JP4541244B2 - Reinforcement structure of building and concrete building including the same - Google Patents

Reinforcement structure of building and concrete building including the same Download PDF

Info

Publication number
JP4541244B2
JP4541244B2 JP2005220399A JP2005220399A JP4541244B2 JP 4541244 B2 JP4541244 B2 JP 4541244B2 JP 2005220399 A JP2005220399 A JP 2005220399A JP 2005220399 A JP2005220399 A JP 2005220399A JP 4541244 B2 JP4541244 B2 JP 4541244B2
Authority
JP
Japan
Prior art keywords
reinforcing
fiber
parts
panel
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005220399A
Other languages
Japanese (ja)
Other versions
JP2007032192A (en
Inventor
洋 福山
晴彦 諏訪田
一義 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2005220399A priority Critical patent/JP4541244B2/en
Publication of JP2007032192A publication Critical patent/JP2007032192A/en
Application granted granted Critical
Publication of JP4541244B2 publication Critical patent/JP4541244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Load-Bearing And Curtain Walls (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Description

本発明は、鋼繊維補強モルタルの如き繊維含有水硬性組成物の硬化体からなるパネル(プレキャスト壁材)を用いた、既存のコンクリート建築物の補強構造に関する。   The present invention relates to a reinforcing structure of an existing concrete building using a panel (precast wall material) made of a cured body of a fiber-containing hydraulic composition such as a steel fiber reinforced mortar.

日本国内には、1960年代〜1970年代にかけての高度成長期に建てられ、現在、更新または補修の時期を迎えている集合住宅が数多く存在する。
これらの集合住宅は、1981年の新たな耐震基準の前に建築されているため、大地震に遭遇した場合、倒壊や、簡単な修復では済まない大きな損傷を受ける可能性がある。そのため、補強工事を予め行ない、大地震の遭遇時に受ける損傷の程度を小さく抑えることが望まれている。この際、居住者の経済的負担が小さく、施工時に居住性への影響が小さく、しかも施工後に補強壁等によって居住空間が狭くならないことが望まれる。
一方、これらの集合住宅は、居住空間が狭いため、主戸間の間仕切壁(構造壁)や床スラブの一部または全部を撤去するなどして、各住戸の居住空間を広く開放的に創り直すことができれば、リフォームによる快適な空間の創造を望む居住者を満足させうると考えられる。しかし、間仕切壁や床スラブを撤去した場合、建築構造上の強度の低下を避けるため、あるいは、もともと不足する耐震性をより高性能に向上させるために、何らかの補強を行う必要がある。
In Japan, there are many housing complexes that were built during the period of high growth from the 1960s to the 1970s and are now in the period of renewal or repair.
These apartments are built before the new earthquake resistance standards of 1981, so if they encounter a major earthquake, they can collapse or suffer severe damage that cannot be done with simple repairs. For this reason, it is desired to carry out reinforcement work in advance so as to reduce the degree of damage caused when a major earthquake occurs. At this time, it is desirable that the economic burden on the occupant is small, the impact on the habitability during construction is small, and that the residential space is not narrowed by a reinforcing wall or the like after construction.
On the other hand, since these apartment houses have a small living space, the living space of each dwelling unit is recreated widely and openly by removing some or all of the partition walls (structure walls) between the main houses and the floor slab. If possible, it can be expected to satisfy residents who want to create a comfortable space through renovation. However, when the partition walls and floor slabs are removed, some reinforcement is necessary to avoid a decrease in the strength of the building structure or to improve the originally insufficient earthquake resistance to a higher performance.

このような状況下において、従来より、既存の建物を補強するための技術が、種々提案されている。
一例として、既存の柱・はりフレームの内側に壁を新規に配置して耐震壁を構築する既存構造物の補強構造において、柱・はりフレームの内周に、新設壁に作用するせん断力を柱・はりフレームに伝達するせん断力伝達部材を突設してあることを特徴とする既存構造物の補強構造が提案されている(特許文献1参照)。
この補強構造における耐震壁は、柱とはりで囲まれた空間に対して縦横に配筋した壁筋の両側に、コンクリートを吹き付けて、必要な厚さに構築されるものである。
特開2000−234443号公報
Under such circumstances, conventionally, various techniques for reinforcing an existing building have been proposed.
As an example, in the reinforcement structure of an existing structure that constructs a seismic wall by placing a new wall inside the existing pillar / beam frame, the shear force acting on the new wall is pillared on the inner periphery of the pillar / beam frame. A reinforcement structure for an existing structure has been proposed, characterized in that a shearing force transmission member that transmits to the beam frame is projected (see Patent Document 1).
The seismic walls in this reinforcing structure are constructed to the required thickness by spraying concrete on both sides of the wall bars arranged vertically and horizontally with respect to the space surrounded by columns and beams.
JP 2000-234443 A

上記の文献の技術において、耐震壁は、壁筋を配設したうえで、この壁筋にコンクリートを吹き付けることによって構築される。そのため、施工作業が煩雑であり、かつ施工に長時間を要するなどの問題がある。
また、通常、鉄筋コンクリート壁の厚さが15〜20cm程度であることを考慮すると、集合住宅の各戸に、上記の耐震壁を設けるとすれば、耐震壁の合計の質量が非常に大きくなり、建築物の基礎を補強するために大掛かりな工事を行なう必要が生じるという問題もある。なお、上記の文献の技術における耐震壁は、1階部分が店舗や駐車場等になっているために柱ばかりで壁量の少ない、いわゆるピロティ形式の建築物の1階部分の耐震補強に適用されるものである。
そこで、本発明は、集合住宅のような中高層の建築物に対して適用可能であって、施工性に優れ、低コストで、施工時及び施工後における居住性を低下させることのない、耐震性等を高めるための建築物の補強構造を提供することを目的とする。
In the technique of the above document, the earthquake resistant wall is constructed by spraying concrete on the wall reinforcement after arranging the wall reinforcement. Therefore, there is a problem that the construction work is complicated and the construction takes a long time.
In addition, considering that the thickness of reinforced concrete walls is usually about 15 to 20 cm, if the above-mentioned earthquake-resistant walls are provided in each house of an apartment house, the total mass of the earthquake-resistant walls will become very large. There is also a problem that a large-scale construction is required to reinforce the foundation of the object. In addition, the earthquake-resistant wall in the technology of the above-mentioned literature is applied to the earthquake-proof reinforcement of the first floor part of the so-called Piroti-type building where the first floor part is a store, a parking lot, etc. and has only a small amount of walls It is what is done.
Therefore, the present invention is applicable to medium- and high-rise buildings such as apartment houses, is excellent in workability, is low-cost, and does not deteriorate the comfort during and after construction, and is earthquake resistant. It aims at providing the reinforcement structure of a building for raising etc.

本発明者は、上記課題を解決するために鋭意検討した結果、特定の成分組成を有する繊維含有水硬性組成物からなるパネル及び接合部を用いて、既存のコンクリート建築物の特定の位置に補強壁を形成すればよいことを見出し、本発明を完成した。
すなわち、本発明は、以下の[1]〜[8]を提供するものである。
[1] コンクリート建築物の柱及び梁を含む構造部分と、該構造部分で囲まれた補強対象面に形成された補強壁とからなる建築物の補強構造であって、上記補強壁が、繊維含有水硬性組成物の硬化体からなる厚さ3〜20cmのパネルと、該パネルと上記構造部分の間に形成された、繊維含有水硬性組成物の硬化体を含む接合部とからなり、上記パネル及び接合部を形成している繊維含有水硬性組成物が、セメント、BET比表面積5〜25m /gのポゾラン質微粉末、ブレーン比表面積2,500〜30,000cm /gの、セメント以外の無機粉末、細骨材、直径0.01〜1.0mmで長さ2〜30mmの金属繊維、ポリカルボン酸系の高性能減水剤または高性能AE減水剤、及び水を含むものであり、上記繊維含有水硬性組成物中の金属繊維以外の上記各材料の配合量が、セメント100質量部に対して、ポゾラン質微粉末3〜50質量部、無機粉末10〜50質量部、細骨材50〜250質量部、高性能減水剤または高性能AE減水剤0.1〜4.0質量部(固形分換算)、水10〜35質量部で、かつ、上記金属繊維の配合量が、上記繊維含有水硬性組成物中の体積百分率で0.5〜4%であることを特徴とする建築物の補強構造。
[2] 上記補強対象面の一部の領域に、上記補強壁が形成されている上記[1]の建築物の補強構造。
] 上記柱及び梁を含む構造部分で囲まれた補強対象面に既存の壁を含み、かつ、上記補強壁が、上記既存の壁の片面側に隣り合って形成されている上記[1]又は[2]の建築物の補強構造。
] 上記パネル及び接合部を形成している繊維含有水硬性組成物の硬化体の圧縮強度が、100N/mm以上である上記[1]〜[3]のいずれかの建築物の補強構造。
] 上記接合部が、上記繊維含有水硬性組成物を現場打ちで打設してなる硬化体、及び、重ね継手を含むものであり、上記重ね継手が、上記コンクリート建築物の柱及び梁を含む構造部分の内周縁に突出部分として形成された複数のアンカー筋と、上記パネルの外周縁に突出部分として形成された接合用筋とを重ね継手としたものである上記[1]〜[]のいずれかの建築物の補強構造。
上記コンクリート建築物の柱及び/又は梁と、上記補強壁とが、プレストレスを導入して圧着されている上記[1]〜[]のいずれかの建築物の補強構造。
] 各階に2戸以上の居住部分及び共用通路部分を有する2階建て以上のコンクリート建築物であって、上記[1]〜[]のいずれかの建築物の補強構造を含むことを特徴とするコンクリート建築物。
] 鉛直方向の断面が格子状である柱及び梁の集合体を含み、かつ、該格子状である柱及び梁の集合体を構成する複数の区画に対して、市松模様の形態で交互に上記補強構造を形成させてなる上記[]のコンクリート建築物。
] 上記居住部分と上記共用通路部分の間、または、上記共用通路部分の外側に、上記補強構造を形成させてなる上記[]又は[]のコンクリート建築物。
As a result of intensive studies to solve the above-mentioned problems, the present inventor reinforces a specific position of an existing concrete building by using a panel and a joint made of a fiber-containing hydraulic composition having a specific component composition. The inventors have found that a wall may be formed and completed the present invention.
That is, the present invention provides the following [1] to [8].
[1] A reinforcing structure of a building including a structural part including columns and beams of a concrete building and a reinforcing wall formed on a reinforcing target surface surrounded by the structural part, wherein the reinforcing wall includes a fiber A panel having a thickness of 3 to 20 cm made of a cured body of the containing hydraulic composition, and a joining portion formed between the panel and the structural part , including a cured body of the fiber-containing hydraulic composition , fiber-containing hydraulic composition forming the panel and joint cement, pozzolana quality fine powder having a BET specific surface area 5~25m 2 / g, the Blaine specific surface area 2,500~30,000cm 2 / g, cement Inorganic powder, fine aggregate, metal fiber having a diameter of 0.01 to 1.0 mm and a length of 2 to 30 mm, a polycarboxylic acid-based high-performance water reducing agent or high-performance AE water reducing agent, and water , The above fiber-containing hydraulic group The amount of each of the above materials other than the metal fibers in the product is 3 to 50 parts by weight of pozzolanic fine powder, 10 to 50 parts by weight of inorganic powder, 50 to 250 parts by weight of fine aggregate, with respect to 100 parts by weight of cement. High-performance water-reducing agent or high-performance AE water-reducing agent 0.1 to 4.0 parts by mass (in terms of solid content), water 10 to 35 parts by mass, and the amount of the metal fiber is the fiber-containing hydraulic composition A reinforcing structure of a building, characterized in that the volume percentage in the interior is 0.5 to 4% .
[2] The building reinforcing structure according to [1], wherein the reinforcing wall is formed in a partial region of the surface to be reinforced.
[ 3 ] The above-mentioned [ 1 ], wherein an existing wall is included in a surface to be reinforced surrounded by a structural part including the column and the beam, and the reinforcing wall is formed adjacent to one side of the existing wall. ] Or [2] building reinforcement structure.
[ 4 ] Reinforcement of the building according to any one of [1] to [3] above, wherein the compression strength of the cured body of the fiber-containing hydraulic composition forming the panel and the joint is 100 N / mm 2 or more. Construction.
[5] the joint, cured body formed by pouring in cast-in-place the fiber-containing hydraulic composition, and is intended to include a lap joint, the lap joint, columns and beams of the concrete building [1] to [1], wherein a plurality of anchor bars formed as projecting portions on the inner peripheral edge of the structural portion including, and joining bars formed as projecting parts on the outer peripheral edge of the panel are used as lap joints . 4 ] The reinforcement structure of the building in any one of.
[6] and the bar and / or beam of the concrete building, and the reinforcing walls, the reinforcing structure of any building above which is crimped by Prestressing [1] to [5].
[ 7 ] A concrete building having two or more floors having two or more residential parts and a common passage part on each floor, including a reinforcing structure of the building of any one of the above [1] to [ 6 ] Characteristic concrete building.
[ 8 ] It includes a collection of pillars and beams whose vertical cross section is lattice-like, and is alternately arranged in a checkered pattern for a plurality of sections constituting the lattice-like collection of pillars and beams. [ 7 ] The concrete building according to [ 7 ], wherein the reinforcing structure is formed.
[ 9 ] The concrete building according to [ 7 ] or [ 8 ], wherein the reinforcing structure is formed between the living portion and the shared passage portion or outside the shared passage portion.

本発明の補強構造は、特定の成分組成を有する繊維含有水硬性組成物の硬化体からなるパネルを用いているので、従来の補強壁と比べて厚さ等を小さくして軽量化することができ、コンクリート建築物の内部に当該補強構造を多数形成させたとしても、建築物の基礎を補強するなどの工事を併せて行なう必要がないか、または、基礎を補強する場合でも、小規模な工事で行なうことができる。そのため、集合住宅のような中高層の建築物に対しても、本発明の補強構造を建築物全体に万遍なく形成させて、耐震性等を高めることができる。
本発明の補強構造は、特定の成分組成を有する繊維含有水硬性組成物の硬化体からなるパネルを用いているので、現場打ちで補強壁を形成する場合と比べて、施工が容易でかつ施工時間を短くすることができる。
本発明の補強構造は、大地震に備えて免震装置や制震装置を取り付ける場合と比べて、低コストであり、実用的な価値が高い。新耐震基準(1981年)の前に建築された集合住宅等においては、本発明の補強構造を有しない場合には、大地震の発生時に大きな損傷を受け、修復コストが非常に高くなり、結局は取り壊して建替えざるを得なくなる事態が想定される。この点、本発明の補強構造を採用した場合には、大地震の発生時に、簡単な修復で済む程度の損傷を受けるに留まると予想される。
Since the reinforcing structure of the present invention uses a panel made of a cured body of a fiber-containing hydraulic composition having a specific component composition, it is possible to reduce the thickness and the like as compared with the conventional reinforcing wall. Yes, even if a large number of reinforcement structures are formed inside the concrete building, there is no need to carry out construction work such as reinforcing the foundation of the building, or even if the foundation is reinforced Can be done by construction. Therefore, even for medium- and high-rise buildings such as apartment buildings, the reinforcement structure of the present invention can be uniformly formed on the entire building, thereby improving the earthquake resistance and the like.
Since the reinforcing structure of the present invention uses a panel made of a cured body of a fiber-containing hydraulic composition having a specific component composition, it is easier to construct and construct than a case where a reinforcing wall is formed on-site. Time can be shortened.
The reinforcing structure of the present invention is low in cost and has high practical value as compared with a case where a seismic isolation device or a vibration control device is attached in preparation for a large earthquake. In apartment buildings that were built before the new earthquake resistance standards (1981), if they do not have the reinforcement structure of the present invention, they will be damaged greatly when a large earthquake occurs, resulting in a very high repair cost. It is assumed that there will be no choice but to rebuild. In this regard, when the reinforcing structure of the present invention is employed, it is expected that the damage will be limited to the extent that simple repair is required when a large earthquake occurs.

本発明の補強構造は、例えば、集合住宅における居住部分と共用通路部分の間の既存の壁に対して、共用通路側に積層させて形成することができる。
この場合、施工作業は、共用通路部分で行われるため、居住部分への作業者の立入り等が不要であり、施工期間中の居住性に影響を与えることがない。また、施工後には、補強壁の厚さ(3〜20cm程度)だけ共用通路部分の幅が狭まることになるものの、居住部分については、施工前と同じ居住空間を確保することができる。
また、この場合、集合住宅における鉛直方向の断面が格子状である柱及び梁の集合体を構成する複数の区画に対して、市松模様の形態で交互(一戸おき)に本発明の補強構造を形成したうえで、補強しない区画に袖壁補強を行えば、上記の集合住宅における必要な補強効果を得ることができる。つまり、市松模様の形態で本発明の補強構造を形成することによって、最大限の補強効果を確保しつつ、建物重量の軽減、施工の簡易化及びコストの削減を図ることができる。また、間仕切壁や床スラブを撤去して、開放的な居住空間を創り出すことができる。
The reinforcing structure of the present invention can be formed, for example, by laminating the existing wall between the living part and the common passage part in the apartment house on the common passage side.
In this case, since the construction work is performed in the shared passage portion, it is not necessary for the worker to enter the living portion, and there is no influence on the habitability during the construction period. Moreover, after construction, although the width | variety of a shared channel | path part will narrow by the thickness (about 3-20 cm) of a reinforcement wall, about the living part, the same living space as before construction can be ensured.
Moreover, in this case, the reinforcing structure of the present invention is alternately (in other than one room) in a checkered pattern for a plurality of sections constituting an assembly of pillars and beams having a lattice-like cross section in the vertical direction in an apartment house. Once formed, if the sleeve wall reinforcement is applied to the non-reinforcing section, the necessary reinforcing effect in the apartment house can be obtained. That is, by forming the reinforcing structure of the present invention in the form of a checkered pattern, it is possible to reduce the building weight, simplify the construction, and reduce the cost while ensuring the maximum reinforcing effect. In addition, it is possible to create an open living space by removing partition walls and floor slabs.

以下、本発明について図面を参照しつつ詳細に説明する。
図1は、本発明の建築物の補強構造の種々の形態例を示す正面図、図2は、本発明の補強構造を形成するための部材であるパネルの種々の形態例を示す平面図、図3は、本発明の補強構造を形成する方法の一例を示すフロー図、図4は、集合住宅における本発明の補強構造の施工例を部分的に示す水平断面図、図5は、集合住宅における本発明の補強構造の施工例を全体的に示す鉛直断面図、図6は、コンクリート建築物の柱及び/又は梁と、補強壁とを、プレストレスを導入して圧着した状態の種々の形態例を示す断面図である。
本発明の建築物の補強構造は、図1の(A)〜(C)に示すように、コンクリート建築物の柱2及び梁3を含む構造部分と、該構造部分で囲まれた補強対象面に形成された補強壁とからなる建築物の補強構造であって、補強壁が、繊維含有水硬性組成物の硬化体からなるパネル4と、パネル4と構造部分(柱2及び梁3)の間に形成された接合部5とからなることを特徴とするものである。
なお、図1中の(A)は、補強対象面の全領域に補強壁を形成させた形態例であり、図1中の(B)及び(C)は、補強対象面の一部の領域に補強壁を形成させた形態例である。
コンクリート建築物の例としては、各階に2戸以上の居住部分及び共用通路部分(共用廊下)を有する2階建て以上のコンクリート建築物が挙げられる。このような複数階のコンクリート建築物の中でも、集合住宅やホテル等の中高層(4〜20階建)のコンクリート建築物は、本発明の対象物として特に好適である。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a front view showing various examples of the reinforcing structure of a building of the present invention, and FIG. 2 is a plan view showing various examples of a panel which is a member for forming the reinforcing structure of the present invention. FIG. 3 is a flowchart showing an example of a method for forming the reinforcing structure of the present invention, FIG. 4 is a horizontal sectional view partially showing an example of construction of the reinforcing structure of the present invention in an apartment house, and FIG. 5 is an apartment house. FIG. 6 is a vertical sectional view showing an overall construction example of the reinforcing structure of the present invention in FIG. 6, and shows various types of concrete building columns and / or beams and reinforcing walls that are crimped by introducing prestress. It is sectional drawing which shows the example of a form.
As shown in FIGS. 1A to 1C, the reinforcing structure of a building according to the present invention includes a structural part including a pillar 2 and a beam 3 of a concrete building, and a reinforcement target surface surrounded by the structural part. A reinforcing structure of a building comprising a reinforcing wall formed on the panel 4, the reinforcing wall comprising a panel 4 made of a cured body of a fiber-containing hydraulic composition, and the panel 4 and the structural portion (column 2 and beam 3). It consists of the junction part 5 formed in the middle, It is characterized by the above-mentioned.
1A is an example in which a reinforcing wall is formed in the entire area of the surface to be reinforced, and FIGS. 1B and 1C are partial areas of the surface to be reinforced. This is an example in which a reinforcing wall is formed.
An example of a concrete building is a two-story or more concrete building having two or more residential parts and a common passage part (common hallway) on each floor. Among such multi-story concrete buildings, middle-to-high-rise (4 to 20 story) concrete buildings such as apartment houses and hotels are particularly suitable as the object of the present invention.

コンクリート建築物の柱及び梁は、少なくともコンクリートを含む構造体であり、例えば、鉄筋コンクリート(RC)、鉄骨鉄筋コンクリート(SRC)等からなるものである。
本発明においては、コンクリート建築物の柱及び梁を含む構造部分で囲まれた面が、補強対象面となる。例えば、柱と、柱の上端から所定の方向に延びる上側の梁と、柱の下端から上側の梁と同じ方向に延びる下側の梁とによって囲まれた領域のうち、窓、ドア等の開口部分を除く、少なくとも柱を縁辺の一つとする領域が、補強対象面となる。
補強対象面の具体例としては、集合住宅における居住部分と共用通路部分の間の既存の壁に近接した面(特に、共用通路側の面)や、共用通路部分の外側や、ピロティ形式の建築物の1階部分等が挙げられる。この場合、補強壁は、既存の壁の片面に対して、積層または若干の距離を隔てて、平行に隣り合って形成されるか、あるいは、新たな壁として形成される。
補強壁は、補強壁の主体である、繊維含有水硬性組成物の硬化体からなるパネルと、該パネルとコンクリート建築物の柱及び梁を含む構造部分との間に形成された接合部とからなるものである。
以下、本発明の補強壁を構成するパネル及び接合部について、詳しく説明する。
The pillars and beams of the concrete building are structures including at least concrete, such as reinforced concrete (RC), steel reinforced concrete (SRC), and the like.
In the present invention, a surface surrounded by a structural portion including columns and beams of a concrete building is a reinforcement target surface. For example, in an area surrounded by a column, an upper beam extending in a predetermined direction from the upper end of the column, and a lower beam extending in the same direction as the upper beam from the lower end of the column, an opening such as a window or a door A region where at least the column is one of the edges, excluding the portion, is the reinforcement target surface.
Specific examples of the surface to be reinforced include a surface close to an existing wall (particularly the surface on the side of the common passage) between the living part and the common passage part in the apartment building, the outside of the common passage part, and a piloti-type building. The first floor part of the thing. In this case, the reinforcing wall is formed adjacent to one side of the existing wall in parallel or at a distance from each other, or is formed as a new wall.
The reinforcing wall includes a panel made of a cured body of a fiber-containing hydraulic composition, which is the main body of the reinforcing wall, and a joint formed between the panel and a structural part including columns and beams of a concrete building. It will be.
Hereinafter, the panel and the junction part which comprise the reinforcement wall of this invention are demonstrated in detail.

本発明の補強壁を構成するパネルは、繊維含有水硬性組成物の硬化体からなるものである。
パネルの材料である繊維含有水硬性組成物、セメント、BET比表面積5〜25m /gのポゾラン質微粉末、ブレーン比表面積2,500〜30,000cm /gの、セメント以外の無機粉末、細骨材、直径0.01〜1.0mmで長さ2〜30mmの補強用金属繊維、ポリカルボン酸系の高性能減水剤または高性能AE減水剤、及び水を必須成分として含む。必要に応じて配合される成分として、平均粒径が1mm以下の繊維状粒子または薄片状粒子、その他の無機粉末、及び粗骨材挙げられる。
セメントの例としては、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメントが挙げられる。
本発明において、組成物の早期強度を向上させようとする場合には、早強ポルトランドセメントを使用することが好ましく、組成物の作業性を向上させようとする場合には、中庸熱ポルトランドセメントや低熱ポルトランドセメントを使用することが好ましい。
セメントのブレーン比表面積は、好ましくは2,500〜5,000cm/g、より好ましくは3,000〜4,500cm/gである。該値が2,500cm/g未満では、水和反応が不活性になって、硬化後の強度発現性が低下する等の欠点があり、5,000cm/gを超えると、セメントの粉砕時に時間がかかり、また、所定の流動性を得るための水量が多くなるため、硬化後の強度発現性が低下する等の欠点がある。
The panel which comprises the reinforcement wall of this invention consists of a hardening body of a fiber containing hydraulic composition.
Material fiber-containing hydraulic composition is a panel, cement, pozzolana quality fine powder having a BET specific surface area 5~25m 2 / g, the Blaine specific surface area 2,500~30,000cm 2 / g, other than cement inorganic powder , fine aggregate, including metal reinforcement fiber length 2~30mm diameter 0.01 to 1.0 mm, a polycarboxylic acid-based high-performance water reducing agent or high performance AE water reducing agent, and water as essential components. As the components to be blended as required, the average particle size is less than 1mm fibrous particles or flaky particles, other inorganic powder, and coarse aggregate and the like.
Examples of cement include various Portland cements such as ordinary Portland cement, early-strength Portland cement, moderately hot Portland cement, and low heat Portland cement.
In the present invention, when trying to improve the early strength of the composition, it is preferable to use early-strength Portland cement. When improving the workability of the composition, medium-heated Portland cement or It is preferred to use low heat Portland cement.
The brane specific surface area of the cement is preferably 2,500 to 5,000 cm 2 / g, more preferably 3,000 to 4,500 cm 2 / g. If the value is less than 2,500 cm 2 / g, the hydration reaction becomes inactive and the strength development after curing is reduced. If it exceeds 5,000 cm 2 / g, the cement is crushed. It sometimes takes time, and since the amount of water for obtaining a predetermined fluidity increases, there are disadvantages such as a decrease in strength development after curing.

細骨材の例としては、川砂、陸砂、海砂、砕砂、珪砂またはこれらの2種以上の混合物等が挙げられる。
本発明においては、組成物の流動性や、硬化後の強度発現性及び耐久性等の観点から、最大粒径が2mm以下の細骨材を使用することが好ましく、最大粒径が1.5mm以下の細骨材を用いることがより好ましい。
細骨材の配合量は、組成物の作業性や、自己収縮や、硬化後の強度発現性及び耐久性等の観点から、セメント100質量部に対して50〜250質量部好ましくは80〜200質量部である。
Examples of the fine aggregate include river sand, land sand, sea sand, crushed sand, silica sand, or a mixture of two or more thereof.
In the present invention, it is preferable to use a fine aggregate having a maximum particle size of 2 mm or less from the viewpoint of fluidity of the composition, strength development after curing, durability and the like, and the maximum particle size is 1.5 mm. It is more preferable to use the following fine aggregate.
The amount of fine aggregate, workability and the composition, self-contraction and, from the viewpoint of strength development and durability after curing, with respect to 100 parts by weight of cement, 50 to 250 parts by weight, preferably 80 -200 parts by mass.

補強用繊維は、金属繊維である
金属繊維の例としては、鋼繊維、ステンレス繊維、アモルファス繊維等が挙げられる。中でも、鋼繊維は、強度に優れ、低コストで入手し易いことから、好ましく用いられる。
金属繊維の寸法は、組成物中における金属繊維の材料分離の防止や、硬化後の曲げ強度の向上等の観点から、直径が0.01〜1.0mm、長さが2〜30mmであることが好ましく、直径が0.05〜0.5mm、長さが5〜25mmであることがより好ましい。
金属繊維のアスペクト比(繊維の長さ/繊維の直径)は、好ましくは20〜200、より好ましくは40〜150である。
Reinforcing fiber is a metal fiber.
Examples of metal fibers include steel fibers, stainless fibers, and amorphous fibers. Among these, steel fibers are preferably used because they are excellent in strength and easily available at low cost.
The dimensions of the metal fibers are 0.01 to 1.0 mm in diameter and 2 to 30 mm in length from the viewpoints of preventing material separation of the metal fibers in the composition and improving the bending strength after curing. The diameter is preferably 0.05 to 0.5 mm, and the length is more preferably 5 to 25 mm.
The aspect ratio of the metal fiber (fiber length / fiber diameter) is preferably 20 to 200, more preferably 40 to 150.

金属繊維の形状は、直線状よりも、何らかの物理的付着力を付与する形状(例えば、螺旋状や波形)が好ましい。螺旋状等の形状にすれば、金属繊維とマトリックスとが引き抜けながら応力を担保するため、曲げ強度が向上する。
金属繊維の好適な例としては、例えば、直径が0.5mm以下、引張強度が1〜3.5GPaの鋼繊維からなり、かつ、120MPaの圧縮強度を有するセメント系硬化体のマトリックスに対する界面付着強度(付着面の単位面積当たりの最大引張力)が3MPa以上であるものが挙げられる。本例において、金属繊維は、波形や螺旋形の形状に加工することができる。また、本例の金属繊維の周面上に、マトリックスに対する運動(長手方向の滑り)に抵抗するための溝または突起を付けることもできる。また、本例の金属繊維は、鋼繊維の表面に、鋼繊維のヤング係数よりも小さなヤング係数を有する金属層(例えば、亜鉛、錫、銅、アルミニウム等から選ばれる1種類以上からなるもの)を設けたものとしてもよい。
The shape of the metal fiber is preferably a shape that imparts some physical adhesion (for example, a spiral shape or a waveform) rather than a straight shape. If it is in a spiral shape or the like, the stress is secured while the metal fibers and the matrix are pulled out, so that the bending strength is improved.
As a suitable example of the metal fiber, for example, the interfacial adhesion strength to a matrix of a hardened cementitious body made of steel fiber having a diameter of 0.5 mm or less and a tensile strength of 1 to 3.5 GPa and having a compressive strength of 120 MPa. Examples include those having a maximum tensile force per unit area of the adhering surface of 3 MPa or more. In this example, the metal fiber can be processed into a corrugated or spiral shape. Moreover, the groove | channel or processus | protrusion for resisting the motion (longitudinal slip) with respect to a matrix can also be attached on the surrounding surface of the metal fiber of this example. In addition, the metal fiber of this example has a metal layer having a Young's modulus smaller than that of the steel fiber on the surface of the steel fiber (for example, one consisting of one or more selected from zinc, tin, copper, aluminum, etc.). It is good also as what provided.

金属繊維の配合量は、組成物中の体積百分率で0.5〜4%好ましくは1〜3%である。該配合量が0.5%未満では、金属繊維による曲げ強度等の向上の効果を十分に得ることができない。該配合量が4%を超えると、流動性を確保するために単位水量が増大するうえ、配合量を増やしても金属繊維による補強効果が向上しないため、経済的でなく、さらに、組成物中でいわゆるファイバーボールを生じ易くなるので、好ましくない。 The compounding quantity of a metal fiber is 0.5 to 4% by the volume percentage in a composition , Preferably it is 1 to 3%. When the blending amount is less than 0.5%, the effect of improving the bending strength or the like by the metal fiber cannot be sufficiently obtained. If the blending amount exceeds 4%, the amount of unit water increases to ensure fluidity, and even if the blending amount is increased, the reinforcing effect by the metal fibers is not improved. This is not preferable because so-called fiber balls are easily generated.

減水剤としては、減水効果の大きな高性能減水剤または高性能AE減水剤を使用することが好ましく、本発明においては、特に、ポリカルボン酸系の高性能減水剤または高性能AE減水剤が用いられる
減水剤の配合量は、セメント100質量部に対して固形分換算で0.1〜4.0質量部好ましくは0.1〜1.0質量部である。該配合量が0.1質量部未満では、混練が困難になるとともに、組成物の作業性が極端に低下する等の欠点がある。該配合量が4.0質量部を超えると、材料分離や著しい凝結遅延が生じ、また、硬化後の強度発現性が低下することもある。
なお、減水剤は、液状と粉末状のいずれも使用することができる。
As the water reducing agent , it is preferable to use a high performance water reducing agent or a high performance AE water reducing agent having a large water reducing effect. In the present invention, in particular, a polycarboxylic acid type high performance water reducing agent or a high performance AE water reducing agent is used. It is done .
The amount of water-reducing agent, in terms of solid content with respect to 100 parts by weight of cement, 0.1 to 4.0 parts by weight, preferably from 0.1 to 1.0 parts by weight. If the blending amount is less than 0.1 parts by mass, kneading becomes difficult and the workability of the composition is extremely lowered. If the blending amount exceeds 4.0 parts by mass, material separation and significant setting delay may occur, and strength development after curing may decrease.
The water reducing agent can be used in either liquid or powder form.

水量は、セメント100質量部に対して10〜35質量部好ましくは12〜30質量部である。該量が10質量部未満では、混練が困難になるとともに、組成物の作業性が極端に低下する等の欠点がある。該量が35質量部を超えると、硬化後の強度発現性が低下する。 The amount of water, relative to 100 parts by weight of cement, 10 to 35 parts by weight, preferably from 12 to 30 parts by weight. If the amount is less than 10 parts by mass, kneading becomes difficult and the workability of the composition is extremely lowered. When the amount exceeds 35 parts by mass, strength development after curing is lowered.

ポゾラン質微粉末の例としては、シリカフューム、シリカダスト、フライアッシュ、スラグ、火山灰、シリカゲル、沈降シリカ等が挙げられる。
一般に、シリカフュームやシリカダストは、そのBET比表面積が5〜25m/gであり、粉砕等をする必要がないので、好ましく用いられる。
ポゾラン質微粉末のBET比表面積は5〜25m/g好ましくは5〜15m/gである。該値が5m/g未満では、硬化後の強度発現性が低下する等の欠点があり、該値が25m/gを超えると、所定の流動性を得るための水量が多くなるため、硬化後の強度発現性が低下する等の欠点がある。
ポゾラン質微粉末の配合量は、セメント100質量部に対して3〜50質量部である。該配合量が3質量部未満では、硬化後の強度発現性が低下する等の欠点がある。該配合量が50質量部を超えると、コンクリートの作業性の低下や、自己収縮の増大や、硬化後の強度発現性の低下等の欠点がある。
Examples of the pozzolanic fine powder include silica fume, silica dust, fly ash, slag, volcanic ash, silica gel, and precipitated silica.
In general, silica fume and silica dust have a BET specific surface area of 5 to 25 m 2 / g and are preferably used because they do not need to be pulverized.
The BET specific surface area of the pozzolanic fine powder is 5 to 25 m 2 / g , preferably 5 to 15 m 2 / g. If the value is less than 5 m 2 / g, there are disadvantages such as reduced strength development after curing, and if the value exceeds 25 m 2 / g, the amount of water for obtaining a predetermined fluidity increases. There are drawbacks such as reduced strength development after curing.
Pozzolanic substance fine powder amount, per 100 parts by weight of cement, 3 to 50 parts by weight. When the blending amount is less than 3 parts by mass, there are drawbacks such as reduced strength development after curing. When the blending amount exceeds 50 parts by mass, there are disadvantages such as a decrease in workability of concrete, an increase in self-shrinkage, and a decrease in strength development after curing.

平均粒度が1mm以下の繊維状粒子または薄片状粒子は、組成物の硬化後の靭性を高める観点から配合される。
ここで、粒子の粒度とは、その最大寸法の大きさ(特に繊維状粒子ではその長さ)である。
繊維状粒子の例としては、ウォラストナイト、ボーキサイト、ムライト等が挙げられる。
薄片状粒子の例としては、マイカフレーク、タルクフレーク、バーミキュライトフレーク、アルミナフレーク等が挙げられる。
繊維状粒子または薄片状粒子の配合量(これらの粒子を併用する場合はその合計量)は、組成物の作業性や、硬化後の強度発現性、耐久性及び靭性等の観点から、セメント100質量部に対して、好ましくは0〜35質量部、より好ましくは1〜25質量部である。
なお、繊維状粒子としては、硬化後の靭性を高める観点から、長さ/直径の比で表される針状度が3以上のものを用いることが好ましい。
Fibrous particles or flaky particles having an average particle size of 1 mm or less are blended from the viewpoint of increasing toughness after curing of the composition.
Here, the particle size of the particle is the size of the maximum dimension (particularly, the length of the fibrous particle).
Examples of fibrous particles include wollastonite, bauxite, mullite and the like.
Examples of the flaky particles include mica flakes, talc flakes, vermiculite flakes, alumina flakes and the like.
The blending amount of the fibrous particles or flaky particles (the total amount when these particles are used in combination) is determined from the viewpoint of workability of the composition, strength development after curing, durability, toughness and the like. Preferably it is 0-35 mass parts with respect to a mass part, More preferably, it is 1-25 mass parts.
In addition, as a fibrous particle, it is preferable to use the thing with a needle-like degree represented by ratio of length / diameter 3 or more from a viewpoint of improving the toughness after hardening.

本発明で用いられる、セメント以外の無機粉末(具体的には、セメントと、ポゾラン質微粉末と、平均粒度が1mm以下の繊維状粒子または薄片状粒子のいずれにも属さない無機粉末)の例としては、スラグ、石灰石粉末、長石類、ムライト類、アルミナ粉末、石英粉末、フライアッシュ、火山灰、シリカゾル、炭化物粉末、窒化物粉末等が挙げられる。中でも、スラグ、石灰石粉末及び石英粉末は、コストや硬化後の品質安定性の観点から好ましく用いられる。
該無機粉末のブレーン比表面積は2,500〜30,000cm/g好ましくは4,500〜20,000cm/gである。該値が2,500cm/g未満では、組成物の作業性の低下や、硬化後の強度発現性の低下等の欠点がある。該値が30,000cm/gを超えると、粉砕に手間がかかるため材料の入手が難しくなったり、組成物の作業性が低下する等の欠点がある。
該無機粉末の配合量は、組成物の作業性や、自己収縮や、硬化後の強度発現性及び耐久性の観点から、セメント100質量部に対して10〜50質量部である。該配合量が55質量部を超えると、硬化後の強度発現性が低下する等の欠点がある。
Examples of inorganic powders other than cement (specifically, inorganic powders that do not belong to any of cement, pozzolanic fine powder, and fibrous or flaky particles having an average particle size of 1 mm or less) used in the present invention Examples thereof include slag, limestone powder, feldspar, mullite, alumina powder, quartz powder, fly ash, volcanic ash, silica sol, carbide powder, and nitride powder. Among these, slag, limestone powder and quartz powder are preferably used from the viewpoints of cost and quality stability after curing.
Blaine specific surface area of the inorganic powder, 2,500~30,000cm 2 / g, preferably from 4,500~20,000cm 2 / g. When the value is less than 2,500 cm 2 / g, there are disadvantages such as a decrease in workability of the composition and a decrease in strength development after curing. When the value exceeds 30,000 cm 2 / g, it takes time and effort to grind, so that there are disadvantages such as difficulty in obtaining the material and deterioration in workability of the composition.
The amount of the inorganic powder, the workability and the composition, self-contraction and, in view of the strength development and durability after curing, with respect to 100 parts by weight of cement, 10 to 50 parts by weight. When the blending amount exceeds 55 parts by mass, there are disadvantages such as reduced strength development after curing.

本発明においては、前記の無機粉末として、ブレーン比表面積が異なる2種の無機粉末A(ブレーン比表面積が大きい粉末)および無機粉末B(ブレーン比表面積が小さい粉末)を併用することができる。
この場合、無機粉末Aと無機粉末Bは、同じ種類の粉末(例えば、石灰石粉末)を使用してもよいし、異なる種類の粉末(例えば、石灰石粉末及び石英粉末)を使用してもよい。
無機粉末Aのブレーン比表面積は、好ましくは5,000〜30,000cm/g、より好ましくは6,000〜20,000cm/gである。該値が5,000cm/g未満では、セメントや無機粉末Bとのブレーン比表面積の差が小さくなり、1種の無機粉末のみを用いる場合と比べて、組成物の作業性や、硬化後の強度発現性及び耐久性を向上させる効果が小さくなるばかりか、2種の無機粉末を用いているために、材料の準備に手間がかかるので、好ましくない。該値が30,000cm/gを超えると、粉砕に手間がかかるため、材料が入手し難くなったり、組成物の作業性が低下する等の欠点がある。
In the present invention, as the inorganic powder, it can be used in combination Blaine specific surface area of two different inorganic powder A (powder Blaine specific surface area is large) and the inorganic powder B (powder Blaine specific surface area is small).
In this case, the inorganic powder A and the inorganic powder B may use the same type of powder (for example, limestone powder) or different types of powder (for example, limestone powder and quartz powder).
The Blaine specific surface area of the inorganic powder A is preferably 5,000 to 30,000 cm 2 / g, more preferably 6,000 to 20,000 cm 2 / g. When the value is less than 5,000 cm 2 / g, the difference in the Blaine specific surface area between the cement and the inorganic powder B is small, and the workability of the composition and after curing are higher than when only one kind of inorganic powder is used. This is not preferable because the effect of improving the strength development and durability is reduced, and since two kinds of inorganic powder are used, it takes time to prepare the material. When this value exceeds 30,000 cm 2 / g, it takes time and effort to grind, so that there are drawbacks such as difficulty in obtaining materials and a decrease in workability of the composition.

無機粉末Bのブレーン比表面積は、好ましくは2,500〜4,500cm/gである。該値が2,500cm/g未満では、組成物の作業性の低下や、硬化後の強度発現性の低下等の欠点がある。該値が4,500cm/gを超えると、ブレーン比表面積の数値が無機粉末Aに近づくため、1種の無機粉末のみを用いる場合と比べて、組成物の作業性や、硬化後の強度発現性及び耐久性を向上させる効果が小さくなるばかりか、2種の無機粉末を用いているために、材料の準備に手間がかかるので、好ましくない。
セメントと無機粒子Bとのブレーン比表面積の差は、好ましくは100cm/g以上、より好ましくは200cm/g以上である。該値が好ましい数値範囲内であると、組成物を構成する粒子の充填性が向上し、組成物の作業性や、硬化後の強度発現性及び耐久性を向上させることができる。
The Blaine specific surface area of the inorganic powder B is preferably 2,500 to 4,500 cm 2 / g. When the value is less than 2,500 cm 2 / g, there are disadvantages such as a decrease in workability of the composition and a decrease in strength development after curing. When this value exceeds 4,500 cm 2 / g, the numerical value of the Blaine specific surface area approaches that of the inorganic powder A, so that the workability of the composition and the strength after curing are higher than when only one kind of inorganic powder is used. Not only is the effect of improving the expression and durability small, but since two kinds of inorganic powders are used, it takes time to prepare the material, which is not preferable.
The difference in the Blaine specific surface area between the cement and the inorganic particles B is preferably 100 cm 2 / g or more, more preferably 200 cm 2 / g or more. When the value is within a preferable numerical range, the filling property of the particles constituting the composition is improved, and the workability of the composition, the strength development property and durability after curing can be improved.

無機粉末Aの配合量は、セメント100質量部に対して、好ましくは3〜50質量部、より好ましくは5〜45質量部である。無機粉末Bの配合量は、セメント100質量部に対して、好ましくは3〜40質量部、より好ましくは5〜35質量部である。無機粉末A及び無機粉末Bの配合量が前記の好ましい数値範囲外では、1種の無機粉末のみを用いる場合と比べて、組成物の作業性や、硬化後の強度発現性及び耐久性の向上の効果が小さくなるばかりか、2種の無機粉末を用いているために、材料の準備に手間がかかるので、好ましくない。
なお、無機粉末Aと無機粉末Bの合計量は、セメント100質量部に対して10〜50質量部である。
The compounding amount of the inorganic powder A is preferably 3 to 50 parts by mass, more preferably 5 to 45 parts by mass with respect to 100 parts by mass of cement. The blending amount of the inorganic powder B is preferably 3 to 40 parts by mass, more preferably 5 to 35 parts by mass with respect to 100 parts by mass of cement. When the blending amount of the inorganic powder A and the inorganic powder B is outside the above preferable numerical range, the workability of the composition and the improvement in strength and durability after curing are improved as compared with the case where only one kind of inorganic powder is used. This is not preferable because the effect of is reduced, and since two kinds of inorganic powders are used, it takes time to prepare materials.
Incidentally, the total amount of the inorganic powder A and inorganic powder B with respect to 100 parts by mass of cement, 10 to 50 parts by weight.

粗骨材の例としては、川砂利、海砂利、砕石等が挙げられる。
粗骨材の最大粒径は、組成物の作業性や、硬化後の強度発現性及び耐久性等の観点から、好ましくは20mm以下、より好ましくは15mm以下、特に好ましくは10mm以下である。
粗骨材の配合量は、組成物の作業性や、自己収縮や、硬化後の強度発現性及び耐久性の観点から、セメント100質量部に対して、好ましくは0〜30質量部、より好ましくは0〜10質量部である。
Examples of coarse aggregates include river gravel, sea gravel and crushed stone.
The maximum particle size of the coarse aggregate is preferably 20 mm or less, more preferably 15 mm or less, and particularly preferably 10 mm or less from the viewpoints of workability of the composition, strength development after hardening, durability, and the like.
The amount of the coarse aggregate is preferably 0 to 30 parts by mass, more preferably 100 parts by mass with respect to 100 parts by mass of cement, from the viewpoint of workability of the composition, self-shrinkage, strength development after hardening, and durability. Is 0 to 10 parts by mass.

パネルの材料である繊維含有水硬性組成物の硬化体の圧縮強度は、好ましくは100N/mm以上、より好ましくは120N/mm以上である。該値が100N/mm未満では、強度を確保するためにパネルの厚さが大きくなり、施工後に建築物の基礎を補強することが必要になるなどの問題が生じうるので、好ましくない。
パネルの材料である繊維含有水硬性組成物の硬化体の曲げ強度は、好ましくは15N/mm以上、より好ましくは20N/mm以上である。該値が15N/mm未満では、強度を確保するためにパネルの厚さが大きくなり、施工後に建築物の基礎を補強することが必要になるほか、補強用鉄筋が多数必要となり、施工が煩雑になるなどの問題が生じうるので、好ましくない。
The compressive strength of the cured body of the fiber-containing hydraulic composition that is the panel material is preferably 100 N / mm 2 or more, more preferably 120 N / mm 2 or more. If the value is less than 100 N / mm 2 , the thickness of the panel is increased in order to ensure strength, and problems such as the need to reinforce the foundation of the building after construction may occur, which is not preferable.
The bending strength of the cured body of the fiber-containing hydraulic composition that is a panel material is preferably 15 N / mm 2 or more, more preferably 20 N / mm 2 or more. If the value is less than 15 N / mm 2 , the thickness of the panel will be large to ensure strength, and it will be necessary to reinforce the foundation of the building after construction, and many reinforcing bars will be needed. Since problems such as complications may occur, it is not preferable.

次に、本発明で使用するパネルの製造方法について説明する。
本発明で使用するパネルは、上記材料を混練してなる繊維含有水硬性組成物を所定の型枠に投入して成形し、硬化させることによって得ることができる。
繊維含有水硬性組成物の混練方法は、特に限定されるものではなく、例えば、(1)水、減水剤以外の材料を予め混合して、プレミックス材を調製しておき、該プレミックス材、水及び減水剤を、ミキサに投入し、混練する方法、(2)粉末状の減水剤を用意し、水以外の材料を予め混合して、プレミックス材を調製しておき、該プレミックス材及び水をミキサに投入し、混練する方法、(3)各材料を各々個別にミキサに投入し、混練する方法等を採用することができる。
混練に用いるミキサは、通常のコンクリートの混練に用いられるどのタイプのものでもよく、例えば、揺動型ミキサ、パンタイプミキサ、二軸練りミキサ等が用いられる。
繊維含有水硬性組成物の成形方法は、特に限定されるものではなく、例えば、振動成形等を行えばよい。
繊維含有水硬性組成物の養生方法は、特に限定されるものではなく、例えば、気中養生、湿空養生、水中養生、加熱促進養生(蒸気養生、オートクレープ養生)等の慣用手段またはこれらを併用したものを行えばよい。
Next, the manufacturing method of the panel used by this invention is demonstrated.
The panel used in the present invention can be obtained by putting a fiber-containing hydraulic composition obtained by kneading the above materials into a predetermined mold, molding and curing.
The kneading method of the fiber-containing hydraulic composition is not particularly limited. For example, (1) materials other than water and a water reducing agent are mixed in advance to prepare a premix material, and the premix material , A method of adding water and a water reducing agent to a mixer and kneading, (2) preparing a powdery water reducing agent, mixing materials other than water in advance, preparing a premix material, It is possible to employ a method in which a material and water are put into a mixer and kneaded, and (3) a method in which each material is individually fed into a mixer and kneaded.
The mixer used for kneading may be of any type used for ordinary concrete kneading. For example, a rocking mixer, a pan type mixer, a biaxial kneading mixer, or the like is used.
The molding method of the fiber-containing hydraulic composition is not particularly limited, and for example, vibration molding or the like may be performed.
The curing method of the fiber-containing hydraulic composition is not particularly limited. For example, conventional means such as air curing, wet air curing, underwater curing, heating accelerated curing (steam curing, autoclave curing) or the like can be used. What is used in combination is sufficient.

本発明で使用するパネルの厚さは3〜20cmである。厚さが3cm未満では、パネルの強度や耐久性が低下するので、コンクリート建築物の補強効果が低下する。厚さが20cmを超えると、パネルの質量が大きくなり、またコストも増大するので好ましくない。
本発明の補強構造の形成と共に、居住空間のリフォーム(例えば、仕切壁や床等の既存の部材の撤去)を行う場合には、既存の部材の撤去によって生じる強度の低下を補うために、パネルの厚さを5〜20cmとすることが好ましい。
本発明で使用するパネルの寸法は、パネルの運搬時の作業性や、コンクリート建築物の柱及び梁に対する接合工事の作業性等の観点から、厚さが3〜10cmの場合は、縦1〜3m×横1〜3mとするのが好ましく、厚さが10cmを超え、20cm以下の場合は、縦0.2〜1.5m×横0.2〜1.5mとするのが好ましい。
The thickness of the panel used in the present invention is 3 to 20 cm. If the thickness is less than 3 cm, the strength and durability of the panel are lowered, so that the reinforcing effect of the concrete building is lowered. If the thickness exceeds 20 cm, the mass of the panel increases and the cost also increases, which is not preferable.
In the case of reforming the living space (for example, removal of existing members such as partition walls and floors) together with the formation of the reinforcing structure of the present invention, a panel is used to compensate for the decrease in strength caused by the removal of the existing members. The thickness is preferably 5 to 20 cm.
The dimensions of the panel used in the present invention are 1 to 2 in the case of a thickness of 3 to 10 cm from the viewpoint of workability at the time of transporting the panel and workability of joining work to columns and beams of a concrete building. The length is preferably 3 m × width 1 to 3 m. When the thickness exceeds 10 cm and is 20 cm or less, the length is preferably 0.2 to 1.5 m × width 0.2 to 1.5 m.

本発明で使用するパネルは、鉄筋等の接合用または補強用の部材を含むことができる。
パネルの形態例を図2に示す。なお、図中の点線は、パネル内の筋の位置を示す。
図2中の(A)は、平板状のモルタル成形体15の周縁から外方に所定の長さだけ突出部分を有するように、複数の短尺の接合用筋16をモルタル成形体15に所定の深さだけ貫入させてなる矩形のパネル11を示す平面図である。
図2中の(B)は、(A)のパネルに対して更に複数の明り取り用孔17を穿設してなる矩形のパネル12を示す平面図である。
図2中の(C)は、平板状のモルタル成形体15の周縁から外方に所定の長さだけ突出部分(接合用筋)を有するように、複数の長尺の鉄筋18をモルタル成形体15に貫通させてなる矩形のパネル13を示す平面図である。なお、長尺の鉄筋18は、接合用と補強用の機能を併せ持つものである。
図2中の(D)は、筋を全く含まない矩形のパネル14を示す平面図である。
本発明においては、(A)〜(D)の他、種々の形態を有するパネルを用いることができる。
The panel used in the present invention can include a joining member such as a reinforcing bar or a reinforcing member.
An example of the form of the panel is shown in FIG. In addition, the dotted line in a figure shows the position of the streak in a panel.
In FIG. 2A, a plurality of short joining bars 16 are provided on the mortar molded body 15 with a predetermined length so as to protrude outward from the periphery of the flat mortar molded body 15. It is a top view which shows the rectangular panel 11 penetrated only by the depth.
(B) in FIG. 2 is a plan view showing a rectangular panel 12 in which a plurality of brightening holes 17 are further drilled in the panel of (A).
(C) in FIG. 2 is a mortar molded body in which a plurality of long reinforcing bars 18 are formed so as to have protruding portions (joining bars) by a predetermined length outward from the periphery of the flat mortar molded body 15. FIG. 15 is a plan view showing a rectangular panel 13 that is made to penetrate through 15. The long rebar 18 has both a bonding function and a reinforcing function.
(D) in FIG. 2 is a plan view showing a rectangular panel 14 that does not include any streaks.
In the present invention, in addition to (A) to (D), panels having various forms can be used.

本発明の補強構造を構成する接合部は、繊維含有水硬性組成物を現場打ちで打設してなる硬化体を含むものである。
接合部の材料となる繊維含有水硬性組成物の例としては、上記のパネルの材料と同じ材料からなる組成物が挙げられる。なお、接合部の材料は、粗骨材を含まないモルタルまたはペーストであることが好ましい。
接合部は、コンクリート建築物の柱及び梁を含む構造部分の内周縁に突出部分として形成された複数のアンカー筋と、パネルの外周縁に突出部分として形成された接合用筋とを重ね継手としたものを含むことができる。重ね継手を含むことによって、柱及び梁を含む構造部分とパネルとの接合力を高めることができる。
本発明においては、パネルの外周縁や、コンクリート建築物の柱及び/又は梁にシアキーまたは目粗らしを設けることが好ましい。シアキーまたは目粗らしを設けることによって、補強効果をより高めることができる。
The joining part which comprises the reinforcement structure of this invention contains the hardening body formed by placing a fiber-containing hydraulic composition by spotting.
As an example of the fiber-containing hydraulic composition used as the material of the joint portion, a composition made of the same material as the material of the panel described above can be given. In addition, it is preferable that the material of a junction part is the mortar or paste which does not contain a coarse aggregate.
The joint portion is formed by overlapping a plurality of anchor bars formed as projecting portions on the inner peripheral edge of a structural portion including columns and beams of a concrete building, and joint bars formed as projecting portions on the outer peripheral edge of the panel. Can be included. By including the lap joint, it is possible to increase the bonding force between the structural portion including the column and the beam and the panel.
In the present invention, it is preferable to provide a shear key or a roughening on the outer peripheral edge of the panel and the pillar and / or beam of the concrete building. By providing a shear key or roughening, the reinforcing effect can be further enhanced.

次に、本発明の補強構造を形成するための方法について説明する。
本発明の補強構造を形成するための方法は、(a)コンクリート建築物の柱及び梁を含む構造部分で囲まれた補強対象面に対して、該補強対象面内に収まる形状を有する繊維含有水硬性組成物からなるパネルを配設する工程と、(b)柱及び梁を含む構造部分とパネルの間に、繊維含有水硬性組成物を現場打ちで打設して、柱及び梁を含む構造部分とパネルを接合し、パネルを主体とする補強壁を形成する工程を含むものである。
この方法の実施形態例としては、図3に示すように、(a−1)コンクリート建築物の柱2及び梁3に対して、複数のアンカー筋21を所定の深さだけ打ち込み、柱2及び梁3を含む構造部分から、該構造部分で囲まれた空間内の補強対象面に向けて、複数のアンカー筋21が所定の長さだけ突出した露出部分であるアンカー部分21を形成させる工程(図3の(A)参照)と、(a−2)上記の補強対象面内に収まる形状を有し、かつ外周縁から外方に向けて所定の長さだけ突出した複数の接合用筋16を有する、繊維含有水硬性組成物からなるパネル11(図2中の(A)参照)を用意する工程と、(a−3)アンカー部分21とパネル11の接合用筋16を重ね継手として、柱2及び梁3を含む構造部分で囲まれた補強対象面に、パネル11を配設する工程(図3の(B)参照)と、(b−1)柱2及び梁3を含む構造部分とパネル11の間に、上述の重ね継手が埋設された状態となるように、繊維含有水硬性組成物を現場打ちで打設して充填し、柱2及び梁3を含む構造部分とパネル11を一体的に接合する工程(図3の(C)参照)とを含むものが挙げられる。
Next, a method for forming the reinforcing structure of the present invention will be described.
The method for forming a reinforcing structure of the present invention includes (a) a fiber containing shape having a shape that fits within the reinforcing target surface with respect to the reinforcing target surface surrounded by a structural part including columns and beams of a concrete building. A step of disposing a panel made of a hydraulic composition; and (b) placing a fiber-containing hydraulic composition on-site between the structural part including the column and the beam and the panel to include the column and the beam. It includes a step of joining the structural part and the panel to form a reinforcing wall mainly composed of the panel.
As an embodiment example of this method, as shown in FIG. 3, (a-1) a plurality of anchor bars 21 are driven by a predetermined depth into the pillar 2 and the beam 3 of the concrete building, and the pillar 2 and A step of forming an anchor portion 21 that is an exposed portion in which a plurality of anchor bars 21 protrude by a predetermined length from a structural portion including the beam 3 toward a surface to be reinforced in a space surrounded by the structural portion ( (A) of FIG. 3), and (a-2) A plurality of joining bars 16 having a shape that fits within the surface to be reinforced and protruding from the outer peripheral edge by a predetermined length. A step of preparing a panel 11 made of a fiber-containing hydraulic composition (see (A) in FIG. 2), and (a-3) the joining portion 16 of the anchor portion 21 and the panel 11 as a lap joint, The panel to be reinforced is surrounded by the structural part including the pillar 2 and the beam 3. 11 (see FIG. 3B), and (b-1) the lap joint is buried between the panel 11 and the structural portion including the column 2 and the beam 3. And a step of casting and filling the fiber-containing hydraulic composition by spot casting and integrally joining the structural portion including the column 2 and the beam 3 and the panel 11 (see FIG. 3C). Things.

本発明の補強構造は、例えば、集合住宅における居住部分と共用通路部分の間に形成させることができる。図4は、本発明の補強構造を施した集合住宅30を水平方向に切断した状態を示す断面図である。図4中、各戸の居住部分31は、柱34と、強度の大きい構造壁35と、共用通路部分32の側に位置する強度の小さい非構造壁36と、ドア37と、ベランダ39側に位置するガラス戸40等によって形成されている。なお、共用通路部分32の縁には、転落防止用の柵33が設けられている。
図4に示すような構造を有する集合住宅は、構造壁35の延びる方向に働く外力には強いが、構造壁35に対して垂直方向に働く外力には弱いという性質がある。そこで、共用通路部分32側の非構造壁36の外側の面(共用通路部分32側の面)に、本発明の補強構造(補強壁38)を構築すれば、集合住宅の強度を効果的に向上させることができる。
また、この場合、図5に、鉛直方向に切断した模式的な断面図として示すように、地盤41上に建築された集合住宅30に対して、本発明の補強構造(補強壁38;図中、斜線で示す。)を1戸おきに構築して、集合住宅30全体として市松模様状に補強を行ったうえで、それ以外の区画に袖壁42による補強を行えば、上記集合住宅に必要な補強効果を得ることができる。
The reinforcing structure of the present invention can be formed, for example, between a living part and a common passage part in an apartment house. FIG. 4 is a cross-sectional view showing a state where the apartment house 30 having the reinforcing structure of the present invention is cut in the horizontal direction. In FIG. 4, the living portion 31 of each door is located on the pillar 34, the high-strength structural wall 35, the low-strength non-structural wall 36 located on the shared passage portion 32 side, the door 37, and the veranda 39 side. Formed by a glass door 40 or the like. Note that a fall prevention fence 33 is provided at the edge of the common passage portion 32.
The apartment house having the structure shown in FIG. 4 has a property that it is strong against external force acting in the direction in which the structural wall 35 extends, but is weak against external force acting in the direction perpendicular to the structural wall 35. Therefore, if the reinforcing structure (reinforcing wall 38) of the present invention is constructed on the outer surface of the non-structural wall 36 on the shared passage portion 32 side (the surface on the shared passage portion 32 side), the strength of the apartment house is effectively increased. Can be improved.
Moreover, in this case, as shown in FIG. 5 as a schematic cross-sectional view cut in the vertical direction, the reinforcing structure (reinforcing wall 38; Are shown in diagonal lines), and are built in a checkered pattern for the entire housing complex 30 and then reinforced with sleeve walls 42 in the other compartments. A strong reinforcing effect can be obtained.

本発明においては、コンクリート建築物の柱及び/又は梁と、補強壁とをプレストレスを導入して圧着した補強構造とすることができる。プレストレスを導入して圧着することにより、柱及び梁を含む構造部分とパネルとの接合力をより一層高めることができ、補強効果を高めることができる。
図6は、プレストレスを導入した補強構造の形態例(A)、(B)を模式的に示す図であり、より具体的には、コンクリート建築物の梁と、補強壁とを、プレストレスを導入して圧着した状態を示す断面図である。なお、図6中、同一の名称を有する各部には、同一の符号を付している。
図6中の(A)及び(B)の各々において、プレストレスを導入した補強構造は、PC鋼材挿入用の貫通孔を有する一対の梁3と、梁3の貫通孔と略同一の内径を有するシース管45を備えたパネル46と、梁3の貫通孔とパネル46のシース管45とに亘って嵌挿されたシース管47と、シース管47の内部に挿通され、かつ、梁3の外表面から所定の長さだけ露出した螺刻部分を両端部に有するPC鋼材48と、PC鋼材48の螺刻部分と螺合して梁3に締着された締着具49と、梁3とパネル46の間に介在する接合部5とから構成されている。
In this invention, it can be set as the reinforcement structure which introduced the prestress and crimped | bonded the pillar and / or beam of a concrete building, and the reinforcement wall. By introducing prestress and pressure bonding, the bonding force between the structural portion including the column and the beam and the panel can be further increased, and the reinforcing effect can be enhanced.
FIG. 6 is a diagram schematically showing examples (A) and (B) of a reinforcing structure in which prestress is introduced. More specifically, FIG. 6 shows a prestress between a concrete building beam and a reinforcing wall. It is sectional drawing which shows the state which introduce | transduced and crimped | bonded. In FIG. 6, parts having the same name are denoted by the same reference numerals.
In each of (A) and (B) in FIG. 6, the reinforcing structure into which prestress is introduced has a pair of beams 3 having through holes for inserting a PC steel material, and an inner diameter substantially the same as the through holes of the beams 3. A panel 46 having a sheath tube 45, a sheath tube 47 fitted between the through-hole of the beam 3 and the sheath tube 45 of the panel 46, inserted into the sheath tube 47, and PC steel material 48 having a threaded portion exposed at a predetermined length from the outer surface at both ends, a fastener 49 screwed to the threaded portion of PC steel material 48 and fastened to beam 3, and beam 3 And the joint portion 5 interposed between the panels 46.

プレストレスを導入した補強構造を形成する方法について説明する。
プレストレスを導入した補強構造を形成するための方法は、例えば、(a)補強対象面のコンクリート構築物の柱2及び/又は梁3の所定の箇所に、PC鋼材挿入用の貫通孔を形成する工程と、(b)補強対象面に対して、PC鋼材挿入用のシース管45を有する繊維含有水硬性組成物からなるパネル46を、柱2及び/又は梁3のPC鋼材挿入用の貫通孔の位置とパネル46内のシース管45の位置が合致する(直線となる)ように配設する工程と、(c)柱2及び/又は梁3のPC鋼材挿入用の貫通孔と、パネル46内のシース管45とに亘って、シース管47を嵌挿する工程と、(d)柱2及び梁3を含む構造部分とパネル46間に、繊維含有水硬性組成物を現場打ちで打設する工程と、(e)現場打ちで打設した繊維含有水硬性組成物が所定の強度を発現した段階で、PC鋼材48及び締着具49を用いて、プレストレスを導入する工程を含むものである。
なお、パネル46の製造の際に、シース管45をパネル本体から突出するように形成した場合には、上記(c)の工程を省略することができる。
なお、プレストレスを導入した補強構造においては、図2に示す接合用筋16や、図3に示すアンカー筋21を使用してもよいし、使用しなくてもよい。接合用筋やアンカー筋を使用する場合には、図3に示す方法と同様にして施工すればよい。
A method of forming a reinforcing structure in which prestress is introduced will be described.
The method for forming the reinforcement structure into which the prestress is introduced is, for example, (a) forming a through hole for inserting a PC steel material at a predetermined position of the pillar 2 and / or the beam 3 of the concrete structure on the surface to be reinforced. And (b) a panel 46 made of a fiber-containing hydraulic composition having a sheath tube 45 for inserting a PC steel material with respect to the surface to be reinforced, and a through hole for inserting the PC steel material in the column 2 and / or the beam 3 And the position of the sheath tube 45 in the panel 46 so as to coincide with each other (become a straight line), (c) the through hole for inserting the PC steel material in the column 2 and / or the beam 3, and the panel 46 A step of fitting the sheath tube 47 over the inner sheath tube 45, and (d) placing the fiber-containing hydraulic composition on-site between the structural portion including the column 2 and the beam 3 and the panel 46. And (e) a fiber-containing hydraulic composition cast in place There at the stage that expressed a predetermined strength, using a PC steel 48 and fastener 49, in which comprises the step of introducing the pre-stress.
In the case of manufacturing the panel 46, when the sheath tube 45 is formed so as to protrude from the panel body, the step (c) can be omitted.
In addition, in the reinforcement structure which introduce | transduced the prestress, the joining muscle 16 shown in FIG. 2, the anchor muscle 21 shown in FIG. 3 may be used, and it is not necessary to use it. In the case of using joining bars or anchor bars, construction may be performed in the same manner as shown in FIG.

[1.使用材料]
以下に示す材料を使用した。
(1)セメント;低熱ポルトランドセメント(太平洋セメント社製;ブレーン比表面積:3,200cm/g)
(2)ポゾラン質微粉末;シリカフューム(平均粒径:0.25μm、BET比表面積:11m/g)
(3)石英粉末A(ブレーン比表面積:7,500cm/g)
(4)石英粉末B(ブレーン比表面積:3,500cm/g)
(5)細骨材;珪砂(最大粒径0.6mm)
(6)繊維状粒子;ウォラストナイト(平均長さ:0.3mm、長さ/直径の比:4)
(7)減水剤;ポリカルボン酸系高性能減水剤
(8)水;水道水
(9)金属繊維;鋼繊維(直径:0.2mm、長さ:15mm)
[1. Materials used]
The following materials were used.
(1) Cement; Low heat Portland cement (manufactured by Taiheiyo Cement; Blaine specific surface area: 3,200 cm 2 / g)
(2) Pozzolanic fine powder; silica fume (average particle size: 0.25 μm, BET specific surface area: 11 m 2 / g)
(3) Quartz powder A (Blaine specific surface area: 7,500 cm 2 / g)
(4) Quartz powder B (Blaine specific surface area: 3,500 cm 2 / g)
(5) Fine aggregate; quartz sand (maximum particle size 0.6mm)
(6) Fibrous particles; wollastonite (average length: 0.3 mm, length / diameter ratio: 4)
(7) Water reducing agent; polycarboxylic acid-based high-performance water reducing agent (8) water; tap water (9) metal fiber; steel fiber (diameter: 0.2 mm, length: 15 mm)

[金属繊維含有水硬性組成物の調製例1]
低熱ポルトランドセメント100質量部、シリカフューム30質量部、石英粉末Aを32質量部、細骨材120質量部、ウォラストナイト24質量部、鋼繊維2%(組成物中の体積割合)、高性能減水剤1.0質量部(固形分換算)、水22質量部を二軸ミキサに投入し混練して、組成物を調製した。この組成物の0打フロー値は、250mmであった。
調製した組成物を鋼製の型枠(φ50×100mm)に流し込み、20℃で48時間静置後、90℃で48時間蒸気養生した。得られた硬化体の圧縮強度(3本の試験体の平均値)は、230N/mmであった。
調製した組成物を鋼製の型枠(4×4×16cm)に流し込み、20℃で48時間静置後、90℃で48時間蒸気養生した。得られた硬化体の曲げ強度(3本の試験体の平均値)は、45N/mmであった。
[Preparation Example 1 of Metal Fiber-Containing Hydraulic Composition]
Low heat Portland cement 100 parts by weight, silica fume 30 parts by weight, quartz powder A 32 parts by weight, fine aggregate 120 parts by weight, wollastonite 24 parts by weight, steel fiber 2% (volume ratio in the composition), high performance water reduction 1.0 part by mass (converted to solid content) of the agent and 22 parts by mass of water were put into a biaxial mixer and kneaded to prepare a composition. The zero stroke flow value of this composition was 250 mm.
The prepared composition was poured into a steel mold (φ50 × 100 mm), allowed to stand at 20 ° C. for 48 hours, and then subjected to steam curing at 90 ° C. for 48 hours. The compressive strength (average value of three test bodies) of the obtained cured body was 230 N / mm 2 .
The prepared composition was poured into a steel mold (4 × 4 × 16 cm), allowed to stand at 20 ° C. for 48 hours, and then subjected to steam curing at 90 ° C. for 48 hours. The bending strength (average value of the three test bodies) of the obtained cured body was 45 N / mm 2 .

[金属繊維含有水硬性組成物の調製例2]
低熱ポルトランドセメント100質量部、シリカフューム30質量部、石英粉末Aを23質量部、石英粉末Bを9質量部、細骨材120質量部、ウォラストナイト24質量部、鋼繊維2%(組成物中の体積割合)、高性能減水剤1.0質量部(固形分換算)、水22質量部を二軸ミキサに投入し混練して、組成物を調製した。この組成物の0打フロー値は、270mmであった。
調製した組成物を鋼製の型枠(φ50×100mm)に流し込み、20℃で48時間静置後、90℃で48時間蒸気養生した。得られた硬化体の圧縮強度(3本の試験体の平均値)は、235N/mmであった。
調製した組成物を鋼製の型枠(4×4×16cm)に流し込み、20℃で48時間静置後、90℃で48時間蒸気養生した。得られた硬化体の曲げ強度(3本の試験体の平均値)は、45N/mmであった。
[Preparation Example 2 of Metal Fiber-Containing Hydraulic Composition]
Low heat Portland cement 100 parts by mass, silica fume 30 parts by mass, quartz powder A 23 parts by mass, quartz powder B 9 parts by mass, fine aggregate 120 parts by mass, wollastonite 24 parts by mass, steel fiber 2% (in composition) And a high-performance water reducing agent 1.0 part by mass (in terms of solid content) and 22 parts by mass of water were charged into a biaxial mixer and kneaded to prepare a composition. The zero stroke flow value of this composition was 270 mm.
The prepared composition was poured into a steel mold (φ50 × 100 mm), allowed to stand at 20 ° C. for 48 hours, and then subjected to steam curing at 90 ° C. for 48 hours. The compressive strength (average value of three test bodies) of the obtained cured body was 235 N / mm 2 .
The prepared composition was poured into a steel mold (4 × 4 × 16 cm), allowed to stand at 20 ° C. for 48 hours, and then subjected to steam curing at 90 ° C. for 48 hours. The bending strength (average value of the three test bodies) of the obtained cured body was 45 N / mm 2 .

[実施例1]
図7に示すように、鉄筋コンクリートからなる2つの柱51と、鉄筋コンクリートからなる2つの梁52の間に、図3に示す方法を用いて、パネルと接合部とからなる補強壁53を形成させて、試験体を完成させた。
パネルとしては、調製例1の金属繊維含有水硬性組成物を材料として使用した、図2中の(C)に示す形態を有するものであって、幅が1760mm、高さが1100mm、厚さが30mmであり、長尺の鉄筋を200mm間隔で配設したものを用いた。
接合部は、柱51及び梁52と、パネルとの隙間に、調製例1の金属繊維含有水硬性組成物を現場打ちで打設し、形成させた。
試験体に対して、図7中に2つの矢印で示す位置にて軸力Fを作用させ、試験体が破壊されるまでの最大耐力を測定した。
その結果、正加力時の最大耐力は725kN、負加力時の最大耐力は−683kNであった。
[Example 1]
As shown in FIG. 7, a reinforcing wall 53 composed of a panel and a joint is formed between the two columns 51 made of reinforced concrete and the two beams 52 made of reinforced concrete using the method shown in FIG. The test body was completed.
The panel has the form shown in (C) of FIG. 2 using the metal fiber-containing hydraulic composition of Preparation Example 1 as a material, and has a width of 1760 mm, a height of 1100 mm, and a thickness of A length of 30 mm and long reinforcing bars arranged at intervals of 200 mm were used.
The joint portion was formed by placing the metal fiber-containing hydraulic composition of Preparation Example 1 on the spot in the space between the column 51 and the beam 52 and the panel.
An axial force F was applied to the test specimen at a position indicated by two arrows in FIG. 7, and the maximum proof stress until the test specimen was broken was measured.
As a result, the maximum yield strength at the time of positive force was 725 kN, and the maximum strength at the time of negative force was -683 kN.

[実施例2]
パネルとして図2中の(B)に示すものを用いた以外は実施例1と同様にして実験した。なお、パネルの材料及び寸法は、実施例1と同様である。
その結果、正加力時の最大耐力は716kN、負加力時の最大耐力は−697kNであった。
[実施例3]
パネル及び接合部の材料として、調製例2の金属繊維含有水硬性組成物を使用した以外は実施例1と同様にして実験した。
その結果、正加力時の最大耐力は718kN、負加力時の最大耐力は−700kNであった。
[Example 2]
Experiments were performed in the same manner as in Example 1 except that the panel shown in FIG. 2B was used. The material and dimensions of the panel are the same as in Example 1.
As a result, the maximum yield strength at the time of positive force was 716 kN, and the maximum strength at the time of negative force was -697 kN.
[Example 3]
The experiment was performed in the same manner as in Example 1 except that the metal fiber-containing hydraulic composition of Preparation Example 2 was used as the material for the panel and the joint.
As a result, the maximum yield strength at the time of positive force was 718 kN, and the maximum strength at the time of negative force was -700 kN.

[参考例1]
パネルとして、圧縮強度が24N/mm2の普通コンクリートを材料として使用した、図2中の(C)に示す形態を有するものであって、幅が1760mm、高さが1100mm、厚さが60mmであり、長尺の鉄筋を50mm間隔で配設したものを用いた以外は、実施例1と同様にして実験した。
その結果、正加力時の最大耐力は837kN、負加力時の最大耐力は−820kNであった。
本発明(実施例1〜3)の補強構造によれば、参考例1の補強構造と比べて、補強壁の厚さを半分にしても、参考例1と大差ない優れた強度が得られることがわかる。
[Reference Example 1]
The panel has the form shown in (C) of FIG. 2 using ordinary concrete having a compressive strength of 24 N / mm 2 as a material, and has a width of 1760 mm, a height of 1100 mm, and a thickness of 60 mm. Yes, an experiment was conducted in the same manner as in Example 1 except that long reinforcing bars arranged at intervals of 50 mm were used.
As a result, the maximum proof stress at the time of positive force was 837 kN, and the maximum proof strength at the time of negative force was -820 kN.
According to the reinforcing structure of the present invention (Examples 1 to 3), compared with the reinforcing structure of Reference Example 1, even if the thickness of the reinforcing wall is halved, excellent strength that is not significantly different from Reference Example 1 is obtained. I understand.

本発明の補強構造の種々の形態例を模式的に示す正面図である。It is a front view which shows typically the example of various forms of the reinforcement structure of this invention. 本発明の補強構造を形成するための部材であるパネルの種々の形態例を示す平面図である。It is a top view which shows the various form example of the panel which is a member for forming the reinforcement structure of this invention. 本発明の補強構造を形成する方法の一例を示すフロー図である。It is a flowchart which shows an example of the method of forming the reinforcement structure of this invention. 集合住宅における本発明の補強構造の施工例を部分的に示す水平断面図である。It is a horizontal sectional view which shows the construction example of the reinforcement structure of this invention in an apartment house partially. 集合住宅における本発明の補強構造の施工例を全体的に示す鉛直断面図である。It is a vertical sectional view showing the construction example of the reinforcing structure of the present invention in an apartment house as a whole. コンクリート建築物の柱及び/又は梁と、補強壁とを、プレストレスを導入して圧着した状態の種々の形態例を示す断面図である。It is sectional drawing which shows the various form example of the state which introduce | transduced the prestress and crimped | bonded the pillar and / or beam of a concrete building, and the reinforcement wall. 実施例における実験装置を示す正面図である。It is a front view which shows the experimental apparatus in an Example.

符号の説明Explanation of symbols

1 本発明の補強構造
2 柱
3 梁
4 パネル
5 接合部
11,12,13,14 パネル
15 モルタル成形体
16 接合用筋
17 明り取り用孔
18 長尺の鉄筋
21 アンカー筋
22 アンカー部分
30 集合住宅
31 居住部分
32 共用通路部分
33 柵
34 柱
35 構造壁
36 非構造壁
37 ドア
38 補強壁
39 ベランダ
40 ガラス戸
41 地盤
42 袖壁
45 シース管
46 パネル
47 シース管
48 PC鋼材
49 締着具
51 柱
52 梁
53 補強壁
DESCRIPTION OF SYMBOLS 1 Reinforcing structure of the present invention 2 Column 3 Beam 4 Panel 5 Joint portion 11, 12, 13, 14 Panel 15 Molded mortar body 16 Joint muscle 17 Joint hole 17 Long reinforcing bar 21 Anchor muscle 22 Anchor portion 30 Apartment house 31 Residential portion 32 Common passage portion 33 Fence 34 Column 35 Structural wall 36 Non-structural wall 37 Door 38 Reinforcing wall 39 Veranda 40 Glass door 41 Ground 42 Sleeve wall 45 Sheath tube 46 Panel 47 Sheath tube 48 PC steel 49 Fastener 51 Column 52 Beam 53 Reinforcement wall

Claims (9)

コンクリート建築物の柱及び梁を含む構造部分と、該構造部分で囲まれた補強対象面に形成された補強壁とからなる建築物の補強構造であって、
上記補強壁が、繊維含有水硬性組成物の硬化体からなる厚さ3〜20cmのパネルと、該パネルと上記構造部分の間に形成された、繊維含有水硬性組成物の硬化体を含む接合部とからなり、
上記パネル及び接合部を形成している繊維含有水硬性組成物が、セメント、BET比表面積5〜25m /gのポゾラン質微粉末、ブレーン比表面積2,500〜30,000cm /gの、セメント以外の無機粉末、細骨材、直径0.01〜1.0mmで長さ2〜30mmの金属繊維、ポリカルボン酸系の高性能減水剤または高性能AE減水剤、及び水を含むものであり、
上記繊維含有水硬性組成物中の金属繊維以外の上記各材料の配合量が、セメント100質量部に対して、ポゾラン質微粉末3〜50質量部、無機粉末10〜50質量部、細骨材50〜250質量部、高性能減水剤または高性能AE減水剤0.1〜4.0質量部(固形分換算)、水10〜35質量部で、かつ、上記金属繊維の配合量が、上記繊維含有水硬性組成物中の体積百分率で0.5〜4%であることを特徴とする建築物の補強構造。
A reinforcing structure for a building comprising a structural part including columns and beams of a concrete building, and a reinforcing wall formed on a surface to be reinforced surrounded by the structural part,
The reinforcing wall includes a panel having a thickness of 3 to 20 cm made of a cured body of a fiber-containing hydraulic composition and a cured body of the fiber-containing hydraulic composition formed between the panel and the structural portion. And consists of
The fiber-containing hydraulic composition forming the panel and the joint is cement, a pozzolanic fine powder having a BET specific surface area of 5 to 25 m 2 / g, a brane specific surface area of 2,500 to 30,000 cm 2 / g, Including inorganic powder other than cement, fine aggregate, metal fiber having a diameter of 0.01 to 1.0 mm and a length of 2 to 30 mm, a polycarboxylic acid-based high-performance water reducing agent or high-performance AE water reducing agent, and water Yes,
The amount of each material other than the metal fiber in the fiber-containing hydraulic composition is 3 to 50 parts by weight of pozzolanic fine powder, 10 to 50 parts by weight of inorganic powder, and fine aggregate with respect to 100 parts by weight of cement. 50 to 250 parts by mass, high-performance water reducing agent or high-performance AE water reducing agent 0.1 to 4.0 parts by mass (in terms of solid content), 10 to 35 parts by mass of water, and the compounding amount of the metal fiber is the above A reinforcing structure for a building , wherein the volume percentage in the fiber-containing hydraulic composition is 0.5 to 4% .
上記補強対象面の一部の領域に、上記補強壁が形成されている請求項1に記載の建築物の補強構造。The building reinforcing structure according to claim 1, wherein the reinforcing wall is formed in a partial region of the surface to be reinforced. 上記柱及び梁を含む構造部分で囲まれた補強対象面に既存の壁を含み、かつ、上記補強壁が、上記既存の壁の片面側に隣り合って形成されている請求項1又は2に記載の建築物の補強構造。 Include existing wall reinforcing target surface enclosed by the structure portion including said posts and beams, and the reinforcing wall to claim 1 or 2 are formed adjacent to one side of the existing wall Reinforcement structure of the building described. 上記パネル及び接合部を形成している繊維含有水硬性組成物の硬化体の圧縮強度が、100N/mm以上である請求項1〜3のいずれか1項に記載の建築物の補強構造。 The reinforcing structure of a building according to any one of claims 1 to 3 , wherein the compressive strength of the cured body of the fiber-containing hydraulic composition forming the panel and the joint is 100 N / mm 2 or more. 上記接合部が、上記繊維含有水硬性組成物を現場打ちで打設してなる硬化体、及び、重ね継手を含むものであり、上記重ね継手が、上記コンクリート建築物の柱及び梁を含む構造部分の内周縁に突出部分として形成された複数のアンカー筋と、上記パネルの外周縁に突出部分として形成された接合用筋とを重ね継手としたものである請求項1〜のいずれか1項に記載の建築物の補強構造。 Structure the joint, cured body formed by pouring in cast-in-place the fiber-containing hydraulic composition, and is intended to include a lap joint, the lap joint, including columns and beams of the concrete building a plurality of anchors formed as projecting portions on the inner peripheral edge portion, any one of claims 1-4 is obtained by a lap joint and a joining muscle formed as projecting portions on the outer peripheral edge of the panel 1 Reinforcement structure of the building according to item. 上記コンクリート建築物の柱及び/又は梁と、上記補強壁とが、プレストレスを導入して圧着されている請求項1〜のいずれか1項に記載の建築物の補強構造。 Reinforcing structure of the pillars and / or beams of the concrete building, and the above reinforcing walls, building according to any one of claims 1 to 5 which is crimped by Prestressing. 各階に2戸以上の居住部分及び共用通路部分を有する2階建て以上のコンクリート建築物であって、請求項1〜のいずれか1項に記載の建築物の補強構造を含むことを特徴とするコンクリート建築物。 It is a concrete building of two or more floors having two or more residential parts and common passage parts on each floor, including the reinforcing structure of a building according to any one of claims 1 to 6 , Concrete building. 鉛直方向の断面が格子状である柱及び梁の集合体を含み、かつ、該格子状である柱及び梁の集合体を構成する複数の区画に対して、市松模様の形態で交互に上記補強構造を形成させてなる請求項に記載のコンクリート建築物。 The above-mentioned reinforcement is alternately performed in the form of a checkered pattern for a plurality of sections including an assembly of columns and beams having a lattice-like cross section in the vertical direction and constituting the assembly of the lattice-like columns and beams. The concrete building according to claim 7 , wherein a structure is formed. 上記居住部分と上記共用通路部分の間、または、上記共用通路部分の外側に、上記補強構造を形成させてなる請求項7又は8に記載のコンクリート建築物。 The concrete building according to claim 7 or 8 , wherein the reinforcing structure is formed between the living portion and the shared passage portion or outside the shared passage portion.
JP2005220399A 2005-07-29 2005-07-29 Reinforcement structure of building and concrete building including the same Active JP4541244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005220399A JP4541244B2 (en) 2005-07-29 2005-07-29 Reinforcement structure of building and concrete building including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005220399A JP4541244B2 (en) 2005-07-29 2005-07-29 Reinforcement structure of building and concrete building including the same

Publications (2)

Publication Number Publication Date
JP2007032192A JP2007032192A (en) 2007-02-08
JP4541244B2 true JP4541244B2 (en) 2010-09-08

Family

ID=37791768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005220399A Active JP4541244B2 (en) 2005-07-29 2005-07-29 Reinforcement structure of building and concrete building including the same

Country Status (1)

Country Link
JP (1) JP4541244B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101248509B1 (en) * 2009-06-12 2013-04-02 (주) 에센엔지니어링 Building Remodeling Construction Method Using Precast Concrete Panel, and Remodeled Building Thereof
JP6427853B2 (en) * 2013-06-10 2018-11-28 株式会社大林組 Joining method and seismic isolation structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667619U (en) * 1993-03-02 1994-09-22 オリエンタル建設株式会社 Bearing wall assembly structure
JPH09310511A (en) * 1996-05-23 1997-12-02 Ohbayashi Corp Earthquake resistant reinforcing construction of existing building
JPH10152888A (en) * 1996-11-21 1998-06-09 Toda Constr Co Ltd Connecting structure of precast reinforced concrete member
JPH10159351A (en) * 1996-11-29 1998-06-16 Kumagai Gumi Co Ltd Aseismic reinforcement plate, reinforcement structure and reinforcement method for existing building
JPH10184028A (en) * 1996-12-20 1998-07-14 Kumagai Gumi Co Ltd Earthquake-resisting reinforcing structure of building
JP2001059360A (en) * 1999-08-24 2001-03-06 Shimizu Corp Earthquake resisting wall, and earthquake resistant reinforcing construction method for existing building
JP2003161042A (en) * 2001-11-26 2003-06-06 Shimizu Corp Extension structure of reinforced concrete wall

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667619U (en) * 1993-03-02 1994-09-22 オリエンタル建設株式会社 Bearing wall assembly structure
JPH09310511A (en) * 1996-05-23 1997-12-02 Ohbayashi Corp Earthquake resistant reinforcing construction of existing building
JPH10152888A (en) * 1996-11-21 1998-06-09 Toda Constr Co Ltd Connecting structure of precast reinforced concrete member
JPH10159351A (en) * 1996-11-29 1998-06-16 Kumagai Gumi Co Ltd Aseismic reinforcement plate, reinforcement structure and reinforcement method for existing building
JPH10184028A (en) * 1996-12-20 1998-07-14 Kumagai Gumi Co Ltd Earthquake-resisting reinforcing structure of building
JP2001059360A (en) * 1999-08-24 2001-03-06 Shimizu Corp Earthquake resisting wall, and earthquake resistant reinforcing construction method for existing building
JP2003161042A (en) * 2001-11-26 2003-06-06 Shimizu Corp Extension structure of reinforced concrete wall

Also Published As

Publication number Publication date
JP2007032192A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP4969152B2 (en) Reinforcement structure and reinforcement method for concrete building
JP4731287B2 (en) Reinforcement method for concrete buildings
CN106382016B (en) Ancient building labyrinth integral reinforcing construction technology
CN102245529A (en) Lightweight concrete containing aggregates of cement-bonded foamed polystyrene, procedure of making the same and building structures made from this lightweight concrete
CN104499498B (en) A kind of construction method of mass concrete building
Refaie et al. Sustainable construction system with Egyptian metakaolin based geopolymer concrete sandwich panels
JP4348331B2 (en) Reinforcing structure and reinforcing method of concrete structure
CN108301532A (en) A kind of Desert Sand lightweight aggregate concrete assembly of shear wall structure
Wu et al. Internal curing effect on strength of recycled concrete and its enhancement in concrete-filled thin-wall steel tube
JP4541244B2 (en) Reinforcement structure of building and concrete building including the same
JP5615015B2 (en) Seismic reinforcement structure and seismic reinforcement method
CN107246106A (en) A kind of surface cuts shaping haydite concrete prefabricated panel
Kovačević et al. High-strength concrete (HSC) material for high-rise buildings
JP2005023613A (en) Composite concrete structure
CN110130553B (en) Heat-insulating floor structure and production method
CN102910872B (en) High-ductility fiber reinforced concrete low-rise shear wall
TW201209252A (en) Stone wall of ceramsite concrete brick
D’Ayala Unreinforced brick masonry construction
CN201531106U (en) Floor slab sound insulation tie plate
CN104674983B (en) Small-column space steel structure self-thermal insulation wall and manufacturing method thereof
JP2005226248A (en) Composite member
Dunn Precast lightweight foamed concrete walling, a structural system for low-rise residential buildings
JP7009161B2 (en) Reinforced building and its manufacturing method
JP2000291145A (en) Composite structural member and skeleton structure using it
Thamboo Reinforced Masonry, An Alternative to Reinforced Concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100623

R150 Certificate of patent or registration of utility model

Ref document number: 4541244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250