオレン):λmax=315nm][Ex.= 294nm, THF, r.t.]。溶解性:トルエン、クロロホルム、THFに溶解。
<Synthesis of soluble π-stack polymer by polymerization of 2,7-di-isobutyldibenzofulvene>
2,7-Di-isobutylbenzofulvene (233 mg, 0.80 mmol) was dissolved in dry toluene (1.3 ml) in an ampoule tube that had been subjected to flame drying and purged with nitrogen. After the solution was cooled to -78 ° C, n-BuLi (1.6M, 0.05ml) was added to initiate polymerization, and polymerization was conducted at -78 ° C for 24 hours. While maintaining the reaction mixture at −78 ° C., MeOH (0.2 ml) was added to terminate the polymerization. A portion of the reaction mixture was diluted with CDCl 3 and subjected to 1 H-NMR measurement, and the monomer conversion rate was determined from the intensity ratio of absorption of the solvent peak as the internal standard and absorption of the vinyl proton of the remaining monomer (monomer Conversion:> 99%). The crude product obtained by distilling off the solvent from the reaction mixture was dissolved in THF and then reprecipitated with MeOH to obtain a MeOH insoluble part (210.7 mg, 89%). MeOH insoluble part: molecular weight, Mn = 3150, Mw / Mn = 1.17 (GPC, vs. polystyrene); absorption spectrum, ε = 11486 (294nm), ε = 10813 (274nm), lightening ratio 64% (264nm) [THF [Reference data (monomer unit model, 2,7-diisobutylfluorene): ε = 7075 (294nm), ε = 30021 (274nm) [THF, rt]]; emission spectrum, λ max = 405nm,) [ λ Ex. = 294 nm, THF, rt]] [Reference data (monomer unit model, 2,7-diisobutylfluorene): λ max = 315 nm] [Ex. = 294 nm, THF, rt]. Solubility: Dissolved in toluene, chloroform and THF.

(エネルギー移動).
<開始末端に1-ピレニルオキシ基を有するポリジベンゾフルベンの合成>
フレームドライし、乾燥窒素置換したアンプルにTHF(0.97ml)を入れ、-78℃で1-ピレニルメトキシカリウムTHF溶液(0.4M,2.5ml)を加え、さらに、DBF THF溶液(0.654M,1.53ml)を滴下して重合を開始させた。1-ピレニルメトキシカリウム THF溶液は、フレームドライした後乾燥窒素で置換したアンプルに、1-ピレニルメタノール(464.6mg,2.0mmol)及び水素化カリウム(81.3mg,2.0mmol)を入れ、更にTHF(4.5ml)を加えて10分間室温で放置することにより調製した。反応混合物をCDCl3に入れて1H NMRを測定し、溶媒を内部標準としてモノマーの転化率を求めた(モノマー転化率:24時間後、>99%)。-78℃で24時間重合させた後、反応混合物にメタノール(1.0 ml)を加えて重合を停止させた。反応混合物に約50mlのTHFを加え、THF可溶分(313mg、開始剤の残りを差し引くと60mg,27%)、及び不溶分(164mg,73%)に分け、THF可溶分を分取GPCで精製し、開始末端に1-ピレニルメトキシ基を有するポリジベンゾフルベンを得た(GPC[Mn=1522, Mw/Mn=1.06]; 1H NMRの末端基定量[Mn=3066])。
(Energy transfer).
<Synthesis of polydibenzofulvene having 1-pyrenyloxy group at the start terminal>
Flame-dried, put nitrogen (0.97 ml) in a dry nitrogen-substituted ampule, add 1-pyrenylmethoxypotassium THF solution (0.4 M, 2.5 ml) at −78 ° C., and further add DBF THF solution (0.654 M, 1.53). ml) was added dropwise to initiate the polymerization. 1-pyrenylmethoxypotassium THF solution was flame-dried and then replaced with dry nitrogen. Ampoule substituted with dry nitrogen was charged with 1-pyrenylmethanol (464.6 mg, 2.0 mmol) and potassium hydride (81.3 mg, 2.0 mmol). (4.5 ml) was added and the mixture was allowed to stand at room temperature for 10 minutes. The reaction mixture was put into CDCl 3 and 1 H NMR was measured to determine the monomer conversion rate using the solvent as an internal standard (monomer conversion rate:> 99% after 24 hours). After polymerization at −78 ° C. for 24 hours, methanol (1.0 ml) was added to the reaction mixture to stop the polymerization. Add about 50 ml of THF to the reaction mixture and divide it into a THF soluble fraction (313 mg, 60 mg, 27% by subtracting the remainder of the initiator) and an insoluble fraction (164 mg, 73%). To obtain polydibenzofulvene having a 1-pyrenylmethoxy group at the start terminal (GPC [Mn = 1522, Mw / Mn = 1.06]; end group quantification of 1 H NMR [Mn = 3066]).

