JP4538980B2 - Refrigerant recovery device and recovery method - Google Patents

Refrigerant recovery device and recovery method Download PDF

Info

Publication number
JP4538980B2
JP4538980B2 JP2001122677A JP2001122677A JP4538980B2 JP 4538980 B2 JP4538980 B2 JP 4538980B2 JP 2001122677 A JP2001122677 A JP 2001122677A JP 2001122677 A JP2001122677 A JP 2001122677A JP 4538980 B2 JP4538980 B2 JP 4538980B2
Authority
JP
Japan
Prior art keywords
refrigerant
purity
storage tank
recovery
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001122677A
Other languages
Japanese (ja)
Other versions
JP2002318038A (en
Inventor
芳夫 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001122677A priority Critical patent/JP4538980B2/en
Publication of JP2002318038A publication Critical patent/JP2002318038A/en
Application granted granted Critical
Publication of JP4538980B2 publication Critical patent/JP4538980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷却または暖房に供する冷熱機器が備える冷凍サイクルに充填された冷媒を、使用済み後に再使用可能な材料とするために、前記冷熱機器から回収して再生するシステムに関するものであって、さらに詳しくは再利用するために効果的な回収方法に関するものである。
【0002】
【従来の技術】
オゾン層保護を目的とした「オゾン層保護法」に基づいて、塩素を含有したフロン系冷媒および発泡剤をHFC(Hydro-Fluoro-Carbon)またはHC(Hydro-Carbon)などの塩素を含まない物質に代替えすると共に、使用済みの各種機器から大気中への排出抑制が行われている。同様に環境保護を目的として資源の有効活用を目指した通称「家電リサイクル法」によって規制される冷蔵庫、エアコンなどの4品目のみならず,ショーケースや自販機などについても、冷媒として用いられていたCFC12やHCFC22などのフロンが多量に残存しており、これを適正な方法で処理することが求められている。
【0003】
現状、フロン系冷媒は家電リサイクル工場などで回収した後に無害化させることが行われており、この有効な手段として、回収した冷媒を高温雰囲気下の状態で分解し、生成したフッ化水素および塩化水素を生石灰(酸化カルシウム)と反応させて安定な状態を確保する方法が用いられている。
【0004】
フロンの回収は、使用済みの冷蔵庫およびエアコンなどが保有する冷凍サイクル配管の一部を覆うようにして形成した微小な密閉空間内に先端部が駆動する針を設け、これを用いて前記配管に穴を開けることによって高圧状態で封入されている冷媒ガスを回収してボンベに保存する。このとき、前記密閉空間を真空状態にすることによって冷凍サイクル内に残存させずに回収し、次いで専用ポンプを用いて貯蔵ボンベへの移送と保管を行うようにしている。
【0005】
また、このとき、個々の回収機が対象とする使用済み機器は、冷媒回収と並行して行う再使用可能な部材の抜取りや有害物の除去に係わる作業を効率的に行うために、製品群毎にまとめて行うのが一般的である。
【0006】
【発明が解決しようとする課題】
しかしながら、使用済みの冷蔵庫などの冷凍冷蔵機器および冷暖房に供する空気調和機などに用いられる冷媒には各種物質が用いられているとともに、同一製品であっても、製造の年代やメーカによって異なった種類のものを用いている場合がある。さらに、それら使用済み機器から冷媒を家電リサイクル工場にて回収する場合には無害化処理を前提として回収していることから、単一物質として回収、貯蔵することが非常に困難である。
【0007】
もしも、これら貯蔵された冷媒から単一物質を分留して再利用しようとすれば、わずかな沸点の違いを利用して行うことが好適であるものの、冷媒に用いられているフロンの多くは相溶するとともに共沸性を呈する為、分留には極めて高度な分留技術を必要とする。一方で、それに要する設備には膨大な段数を備えた精製設備に加えて、共沸関係を解除するための添加剤の適用を必要とするなど、各種冷媒の組み合わせに応じた個別の対応を要するなど、その対応は実用性に欠けるという問題がある。
【0008】
また、空気調和機の冷媒であるHCFC22については、オゾン層破壊の原因物質でもあることから、今後の使用抑制をふまえた新規製造と再使用の抑制策としてフッ素樹脂原料として再利用することが有効である。しかし、当該用途におけるHCFC22の純度は99.95%以上が必要であることから、上述した従来の手段では達成が不可能である。純度の高い冷媒は用途が広がる分買い取り値も高くなるが、純度を高めるための分留工程に価格差以上のコストがかからないことが条件として必要である。
【0009】
本発明は上記問題を解決するためになされたものであり、冷熱機器、特に空気調和機を中心とした冷媒の再生利用を目的として簡易に分留を可能とする手段に関するものであり、さらに高純度のHCFC22を得るための回収手段を提供することを目的とする。
【0010】
【課題を解決するための手段】
この発明に係る冷媒回収装置は、使用済み冷熱機器から所定の冷媒を回収する回収手段と、前記回収手段が回収した前記冷媒の純度を計測する計測手段と、前記計測手段が計測した純度が所定値以上であって外部の精製設備で分留して再利用する高純度の前記冷媒を第1の貯蔵槽に送り、前記計測手段が計測した純度が前記所定値未満の低純度の前記冷媒を第2の貯蔵槽に送る開閉弁とを備えたものである。
【0011】
また、この発明に係る冷媒回収装置は、使用済み冷熱機器から所定の冷媒を回収する回収手段と、前記回収手段が回収した前記冷媒を一時貯留する一時貯留器と、前記一時貯留器の底部付近の前記冷媒を抽出する抽出手段と、前記抽出手段が抽出した前記冷媒の純度を計測する計測手段と、前記計測手段が計測した純度が所定値以上であって外部の精製設備で分留して再利用する高純度の前記冷媒を第1の貯蔵槽に送り、前記計測手段が計測した純度が前記所定値未満の低純度の前記冷媒を第2の貯蔵槽に送る開閉弁とを備えたものである。
【0012】
また、この発明に係る冷媒回収方法は、使用済み冷熱機器から所定の冷媒を回収する回収手段と、前記回収手段が回収した前記冷媒の純度を計測する計測手段と、外部の精製設備で分留して再利用する高純度の前記冷媒を第1の貯蔵槽に送り、低純度の前記冷媒を第2の貯蔵槽に送る開閉弁と、前記第1の貯蔵槽に送られる前記冷媒の冷媒量を測定する測定手段と、前記計測手段が計測した純度と前記測定手段が測定した冷媒量から前記第1の貯蔵槽に貯蔵されている冷媒の純度を求め、前記開閉弁を調整して前記第1の貯蔵槽に貯蔵されている冷媒の純度を所定値以上にする調整手段とを備えたものである。
【0013】
また、この発明に係る冷媒の回収方法は、使用済み冷熱機器から所定の冷媒を回収する回収工程と、回収した前記冷媒の純度を計測する計測工程と、外部の精製設備で分留して再利用する高純度の前記冷媒を第1の貯蔵槽に送り、低純度の前記冷媒を第2の貯蔵槽に貯蔵する貯蔵工程と、前記第1の貯蔵槽に送られる前記冷媒の冷媒量を測定する測定工程と、前記計測工程で計測した純度と前記測定工程で測定した冷媒量から前記第1の貯蔵槽に貯蔵されている冷媒の純度を求め、前記第1の貯蔵槽へ送られる前記高純度の冷媒の流入を調整する調整手段が前記第1の貯蔵槽に貯蔵されている冷媒の純度を調整して所定値以上にする調整工程とを備えたものである。
【0014】
補正により削除。
【0015】
補正により削除。
【0016】
補正により削除。
【0017】
補正により削除。
【0018】
補正により削除。
【0019】
補正により削除。
【0020】
補正により削除。
【0021】
補正により削除。
【0022】
補正により削除。
【0023】
【0024】
補正により削除。
【0025】
補正により削除。
【0026】
補正により削除。
【発明の実施の形態】
実施の形態1.
以下この発明の実施の形態を図について説明する。図1は本実施の形態の冷媒回収装置を示す概念図である。図1において、1は使用済み家電の冷凍サイクルを構成している冷媒配管で、内部にHCFC22冷媒が充填されている。2は小孔が開口した先端部が冷媒配管1に差し込まれた中空針状の吸引管、3は吸引管に連通し、冷媒配管1内の冷媒を吸引し回収するための吸引用ポンプで、これら吸引管2と吸引ポンプ3とで回収手段を構成する。4は吸引ポンプ3にて吸引し回収した冷媒を一時的に貯留する小型ボンベで、一時貯留器に相当する。
【0027】
5は吸引ポンプ3と小型ボンベ4間の流路を開閉する開閉弁、6は小型ボンベ4底部付近からボンベ内冷媒を取り出す取出配管、7は取出配管6に連通し、小型ボンベ4内の冷媒を吸引するための吸引用ポンプ、8は吸引用ポンプ7から開閉弁5と小型ボンベ4とを結ぶ配管へ至るループ配管中に接続され、ループ配管中の冷媒純度を測定するガスクロマトグラフ(定性定量分析計)、9は吸引ポンプ7とガスクロマトグラフ8接続部との間のループ配管に設けられた開閉弁、10は吸引ポンプ7と開閉弁9との間のループ配管から分岐した分岐配管途中に設けられた開閉弁、11は分岐配管に接続され、小型ボンベ4より大きな大型ボンベで、貯蔵槽に相当する。
【0028】
図2は本実施の形態で使用される吸引具を示す構成図である。図2において、ゴム製の外郭から針状の吸引管2が突き出しており、冷媒配管1を挟み込むようにして吸引管2を突き刺す。外郭が冷媒配管1の表面に当接することで、吸引管2は所定深さ以上突き刺さることはなく、また吸引管2周囲は冷媒配管1に密着したゴム製の外郭により気密性が保持され、冷媒配管1に突き刺した吸引管2周囲から冷媒が大気中に漏れることを防止している。吸引管は吸引具内を介して吸引ポンプ3に連通した配管ホースに接続されている。
【0029】
次に純度の設定について説明する。使用済み家電から回収した冷媒を精製設備にて精製して再生し、冷熱機器の冷媒として再利用するに際して、品質基準である純度が設定される。
【0030】
この純度を確保するうえで、使用する精製設備の分留能力を勘案する必要がある。つまり、再生後の回収冷媒を各種用途の使用に供しうる純度を確保するうえで、回収冷媒が含有する不純物の最大量を規定することが肝要である。
【0031】
上記純度を確保しうる冷熱機器からの冷媒回収には、相応の冷媒回収装置の設備仕様を備えた前記冷熱機器の処理プラントを指定し、そこからの供給を受けて対応することが有効となる。
【0032】
以上に述べた使用済み冷熱機器から冷媒を回収するシステムについて、以下に詳述する。
【0033】
(1)『再利用に供する冷媒の純度に応じるための精製設備における不純物の最大混入率を定義する』
家庭用エアコンの冷媒に用いられるHCFC22の純度は99.5%以上であることが必要である。このため、使用する精製設備における不純物の除去能力を検索した。使用済み冷熱機器から回収した冷媒に混入が想定されるものとして、分留による除去が困難な共沸混合物がある。ここではHCFC22と沸点の近いCFC12の混入を想定し、その混入率を1.5〜5.5%の範囲で任意に変化させた混合物について精製設備を用いた分留を行い、生成物におけるHCFC22の純度を確認した。
【0034】
この精製設備の場合、イナートガスと水分が飽和に近い状態で混入したとしても、0.02%以下の混入率にまで除去することが既に確認されている。その結果、家庭用エアコンの冷媒として再利用可能なHCFC22を得るためには、精製設備に送られる冷媒中のHCFC22に対するCFC12の混入率を0.48%以下にする必要があり、その為には混合物におけるCFC12の混入率が4.6%以下であれば良いことが分かった。
【0035】
(2)『再利用に必要な純度を確保するための精製設備の性能を勘案し、冷媒回収時の濃度を定義する』
使用済み冷熱機器から冷媒を回収する作業において、空気などのイナートガスと水分の混入は最小でも1.2%の混入率であることが確認できた。従って、家庭用エアコンの冷媒として再利用可能なHCFC22を得るためには、使用済み冷熱機器から冷媒を回収した際に、5.8%以下にまで不純物の混入率を抑制した冷媒を確保することが必要である。
【0036】
(3)『冷媒回収時の冷媒純度を確保するためには、使用済み冷熱機器の分類に応じた冷媒(フロン)の種類別に回収する』
上記(1)(2)の定義によって決定された回収冷媒の純度を確保するためには、家電リサイクル工場における使用済み冷熱機器から回収したHCFC22冷媒を小型ボンベ4に一時保存し、この一時保存した小型ボンベ4から性状が安定した冷媒を試料として抜き取ってガスクロマトグラフ8によって定性定量分析を行う。
【0037】
即ち、図1に示すように使用済み冷熱機器の冷媒配管1に、図2のような吸引具を用いて吸引管2を突き刺し、吸引用ポンプ3で冷媒配管1内の冷媒を吸引する。このとき、吸引用ポンプ3によってエアコンの冷媒配管1内を減圧状態にするので、冷凍機油に溶存している冷媒も回収できる。吸引時には開閉弁5を開、開閉弁9、10を閉とすることにより、冷媒は全て小型ボンベ4へ回収される。小型ボンベ4内に冷媒の性状が安定する程度の量が溜まると、開閉弁9を開にすると共に吸引ポンプ7を稼動させ、取出配管6から小型ポンプ4底部付近の冷媒を取出し、小型ボンベ4、吸引ポンプ7、開閉弁9、ガスクロマトグラフ8接続部および小型ボンベ4のループ配管を循環させる。
【0038】
通常、排出者から引き取った使用済み冷熱機器からの冷媒の抜き取り作業では、家庭用エアコンのみを集結させた後に冷媒であるHCFC22の回収を行うことになり、特に記載のない限り他の種類の冷媒が混入することはない。冷媒回収時に用いた一時保管用ボンベ4などが過去に異なる種類の冷媒を回収、貯蔵して残留物があったり、家庭用エアコン自体が異なった冷媒を混入させて用いていたなどの場合を除いて、異なった種類の冷媒が混入することはなく、その大半は97%以上の純度を確保していた。
【0039】
(4)『分類した冷媒のうち、規定の純度を満たすように貯蔵する』
上述したように冷媒配管1から小型ボンベ4へ冷媒回収後、取出管6にて小形ボンベ4底部付近から性状が安定した冷媒を吸引ポンプ7で吸引して取り出し、小型ボンベ4、吸引ポンプ7、開閉弁9、ガスクロマトグラフ8接続部および小型ボンベ4のループ配管を循環させる。冷媒はループ配管を通じて循環されることによってボンベ内と同様な組成状態となる。この時ガスクロマトグラフ8による定性定量分析で冷媒純度が94.2%以上であることを確認して、開閉弁10を開状態にし、貯蔵槽11である第1の大型ボンベへと冷媒を配送する。
【0040】
もしも、回収冷媒におけるHCFC22の純度が94.2%以下であれば、図示しない第2の大型ボンベへと配送することを基本とする。しかし、運営の手段として、第1の大型ボンベに貯蔵された状態のHCFC22が規定の純度を満足していればよい。従って、一時的に純度を満たさない冷媒があっても、その前後で回収した冷媒の純度が高いものであれば、貯蔵槽である大型ボンベ11に冷媒が満たされた時点で不純物の累積量が5.8%以上にならないようにでき、再生に供する量が増えるので好ましい。
【0041】
大型ボンベ11内の最終的な不純物の累積量を5.8%以下とする手段としては、ガスクロマトグラフ8で冷媒純度を計測すると共に、その純度の冷媒をどれだけ回収しているかの冷媒量を測定する測定手段を用い、冷媒純度および量から大型ボンベ11に最終的に満たされる冷媒の純度が94.2%以上となるよう開閉弁10を制御して大型ボンベ11への冷媒流入をコントロールするか、或いは大型ボンベ11内の冷媒純度を測定する測定手段を用い、ガスクロマトグラフ8と連携させて、大型ボンベ11に最終的に満たされる冷媒の純度が94.2%以上となるよう開閉弁10を制御して大型ボンベ11への冷媒流入をコントロールする調整手段を用いることができる。
【0042】
(5)『回収冷媒を再生する』
純度94.2%以上の冷媒を回収した貯蔵槽11である大型ボンベは、精製設備に投入され、冷媒を精製した後エアコン用冷媒として再生するが、純度94.2%以下の冷媒を回収した大型ボンベは冷媒を高温で加熱して分解するなどして無害化処理を施すことになる。
【0043】
なお、本実施の形態では家庭用エアコンに用いられていたHCFC22を対象として説明してきたが、本発明はこれに限定されることなく、例えば、業務用エアコンや冷蔵庫、新たに家庭用エアコンに用いるHFC32、HFC125、HFC134aおよびそれらの混合物などについても同様に扱うことができる。この場合、冷熱機器からの冷媒を回収する回収手段を共有化し、これら3種の混合冷媒として認めたうえで貯蔵してもよい。回収された前記混合冷媒はその後に再生されたものに新たに各種類の冷媒を追加するなど特定冷媒を補充する調整手段によって混合比を調整し、R407cとして再利用してもよい。これによって、冷媒の種類に応じて各種冷熱機器の分類作業が廃止できるので効率を増すので都合がよい。
【0044】
また、回収冷媒の定性定量分析を大型ボンベ11への配管内で連続的に行えば、一時保管用の小型ボンベ4を廃止することができるので、都合がよい。
【0045】
実施の形態2.
使用済みエアコンは、家電リサイクル工場に搬送され、破砕などの手段によって解体を行った後に再度の使用が可能な素材を分別して回収する。このとき、有害物、難破砕物、有価にて販売が可能な素材を手選別によって回収する。冷媒であるHCFC22は、現状では有害物として認識されており、加熱および加水分解などで発生したフッ化水素(HF)や塩化水素(HCl)を酸化カルシウム(CaO)で中和して無害化する。
【0046】
これに対し、本実施の形態では冷媒であるHCFC22を再生してフッ素樹脂原料などに再利用することを目指したものであって、以下に述べる手順の如く、冷媒の回収および貯蔵の後に分留を行う様にしたものであって、エアコンの回収から再生に至るまでのシステムについて説明する。尚、冷媒回収装置は図1および図2に示した実施の形態1のものと同様なので、その説明を省略する。
【0047】
(1)『回収した使用済みエアコンから冷媒を回収する』
家電リサイクル工場に回収された使用済み家電から、HCFC22冷媒を用いた家庭用エアコンのみを選択する。図1に示すように選択したエアコンの冷媒配管1に、図2のような吸引具を用いて吸引管2を突き刺し、吸引用ポンプ3で冷媒配管1内の冷媒を吸引する。このとき、吸引用ポンプ3によってエアコンの冷媒配管1内を減圧状態にするので、冷凍機油に溶存している冷媒も回収できる。吸引時には開閉弁5を開、開閉弁9、10を閉とすることにより、冷媒は全て小型ボンベ4へ回収される。小型ボンベ4内に冷媒の性状が安定する程度の量が溜まると、開閉弁9を開にすると共に吸引ポンプ7を稼動させ、取出配管6から小型ポンプ4底部付近の冷媒を取出し、小型ボンベ4、吸引ポンプ7、開閉弁9、ガスクロマトグラフ8接続部および小型ボンベ4のループ配管を循環させる。
【0048】
(2)『回収冷媒の品質(純度)を確認して貯蔵槽(ボンベ)に保存する』
このとき、不用意に充填された他の種類の冷媒、特にHCFC22と共沸(擬似共沸も含む)関係にあるものの混入を防止する目的で、ガスクロマトグラフ8によりHCFC22の冷媒純度を測定して対処する。即ち、上述したように冷媒配管1から小型ボンベ4へ冷媒回収後、取出管6にて小形ボンベ4底部付近から性状が安定した冷媒を吸引ポンプ7で吸引して取り出し、小型ボンベ4、吸引ポンプ7、開閉弁9、ガスクロマトグラフ8接続部および小型ボンベ4のループ配管を循環させる。この時、ガスクロマトグラフ8による定性定量分析でHCFC22の冷媒純度を測定する。
【0049】
ここで得られた冷媒純度の結果を踏まえ、他のフロンの混入率が0.1%以下のもの(高純度回収HCFC22)とそれ以上のもの(低純度回収HCFC22)とに分類し、開閉弁10などを適宜開閉制御して各々の冷媒を別個の貯蔵槽である大型ボンベ11に保存する。(高純度回収HCFC22)は後述する精製設備による精製で純度99.95%以上にすることができるので、フッ素樹脂としての需要が見込め、精製業者の買い取り価格が高い。
【0050】
尚、本実施の形態によるシステムを用いて得た低純度回収HCFC22に混入する他のフロンの混入率は、最大でも0.85%であった。
【0051】
(3)『回収冷媒の純度別に精製を行い、再生HCFC22の用途を確定する』
高純度回収HCFC22と低純度回収HCFC22とを別個に精製設備に送り精製することによって、精製後に得られる再生HCFC22の純度が異なる。このうち、精製後99.95%以上の純度を確保できれば、それを重合してフッ素樹脂とすることが可能になる為、この条件を確保できるよう高純度回収HCFC22と低純度回収HCFC22の境界となる前記混入率を設定し、回収段階において共沸関係にある他の種類のフロンを含有しないようにした。
【0052】
一方、上述の混入率を越える低純度回収HCFC22であっても、実施の形態1で説明したように94.2%以上の純度があれば、精製後99.5%以上の純度が必要な再生HCFC22にできるため、再生を行ない、エアコンなどの冷媒用途に再利用した。高純度回収HCFC22ほどではないが、有償による買い取りが期待できる。上記何れの純度も確保できない低純度回収HCFC22は無害化処理が行われる。
【0053】
(4)『高純度のHCFC22は重合に供してフッ素樹脂を製造する』
得られた高純度回収HCFC22を精製設備で精製後、重合してフッ素樹脂を得た。回収した冷媒から共沸関係にある他の種類のフロンを除去することは非常に困難である上、フッ素樹脂(PTFE : Poly-tetra-fluoro-ethiren)の重合に際して、分子中に組み込まれたり、重合を阻害するなどの不具合を生じることになる。従って、高純度回収HCFC22を精製して得たHCFC22の純度として99.95%以上を確保することは必須であって、上述した冷媒用の再生HCFC22(純度99.5%以上)ではフッ素樹脂の重合に適さない。
【0054】
実施の形態3.
図3は本実施の形態の冷媒回収装置を示す概念図である。図3において、1は使用済み家電の冷凍サイクルを構成している冷媒配管で、使用済み家電の種類によって内部にHFC134a、エアコンに用いるR407c ( HFC32/HFC125/HFC134a = 23/25/52wt%の混合物)、R410a ( HFC32/HFC125 = 50/50wt%の混合物)冷媒が充填されている。2は小孔が開口した先端部が冷媒配管1に差し込まれた中空針状の吸引管、3は吸引管に連通し、冷媒配管1内の冷媒を吸引し回収するための吸引用ポンプで、これら吸引管2と吸引ポンプ3とで回収手段を構成する。
【0055】
4a、4b、4cは冷媒の種類別に分類され、吸引ポンプ3にて吸引し回収した冷媒を一時的に貯留する小型ボンベで、一時貯留器に相当する。これら小型ボンベのうち、小型ボンベ4aはHFC系冷媒であるHFC32、HFC125、HFC134aの各単体および混合冷媒を回収し、小型ボンベ4bは、HCFC22を回収し、小型ボンベ4cはその他の冷媒を回収する。12は吸引ポンプ3と小型ボンベ4a、4b、4cの何れかとの間の流路を連通する開閉弁である。
【0056】
6a、6b、6cはそれぞれ小型ボンベ4a、4b、4c底部付近からボンベ内冷媒を取り出す取出配管、7a、7b、7cは取出配管6a、6b、6cにそれぞれ連通し、小型ボンベ4a、4b、4c内の冷媒を吸引するための吸引用ポンプ、8は吸引用ポンプ7a、7b、7cから開閉弁12と小型ボンベ4a、4b、4cとを結ぶ配管へ至るループ配管中に接続され、ループ配管中の冷媒純度を測定するガスクロマトグラフ(定性定量分析計)、13a、13b、13cは取出配管6a、6b、6cから吸引ポンプ7a、7b、7cへ至る配管中に設けられた開閉弁である。
【0057】
11a、11b、11cは吸引用ポンプ7a、7b、7cからガスクロマトグラフ8へ至るそれぞれの配管途中から分岐し、小型ボンベ4a、4b、4cより大きな大型ボンベで、貯蔵槽に相当するこれら大型ボンベのうち、大型ボンベ11aはHFC系冷媒であるHFC32、HFC125、HFC134aの各単体および混合冷媒を貯蔵し、大型ボンベ11bは、HCFC22を貯蔵し、大型ボンベ11cはその他の冷媒を貯蔵する。14a、14b、14cはガスクロマトグラフ8に至る配管と大型ボンベ11a、11b、11c配管との分岐部に設けられた三方開閉弁である。尚、吸引具は図2のものが使用される。
【0058】
次に動作について説明する。排出者から回収された使用済み冷熱機器を、回収手段を用いて回収し、これを専用の小型ボンベに分類して貯蔵する。先ず使用済み冷熱機器を冷蔵庫、家庭用エアコンなどの冷熱機器別に分類する。次に分類した各冷熱機器が備える冷媒の表示に従って、回収する冷媒と同一の冷媒を回収する小型ボンベ4a、4bまたは4cにのみ連通するよう開閉弁12を制御し、回収手段に備えられた吸引具を用いて冷媒配管1に吸引管2を差し込み、吸引用ポンプ3にて冷媒配管1内の冷媒を吸引、回収し、冷媒の種類毎に定められた小型ボンベ4a、4bまたは4cに冷媒を回収する。この時開閉弁13a、13b、13cは閉じている。
【0059】
小型ボンベ4a、4bまたは4c回収された冷媒は性状が安定しており、この安定した冷媒を小型ボンベ底部付近から取出配管6a、6bまたは6cから吸引ポンプ7a、7bまたは7cを経て、開閉弁12と小型ボンベ4a、4bまたは4cとを結ぶ配管途中に接続されて再び小型ボンベ4a、4bまたは4cへと至るループ配管中に循環させる。ループ配管中の冷媒がその性状を代表できる程度にまで安定した状態となるよう十分循環させたところで、ループ配管とガスクロマトグラフ8とが連通するよう三方開閉弁14a、14bまたは14cを制御する。ループ配管の途中に設けられた冷媒の採取口からは試料として循環する冷媒がガスクロマトグラフ8へと流れ出し、これを採取したガスクロマトグラフ8にて冷媒純度の定性定量分析を行う。数分後に分析結果が得られる。
【0060】
ここで、冷蔵庫に用いるHFC134a、エアコンに用いるR407cやR410aは不純物、特に異なった種類の混合フロンの場合にはそれらと共沸関係にある不純物量で管理した。その理由は、特に共沸関係にある不純物量が限度内に納まるように貯蔵槽における上限量内に納めることが回収冷媒の精製に供する量を増やすうえで肝要で、その為には単一物質であれば純度の平均で、混合物であれば不純物の量の累積量で管理することが効率的と考えたためである。
【0061】
この様にして組成が明確となった冷媒は、再生工程が有する精製設備の精製能力に応じた規定された設定純度となるよう、冷媒種類毎に定められた専用の貯蔵槽である大型ボンベ11a、11b、11cに貯蔵する。本実施の形態の設備では、HCFC22の場合、共沸混合物が3.5%以下の含有率であって、水分やイナートガスを含んで93.5%以上の純度のものであれば、精製設備によって最終的に99.5%以上の純度を確保できるので、再度にエアコン用冷媒としての使用が可能となる。従って、純度93.5%以上のHCFC22冷媒は大型ボンベ4bへ回収される。また、純度93.5%未満のHCFC22冷媒は大型ボンベ4cへ回収される。
【0062】
一方、HFC134aおよびR407c、R410aを混合充填する貯蔵槽である大型ボンベ11aの場合には、これら冷媒を単体または混合で使用していることの表示が義務づけられている冷熱機器を分類することなしに回収し、HFC134aを含んだR407cとして再度に冷媒として使用することを前提とすることが好適である。この場合に、個々のフロン冷媒の純度を確認して累積すると、非常に煩雑な管理を必要とするから、前記混合フロンが含んでいる不純物量を管理することが好ましい。これら純度の管理は実施の形態1と同様な工程を経て行われる。
【0063】
精製設備による精製後のR407cが本来に有する成分の過不足を補充して再度に冷媒として使用可能な99.8%以上の純度を確保するため、本実施の形態のシステムでは共沸混合物が3.0%以下の含有率であって、水分やイナートガスを含んで94.5%以上の純度のものを確保するように管理した。
【0064】
専用の貯蔵槽は再生メーカを含む再生行程に搬送された後、空気などのイナートガスや水分、異なった種類のHFCの他、CFC、HCFC類等の不純物を除去するために精製設備で精製する。本工程では、想定した不純物を含む各組成物のわずかな沸点の差を利用した多段式の分留塔を用いて行うものである。
【0065】
上記工程を経て得られた各種フロンまたは混合状態のフロンのうち、HCFC22はそのまま冷媒に再使用し、R407CやR410aについては、個別に得られる単一成分(HFC32、HFC125、HFC134a)を含めて指定成分比になるよう、少なくなっているフロンを充足して調整することによって冷媒として再使用する。
【0066】
【発明の効果】
以上のようにこの発明によれば、冷媒再利用のための分留を簡易にできるので、低コストでの冷媒再生が可能になる。
【0067】
補正により削除。
【0068】
補正により削除。
【0069】
補正により削除。
【0070】
補正により削除。
【0071】
【図面の簡単な説明】
【図1】 この発明の実施の形態1、2における冷媒回収装置を示す概念図である。
【図2】 吸引具の構成図である。
【図3】 この発明の実施の形態3における冷媒回収装置を示す概念図である。
【符号の説明】
1 冷媒配管、 2 吸引管、 3、7 吸引ポンプ、 4 小型ボンベ、 5、9、10、12、13、14 開閉弁、 6 取出管、 8 ガスクロマトグラフ、 11 大型ボンベ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a system for recovering and regenerating a refrigerant filled in a refrigeration cycle provided in a refrigeration apparatus for cooling or heating from the refrigeration apparatus so that the refrigerant can be reused after being used. More particularly, the present invention relates to an effective recovery method for reuse.
[0002]
[Prior art]
Substances that do not contain chlorine such as HFC (Hydro-Fluoro-Carbon) or HC (Hydro-Carbon) based on the chlorofluorocarbon-based refrigerant and blowing agent based on the "Ozone Layer Protection Law" for the purpose of protecting the ozone layer In addition to the above, emission control from various used devices to the atmosphere is being carried out. Similarly, CFC12 was used as a refrigerant not only for four items such as refrigerators and air conditioners regulated by the so-called “Home Appliance Recycling Law” aimed at effective use of resources for environmental protection, but also for showcases and vending machines. A large amount of chlorofluorocarbons such as HCFC22 and HCFC22 remain, and it is required to treat them with an appropriate method.
[0003]
At present, fluorocarbon refrigerants are detoxified after being collected at home appliance recycling factories, etc. As an effective means of this, the collected refrigerant is decomposed in a high-temperature atmosphere, and hydrogen fluoride and chloride produced are decomposed. A method is used in which hydrogen is reacted with quicklime (calcium oxide) to ensure a stable state.
[0004]
For the recovery of CFCs, a needle driven by the tip is provided in a minute sealed space formed so as to cover a part of the refrigeration cycle piping held by used refrigerators and air conditioners. By making a hole, the refrigerant gas sealed under high pressure is recovered and stored in a cylinder. At this time, the sealed space is vacuumed and recovered without remaining in the refrigeration cycle, and then transferred to a storage cylinder and stored using a dedicated pump.
[0005]
At this time, the used equipment targeted by the individual recovery machines must be used in order to efficiently carry out work related to removal of reusable members and removal of harmful substances in parallel with refrigerant recovery. Generally, it is performed for each group.
[0006]
[Problems to be solved by the invention]
However, various materials are used for refrigerants used in refrigeration equipment such as used refrigerators and air conditioners used for cooling and heating, and even for the same product, the type varies depending on the age of manufacture and manufacturer. May be used. Furthermore, when recovering refrigerant from these used devices at a home appliance recycling factory, since it is recovered on the premise of detoxification treatment, it is very difficult to recover and store it as a single substance.
[0007]
If a single substance is to be fractionated and reused from these stored refrigerants, it is preferable to use a slight difference in boiling point, but most of the CFCs used in refrigerants are In order to be compatible and exhibit azeotropic properties, fractionation requires an extremely advanced fractionation technique. On the other hand, in addition to the refining equipment with a huge number of stages, the equipment required for it requires individual measures according to the combination of various refrigerants, such as the application of additives for releasing the azeotropic relationship. There is a problem that the correspondence is not practical.
[0008]
In addition, HCFC22, which is a refrigerant for air conditioners, is a causative substance for ozone layer destruction. Therefore, it is effective to reuse it as a fluororesin raw material as a new manufacturing and suppression measure for reuse based on future use restrictions. It is. However, since the purity of HCFC22 in the application needs to be 99.95% or more, it cannot be achieved by the conventional means described above. A high-purity refrigerant has an increased purchase value as its application spreads, but it is necessary as a condition that the fractionation process for increasing the purity does not cost more than the price difference.
[0009]
The present invention has been made to solve the above-described problems, and relates to a means that enables simple fractional distillation for the purpose of recycling and reusing refrigerants, particularly air conditioners. An object is to provide a recovery means for obtaining a pure HCFC22.
[0010]
[Means for Solving the Problems]
The refrigerant recovery apparatus according to the present invention includes a recovery means for recovering a predetermined refrigerant from a used refrigeration device, a measurement means for measuring the purity of the refrigerant recovered by the recovery means, and a purity measured by the measurement means is predetermined. The high-purity refrigerant that is greater than or equal to the value and is fractionated and reused by an external purification facility is sent to the first storage tank, and the low-purity refrigerant whose purity measured by the measuring means is less than the predetermined value is sent to the first storage tank. And an on-off valve to be sent to the second storage tank.
[0011]
Further, the refrigerant recovery apparatus according to the present invention includes a recovery means for recovering a predetermined refrigerant from the used refrigeration equipment, a temporary reservoir for temporarily storing the refrigerant recovered by the recovery means, and a vicinity of the bottom of the temporary reservoir Extraction means for extracting the refrigerant, measurement means for measuring the purity of the refrigerant extracted by the extraction means, and the purity measured by the measurement means is not less than a predetermined value and fractionated by an external purification facility An opening / closing valve for sending the high-purity refrigerant to be reused to the first storage tank and sending the low-purity refrigerant whose purity measured by the measuring means is less than the predetermined value to the second storage tank; It is.
[0012]
Further, the refrigerant recovery method according to the present invention includes a recovery means for recovering a predetermined refrigerant from a used refrigeration device, a measuring means for measuring the purity of the refrigerant recovered by the recovery means, and fractional distillation by an external purification facility. An on-off valve that sends the high-purity refrigerant to be reused to the first storage tank and sends the low-purity refrigerant to the second storage tank; and the refrigerant amount of the refrigerant sent to the first storage tank Measuring means, measuring purity of the refrigerant stored in the first storage tank from the purity measured by the measuring means and the amount of refrigerant measured by the measuring means, adjusting the on-off valve to adjust the first And adjusting means for setting the purity of the refrigerant stored in one storage tank to a predetermined value or more.
[0013]
Further, the refrigerant recovery method according to the present invention includes a recovery step of recovering a predetermined refrigerant from the used refrigeration equipment, a measurement step of measuring the purity of the recovered refrigerant, and a fractional distillation by an external purification facility. The high-purity refrigerant to be used is sent to the first storage tank, the low-purity refrigerant is stored in the second storage tank, and the refrigerant amount of the refrigerant sent to the first storage tank is measured. And measuring the purity of the refrigerant stored in the first storage tank from the purity measured in the measurement process and the amount of refrigerant measured in the measurement process, and sending the high to the first storage tank The adjusting means for adjusting the inflow of the purity refrigerant includes an adjusting step for adjusting the purity of the refrigerant stored in the first storage tank to a predetermined value or more.
[0014]
Deleted by correction.
[0015]
Deleted by correction.
[0016]
Deleted by correction.
[0017]
Deleted by correction.
[0018]
Deleted by correction.
[0019]
Deleted by correction.
[0020]
Deleted by correction.
[0021]
Deleted by correction.
[0022]
Deleted by correction.
[0023]
[0024]
Deleted by correction.
[0025]
Deleted by correction.
[0026]
Deleted by correction.
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a conceptual diagram showing a refrigerant recovery device of the present embodiment. In FIG. 1, reference numeral 1 is a refrigerant pipe constituting a refrigeration cycle of a used home appliance, and is filled with HCFC22 refrigerant. 2 is a hollow needle-like suction pipe whose tip is opened in the refrigerant pipe 1, 3 is a suction pump that communicates with the suction pipe and sucks and collects the refrigerant in the refrigerant pipe 1. The suction pipe 2 and the suction pump 3 constitute a recovery means. 4 is a small cylinder that temporarily stores the refrigerant sucked and collected by the suction pump 3, and corresponds to a temporary reservoir.
[0027]
5 is an open / close valve that opens and closes the flow path between the suction pump 3 and the small cylinder 4, 6 is an extraction pipe for taking out the refrigerant in the cylinder from the vicinity of the bottom of the small cylinder 4, and 7 is a refrigerant in the small cylinder 4 that communicates with the extraction pipe 6. A suction pump 8 for suctioning the gas is connected to a loop pipe extending from the suction pump 7 to a pipe connecting the on-off valve 5 and the small cylinder 4, and a gas chromatograph (qualitative determination) for measuring the refrigerant purity in the loop pipe. Analyzer 9), 9 is an open / close valve provided in the loop pipe between the suction pump 7 and the gas chromatograph 8 connection portion, and 10 is in the middle of the branch pipe branched from the loop pipe between the suction pump 7 and the open / close valve 9. The provided on-off valve 11 is connected to a branch pipe and is a large cylinder larger than the small cylinder 4 and corresponds to a storage tank.
[0028]
FIG. 2 is a block diagram showing a suction tool used in the present embodiment. In FIG. 2, a needle-like suction pipe 2 protrudes from a rubber shell, and the suction pipe 2 is pierced so as to sandwich the refrigerant pipe 1. Since the outer shell abuts on the surface of the refrigerant pipe 1, the suction pipe 2 does not pierce more than a predetermined depth, and the periphery of the suction pipe 2 is kept airtight by a rubber outer casing that is in close contact with the refrigerant pipe 1. The refrigerant is prevented from leaking into the atmosphere from around the suction pipe 2 pierced into the pipe 1. The suction pipe is connected to a piping hose communicating with the suction pump 3 through the inside of the suction tool.
[0029]
Next, the setting of purity will be described. Purity, which is a quality standard, is set when the refrigerant recovered from the used home appliance is refined and regenerated by a refining facility and reused as a refrigerant of a refrigeration equipment.
[0030]
In order to ensure this purity, it is necessary to consider the fractionation capacity of the purification equipment used. That is, it is important to define the maximum amount of impurities contained in the recovered refrigerant in order to ensure the purity with which the recovered recovered refrigerant can be used for various uses.
[0031]
It is effective to specify a processing plant for the cooling / heating device having the equipment specifications of the corresponding coolant recovery device and to receive supply from the cooling / recovery from the cooling / heating device capable of ensuring the purity. .
[0032]
The system for recovering the refrigerant from the above-described used refrigeration equipment will be described in detail below.
[0033]
(1) “Define the maximum impurity contamination rate in the refining equipment to meet the purity of the refrigerant to be reused”
The purity of HCFC22 used as a refrigerant for home air conditioners needs to be 99.5% or higher. For this reason, the removal capability of impurities in the purification equipment used was searched. An azeotrope that is difficult to remove by fractional distillation is assumed to be mixed in the refrigerant recovered from the used refrigeration equipment. Here, it is assumed that CFC12 having a boiling point close to that of HCFC22 is assumed, and the fraction obtained by arbitrarily changing the mixing ratio within the range of 1.5 to 5.5% is subjected to fractional distillation using a purification facility to confirm the purity of HCFC22 in the product. did.
[0034]
In the case of this refining equipment, it has already been confirmed that even if the inert gas and moisture are mixed in a state close to saturation, the removal rate is 0.02% or less. As a result, in order to obtain HCFC22 that can be reused as refrigerant for home air conditioners, the mixing rate of CFC12 with respect to HCFC22 in the refrigerant sent to the refining facility must be 0.48% or less. It was found that the mixing ratio of CFC12 should be 4.6% or less.
[0035]
(2) “Define the concentration at the time of refrigerant recovery, taking into account the performance of refining equipment to ensure the purity required for reuse”
In the work of recovering refrigerant from used refrigeration equipment, it was confirmed that the mixing rate of inert gas such as air and moisture was 1.2% at the minimum. Therefore, in order to obtain HCFC22 that can be reused as a refrigerant for home air conditioners, it is necessary to secure a refrigerant that suppresses the contamination rate of impurities to 5.8% or less when the refrigerant is collected from used chiller equipment. It is.
[0036]
(3) “In order to ensure the purity of the refrigerant at the time of refrigerant recovery, collect by type of refrigerant (Freon) according to the classification of used refrigeration equipment”
In order to ensure the purity of the recovered refrigerant determined according to the definitions in (1) and (2) above, the HCFC22 refrigerant recovered from the used refrigeration equipment in the home appliance recycling factory was temporarily stored in the small cylinder 4 and stored temporarily. A refrigerant having a stable property is extracted from the small cylinder 4 as a sample, and qualitative quantitative analysis is performed by a gas chromatograph 8.
[0037]
That is, as shown in FIG. 1, the suction pipe 2 is pierced into the refrigerant pipe 1 of the used refrigeration equipment using a suction tool as shown in FIG. 2, and the refrigerant in the refrigerant pipe 1 is sucked by the suction pump 3. At this time, since the inside of the refrigerant pipe 1 of the air conditioner is decompressed by the suction pump 3, the refrigerant dissolved in the refrigerating machine oil can also be recovered. At the time of suction, the on-off valve 5 is opened and the on-off valves 9 and 10 are closed, whereby all the refrigerant is collected in the small cylinder 4. When an amount sufficient to stabilize the refrigerant in the small cylinder 4 is collected, the on-off valve 9 is opened and the suction pump 7 is operated, and the refrigerant near the bottom of the small pump 4 is taken out from the extraction pipe 6. Then, the suction pump 7, the on-off valve 9, the gas chromatograph 8 connection portion, and the loop piping of the small cylinder 4 are circulated.
[0038]
Normally, in the work of extracting refrigerant from used refrigeration equipment taken from the exhaustor, only the home air conditioner is collected and then the HCFC22, which is a refrigerant, is collected. Will not be mixed. Except when the temporary storage cylinder 4 or the like used to collect the refrigerant collects and stores different types of refrigerant in the past and there are residues, or the home air conditioner itself has mixed different refrigerants. Thus, different types of refrigerants were not mixed, and most of them had a purity of 97% or more.
[0039]
(4) “Store out of the classified refrigerants to meet the specified purity”
As described above, after collecting the refrigerant from the refrigerant pipe 1 to the small cylinder 4, the refrigerant having a stable property is sucked and taken out from the vicinity of the bottom of the small cylinder 4 by the take-out pipe 6, and the small cylinder 4, the suction pump 7, The open / close valve 9, the gas chromatograph 8 connection portion, and the loop piping of the small cylinder 4 are circulated. Refrigerant is circulated through the loop piping to be in the same composition state as in the cylinder. At this time, it is confirmed by qualitative quantitative analysis by the gas chromatograph 8 that the refrigerant purity is 94.2% or more, the on-off valve 10 is opened, and the refrigerant is delivered to the first large cylinder which is the storage tank 11.
[0040]
If the purity of the HCFC22 in the recovered refrigerant is 94.2% or less, it is basically delivered to a second large cylinder (not shown). However, as a means of operation, it is only necessary that the HCFC 22 stored in the first large cylinder satisfies the specified purity. Accordingly, even if there is a refrigerant that does not temporarily satisfy the purity, if the refrigerant recovered before and after the refrigerant has a high purity, the accumulated amount of impurities at the time when the refrigerant is filled in the large tank 11 that is a storage tank. This is preferable because it does not exceed 5.8% and the amount used for regeneration increases.
[0041]
As a means for setting the final accumulated amount of impurities in the large cylinder 11 to 5.8% or less, the refrigerant purity is measured by the gas chromatograph 8 and the refrigerant amount indicating how much refrigerant of the purity is recovered is measured. Using the measuring means, the on-off valve 10 is controlled to control the refrigerant inflow to the large cylinder 11 by controlling the on-off valve 10 so that the purity of the refrigerant finally filling the large cylinder 11 is 94.2% or more from the refrigerant purity and amount, or the large cylinder 11 A measuring means for measuring the purity of the refrigerant in the cylinder 11 is used in conjunction with the gas chromatograph 8 to control the on-off valve 10 so that the purity of the refrigerant finally filled in the large cylinder 11 is 94.2% or more. An adjusting means for controlling the refrigerant inflow to 11 can be used.
[0042]
(5) “Recycle recovered refrigerant”
A large cylinder, which is a storage tank 11 that collects a refrigerant with a purity of 94.2% or more, is put into a refining facility and regenerated as a refrigerant for an air conditioner after the refrigerant is purified. A large cylinder that collects a refrigerant with a purity of 94.2% or less is a refrigerant. It is subjected to detoxification treatment, for example, by heating it at a high temperature for decomposition.
[0043]
In this embodiment, the HCFC 22 used for a home air conditioner has been described as an object. However, the present invention is not limited to this, and for example, it is used for a commercial air conditioner, a refrigerator, or a new home air conditioner. The same can be applied to HFC32, HFC125, HFC134a, and mixtures thereof. In this case, the recovery means for recovering the refrigerant from the cooling / heating device may be shared and stored after being recognized as a mixed refrigerant of these three types. The recovered mixed refrigerant may be reused as R407c by adjusting the mixing ratio by adjusting means for replenishing the specific refrigerant such as newly adding each type of refrigerant to the regenerated one after that. As a result, the classification work for various types of cooling / heating devices can be abolished according to the type of refrigerant, which is advantageous because it increases efficiency.
[0044]
In addition, if the qualitative quantitative analysis of the recovered refrigerant is continuously performed in the pipe to the large cylinder 11, the small cylinder 4 for temporary storage can be eliminated, which is convenient.
[0045]
Embodiment 2. FIG.
Used air conditioners are transported to a home appliance recycling factory, and after being dismantled by means such as crushing, materials that can be reused are separated and collected. At this time, harmful materials, hard-to-crush materials, and materials that can be sold as valuable are collected by hand sorting. HCFC22, which is a refrigerant, is currently recognized as a hazardous substance, and neutralizes hydrogen fluoride (HF) and hydrogen chloride (HCl) generated by heating and hydrolysis with calcium oxide (CaO). .
[0046]
In contrast, the present embodiment aims to regenerate HCFC22, which is a refrigerant, and reuse it as a fluororesin raw material, etc., and, as in the procedure described below, fractionation is performed after the refrigerant is collected and stored. The system from the collection to the regeneration of the air conditioner will be described. Since the refrigerant recovery device is the same as that of the first embodiment shown in FIGS. 1 and 2, the description thereof is omitted.
[0047]
(1) "Recover refrigerant from recovered used air conditioners"
Select only household air conditioners using HCFC22 refrigerant from used home appliances collected at the home appliance recycling plant. The suction pipe 2 is pierced into the refrigerant pipe 1 of the air conditioner selected as shown in FIG. 1 using a suction tool as shown in FIG. 2, and the refrigerant in the refrigerant pipe 1 is sucked by the suction pump 3. At this time, since the inside of the refrigerant pipe 1 of the air conditioner is decompressed by the suction pump 3, the refrigerant dissolved in the refrigerating machine oil can also be recovered. At the time of suction, the on-off valve 5 is opened and the on-off valves 9 and 10 are closed, whereby all the refrigerant is collected in the small cylinder 4. When an amount sufficient to stabilize the refrigerant in the small cylinder 4 is collected, the on-off valve 9 is opened and the suction pump 7 is operated, and the refrigerant near the bottom of the small pump 4 is taken out from the extraction pipe 6. Then, the suction pump 7, the on-off valve 9, the gas chromatograph 8 connection portion, and the loop piping of the small cylinder 4 are circulated.
[0048]
(2) “Check the quality (purity) of the recovered refrigerant and store it in a storage tank”
At this time, the refrigerant purity of the HCFC 22 is measured by the gas chromatograph 8 for the purpose of preventing mixing of other types of inadvertently filled refrigerants, particularly those having an azeotropic (including pseudo-azeotropic) relationship with the HCFC 22. deal with. That is, as described above, after recovering the refrigerant from the refrigerant pipe 1 to the small cylinder 4, the refrigerant having a stable property is sucked and taken out from the vicinity of the bottom of the small cylinder 4 by the take-out pipe 6. 7, the opening / closing valve 9, the gas chromatograph 8 connection and the loop piping of the small cylinder 4 are circulated. At this time, the refrigerant purity of HCFC22 is measured by qualitative quantitative analysis using a gas chromatograph 8.
[0049]
Based on the result of the refrigerant purity obtained here, it is classified into those with other chlorofluorocarbons of 0.1% or less (high purity recovery HCFC22) and higher (low purity recovery HCFC22), and on-off valve 10 etc. Is appropriately controlled to be opened and closed, and each refrigerant is stored in a large cylinder 11 which is a separate storage tank. (High-purity recovery HCFC22) can be made 99.95% or more by purification with the purification equipment described later, so demand for fluororesin is expected and the purchase price of the refiner is high.
[0050]
The mixing rate of other chlorofluorocarbons mixed in the low purity recovered HCFC 22 obtained by using the system according to the present embodiment was 0.85% at the maximum.
[0051]
(3) “Purify by purity of recovered refrigerant and determine the application of recycled HCFC22”
The purity of the regenerated HCFC22 obtained after purification differs by separately sending the high purity recovered HCFC22 and the low purity recovered HCFC22 to a purification facility. Among these, if a purity of 99.95% or more can be secured after purification, it can be polymerized into a fluororesin. Therefore, the above-mentioned boundary between the high-purity recovered HCFC22 and the low-purity recovered HCFC22 can be ensured. The mixing rate was set so as not to contain other types of chlorofluorocarbon having an azeotropic relationship in the recovery stage.
[0052]
On the other hand, even if it is a low-purity recovered HCFC22 exceeding the above-mentioned contamination rate, if it has a purity of 94.2% or more as described in Embodiment 1, it can be a regenerated HCFC22 that requires a purity of 99.5% or more after purification. Recycled and reused for refrigerants such as air conditioners. Although it is not as high-purity recovered HCFC22, it can be expected to purchase for a fee. The low purity recovered HCFC 22 that cannot secure any of the above purity is subjected to detoxification treatment.
[0053]
(4) “High-purity HCFC22 is used for polymerization to produce fluororesin”
The obtained high purity recovered HCFC22 was purified with a purification facility and then polymerized to obtain a fluororesin. It is very difficult to remove other types of chlorofluorocarbons that have an azeotropic relationship from the recovered refrigerant, and it is incorporated into the molecule during polymerization of PTFE (Poly-tetra-fluoro-ethiren). Problems such as inhibition of polymerization will occur. Therefore, it is essential to ensure that the purity of HCFC22 obtained by refining high-purity recovered HCFC22 is 99.95% or more, and the above-mentioned recycled HCFC22 for refrigerant (purity 99.5% or more) is not suitable for the polymerization of fluororesin. .
[0054]
Embodiment 3 FIG.
FIG. 3 is a conceptual diagram showing the refrigerant recovery device of the present embodiment. In Fig. 3, 1 is a refrigerant pipe constituting the refrigeration cycle of used home appliances. Depending on the type of used home appliance, HFC134a is used inside, and R407c (HFC32 / HFC125 / HFC134a = 23/25 / 52wt% mixture used for air conditioners) ), R410a (mixture of HFC32 / HFC125 = 50/50 wt%) refrigerant. 2 is a hollow needle-like suction pipe whose tip is opened in the refrigerant pipe 1, 3 is a suction pump that communicates with the suction pipe and sucks and collects the refrigerant in the refrigerant pipe 1. The suction pipe 2 and the suction pump 3 constitute a recovery means.
[0055]
4a, 4b, and 4c are classified according to the type of refrigerant, and are small cylinders that temporarily store the refrigerant sucked and collected by the suction pump 3, and correspond to temporary reservoirs. Among these small cylinders, the small cylinder 4a collects HFC32, HFC125, and HFC134a, which are HFC refrigerants, and a mixed refrigerant, the small cylinder 4b collects HCFC22, and the small cylinder 4c collects other refrigerants. . An open / close valve 12 communicates a flow path between the suction pump 3 and any of the small cylinders 4a, 4b, and 4c.
[0056]
6a, 6b and 6c are take-out pipes for taking out the refrigerant in the cylinder from the vicinity of the bottoms of the small cylinders 4a, 4b and 4c, respectively. A suction pump 8 for sucking the refrigerant inside is connected to a loop pipe extending from the suction pumps 7a, 7b, 7c to a pipe connecting the on-off valve 12 and the small cylinders 4a, 4b, 4c. Gas chromatographs (qualitative quantitative analyzers) 13a, 13b and 13c for measuring the refrigerant purity of the refrigerant are open / close valves provided in the pipes extending from the extraction pipes 6a, 6b and 6c to the suction pumps 7a, 7b and 7c.
[0057]
11a, 11b, and 11c branch from the pipes leading to the gas chromatograph 8 from the suction pumps 7a, 7b, and 7c, and are large cylinders larger than the small cylinders 4a, 4b, and 4c. Among them, the large cylinder 11a stores HFC32, HFC125, and HFC134a, which are HFC-based refrigerants, and a mixed refrigerant, the large cylinder 11b stores the HCFC 22, and the large cylinder 11c stores other refrigerants. Reference numerals 14a, 14b, and 14c are three-way opening / closing valves provided at a branch portion between the pipe leading to the gas chromatograph 8 and the large cylinders 11a, 11b, and 11c. The suction tool shown in FIG. 2 is used.
[0058]
Next, the operation will be described. Used refrigeration equipment collected from the discharger is collected using a collection means, and is classified into a dedicated small cylinder and stored. First, used refrigeration equipment is classified by refrigeration equipment such as refrigerators and home air conditioners. The on-off valve 12 is controlled so as to communicate only with the small cylinder 4a, 4b or 4c that collects the same refrigerant as the refrigerant to be collected in accordance with the indication of the refrigerant provided in each of the refrigeration equipment classified next, and the suction provided in the collecting means The suction pipe 2 is inserted into the refrigerant pipe 1 using a tool, the refrigerant in the refrigerant pipe 1 is sucked and collected by the suction pump 3, and the refrigerant is put into the small cylinders 4a, 4b or 4c determined for each type of refrigerant. to recover. At this time, the on-off valves 13a, 13b, and 13c are closed.
[0059]
The refrigerant recovered in the small cylinders 4a, 4b, or 4c has a stable property, and the stable refrigerant is taken from the vicinity of the bottom of the small cylinders through the suction pipes 6a, 6b, or 6c via the suction pumps 7a, 7b, or 7c, and the on-off valve 12 And the small cylinder 4a, 4b or 4c is connected in the middle of the pipe and is circulated again in the loop pipe leading to the small cylinder 4a, 4b or 4c. When the refrigerant in the loop pipe is sufficiently circulated so as to be stable enough to represent its properties, the three-way on-off valve 14a, 14b or 14c is controlled so that the loop pipe and the gas chromatograph 8 communicate with each other. A refrigerant circulating as a sample flows out from the refrigerant sampling port provided in the middle of the loop pipe to the gas chromatograph 8, and the gas chromatograph 8 that collects the refrigerant performs qualitative quantitative analysis of the refrigerant purity. Analysis results are obtained after a few minutes.
[0060]
Here, HFC134a used for the refrigerator and R407c and R410a used for the air conditioner were controlled by impurities, particularly in the case of different types of mixed chlorofluorocarbons, by the amount of impurities azeotropically with them. The reason for this is to keep the amount of impurities in the storage tank within the upper limit so that the amount of impurities in an azeotropic relationship is within the limit, which is important for increasing the amount used for purification of the recovered refrigerant. This is because it is considered to be efficient to manage by the average purity and by the cumulative amount of impurities in the case of a mixture.
[0061]
The refrigerant whose composition has been clarified in this way is a large cylinder 11a which is a dedicated storage tank defined for each refrigerant type so as to have a set purity specified according to the purification capacity of the purification equipment that the regeneration process has. , 11b, 11c. In the facility of the present embodiment, in the case of HCFC22, if the azeotropic mixture has a content of 3.5% or less and contains water or inert gas and has a purity of 93.5% or more, it is finally 99.5% by a purification facility. Since a purity of at least% can be ensured, it can be used again as a refrigerant for an air conditioner. Therefore, the HCFC22 refrigerant having a purity of 93.5% or more is recovered in the large cylinder 4b. Moreover, the HCFC22 refrigerant having a purity of less than 93.5% is recovered in the large cylinder 4c.
[0062]
On the other hand, in the case of the large cylinder 11a, which is a storage tank for mixing and filling HFC134a, R407c, and R410a, without classifying the refrigeration equipment that is required to indicate that these refrigerants are used alone or in combination. It is preferable to recover and use R407c containing HFC134a again as a refrigerant. In this case, if the purity of each chlorofluorocarbon refrigerant is checked and accumulated, very complicated management is required. Therefore, it is preferable to manage the amount of impurities contained in the mixed chlorofluorocarbon. These purity managements are performed through the same steps as in the first embodiment.
[0063]
In order to secure a purity of 99.8% or more that can be used as a refrigerant again by replenishing the excess and deficiency of the components inherent in R407c after purification by the purification equipment, the azeotrope is 3.0% or less in the system of this embodiment. It was controlled so as to ensure a purity of 94.5% or more including moisture and inert gas.
[0064]
The dedicated storage tank is transported to a regeneration process including a regeneration manufacturer, and then purified by a purification facility to remove inert gases such as air, moisture, HFCs of different types, and CFC and HCFCs. This step is performed using a multistage fractionating column that utilizes a slight difference in boiling point between the compositions containing the assumed impurities.
[0065]
Of the various chlorofluorocarbons or mixed chlorofluorocarbons obtained through the above process, HCFC22 is reused as a refrigerant as it is, and R407C and R410a are specified including single components (HFC32, HFC125, HFC134a) obtained individually. The refrigerant is reused as a refrigerant by adjusting the amount of chlorofluorocarbon, which is reduced, so as to achieve a component ratio.
[0066]
【The invention's effect】
As described above, according to the present invention, fractionation for refrigerant reuse can be simplified, so that refrigerant regeneration can be performed at low cost.
[0067]
Deleted by correction.
[0068]
Deleted by correction.
[0069]
Deleted by correction.
[0070]
Deleted by correction.
[0071]
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a refrigerant recovery device according to Embodiments 1 and 2 of the present invention.
FIG. 2 is a configuration diagram of a suction tool.
FIG. 3 is a conceptual diagram showing a refrigerant recovery device in Embodiment 3 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Refrigerant piping, 2 Suction pipe, 3, 7 Suction pump, 4 Small cylinder, 5, 9, 10, 12, 13, 14 On-off valve, 6 Extraction pipe, 8 Gas chromatograph, 11 Large cylinder

Claims (10)

使用済み冷熱機器から所定の冷媒を回収する回収手段と、
前記回収手段が回収した前記冷媒の純度を計測する計測手段と、
前記計測手段が計測した純度が所定値以上であって外部の精製設備で分留して再利用する高純度の前記冷媒を第1の貯蔵槽に送り、前記計測手段が計測した純度が前記所定値未満の低純度の前記冷媒を第2の貯蔵槽に送る開閉弁と、
を備えたことを特徴とする冷媒回収装置。
A recovery means for recovering a predetermined refrigerant from the used chiller;
Measuring means for measuring the purity of the refrigerant recovered by the recovery means;
The purity measured by the measuring means is equal to or higher than a predetermined value, and the high-purity refrigerant that is fractionated and reused in an external purification facility is sent to the first storage tank, and the purity measured by the measuring means is the predetermined value. An on-off valve for sending the low-purity refrigerant less than the value to the second storage tank;
A refrigerant recovery apparatus comprising:
使用済み冷熱機器から所定の冷媒を回収する回収手段と、
前記回収手段が回収した前記冷媒を一時貯留する一時貯留器と、
前記一時貯留器の底部付近の前記冷媒を抽出する抽出手段と、
前記抽出手段が抽出した前記冷媒の純度を計測する計測手段と、
前記計測手段が計測した純度が所定値以上であって外部の精製設備で分留して再利用する高純度の前記冷媒を第1の貯蔵槽に送り、前記計測手段が計測した純度が前記所定値未満の低純度の前記冷媒を第2の貯蔵槽に送る開閉弁と、
を備えたことを特徴とする冷媒回収装置。
A recovery means for recovering a predetermined refrigerant from the used chiller;
A temporary storage for temporarily storing the refrigerant recovered by the recovery means;
Extraction means for extracting the refrigerant near the bottom of the temporary reservoir;
Measuring means for measuring the purity of the refrigerant extracted by the extracting means;
The purity measured by the measuring means is equal to or higher than a predetermined value, and the high-purity refrigerant that is fractionated and reused in an external purification facility is sent to the first storage tank, and the purity measured by the measuring means is the predetermined value. An on-off valve for sending the low-purity refrigerant less than the value to the second storage tank;
A refrigerant recovery apparatus comprising:
使用済み冷熱機器から所定の冷媒を回収する回収手段と、
前記回収手段が回収した前記冷媒の純度を計測する計測手段と、
外部の精製設備で分留して再利用する高純度の前記冷媒を第1の貯蔵槽に送り、低純度の前記冷媒を第2の貯蔵槽に送る開閉弁と、
前記第1の貯蔵槽に送られる前記冷媒の冷媒量を測定する測定手段と、
前記計測手段が計測した純度と前記測定手段が測定した冷媒量から前記第1の貯蔵槽に貯蔵されている冷媒の純度を求め、前記開閉弁を調整して前記第1の貯蔵槽に貯蔵されている冷媒の純度を所定値以上にする調整手段と、
を備えたことを特徴とする冷媒回収装置。
A recovery means for recovering a predetermined refrigerant from the used chiller;
Measuring means for measuring the purity of the refrigerant recovered by the recovery means;
An on-off valve that sends the high-purity refrigerant that is fractionated and reused in an external purification facility to the first storage tank, and sends the low-purity refrigerant to the second storage tank;
Measuring means for measuring a refrigerant amount of the refrigerant sent to the first storage tank;
The purity of the refrigerant stored in the first storage tank is obtained from the purity measured by the measuring means and the amount of refrigerant measured by the measuring means, and the purity of the refrigerant stored in the first storage tank is adjusted and stored in the first storage tank. Adjusting means for setting the purity of the refrigerant being equal to or higher than a predetermined value;
A refrigerant recovery apparatus comprising:
前記冷媒は少なくともHCFC22と、HFC32、HFC125およびHFC134aの何れかであることを特徴とする請求項1乃至3のいずれかに記載の冷媒回収装置。  The refrigerant recovery apparatus according to any one of claims 1 to 3, wherein the refrigerant is at least one of HCFC22 and HFC32, HFC125, and HFC134a. 前記第1の貯蔵槽に貯蔵されている冷媒はHCFC22であって、その純度が93.5%以上、共沸混合物の含有率が3.5%以下であることを特徴とする請求項4に記載の冷媒回収装置。  The refrigerant stored in the first storage tank is HCFC22, and the purity thereof is 93.5% or more and the content of the azeotrope is 3.5% or less. The refrigerant | coolant collection | recovery apparatus of description. 前記第1の貯蔵槽に貯蔵されている冷媒はR407cであって、その純度が94.5%以上、共沸混合物の含有率が3.0%以下であることを特徴とする請求項4に記載の冷媒回収装置。The refrigerant stored in the first storage tank is R407c , and the purity thereof is 94.5% or more and the content of the azeotrope is 3.0% or less. The refrigerant | coolant collection | recovery apparatus of description. 使用済み冷熱機器から所定の冷媒を回収する回収工程と、
回収した前記冷媒の純度を計測する計測工程と、
前記計測工程にて計測した純度が所定値以上であって外部の精製設備で分留して再利用する高純度の前記冷媒を第1の貯蔵槽に送り、前記計測工程にて計測した純度が前記所定値未満の低純度の前記冷媒を第2の貯蔵槽に貯蔵する貯蔵工程と、を備えたことを特徴とする冷媒回収方法。
A recovery step of recovering a predetermined refrigerant from the used chiller;
A measuring step for measuring the purity of the recovered refrigerant;
The purity measured in the measurement step is equal to or higher than a predetermined value, and the high-purity refrigerant that is fractionated and reused in an external purification facility is sent to the first storage tank, and the purity measured in the measurement step is And a storage step of storing in the second storage tank the low-purity refrigerant less than the predetermined value.
使用済み冷熱機器から所定の冷媒を回収する回収工程と、
回収した前記冷媒の純度を計測する計測工程と、
外部の精製設備で分留して再利用する高純度の前記冷媒を第1の貯蔵槽に送り、低純度の前記冷媒を第2の貯蔵槽に貯蔵する貯蔵工程と、
前記第1の貯蔵槽に送られる前記冷媒の冷媒量を測定する測定工程と、
前記計測工程で計測した純度と前記測定工程で測定した冷媒量から前記第1の貯蔵槽に貯蔵されている冷媒の純度を求め、前記第1の貯蔵槽へ送られる前記高純度の冷媒の流入を調整する調整手段が前記第1の貯蔵槽に貯蔵されている冷媒の純度を調整して所定値以上にする調整工程と、を備えたことを特徴とする冷媒回収方法。
A recovery step of recovering a predetermined refrigerant from the used chiller;
A measuring step for measuring the purity of the recovered refrigerant;
A storage step of sending the high purity refrigerant to be fractionated and reused in an external refining facility to the first storage tank and storing the low purity refrigerant in the second storage tank;
A measuring step of measuring a refrigerant amount of the refrigerant sent to the first storage tank;
The purity of the refrigerant stored in the first storage tank is determined from the purity measured in the measurement process and the amount of refrigerant measured in the measurement process, and the inflow of the high-purity refrigerant sent to the first storage tank And a adjusting step for adjusting the purity of the refrigerant stored in the first storage tank to a predetermined value or more.
前記回収工程で回収した前記冷媒を一時貯留器へ貯留する一時貯留工程とを備え、前記計測工程は前記一時貯留器に貯留された冷媒の純度を計測することを特徴とする請求項7又は8に記載の冷媒回収方法。  The temporary storage process which stores the said refrigerant | coolant collect | recovered by the said collection | recovery process to a temporary storage device, The said measurement process measures the purity of the refrigerant | coolant stored in the said temporary storage device. The refrigerant recovery method according to 1. 前記第1の貯蔵槽に貯蔵した冷媒を前記外部の精製設備に発送する発送工程と、を備えたことを特徴とする請求項7乃至9のいずれかに記載の冷媒回収方法。  The refrigerant recovery method according to any one of claims 7 to 9, further comprising a shipping step of shipping the refrigerant stored in the first storage tank to the external purification facility.
JP2001122677A 2001-04-20 2001-04-20 Refrigerant recovery device and recovery method Expired - Fee Related JP4538980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001122677A JP4538980B2 (en) 2001-04-20 2001-04-20 Refrigerant recovery device and recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001122677A JP4538980B2 (en) 2001-04-20 2001-04-20 Refrigerant recovery device and recovery method

Publications (2)

Publication Number Publication Date
JP2002318038A JP2002318038A (en) 2002-10-31
JP4538980B2 true JP4538980B2 (en) 2010-09-08

Family

ID=18972351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001122677A Expired - Fee Related JP4538980B2 (en) 2001-04-20 2001-04-20 Refrigerant recovery device and recovery method

Country Status (1)

Country Link
JP (1) JP4538980B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4186653B2 (en) * 2003-03-07 2008-11-26 松下電器産業株式会社 Fluid extraction device
BRPI0619713B1 (en) * 2005-11-01 2018-02-06 E. I. Du Pont De Nemours And Company Heating or cooling production method and original heat transfer fluid or refrigerant composition replacement method
US7708903B2 (en) 2005-11-01 2010-05-04 E.I. Du Pont De Nemours And Company Compositions comprising fluoroolefins and uses thereof
KR101205857B1 (en) * 2010-05-07 2012-11-28 (주)에어스텍 Zero-discharging apparatus of refrigerant by collecting and decomposing waste refrigerant
WO2017027716A1 (en) * 2015-08-11 2017-02-16 Trane International Inc. Refrigerant recovery and repurposing
JP6573523B2 (en) * 2015-10-06 2019-09-11 三菱電機ビルテクノサービス株式会社 Refrigerant recovery device
US20170131010A1 (en) * 2015-10-07 2017-05-11 Honeywell International Inc. Recharging systems and methods
JP7177364B2 (en) * 2021-03-30 2022-11-24 ダイキン工業株式会社 Refrigerant Recovery System and Refrigerant Charging System

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000130894A (en) * 1998-10-29 2000-05-12 Daikin Ind Ltd Separating and recovering device for refrigerant and refrigerating machine oil

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4939905A (en) * 1989-12-04 1990-07-10 Kent-Moore Corporation Recovery system for differing refrigerants
CA2053929C (en) * 1990-11-13 1994-05-03 Lowell E. Paige Method and apparatus for recovering and purifying refrigerant
JP3419629B2 (en) * 1996-07-30 2003-06-23 仁吉 合澤 Refrigerant recovery device of heat exchange device
JPH10253203A (en) * 1997-03-13 1998-09-25 Mitsubishi Electric Corp Refrigerant recovering method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000130894A (en) * 1998-10-29 2000-05-12 Daikin Ind Ltd Separating and recovering device for refrigerant and refrigerating machine oil

Also Published As

Publication number Publication date
JP2002318038A (en) 2002-10-31

Similar Documents

Publication Publication Date Title
US5304253A (en) Method for cleaning with a volatile solvent
JP4538980B2 (en) Refrigerant recovery device and recovery method
US20020124578A1 (en) Apparatus methods and compositions for placing additive fluids into a refrigerant circuit
CA2057863C (en) Azeotrope-like compositions of pentafluoroethane; 1,1,1-trifluoroethane; and chlorodifluoromethane
KR20090041406A (en) Air conditioner and method for cleaning same
JP2020519716A (en) Composition
WO2007148046A1 (en) Heat transfer compositions
US6357240B1 (en) Apparatus and method for flushing a chiller system
JP2008531768A (en) Compositions and methods for cleaning a vapor compression system
Karagoz et al. R134a and various mixtures of R22/R134a as an alternative to R22 in vapour compression heat pumps
CN1852963B (en) Hydrofluorocarbon-based composition and use thereof
WO2002073102A1 (en) Apparatus, method and compositions for placing for additive fluids into a refrigerant circuit
JPH0753419A (en) Nonazeotropic mixtures containing difluoromethane and 1,1,1,2-tetrafluoroethane and their application as refrigerants in air conditioning
KR101691590B1 (en) Refrigerant reclaim method and apparatus
JP2006241221A (en) Coolant composition for car air conditioner
US6164080A (en) Apparatus and method for flushing a refrigeration system
KR101467902B1 (en) Integrated apparatus for portable refrigerant management
EP2107094A1 (en) Composition useful as a refrigerant fluid and its use in a heat transfer system
JPH10238909A (en) Method and apparatus for efficiently recovering refrigerant as well as adsorption tank
JPH0953871A (en) Freezer
KR101205857B1 (en) Zero-discharging apparatus of refrigerant by collecting and decomposing waste refrigerant
AU728403B2 (en) Refrigerant compositions
Negara et al. The analysis of cooling system working performance by using pure R 410a refrigerant with the results of R 410a recycle
JPH0861811A (en) Refrigerating apparatus
KR200286664Y1 (en) Fredn gas recovery system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees