JP4541576B2 - Method for integrally forming superplastic metal - Google Patents

Method for integrally forming superplastic metal Download PDF

Info

Publication number
JP4541576B2
JP4541576B2 JP2001050443A JP2001050443A JP4541576B2 JP 4541576 B2 JP4541576 B2 JP 4541576B2 JP 2001050443 A JP2001050443 A JP 2001050443A JP 2001050443 A JP2001050443 A JP 2001050443A JP 4541576 B2 JP4541576 B2 JP 4541576B2
Authority
JP
Japan
Prior art keywords
sheet material
superplastic
molding die
molding
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001050443A
Other languages
Japanese (ja)
Other versions
JP2002248579A (en
Inventor
俊史 東稔
真一 谷嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2001050443A priority Critical patent/JP4541576B2/en
Publication of JP2002248579A publication Critical patent/JP2002248579A/en
Application granted granted Critical
Publication of JP4541576B2 publication Critical patent/JP4541576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、チタン合金等の超塑性金属を用いて航空機前縁部などを成形する場合に適した超塑性金属の一体成形方法に関する。
【0002】
【従来の技術】
チタン合金等の超塑性金属を用いた航空機前縁部などの従来の成形方法は、図6に示すように、超塑性金属材のシート100a〜100dからなる積層体100のうちのコアシート100b,100cの適宜部位に接合防止材を塗布するなどして、同図では航空機前縁部の形状に成形する成形金型101の上金型101aと下金型101b間に、この積層体100を、その両端が挟持される態様でセットし、拡散接合等による接合工程これに続く超塑性成形工程により一体成形させるものである。尚、同図中の矢印は、超塑性成形されるとき、積層体100の膨張を表したものである。
【0003】
そして、成形後、図7に示すように、成形金型101に挟持された積層体100の両端、とりわけ端部102の方は、航空機前縁部103の先端部103aが形成されるところであり、したがって、離型後、先端部103aに付着している端部102を同図(B)のように切り取って、先端部103aをトリム加工及び手作業をして仕上げる。或いはまた、端部102を切り取る際に、図8に示すように、航空機前縁部103の先端部103aを含む適宜部位(同図(B)のX−Xで示す)で切り取って、切り取られた航空機前縁部103に、機械加工等によって製作された同形の部材104を溶接或いは打鋲などで付設する。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の上記成形方法のうち、成形後にトリム加工及び手作業の追加工程で仕上げる方法では、当該追加工程による工数やコストの増加はもとより、航空機前縁部の先端部がトリム加工による突き合わせとなるためにこの部位での肉厚が十分確保できない場合があり、また、この部位での仕上がり具合によっては空力特性を損なう場合もあり得る。さらに、先端部の内側に鋭い切欠き状の窪みが形成されることが避けられず、この部分の機械的特性の低下が懸念される。
一方、同形の部材を溶接或いは打鋲する追加工程で対応する方法では、上記同様に追加工程による工数やコストの増加はもとより、溶接の熱による形状のゆがみ、打鋲のための専用治具を心配しなければならないし、また、溶接或いは打鋲後のこの部位での仕上がり具合によっては空力特性を損なう場合もあり得る。
【0005】
本発明の目的は、成形後に外表面に特別の追加工程を要せず、製造コストの低減が図れる超塑性金属の一体成形方法を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明の請求項1に係る超塑性金属の一体成形方法は、拡散接合する超塑性金属製シート材を複数枚積層して成形金型にセットし、拡散接合や液相拡散接合による接合工程これに続く超塑性成形工程により積層シート材を所望の形状部材に一体に成形する方法であり、成形金型内の所定位置に拡散接合する超塑性金属の他のシート材を配設し、この他のシート材の片面に、例えばTig溶接或いは拡散接合によって結合された積層シート材の一方端部を当接する態様で成形金型にセットし、超塑性成形工程時、他のシート材の片面が、供給ガス圧によって膨らむ積層シート材を介して、成形金型の形状に倣う態様で押接されるとともに、積層シート材と拡散接合により一体化されるようにしたものであり、かかる方法によれば、積層シート材の一方端部が他のシート材と共に成形金型の形状に倣って成形されるために、成形後に特別の追加工程を要せず、ほぼ仕上がり品の形態で成形され、工数的にもコスト的にも従来方法に比べ優れている。
【0007】
また、本発明の請求項2に係る超塑性金属の一体成形方法は、成形金型が上金型と下金型とで構成され、これら上金型と下金型間に積層シート材をセットするとともに、例えばセラミック接着剤等が塗布された金属箔や金属シートを固定し、この金属箔等に接着剤等を介して貼着された他のシート材を成形金型内に配設するようにしたもので、これにより、セット時に、他のシート材に対する積層シート材の一方端部の位置ずれ防止ができる。
尚、上記接着剤等は、成形後容易に取り除けるものが用いられる。
【0008】
【発明の実施の形態】
本発明の超塑性金属の一体成形方法に係る実施の形態を図1〜5を参照して説明する。
本成形方法に係る実施の形態は、航空機前縁部(所望の形状部材)を成形する場合のものであるが、このようなものに限らないことはもちろんである。
本成形方法による航空機前縁部の成形工程では、まず、図1に示すような状態で、積層体(積層シート材)1及び他のシート材2等が、航空機前縁部の形状に対応した成形金型3にセットされる。即ち、積層体1は、チタン合金(例えば、Ti−6AL−4V)の超塑性金属製材のシート材、本実施の形態では、シート1a〜1dの4枚を積層したものであるが、後の工程で超塑性成形加工を施すために、積層体1のコアシート1b,1cの各両面の適宜な位置に、イットリウムなどの接合防止材を塗布するか又はインサート材でメッキ処理する(尚、図1において、便宜上、シート1a〜1dは隙間を空けて描かれている)。
【0009】
因みに、例えば接合防止材塗布に際しては、同図に示すように、コアシート1bの上面の接合防止材の塗布域Pが、コアシート1cの上面の接合防止材の少なくとも一つの塗布域Qと側断面視互いに重なるように、更に、コアシート1cの上面の接合防止材の塗布域Qが、フェイスシート1dの上面の接合防止材の少なくとも一つの塗布域Rと側断面視互いに重なるようにする。そして、塗布域PとQが重なるところ、及び塗布域QとRが重なるところに、同図に示すように、少なくとも一つのガス孔が、コアシート1c,1dにそれぞれ穿設されていて、これにより、塗布域P〜Rがガス孔を通じて連通する。尚、本実施の形態では、シート1aの、当該シート1aがセットされる後述の上金型3aと下金型3b間の他方側で、シート1bの塗布域Pに通ずるところにガス孔1eが穿孔され、かかるガス孔1eは、上金型3aの他方側に設けられたガス給排孔3cに連通している。
【0010】
このような積層体1は、上述のように上金型3aと下金型3bとで構成される成形金型3に、これら上金型3aと下金型3b間にその端部を当接して挟持されてセットされるのであるが、本発明では、この成形金型3内に、例えばチタン合金の他のシート材2を配設し、この他のシート材2に当該積層体1の一方端部11を当接させ、その端部は成形金型3には直接当接させない態様でセットされるようになっている。即ち、上金型3aと下金型3b間の一方側(図1では左方側)に、例えばチタン合金の金属箔4を挟持し、挟持された側とは反対側の、成形金型3内に突出した当該金属箔4の折曲部4aに、セラミック接着剤5が塗布され、かかる接着剤5を介して貼着された他のシート材2が成形金型3内に配設される。
【0011】
そして、他のシート材2は、図2に示すように、幅狭の板状部材が湾曲加工されおり、このような他のシート材2の湾曲内壁(片面)2aの略中央に、例えばTig溶接或いは拡散接合によって結合された積層体1の一方端部11が当接する態様で成形金型3にセットされ、一方、積層体1の他方端部は、上金型3aと下金型3b間の他方側(同図では右方側)に、従来通りセットされる。
【0012】
このようにして成形金型3内にセットされた積層体1に対し、最初に、成形金型3の空間6,7内を不活性ガスで置換するとともに、上金型3aのガス給排孔3cを通じて塗布域P〜Rを真空引きした後、温度900〜920゜Cの加熱炉(図示せず)で加熱する。当該温度に達した後、空間6,7内の不活性ガス圧を所定圧に高めて、積層体1の各シート1a〜1dを拡散接合する。但し、各シート1a〜1d間における上記塗布域P〜Rでは、拡散接合が阻止される。拡散接合の完了後、空間6,7内の不活性ガスを排出する。
【0013】
そして、今度は、成形金型3のガス給排孔3cから積層体1の塗布域P〜Rに不活性ガスを供給して超塑性成形加工を施す。超塑性成形の加工条件は、温度900゜Cの下で、ガス圧力が歪速度10−3〜10−4/秒を得られるように設定することが好ましい。超塑性成形加工では、塗布域P〜Rに供給された不活性ガスによって積層体1が超塑性変形を起こし、成形金型3の空間6,7内に膨張する(図1の矢印で表している)結果、航空機前縁部の形状に対応した形状が形成される。このとき、成形金型3内の他のシート材2は、図3に示すように、積層体1の膨張に従って、同図(A)の状態から同図(B)の状態になって積層体1の最外面が他のシート材2に接触し、次第に積層体1によって他のシート材2の湾曲内壁2aが押し広げられて同図(C)の状態になる。そして、更に、積層体1が膨張し、他のシート材2は、成形金型3の内壁形状に倣うように押接されると同時に、積層体1との間で拡散接合されて同図(D)の状態になる。尚、上記金属箔4の折曲部4aもまた、同時に拡散接合される。
【0014】
超塑性成形加工後、加熱炉から取り出して、不活性ガスを排出し、航空機前縁部の成形品を成形金型3から離型すると、図4のような状態で成形品Aが得られる。このとき、航空機前縁部の成形品Aの先端部Bは、成形後に従来のような特別の追加工程を要せず、ほぼ仕上がり品の形態で得られる。ところで、上記成形品で、同図中、ハニカム構造を形成しているリブ8,9等は、当該形状に対応してコアシート1b,1cに塗布する接合防止材の塗布域P〜Rを、適宜な配置にすることによって定まる。尚、かかるリブ8,9等は、防氷ダクトなどに用いられるものである。そして、成形品の離型後、不要部位を削除したり、或いは適宜なバリ取り処理などしたりして最終の成形品、即ち、航空機前縁部が得られる。
【0015】
ところで、本発明のように他のシート材2を用いると、当該他のシート材2を複数枚重ねたり、その厚みを按配したりして、ある特定の部位、本実施の形態では、航空機前縁部の先端部Bを補強することが容易にでき、強度向上が得られる利点がある。
【0016】
【発明の効果】
本発明の超塑性金属の一体成形方法によれば、成形後に特別の追加工程を要せず、ほぼ仕上がり品の形態で得られ、工数的にもコスト的にも従来方法に比べ安価に製作できる。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係る超塑性金属の一体成形方法を実施する超塑性金属材の成形金型へのセット図である。
【図2】 図2の他のシート材の形状図である。
【図3】 本成形方法での超塑性加工工程の説明図である。
【図4】 本成形方法で成形金型から離型された成形品の側断面図である。
【図5】 従来の成形方法を実施する超塑性金属材の成形金型へのセット図である。
【図6】 従来の成形方法で成形された成形品の追加加工例の説明図である。
【図7】 従来の成形方法で成形された成形品の他の追加加工例の説明図である。
【符号の説明】
1 積層体(積層シート材)
1a〜1d シート
2 他のシート材
2a 湾曲内壁(片面)
3 成形金型
3a 上金型
3b 下金型
4 金属箔
5 接着剤
11 一方端部
[0001]
[Technical field to which the invention belongs]
The present invention relates to a method for integrally forming a superplastic metal suitable for forming an aircraft leading edge or the like using a superplastic metal such as a titanium alloy.
[0002]
[Prior art]
As shown in FIG. 6, a conventional forming method of an aircraft leading edge portion using a superplastic metal such as a titanium alloy is a core sheet 100b of a laminate 100 made of superplastic metal sheets 100a to 100d. In this figure, the laminate 100 is placed between the upper mold 101a and the lower mold 101b of the molding die 101 that is molded into the shape of the front edge of the aircraft by applying a bonding preventing material to an appropriate part of 100c. The both ends are set in such a manner that they are sandwiched, and are integrally formed by a superplastic forming step following a joining step by diffusion bonding or the like. In addition, the arrow in the figure represents expansion of the laminated body 100 when superplastic forming is performed.
[0003]
After the molding, as shown in FIG. 7, both ends of the laminate 100 sandwiched between the molding dies 101, particularly the end portion 102, are where the front end portion 103 a of the aircraft front edge portion 103 is formed, Therefore, after the mold release, the end portion 102 attached to the tip portion 103a is cut out as shown in FIG. 5B, and the tip portion 103a is finished by trimming and manual work. Alternatively, when the end portion 102 is cut off, as shown in FIG. 8, it is cut out at an appropriate portion (indicated by XX in FIG. 8B) including the front end portion 103a of the aircraft leading edge portion 103. The same shape member 104 manufactured by machining or the like is attached to the aircraft leading edge 103 by welding or hammering.
[0004]
[Problems to be solved by the invention]
However, among the conventional molding methods described above, in the method of finishing by trimming and an additional manual process after molding, not only the man-hour and cost of the additional process are increased, but also the leading edge of the aircraft leading edge is matched by the trim process. Therefore, there may be a case where a sufficient thickness cannot be secured at this portion, and the aerodynamic characteristics may be impaired depending on the finish at this portion. Furthermore, it is inevitable that a sharp notch-shaped depression is formed inside the tip portion, and there is a concern that the mechanical characteristics of this portion are deteriorated.
On the other hand, in the method corresponding to the additional process of welding or hammering the same shape member, not only the man-hours and cost of the additional process are increased, but also the shape distortion due to the heat of welding, and a dedicated jig for hammering are provided. You must be worried and the aerodynamic characteristics may be impaired depending on the finish at this part after welding or hammering.
[0005]
An object of the present invention is to provide a method for integrally forming a superplastic metal that does not require a special additional step on the outer surface after forming and can reduce the manufacturing cost.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problem, a method of integrally forming a superplastic metal according to claim 1 of the present invention includes stacking a plurality of superplastic metal sheet materials to be diffusion bonded, setting them in a molding die, Bonding process by liquid phase diffusion bonding This is a method of integrally forming a laminated sheet material into a desired shape member by a subsequent superplastic forming process, and is another sheet of superplastic metal that is diffusion bonded to a predetermined position in a molding die. The material is disposed, and set on a molding die in such a manner that one end portion of the laminated sheet material bonded by, for example, Tig welding or diffusion bonding is brought into contact with one side of the other sheet material, during the superplastic forming process, One side of the other sheet material is pressed in a manner that follows the shape of the molding die through the laminated sheet material that is expanded by the supply gas pressure, and is integrated with the laminated sheet material by diffusion bonding And take According to the method, one end of the laminated sheet material is molded along with the other sheet material in accordance with the shape of the molding die, so that no special additional process is required after molding, and it is molded in the form of a finished product. In terms of man-hours and costs, it is superior to conventional methods.
[0007]
Also, in the method of integrally forming a superplastic metal according to claim 2 of the present invention, the molding die is composed of an upper die and a lower die, and a laminated sheet material is set between the upper die and the lower die. In addition, for example, a metal foil or a metal sheet coated with a ceramic adhesive or the like is fixed, and another sheet material adhered to the metal foil or the like via an adhesive or the like is disposed in the molding die. Thus, at the time of setting, it is possible to prevent displacement of one end portion of the laminated sheet material with respect to other sheet materials.
In addition, the said adhesive agent etc. which can be removed easily after shaping | molding are used.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment according to the method for integrally forming a superplastic metal of the present invention will be described with reference to FIGS.
The embodiment according to this molding method is for molding an aircraft leading edge portion (desired shape member), but is not limited to this.
In the aircraft leading edge molding step according to this molding method, first, in the state shown in FIG. 1, the laminate (laminated sheet material) 1 and the other sheet material 2 correspond to the shape of the aircraft leading edge. It is set in the molding die 3. That is, the laminate 1 is a sheet of a superplastic metal material made of a titanium alloy (e.g., Ti-6AL-4V), in the present embodiment, a laminate of four sheets 1a to 1d. In order to perform the superplastic forming process in the process, a bonding preventing material such as yttrium is applied to an appropriate position on each side of each of the core sheets 1b and 1c of the laminate 1 or is plated with an insert material (see FIG. In FIG. 1, the sheets 1a to 1d are drawn with a gap between them for convenience).
[0009]
For example, when applying the anti-bonding material, as shown in the figure, the bonding area P of the anti-bonding material on the upper surface of the core sheet 1b is on the side of at least one application area Q of the anti-bonding material on the upper surface of the core sheet 1c. Further, the application region Q of the anti-bonding material on the upper surface of the core sheet 1c is overlapped with at least one application region R of the anti-bonding material on the upper surface of the face sheet 1d so as to overlap each other in cross-sectional view. As shown in the figure, at least one gas hole is formed in each of the core sheets 1c and 1d where the coating areas P and Q overlap and where the coating areas Q and R overlap. Thus, the coating areas P to R communicate with each other through the gas holes. In the present embodiment, the gas hole 1e is formed on the other side of the sheet 1a between the upper mold 3a and the lower mold 3b, which will be described later, where the sheet 1a is set, and communicates with the coating area P of the sheet 1b. The gas hole 1e is perforated and communicates with a gas supply / discharge hole 3c provided on the other side of the upper mold 3a.
[0010]
As described above, the laminate 1 is brought into contact with the molding die 3 constituted by the upper die 3a and the lower die 3b as described above, with its end abutted between the upper die 3a and the lower die 3b. In the present invention, for example, another sheet material 2 of titanium alloy is disposed in the molding die 3, and one of the laminates 1 is placed on the other sheet material 2. The end 11 is brought into contact, and the end is set in such a manner that the end 11 is not brought into direct contact with the molding die 3. That is, for example, a metal foil 4 of titanium alloy is sandwiched between one side (the left side in FIG. 1) between the upper mold 3a and the lower mold 3b, and the molding mold 3 on the opposite side to the sandwiched side. A ceramic adhesive 5 is applied to the bent portion 4 a of the metal foil 4 projecting inward, and another sheet material 2 attached via the adhesive 5 is disposed in the molding die 3. .
[0011]
Then, as shown in FIG. 2, the other sheet material 2 is formed by bending a narrow plate-like member, and at the approximate center of the curved inner wall (one side) 2a of such another sheet material 2, for example, Tig The laminated body 1 joined by welding or diffusion bonding is set on the molding die 3 in such a manner that the one end 11 of the laminated body 1 abuts, while the other end of the laminated body 1 is between the upper mold 3a and the lower mold 3b. The other side (right side in the figure) is set as usual.
[0012]
For the laminated body 1 set in the molding die 3 in this way, first, the spaces 6 and 7 of the molding die 3 are replaced with inert gas, and the gas supply / discharge holes of the upper die 3a are first replaced. The application areas P to R are evacuated through 3c and then heated in a heating furnace (not shown) at a temperature of 900 to 920 ° C. After reaching the temperature, the inert gas pressure in the spaces 6 and 7 is increased to a predetermined pressure, and the sheets 1a to 1d of the laminate 1 are diffusion bonded. However, diffusion bonding is prevented in the application areas P to R between the sheets 1a to 1d. After the diffusion bonding is completed, the inert gas in the spaces 6 and 7 is discharged.
[0013]
Then, this time, an inert gas is supplied from the gas supply / discharge holes 3 c of the molding die 3 to the application areas P to R of the laminate 1 to perform superplastic forming. The processing conditions for superplastic forming are preferably set so that the gas pressure can obtain a strain rate of 10 −3 to 10 −4 / sec at a temperature of 900 ° C. In the superplastic forming process, the laminate 1 is superplastically deformed by the inert gas supplied to the coating areas P to R and expands into the spaces 6 and 7 of the molding die 3 (represented by arrows in FIG. 1). As a result, a shape corresponding to the shape of the aircraft leading edge is formed. At this time, as shown in FIG. 3, the other sheet material 2 in the molding die 3 changes from the state shown in FIG. 3A to the state shown in FIG. The outermost surface of 1 comes into contact with the other sheet material 2, and the curved inner wall 2 a of the other sheet material 2 is gradually pushed out by the laminate 1, and the state shown in FIG. Further, the laminated body 1 expands, and the other sheet material 2 is pressed to follow the inner wall shape of the molding die 3 and at the same time is diffusion-bonded with the laminated body 1 (see FIG. D). The bent portion 4a of the metal foil 4 is also diffusion-bonded at the same time.
[0014]
After superplastic forming, the product is removed from the heating furnace, the inert gas is discharged, and the molded product at the front edge of the aircraft is released from the molding die 3 to obtain a molded product A in the state shown in FIG. At this time, the tip B of the molded product A at the front edge of the aircraft can be obtained in the form of a finished product without requiring a special additional step as in the prior art after molding. By the way, in the molded product, the ribs 8, 9 and the like forming the honeycomb structure in FIG. It is determined by appropriate arrangement. The ribs 8 and 9 are used for an anti-icing duct or the like. Then, after the molded product is released from the mold, unnecessary parts are deleted or an appropriate deburring process is performed to obtain the final molded product, that is, the aircraft leading edge.
[0015]
By the way, when another sheet material 2 is used as in the present invention, a plurality of the other sheet materials 2 are stacked or their thicknesses are arranged, and in a specific part, in this embodiment, in front of the aircraft There is an advantage that the front end B of the edge can be easily reinforced, and the strength can be improved.
[0016]
【The invention's effect】
According to the method for integrally forming a superplastic metal of the present invention, a special additional process is not required after forming, and it can be obtained almost in the form of a finished product and can be manufactured at a lower cost than conventional methods in terms of man-hour and cost. .
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a set view of a superplastic metal material on a molding die for performing a superplastic metal integral molding method according to an embodiment of the present invention.
2 is a shape diagram of another sheet material of FIG. 2. FIG.
FIG. 3 is an explanatory diagram of a superplastic processing step in the present forming method.
FIG. 4 is a side sectional view of a molded product released from a molding die by the present molding method.
FIG. 5 is a set view of a superplastic metal material to a molding die for performing a conventional molding method.
FIG. 6 is an explanatory view of an example of additional processing of a molded product molded by a conventional molding method.
FIG. 7 is an explanatory view of another additional processing example of a molded product molded by a conventional molding method.
[Explanation of symbols]
1 Laminate (Laminated sheet material)
1a to 1d Sheet 2 Other sheet material 2a Curved inner wall (one side)
3 Mold 3a Upper mold 3b Lower mold 4 Metal foil 5 Adhesive 11 One end

Claims (2)

拡散接合する超塑性金属製シート材を複数枚積層して成形金型にセットし、拡散接合による接合工程これに続く超塑性成形工程により前記積層シート材を所望の形状部材に成形する超塑性金属の一体成形方法において、前記成形金型内の所定位置に拡散接合する超塑性金属の他のシート材を配設し、該他のシート材の片面に、溶接等によって結合された前記積層シート材の一方端部を当接する態様で前記成形金型にセットし、前記超塑性成形工程時、前記他のシート材が、前記積層シート材を介して前記成形金型の形状に倣う態様で押接されるとともに、前記積層シート材と拡散接合により一体化されてなることを特徴とする超塑性金属の一体成形方法。A superplastic metal sheet in which a plurality of superplastic metal sheet materials to be diffusion bonded are laminated and set in a molding die, and the laminated sheet material is formed into a desired shape member by a bonding process by diffusion bonding followed by a superplastic forming process. In the integral molding method, the other sheet material of the superplastic metal that is diffusion-bonded at a predetermined position in the molding die is disposed, and the other sheet material is joined to one side of the other sheet material by welding or the like Is set in the molding die so as to abut one end thereof, and during the superplastic molding process, the other sheet material is pressed in a manner following the shape of the molding die via the laminated sheet material. And a method of integrally forming the superplastic metal, wherein the method is integrated with the laminated sheet material by diffusion bonding. 前記成形金型は上金型と下金型とで構成され、該上金型と下金型間に前記積層シート材をセットするとともに接着剤等が塗布された金属箔等を固定し、該金属箔等に前記接着剤等を介して貼着された前記他のシート材を前記成形金型内に配設してなることを特徴とする請求項1に記載の超塑性金属の一体成形方法。The molding die is composed of an upper die and a lower die, the laminated sheet material is set between the upper die and the lower die, and a metal foil or the like coated with an adhesive is fixed, 2. The method of integrally forming a superplastic metal according to claim 1, wherein the other sheet material adhered to a metal foil or the like via the adhesive or the like is disposed in the molding die. .
JP2001050443A 2001-02-26 2001-02-26 Method for integrally forming superplastic metal Expired - Lifetime JP4541576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001050443A JP4541576B2 (en) 2001-02-26 2001-02-26 Method for integrally forming superplastic metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001050443A JP4541576B2 (en) 2001-02-26 2001-02-26 Method for integrally forming superplastic metal

Publications (2)

Publication Number Publication Date
JP2002248579A JP2002248579A (en) 2002-09-03
JP4541576B2 true JP4541576B2 (en) 2010-09-08

Family

ID=18911394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001050443A Expired - Lifetime JP4541576B2 (en) 2001-02-26 2001-02-26 Method for integrally forming superplastic metal

Country Status (1)

Country Link
JP (1) JP4541576B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2867096B1 (en) * 2004-03-08 2007-04-20 Snecma Moteurs METHOD FOR MANUFACTURING A REINFORCING LEAK OR RELEASING EDGE FOR A BLOWER BLADE
US9289816B2 (en) 2009-01-22 2016-03-22 Ihi Corporation Production method of leading edge reinforcement of fan blade
CN103769482B (en) * 2013-10-22 2016-08-24 北京航星机器制造有限公司 A kind of integral forming method of titanium alloy air intake duct part
CN113305192B (en) * 2021-05-27 2022-05-17 吉林大学 Method and device for cooperatively enhancing gas-bulging superplastic forming of thin-wall curved surface by vibrating steel ball group

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161457A (en) * 1974-10-03 1976-05-28 Rockwell International Corp
JPS6397317A (en) * 1986-10-13 1988-04-28 Masanobu Nakamura Bulging method
JPH0994678A (en) * 1995-09-29 1997-04-08 Fuji Heavy Ind Ltd Unified molding method for titanium alloy structure
JPH1134993A (en) * 1997-07-24 1999-02-09 Fuji Heavy Ind Ltd Leading edge structure for airplane and its manufacture
JP2000218323A (en) * 1999-01-29 2000-08-08 Fuji Heavy Ind Ltd Integral molding method of structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161457A (en) * 1974-10-03 1976-05-28 Rockwell International Corp
JPS6397317A (en) * 1986-10-13 1988-04-28 Masanobu Nakamura Bulging method
JPH0994678A (en) * 1995-09-29 1997-04-08 Fuji Heavy Ind Ltd Unified molding method for titanium alloy structure
JPH1134993A (en) * 1997-07-24 1999-02-09 Fuji Heavy Ind Ltd Leading edge structure for airplane and its manufacture
JP2000218323A (en) * 1999-01-29 2000-08-08 Fuji Heavy Ind Ltd Integral molding method of structure

Also Published As

Publication number Publication date
JP2002248579A (en) 2002-09-03

Similar Documents

Publication Publication Date Title
JP3647612B2 (en) Aircraft leading edge structure and manufacturing method thereof
US5797239A (en) Titanium reinforced structural panel having a predetermined shape
JP3090324B2 (en) Porous structure and method of manufacturing the same
JP5235672B2 (en) Titanium assembly superplastic forming method and structure of aircraft manufactured thereby
US5253419A (en) Method of manufacturing a hollow blade for a turboshaft engine
US5330092A (en) Multiple density sandwich structures and method of fabrication
US7416105B2 (en) Superplastically forming of friction welded structural assemblies
US7431196B2 (en) Method and apparatus for forming complex contour structural assemblies
US4549685A (en) Method for superplastic forming and diffusion bonding Y shaped support structures
US6739029B2 (en) Manufacturing process for a grooved structure and structure obtained by this process
EP2368651A1 (en) Method for producing a hollow fan blade
US6571450B2 (en) Process for the monolithic molding of superplastic material
JP2001500793A (en) Metal diffusion bonding
US8661669B2 (en) Method of making and joining an aerofoil and root
JPH1147859A (en) Production of aluminum alloy panel
JP4541576B2 (en) Method for integrally forming superplastic metal
EP2226134A2 (en) Method of manufacturing an aerofoil
US20050136282A1 (en) Method of metallic sandwiched foam composite forming
JPH067857A (en) Method and device for producing superplastically formable element
JP3924880B2 (en) Method for integrally forming superplastic metal
GB2158121A (en) Sandwich structure and forming method
JPS5914348B2 (en) Manufacturing method for automotive interior parts
JP2604816B2 (en) Method for manufacturing curved hollow panel and manufacturing jig
JP2966684B2 (en) Gas turbine hollow blade manufacturing method
JPS5813248B2 (en) How to pass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100624

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4541576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term