<エネルギー移動効率の測定>
開始末端に1-ピレニルメトキシ基を有するポリジベンゾフルベンの蛍光スペクトル(THF中、10分間窒素バブリング、室温、励起光287nm,濃度7.50M)には、ピレニル基のみに由来する発光が見られ、その蛍光収率ΦFLは0.43であった(標準試料:9,10-ジフェニルアントラセン(ΦFL=0.90))。励起方法によらず蛍光収率の値が変化しないことおよび開始末端に1-ピレニルメトキシ基を有するポリジベンゾフルベンの末端のピレニル基の蛍光収率が1-ピレニルメタノールのそれ(ΦFL=0.49、ポリジベンゾフルベンと同様の方法で測定)と一致すると仮定し、エネルギー移動効率ΦETを求めた(ΦET=0.86)。
<Measurement of energy transfer efficiency>
In the fluorescence spectrum of polydibenzofulvene having 1-pyrenylmethoxy group at the start end (in THF, nitrogen bubbling for 10 minutes, room temperature, excitation light 287 nm, concentration 7.50 M), emission derived only from the pyrenyl group is seen, and the fluorescence The yield Φ FL was 0.43 (standard sample: 9,10-diphenylanthracene (Φ FL = 0.90)). The value of the fluorescence yield does not change regardless of the excitation method, and the fluorescence yield of the pyrenyl group at the end of polydibenzofulvene having a 1-pyrenylmethoxy group at the start end is that of 1-pyrenylmethanol (Φ FL = 0.49, The energy transfer efficiency Φ ET was calculated (Φ ET = 0.86).

(導電性:可溶性オリゴマーの飛行時間測定測定).
重合度2〜20程度の混合物(主成分は2量体−5量体)をCH2Cl2溶液とし、これに2,4,7-トリニトロフオレンマロノニトリル1%を加えて溶解した後、溶液をITOガラス基板上にキャストして乾燥し、薄膜(1μm厚)を作製した。この薄膜上にアルミニウムを真空蒸着した(厚さ1,000A、面積5mm×5mm)。TOF301(株式会社オプテル製)を用いて、ITO-アルミニウム間に5.0Vの電圧を印可し、同時にITO側から337nmのパルスレーザ光(窒素レーザ、パルス幅1ns,150μJ)を照射して飛行時間測定を行なった。室温での測定結果より、ホール移動度を1.02×10-4 cm2V-1sec-1と決定した。
(Conductivity: Time-of-flight measurement of soluble oligomers).
A mixture having a polymerization degree of 2 to 20 (the main component is dimer-5 pentamer) is made into CH 2 Cl 2 solution, and 2,4,7-trinitrofolenmalononitrile 1% is added and dissolved therein. The solution was cast on an ITO glass substrate and dried to produce a thin film (1 μm thick). Aluminum was vacuum-deposited on this thin film (thickness 1,000 A, area 5 mm × 5 mm). Using TOF301 (Optel Co., Ltd.), a voltage of 5.0 V is applied between ITO and aluminum, and at the same time, 337 nm pulse laser light (nitrogen laser, pulse width 1 ns, 150 μJ) is irradiated from the ITO side to measure the time of flight. Was done. From the measurement results at room temperature, the hole mobility was determined to be 1.02 × 10 −4 cm 2 V −1 sec −1 .

(導電性:電気抵抗測定).
重合度20程度以上の溶媒に不溶のポリマーと、2,4,7-トリニトロフオレンマロノニトリル(TNFMN)とを乳鉢を用いて練り合わせ、その後テーブルプレスを用いて厚さ約0.2mmの膜状に圧縮成型した。これをガラス板上にエポキシ接着剤を用いて固定した後、幅5mmで厚さ1,000Aのアルミニウム電極を90μmの電極間距離で蒸着し、暗所で100kHz、10mVの交流電圧を印可して電気伝導度を測定した。その結果TNFMNのドープ量が0.1%のとき4.29×10-6S/cm、TNFMNのドープ量が1%のとき1.13×10-5S/cmとの値が得られた。また、電気抵抗は非オーム抵抗型であり、5-7vの間に閾値が観測され、半導体の性質を有することが明らかになった。
(Conductivity: electrical resistance measurement).
A polymer insoluble in a solvent with a polymerization degree of about 20 or more and 2,4,7-trinitrofolenmalononitrile (TNFMN) are kneaded using a mortar, and then formed into a film with a thickness of about 0.2 mm using a table press. Compression molded. After fixing this onto the glass plate using epoxy adhesive, 5mm wide and 1,000A thick aluminum electrodes were deposited at a distance of 90μm, and an AC voltage of 100kHz and 10mV was applied in the dark to apply electricity. Conductivity was measured. As a result, a value of 4.29 × 10 −6 S / cm was obtained when the doping amount of TNFMN was 0.1%, and 1.13 × 10 −5 S / cm when the doping amount of TNFMN was 1%. In addition, the electrical resistance is a non-ohmic resistance type, and a threshold value was observed between 5-7v, and it became clear that it has semiconductor properties.

(単結晶構造解析:π-スタック構造の証明).
<開始末端にメチル基、停止末端にエチル基を有するジベンゾフルベン6量体の合成、単離、単結晶作成、構造解析>
フレームドライし、乾燥窒素置換したアンプルにTHF(33.1ml)を入れ、-78℃でメチルリチウムTHF溶液(1.0M,2ml)を加えた後、さらに、DBFのTHF溶液(0.67M、14.9ml)を滴下して重合を開始させた。反応混合物をCDCl3に入れて1H NMRを測定し、溶媒を内部標準としてモノマーの転化率を求めた(モノマー転化率:48時間後で84%)。-78℃で48時間重合をさせた後、反応混合物にヨウ化エタン(2.0ml、25mmol)を加えて重合を停止させた。反応混合物に約50mlのTHFを加え、THF可溶部(758mg、98%)と不溶部(15mg,2%)に分け、THF可溶部をリサイクル分取GPCで分離し、6量体を得た(MALDI-Massによる質量数M/z=1135.25,計算値1136.46)。1H NMRから6量体はメチル基及びエチル基を1つずつ持つフルオレンユニットを6つ有することが判明した。これを、クロロホルムから再結晶することにより1mm×1mm×1mmの無色透明な単結晶を得た(結晶セル定数a=10.4024A;b=19.7052 A;c=29.916 A;b=92.6521°:空間群P21/n:R=0.097,Rw=0.145)。結晶解析の結果、芳香環の面間隔が0.37-0.46nmであることが明らかになった(図3参照)。
(Single crystal structure analysis: proof of π-stack structure).
<Synthesis, isolation, preparation of single crystal, structural analysis of dibenzofulvene hexamer having methyl group at start terminal and ethyl group at stop terminal>
Flame dried, put THF (33.1ml) into a dry nitrogen-substituted ampule, and after adding methyllithium THF solution (1.0M, 2ml) at -78 ° C, DBF in THF solution (0.67M, 14.9ml) Was added dropwise to initiate the polymerization. The reaction mixture was put into CDCl 3 and 1 H NMR was measured, and the monomer conversion was determined using the solvent as an internal standard (monomer conversion: 84% after 48 hours). After polymerization at −78 ° C. for 48 hours, ethane iodide (2.0 ml, 25 mmol) was added to the reaction mixture to stop the polymerization. About 50 ml of THF is added to the reaction mixture and divided into a THF soluble part (758 mg, 98%) and an insoluble part (15 mg, 2%), and the THF soluble part is separated by recycle preparative GPC to obtain a hexamer. (Mass number M / z = 1135.25 by MALDI-Mass, calculated value 1136.46). From 1 H NMR, it was found that the hexamer had 6 fluorene units each having one methyl group and one ethyl group. This was recrystallized from chloroform to obtain a colorless transparent single crystal of 1 mm × 1 mm × 1 mm (crystal cell constant a = 10.4024A; b = 19.7052 A; c = 29.916 A; b = 92.6521 °: space group P21 / n: R = 0.097, Rw = 0.145). As a result of crystal analysis, it was revealed that the spacing between aromatic rings was 0.37-0.46 nm (see FIG. 3).

本発明に係る高分子化合物と電子受容性化合物又は電子供与性化合物からなる組成物は、紫外線透過材料及び耐光性高分子材料として有用である。また、エキシマー発光を利用して、レーザー発光材料や、電界発光材料としての応用の可能性もある。特に、青色〜紫外にかけてエキシマー発光させることも可能であるので、その産業上の利用可能性は大きい。   The composition comprising the polymer compound according to the present invention and an electron-accepting compound or an electron-donating compound is useful as an ultraviolet transmitting material and a light-resistant polymer material. In addition, there is a possibility of application as a laser light emitting material or an electroluminescent material using excimer light emission. In particular, since it is possible to emit excimer light from blue to ultraviolet, its industrial applicability is great.

第1図は実施例で得られた高分子化合物の光吸収スペクトルである。図において、Aはフルオレンを測定した場合、Bはフルオレンの2量体を測定した場合であり、Cはフルオレンの3量体〜17量体のTHF溶液を測定した場合である。FIG. 1 is a light absorption spectrum of the polymer compound obtained in the example. In the figure, A is a case where fluorene is measured, B is a case where a dimer of fluorene is measured, and C is a case where a THF solution of a fluorene trimer to a 17-mer is measured. 第2図は実施例で得られた高分子化合物の蛍光スペクトルである。FIG. 2 is a fluorescence spectrum of the polymer compound obtained in the example. 第3図はDBF6量体の単結晶構造を表す図である。FIG. 3 is a diagram showing a single crystal structure of a DBF hexamer.

Claims (5)

下記構造式1で表される、側鎖にCとH及び/又はC、H、Xからなる芳香族性を有する環状部分を含む官能基を有すると共に数平均分子量が250〜1,000,000の高分子化合物であって、前記芳香族性を有する環状部分に起因するモル吸光係数が、前記芳香族性を有する環状部分を導入する為に用いられた重合性単量体における該芳香族性を有する環状部分に起因するモル吸光係数より30%以上小さいことを特徴とする高分子化合物に、電子受容性化合物又は電子供与性化合物を添加してなる組成物;但し、Arは芳香環、R1及びR2は置換基、R5及びR6は水素原子、アルキル基、芳香族基、-CN及びエステル基の中から選択される基、Xはなし、-CH2-、-CH2-CH2-、-CH=CH-、-C(=O)-、及びヘテロ原子の中から選択される何れかであり、mは2以上の整数である。
構造式1
Figure 0004542075
A polymer compound represented by the following structural formula 1 having a functional group containing a cyclic portion having aromaticity consisting of C and H and / or C, H, and X in the side chain and having a number average molecular weight of 250 to 1,000,000 Wherein the molar extinction coefficient attributed to the aromatic cyclic moiety is a cyclic moiety having the aromaticity in the polymerizable monomer used to introduce the aromatic cyclic moiety. A composition obtained by adding an electron-accepting compound or an electron-donating compound to a polymer compound characterized by being at least 30% smaller than the molar extinction coefficient resulting from the above; wherein Ar is an aromatic ring, R 1 and R 2 , - - a group selected, X story, -CH 2 from substituents, R 5 and R 6 are a hydrogen atom, an alkyl group, an aromatic group, -CN or ester groups CH 2 -CH 2 -, - Any one selected from CH = CH-, -C (= O)-, and a heteroatom, and m is an integer of 2 or more.
Structural formula 1
Figure 0004542075
下記構造式1で表される、側鎖にCとH及び/又はC、H、Xからなる芳香族性を有する環状部分を含む官能基を有すると共に数平均分子量が250〜1,000,000の高分子化合物であって、前記芳香族性を有する環状部分に起因するモル吸光係数が、前記芳香族性を有する環状部分を導入する為に用いられた重合性単量体における該芳香族性を有する環状部分に起因するモル吸光係数より30%以上小さいことを特徴とする高分子化合物に、電子受容性化合物又は電子供与性化合物を添加してなる紫外線透過材料;但し、Arは芳香環、R1及びR2は置換基、R5及びR6は水素原子、アルキル基、芳香族基、-CN及びエステル基の中から選択される基、Xはなし、-CH2-、-CH2-CH2-、-CH=CH-、-C(=O)-、及びヘテロ原子の中から選択される何れかであり、mは2以上の整数である。
構造式1
Figure 0004542075
A polymer compound represented by the following structural formula 1 having a functional group containing a cyclic portion having aromaticity consisting of C and H and / or C, H, and X in the side chain and having a number average molecular weight of 250 to 1,000,000 Wherein the molar extinction coefficient attributed to the aromatic cyclic moiety is a cyclic moiety having the aromaticity in the polymerizable monomer used to introduce the aromatic cyclic moiety. An ultraviolet-transmitting material obtained by adding an electron-accepting compound or an electron-donating compound to a polymer compound characterized by being at least 30% smaller than the molar extinction coefficient due to the above; Ar is an aromatic ring, R 1 and R 2 is a substituent, R 5 and R 6 are a hydrogen atom, an alkyl group, an aromatic group, a group selected from --CN and an ester group, X is none, --CH 2- , --CH 2 --CH 2- , Any one selected from -CH = CH-, -C (= O)-, and a hetero atom, and m is an integer of 2 or more.
Structural formula 1
Figure 0004542075
下記構造式1で表される、側鎖にCとH及び/又はC、H、Xからなる芳香族性を有する環状部分を含む官能基を有すると共に数平均分子量が250〜1,000,000の高分子化合物であって、前記芳香族性を有する環状部分に起因するモル吸光係数が、前記芳香族性を有する環状部分を導入する為に用いられた重合性単量体における該芳香族性を有する環状部分に起因するモル吸光係数より30%以上小さいことを特徴とする高分子化合物に、電子受容性化合物又は電子供与性化合物を添加してなる耐光性高分子材料;但し、Arは芳香環、R及びR2は置換基、R5及びR6は水素原子、アルキル基、芳香族基、-CN及びエステル基の中から選択される基、Xはなし、-CH2-、-CH2-CH2-、-CH=CH-、-C(=O)-、及びヘテロ原子の中から選択される何れかであり、mは2以上の整数である。
構造式1
Figure 0004542075
A polymer compound represented by the following structural formula 1 having a functional group containing a cyclic portion having aromaticity consisting of C and H and / or C, H, and X in the side chain and having a number average molecular weight of 250 to 1,000,000 Wherein the molar extinction coefficient attributed to the aromatic cyclic moiety is a cyclic moiety having the aromaticity in the polymerizable monomer used to introduce the aromatic cyclic moiety. A light-resistant polymer material obtained by adding an electron-accepting compound or an electron-donating compound to a polymer compound characterized by being at least 30% smaller than the molar extinction coefficient resulting from the above; Ar is an aromatic ring, R 1 and R 2 substituents, R 5 and R 6 are a hydrogen atom, an alkyl group, an aromatic group, a group selected from among -CN and ester group, X story, -CH 2 -, - CH 2 -CH 2 Any one selected from-, -CH = CH-, -C (= O)-, and a hetero atom, and m is an integer of 2 or more.
Structural formula 1
Figure 0004542075
前記組成物が電荷移動型錯体を形成している、請求項1に記載された組成物。   The composition according to claim 1, wherein the composition forms a charge transfer complex. 請求項4に記載された組成物を用いた電荷輸送材料。   A charge transport material using the composition according to claim 4.
JP2006259550A 2001-04-27 2006-09-25 Composition comprising polymer compound having specific light characteristics and electron accepting compound or electron donating compound, ultraviolet transmitting material and light-resistant polymer material comprising the composition, and charge transport using the composition material Expired - Fee Related JP4542075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006259550A JP4542075B2 (en) 2001-04-27 2006-09-25 Composition comprising polymer compound having specific light characteristics and electron accepting compound or electron donating compound, ultraviolet transmitting material and light-resistant polymer material comprising the composition, and charge transport using the composition material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001130872 2001-04-27
JP2006259550A JP4542075B2 (en) 2001-04-27 2006-09-25 Composition comprising polymer compound having specific light characteristics and electron accepting compound or electron donating compound, ultraviolet transmitting material and light-resistant polymer material comprising the composition, and charge transport using the composition material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002585499A Division JP3890436B2 (en) 2001-04-27 2002-04-24 LASER LIGHT EMITTING MATERIAL AND ELECTROLUMINESCENT MATERIAL COMPRISING POLYMER COMPOUND HAVING SPECIAL LIGHT PROPERTIES

Publications (2)

Publication Number Publication Date
JP2006348311A JP2006348311A (en) 2006-12-28
JP4542075B2 true JP4542075B2 (en) 2010-09-08

Family

ID=37644461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006259550A Expired - Fee Related JP4542075B2 (en) 2001-04-27 2006-09-25 Composition comprising polymer compound having specific light characteristics and electron accepting compound or electron donating compound, ultraviolet transmitting material and light-resistant polymer material comprising the composition, and charge transport using the composition material

Country Status (1)

Country Link
JP (1) JP4542075B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006274A1 (en) * 1993-08-20 1995-03-02 Akzo Nobel N.V. Charge transport polymer, a charge transport layer, and a photoconductive member comprising said charge transport polymer
JPH11510535A (en) * 1995-07-28 1999-09-14 ザ ダウ ケミカル カンパニー 2,7-Aryl-9-substituted fluorene and 9-substituted fluorene oligomers and polymers
WO2000056430A1 (en) * 1999-03-23 2000-09-28 National Institute Of Advanced Industrial Science And Technology Resin material for gas separation base and process for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006274A1 (en) * 1993-08-20 1995-03-02 Akzo Nobel N.V. Charge transport polymer, a charge transport layer, and a photoconductive member comprising said charge transport polymer
JPH11510535A (en) * 1995-07-28 1999-09-14 ザ ダウ ケミカル カンパニー 2,7-Aryl-9-substituted fluorene and 9-substituted fluorene oligomers and polymers
WO2000056430A1 (en) * 1999-03-23 2000-09-28 National Institute Of Advanced Industrial Science And Technology Resin material for gas separation base and process for producing the same

Also Published As

Publication number Publication date
JP2006348311A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
Al Mousawi et al. Carbazole derivatives with thermally activated delayed fluorescence property as photoinitiators/photoredox catalysts for LED 3D printing technology
Tsolakis et al. Synthesis and Characterization of Luminescent Rod–Coil Block Copolymers by Atom Transfer Radical Polymerization: Utilization of Novel End‐Functionalized Terfluorenes as Macroinitiators
US4603101A (en) Photoresist compositions containing t-substituted organomethyl vinylaryl ether materials
WO2015072537A1 (en) Light-emitting material, organic light-emitting element, and compound
WO2015080182A1 (en) Light-emitting material, organic light-emitting element, and compound
JP7387267B2 (en) Endoperoxide compound with polycyclic aromatic skeleton
JP3890436B2 (en) LASER LIGHT EMITTING MATERIAL AND ELECTROLUMINESCENT MATERIAL COMPRISING POLYMER COMPOUND HAVING SPECIAL LIGHT PROPERTIES
JP6887394B2 (en) Sulfonium salt, photoacid generator, composition containing it, and method for manufacturing device
Eren et al. Thioxanthone-functionalized 1, 6-heptadiene as monomeric photoinitiator
JP2012041387A (en) α-SUBSTITUTED VINYL GROUP-CONTAINING AROMATIC COMPOUND, AND ITS POLYMER
Guo et al. Substituted Stilbene-based D-π-A and A-π-A type oxime esters as photoinitiators for LED photopolymerization
Höfer et al. Oxygen scavengers and sensitizers for reduced oxygen inhibition in radical photopolymerization
Grisorio et al. New Spiro‐Functionalized Polyfluorenes: Synthesis and Properties
JP4542075B2 (en) Composition comprising polymer compound having specific light characteristics and electron accepting compound or electron donating compound, ultraviolet transmitting material and light-resistant polymer material comprising the composition, and charge transport using the composition material
WO2020011922A1 (en) Photoinitiator compounds
Sarker et al. Synthesis and characterization of a novel polymeric system bearing a benzophenone borate salt as a new photoinitiator for uv curing
JPH07506386A (en) Intrinsically scintillating polymer with low self-absorption
Bailey et al. Functional Polymers. 4. Polymers of 2, 4-Dihydroxy-4'-vinylbenzophenone, New Polymeric Ultraviolet Absorbers
Wang et al. Preparation of New Hole Transport Polymers via Copolymerization of N, N′‐Diphenyl‐N, N′‐bis (4‐alkylphenyl) benzidine (TPD) Derivatives with 1, 4‐Divinylbenzene
US5112977A (en) Substituted naphthacene-5,12-diones
Litt et al. Semiconducting polymers based on charge‐transfer complexes. I. Synthesis of electron‐donor‐containing poly‐N‐acylethylnimines
JP5387939B2 (en) Polymerizable composition and polymer thereof
JP4524358B2 (en) Optically active polymer compound
Andrulevičiūt et al. Cationic photopolymerization of carbazolyl-and phenothiazinyl-containing thiiranes
JPS62215608A (en) Production of alkenylsilyl group-containing high polymer compound

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100624

R150 Certificate of patent or registration of utility model

Ref document number: 4542075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees