JP4538831B2 - Ignition operation control method and ignition operation control device in lower limit speed range of ignition device for internal combustion engine - Google Patents

Ignition operation control method and ignition operation control device in lower limit speed range of ignition device for internal combustion engine Download PDF

Info

Publication number
JP4538831B2
JP4538831B2 JP2004248164A JP2004248164A JP4538831B2 JP 4538831 B2 JP4538831 B2 JP 4538831B2 JP 2004248164 A JP2004248164 A JP 2004248164A JP 2004248164 A JP2004248164 A JP 2004248164A JP 4538831 B2 JP4538831 B2 JP 4538831B2
Authority
JP
Japan
Prior art keywords
voltage
signal
ignition
value
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004248164A
Other languages
Japanese (ja)
Other versions
JP2006063901A (en
Inventor
良平 山下
Original Assignee
飯田電機工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 飯田電機工業株式会社 filed Critical 飯田電機工業株式会社
Priority to JP2004248164A priority Critical patent/JP4538831B2/en
Publication of JP2006063901A publication Critical patent/JP2006063901A/en
Application granted granted Critical
Publication of JP4538831B2 publication Critical patent/JP4538831B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、容量放電型の内燃機関用点火装置の下限速度域における点火動作制御方法と点火動作制御装置に関するものである。   The present invention relates to an ignition operation control method and an ignition operation control device in a lower limit speed region of a capacity discharge type ignition device for an internal combustion engine.

内燃機関の安全で効率の良い運転、燃料消費率の低減、そして排気ガスの浄化を得るため、点火時点を所望する時点に正確に制御することが強く要求されるので、点火時点の制御をマイコン(マイクロコンピュータ)を用いて行うようにした従来技術が提案されている。   In order to obtain a safe and efficient operation of the internal combustion engine, a reduction in fuel consumption rate, and purification of exhaust gas, it is strongly required to accurately control the ignition timing to a desired timing. There has been proposed a conventional technique using a (microcomputer).

上記した従来技術は、発電コイル(エキサイタコイル)の出力電圧を直流電圧に変換する電源回路を設け、この電源回路をマイコンの電源とし、また機関の低速時には、パルサコイルから与えられる低速時点火位置信号により点火信号を与えるように構成したものである。   The above-described prior art is provided with a power supply circuit that converts the output voltage of the power generation coil (exciter coil) into a DC voltage, and this power supply circuit is used as a power source for the microcomputer. Thus, an ignition signal is provided.

この構成により、バッテリを用いずにマイコンを動作させることができると共に、マイコンを動作させ得る電圧が得られない機関の低速時においても、点火動作を行わせることができる、と云う優れた機能を発揮する。
特公平7−26602号公報
With this configuration, the microcomputer can be operated without using a battery, and an excellent function that an ignition operation can be performed even at a low speed of an engine where a voltage that can operate the microcomputer cannot be obtained. Demonstrate.
Japanese Examined Patent Publication No. 7-26602

しかしながら、上記した従来技術にあっては、内燃機関の回転動作が不安定である設定された下限域速度以下の下限速度域でも、設定されたタイミングで点火動作を行うので、内燃機関の回転動作が停止もしくは逆転したとしても点火動作が行われてしまい、種々の重大な不都合が発生する、と云う問題があった。   However, in the above-described prior art, the ignition operation is performed at the set timing even in the lower limit speed range that is equal to or lower than the set lower limit speed where the rotation operation of the internal combustion engine is unstable. Even if the motor stops or reverses, there is a problem that the ignition operation is performed and various serious inconveniences occur.

また、内燃機関に取付けられた高圧磁石発電機にあっては、発電コイルを巻装した鉄心コアが、そのコア端面を、フライホイールに埋設された永久磁石の磁極面に対向させて、所望する正規の電圧を誘起した後、この正規の電圧とは別に余剰電圧を発生する。   Further, in a high-pressure magnet generator attached to an internal combustion engine, an iron core with a power generating coil wound is desired with its core end face opposed to a magnetic pole face of a permanent magnet embedded in a flywheel. After inducing a normal voltage, a surplus voltage is generated separately from the normal voltage.

この余剰電圧分は、内燃機関が正常に回転動作している状態では、鉄心コアのコア端面が永久磁石の磁極面から離れて行くときに、小さな電圧として誘起されるのであるが、内燃機関が逆転した状態では、離れて行くはずの鉄心コアのコア端面と永久磁石の磁極面とが、再び対向することになるので、大きな電圧として誘起される。   This excess voltage is induced as a small voltage when the core end surface of the iron core moves away from the magnetic pole surface of the permanent magnet in a state in which the internal combustion engine is rotating normally. In the reversed state, the core end surface of the iron core that should be separated from the magnetic pole surface of the permanent magnet again faces each other, so that a large voltage is induced.

そこで、本発明は、上記した従来技術における問題点を解消すべく創案されたもので、内燃機関の正常回転動作時と、停止もしくは逆転回転動作時との、発電コイルの出力電圧波形の変化により、内燃機関の回転動作の停止もしくは逆転の発生を感知することを技術的課題とし、もって内燃機関の逆転運転発生を確実に防止して、機関の安全性を高めることを目的とする。   Therefore, the present invention was devised to solve the above-described problems in the prior art, and is based on changes in the output voltage waveform of the power generation coil during normal rotation operation and during stop or reverse rotation operation of the internal combustion engine. An object of the present invention is to detect the stop of the rotational operation of the internal combustion engine or the occurrence of reverse rotation, and to prevent the occurrence of reverse rotation operation of the internal combustion engine with certainty, thereby enhancing the safety of the engine.

上記技術的課題を解決する本発明の内、請求項1記載の発明の手段は、
二次側に点火栓を接続した点火コイルと、内燃機関により駆動される高圧磁石発電機内の発電コイルと、点火コイルの一次側に設けられて、発電コイルの出力電圧の順電圧分で充電される充電コンデンサと、点火信号の入力により導通して、充電コンデンサの電荷を点火コイルの一次コイルに放電させる放電用スイッチング素子と、を有する容量放電型内燃機関用点火回路に、出力電圧の順電圧分が、継続した点火動作を得ることができる電圧値として、予め設定した周期検出電圧値に達した点火時期算出開始時点で発生させた周期検出信号に従って、回転速度を算出すると共に、この算出した回転速度に対応した時間信号である点火時期信号を決定する点火時期演算信号を作成し、また逆電圧分電圧検知部からの電圧信号により、出力電圧の遅れ側逆電圧分がピーク電圧値に達したピーク検出時点でピーク電圧検出信号を発生させ、さらに点火信号を出力するマイコン部を有する点火時点制御装置を組付けた内燃機関用点火装置の内燃機関の回転動作が不安定である設定された下限域速度以下の下限速度域における点火動作制御方法であること、
発電コイルの遅れ側逆電圧分の後に現れる余剰電圧分の値として、内燃機関の正常回転動作時の最大値よりも十分に大きく、かつ逆転発生時の範囲内の値である逆転電圧値を設定すると共に、発電コイルの出力電圧と同相で出力される信号コイルの信号電圧の、遅れ側信号逆電圧分の後に現れる余剰信号電圧分の値として、内燃機関のキックバックエリア外の、このキックバックエリアの下限に近い進角角度に対応する値である検知電圧値を設定しておくこと、
余剰信号電圧分の値が検知電圧値に達した余剰検知時点に、余剰電圧分の値が、逆転電圧値に達していないことにより、点火信号を放電用スイッチング素子に出力すること、
にある。
Among the present invention for solving the above technical problems, the means of the invention according to claim 1 is:
An ignition coil with an ignition plug connected to the secondary side, a power generation coil in a high voltage magnet generator driven by an internal combustion engine, and a primary side of the ignition coil are charged with the forward voltage of the output voltage of the power generation coil. Forward voltage of the output voltage to the ignition circuit for a capacitive discharge type internal combustion engine having a charging capacitor that is electrically connected by an ignition signal input and a discharging switching element that discharges the charge of the charging capacitor to the primary coil of the ignition coil. The rotation speed is calculated according to the cycle detection signal generated at the ignition timing calculation start time when the minute reaches a preset cycle detection voltage value as a voltage value at which a continuous ignition operation can be obtained. Create an ignition timing calculation signal that determines the ignition timing signal, which is a time signal corresponding to the rotation speed, and output voltage based on the voltage signal from the reverse voltage component voltage detector. An internal combustion engine of an ignition device for an internal combustion engine, which is equipped with an ignition time control device having a microcomputer unit that generates a peak voltage detection signal at the time of peak detection when the delay side reverse voltage reaches the peak voltage value and outputs an ignition signal The ignition operation control method in the lower limit speed range below the set lower limit range speed where the rotational motion of
Set the reverse voltage value that is sufficiently larger than the maximum value during normal rotation operation of the internal combustion engine and that is within the range when reverse rotation occurs as the value of the surplus voltage that appears after the delay side reverse voltage of the generator coil In addition, the value of the signal voltage of the signal coil output in the same phase as the output voltage of the power generation coil is the value of the surplus signal voltage that appears after the reverse signal reverse voltage. Set the detection voltage value corresponding to the advance angle close to the lower limit of the area,
Outputting the ignition signal to the discharge switching element when the value of the surplus voltage has not reached the reverse voltage value at the surplus detection time point when the value of the surplus signal voltage has reached the detection voltage value;
It is in.

この請求項1記載の発明にあっては、容量放電型内燃機関用点火装置の発電コイルの出力電圧から、周期検出信号およびピーク電圧検出信号を得、この周期検出信号から得られた点火時期信号、およびピーク電圧検出信号に従って、点火信号を出力することを点火動作の基本動作とする点火制御方法において、下限速度域だけでは、内燃機関の回転速度に関係なく、信号電圧の余剰信号電圧分の値が検知電圧値に達したことと、この余剰信号電圧分の値が検知電圧値に達した余剰検知時点に、出力電圧の余剰電圧分の値が逆転電圧値に達していないこととにより、点火動作を行うようにしているのである。   In the invention of claim 1, the cycle detection signal and the peak voltage detection signal are obtained from the output voltage of the power generation coil of the ignition device for the capacity discharge type internal combustion engine, and the ignition timing signal obtained from the cycle detection signal In the ignition control method in which the basic operation of the ignition operation is to output the ignition signal in accordance with the peak voltage detection signal, only the lower limit speed range is equal to the excess signal voltage of the signal voltage regardless of the rotational speed of the internal combustion engine. Because the value has reached the detection voltage value, and the surplus detection time when the value of the surplus signal voltage has reached the detection voltage value, the value of the surplus voltage of the output voltage has not reached the reverse voltage value, The ignition operation is performed.

余剰信号電圧分の値が検知電圧値に達したと云うことは、内燃機関の上死点に対して、ピストンが、キックバックエリア(このキックバックエリアとは、回転速度と進角角度との関係である進角特性の一部として、内燃機関毎にエンジンメーカーで設定されものである)外の、キックバックエリアの下限に近い進角角度位置、と云う確かな位置に位置していることを意味しており、それゆえこの余剰検知時点で点火動作を行うことにより、内燃機関の回転動作は、確実に正常回転動作となるのである。 The fact that the value of the surplus signal voltage has reached the detected voltage value means that the piston has a kickback area (the kickback area is defined as the rotational speed and the advance angle relative to the top dead center of the internal combustion engine . As a part of the advance angle characteristic that is related, it is located in a certain position, such as the advance angle position close to the lower limit of the kickback area ( set by the engine manufacturer for each internal combustion engine) Therefore, by performing the ignition operation at the time of detecting the surplus, the rotation operation of the internal combustion engine is surely a normal rotation operation.

発電コイルの出力電圧と信号コイルの信号電圧とは同相であるので、信号電圧の余剰信号電圧分の検知電圧値が検知される余剰検知時点には、出力電圧の余剰電圧分も出力されているが、余剰信号電圧分が検知電圧値に達したにもかかわらず、余剰電圧分が逆転電圧値に達していないと云うことは、内燃機関が正常に回転動作していると判断できる。   Since the output voltage of the power generation coil and the signal voltage of the signal coil are in phase, the surplus voltage of the output voltage is also output at the surplus detection time point when the detection voltage value corresponding to the surplus signal voltage of the signal voltage is detected. However, it can be determined that the internal combustion engine is normally rotating when the surplus signal voltage has reached the detection voltage value but the surplus voltage has not reached the reverse voltage value.

これとは別に、余剰信号電圧分が検知電圧値に達した余剰検知時点に、余剰電圧分が逆転電圧値に達している場合には、余剰電圧分が異常に大きくなっていることを意味しているので、内燃機関の回転動作に逆転が発生したと判断し、同様に余剰信号電圧分が検知電圧値に達しない場合には、内燃機関の回転動作が停止したと判断し、点火信号を出力しない。   Separately, if the surplus voltage component reaches the reverse voltage value at the surplus detection time when the surplus signal voltage component has reached the detection voltage value, it means that the surplus voltage component is abnormally large. Therefore, it is determined that a reverse rotation has occurred in the rotational operation of the internal combustion engine. Similarly, if the surplus signal voltage does not reach the detected voltage value, it is determined that the rotational operation of the internal combustion engine has stopped, and the ignition signal is Do not output.

また、本発明の内、請求項2記載の発明の手段は、
二次側に点火栓を接続した点火コイルと、内燃機関により駆動される高圧磁石発電機内の発電コイルと、点火コイルの一次側に設けられて、発電コイルの出力電圧の順電圧分で充電される充電コンデンサと、点火信号の入力により導通して、充電コンデンサの電荷を点火コイルの一次コイルに放電させる放電用スイッチング素子と、を有する容量放電型内燃機関用点火回路に、出力電圧の順電圧分が、継続した点火動作を得ることができる電圧値として、予め設定した周期検出電圧値に達した点火時期算出開始時点で発生させた周期検出信号に従って、回転速度を算出すると共に、この算出した回転速度に対応した時間信号である点火時期信号を決定する点火時期演算信号を作成し、また逆電圧分電圧検知部からの電圧信号により、出力電圧の遅れ側逆電圧分がピーク電圧値に達したピーク検出時点でピーク電圧検出信号を発生させ、さらに点火信号を出力するマイコン部を有する点火時点制御装置を組付けた内燃機関用点火装置の下限速度域における点火動作制御装置であること、
発電コイルと同一鉄心コアの、発電コイルと組合わさって高圧磁石発電機を構成する永久磁石の移動ラインに沿って、発電コイルが巻装された脚部よりも下流側に位置した脚部に巻装された、発電コイルの出力電圧と同相の信号電圧を出力する信号コイルを有すること、
出力電圧の遅れ側逆電圧分の後に現れる余剰電圧分を検出してマイコン部に出力する余剰電圧分電圧検出部を有すること、
信号電圧の遅れ側信号逆電圧分の後に現れる余剰信号電圧分を検出してマイコン部に出力する信号電圧分検出部を有すること、
マイコン部を、出力電圧の余剰電圧分の値として、内燃機関の正常回転動作時の最大値よりも十分に大きく、かつ逆転発生時の範囲内の値である逆転電圧値を設定すると共に、信号電圧の余剰信号電圧分の値として、内燃機関のキックバックエリア外の、このキックバックエリアの下限に近い進角角度に対応する値である検知電圧値を設定し、内燃機関の回転動作が不安定である設定された下限域速度以下の下限速度域で、余剰信号電圧分の値が検知電圧値に達した余剰検知時点に、余剰電圧分の値が、逆転電圧値に達していないことにより、点火信号を放電用スイッチング素子に出力するものとすること、
にある。
Moreover, the means of invention of Claim 2 among this invention is the following.
An ignition coil with an ignition plug connected to the secondary side, a power generation coil in a high voltage magnet generator driven by an internal combustion engine, and a primary side of the ignition coil are charged with the forward voltage of the output voltage of the power generation coil. Forward voltage of the output voltage to the ignition circuit for a capacitive discharge type internal combustion engine having a charging capacitor that is electrically connected by an ignition signal input and a discharging switching element that discharges the charge of the charging capacitor to the primary coil of the ignition coil. The rotation speed is calculated according to the cycle detection signal generated at the ignition timing calculation start time when the minute reaches a preset cycle detection voltage value as a voltage value at which a continuous ignition operation can be obtained. Create an ignition timing calculation signal that determines the ignition timing signal, which is a time signal corresponding to the rotation speed, and output voltage based on the voltage signal from the reverse voltage component voltage detector. The lower limit speed of the ignition device for an internal combustion engine, which is equipped with an ignition point control device having a microcomputer unit that generates a peak voltage detection signal at the peak detection point when the delay side reverse voltage reaches the peak voltage value and further outputs an ignition signal The ignition operation control device in the region,
Winding around the leg located downstream of the leg around which the generator coil is wound, along the movement line of the permanent magnet that forms the high-voltage magnet generator in combination with the generator coil of the same iron core as the generator coil A signal coil that outputs a signal voltage in phase with the output voltage of the power generation coil,
Having a surplus voltage component voltage detection unit that detects a surplus voltage component that appears after the delay side reverse voltage component of the output voltage and outputs it to the microcomputer unit;
Having a signal voltage component detection unit that detects a surplus signal voltage component that appears after the delay side signal reverse voltage component of the signal voltage and outputs it to the microcomputer unit;
The microcomputer unit sets a reverse voltage value that is sufficiently larger than the maximum value during normal rotation operation of the internal combustion engine and that is within the range at the time of reverse rotation as a value for the surplus voltage of the output voltage, and a signal The detection voltage value corresponding to the advance angle close to the lower limit of the kickback area outside the kickback area of the internal combustion engine is set as the value of the excess signal voltage of the voltage, so that the rotational operation of the internal combustion engine is not Because the value of the surplus signal voltage has not reached the reverse voltage value at the surplus detection time when the surplus signal voltage value has reached the detection voltage value in the lower limit speed range below the set lower limit speed that is stable Output an ignition signal to the discharge switching element;
It is in.

この請求項2記載の発明にあっては、容量放電型内燃機関用点火装置の発電コイルの出力電圧から、周期検出信号とピーク電圧検出信号を得、この周期検出信号から得られた点火時期信号、またはピーク電圧検出信号に従って点火信号を出力する点火時点制御装置において、内燃機関の回転速度に関係なく、余剰検知時点における、余剰電圧分電圧検出部で検出した余剰電圧分と、信号電圧分電圧検出部で検出した余剰信号電圧分と、予め設定した検知電圧値と、逆転電圧値との突合せにより点火動作を行う。   In the second aspect of the invention, the cycle detection signal and the peak voltage detection signal are obtained from the output voltage of the power generation coil of the ignition device for the capacity discharge type internal combustion engine, and the ignition timing signal obtained from the cycle detection signal. In the ignition timing control device that outputs the ignition signal according to the peak voltage detection signal, the surplus voltage component detected by the surplus voltage component voltage detection unit and the signal voltage component voltage at the surplus detection time regardless of the rotational speed of the internal combustion engine The ignition operation is performed by matching the surplus signal voltage detected by the detection unit, the preset detection voltage value, and the reverse voltage value.

逆電圧分電圧検出部と、余剰電圧分電圧検出部と、そして信号電圧分電圧検出部を別々に構成したので、各検出部の構成を簡単なものとすることができ、また遅れ側逆電圧分の信号、余剰電圧分の信号、そして余剰信号電圧分の信号のそれぞれを、精度良く明確に検出してマイコン部に与えることができる。   Since the reverse voltage division voltage detection unit, surplus voltage division voltage detection unit, and signal voltage division voltage detection unit are configured separately, the configuration of each detection unit can be simplified, and the lag-side reverse voltage Each of the minute signal, the surplus voltage signal, and the surplus signal voltage signal can be clearly and accurately detected and applied to the microcomputer unit.

単一の鉄心コアの異なる脚部に発電コイルと信号コイルとを巻装したので、鉄心コイルの数を増やす必要がなく、設けられる高圧磁石発電機の構成が複雑化することはない。   Since the power generation coil and the signal coil are wound around different legs of the single core core, it is not necessary to increase the number of core coils, and the configuration of the high voltage magnet generator provided is not complicated.

信号コイルを、発電コイルと同じ鉄心コアに巻装組付けしたので、当然のこととして、信号コイルが誘起する信号電圧は、発電コイルが誘起する出力電圧と完全に同相となる。   Since the signal coil is wound and assembled on the same iron core as that of the power generation coil, as a matter of course, the signal voltage induced by the signal coil is completely in phase with the output voltage induced by the power generation coil.

また、信号コイルを、永久磁石の移動ラインに沿って、発電コイルよりも下流側に位置させたので、余剰信号電圧分を比較的大きな電圧信号として得ることができる。   Further, since the signal coil is positioned downstream of the power generation coil along the permanent magnet moving line, the surplus signal voltage can be obtained as a relatively large voltage signal.

本発明は、上記した構成となっているので、以下に示す効果を奏する。
請求項1記載の発明にあっては、内燃機関の回転速度と関係なく、キックバックエリア外の、キックバックエリア下限に近い進角角度位置と云う、きわめて確かな位置で点火動作を行うので、キックバックのない安定して確実な正常回転動作を得ることができ、これにより下限速度域で、内燃機関の安全な点火動作を得ることができる。
Since the present invention has the above-described configuration, the following effects can be obtained.
In the invention according to claim 1, since the ignition operation is performed at a very reliable position, that is, an advance angle position near the lower limit of the kickback area, outside the kickback area, regardless of the rotational speed of the internal combustion engine. A stable and reliable normal rotation operation without kickback can be obtained, whereby a safe ignition operation of the internal combustion engine can be obtained in the lower limit speed range.

内燃機関の回転速度に関係なく、出力電圧の余剰電圧分と信号電圧の余剰信号電圧分との関係、および余剰信号電圧分の有無とのより、内燃機関の回転動作の正常か否かを判断することができるので、内燃機関の回転動作の良否が簡単にかつ正確に検出されることになる。   Regardless of the rotational speed of the internal combustion engine, it is determined whether the rotational operation of the internal combustion engine is normal or not based on the relationship between the surplus voltage of the output voltage and the surplus signal voltage of the signal voltage and the presence or absence of the surplus signal voltage. Therefore, the quality of the rotational operation of the internal combustion engine can be detected easily and accurately.

請求項2記載の発明にあっては、発電コイルと信号コイルとを同じ鉄心コアに巻装したので、高圧磁石発電機の構造を複雑化することがなく、製造価格の上昇を抑えることができる。   In the invention according to claim 2, since the power generation coil and the signal coil are wound around the same iron core, the structure of the high-voltage magnet generator is not complicated, and an increase in manufacturing price can be suppressed. .

また、発電コイルと信号コイルとを同じ鉄心コアに巻装したので、出力電圧と同相の信号電圧を簡単に得ることができると共に、余剰検知時点を得るための検知電圧値を、無理なく安全に設定することができ、これにより内燃機関の回転動作の良否の判断が、簡単に正確に行われることになる。   In addition, since the generator coil and the signal coil are wound around the same iron core, it is possible to easily obtain a signal voltage in phase with the output voltage, and to easily and safely detect the detection voltage value for obtaining the excess detection time point. Thus, it is possible to easily and accurately determine whether the internal combustion engine is rotating properly.

逆電圧分電圧検出部と、余剰電圧分電圧検出部と、そして信号電圧分電圧検出部を別々に構成したので、それぞれの構成を簡単なものとすることができると共に、それぞれの信号を精度良く確実にえることができ、これによりマイコン部による点火動作制御が精度の高いものとなる。   Since the reverse voltage division voltage detection unit, the surplus voltage division voltage detection unit, and the signal voltage division voltage detection unit are configured separately, each configuration can be simplified and each signal can be accurately transmitted. Thus, the ignition operation control by the microcomputer unit can be performed with high accuracy.

以下、本発明の好ましい実施例を、図面を参照しながら説明する。
図1は、容量放電型点火回路と組合わさって内燃機関用点火装置を構成する、本発明による点火時点制御装置1の回路構成を示す回路図で、点火時点制御装置1は、定電圧電源部2とマイコン部3と周期信号発生部4と逆電圧分電圧検出部5と余剰電圧分電圧検出部10と信号電圧分電圧検出部11から構成されている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a circuit diagram showing a circuit configuration of an ignition point control device 1 according to the present invention, which constitutes an internal combustion engine ignition device in combination with a capacity discharge type ignition circuit. The ignition point control device 1 includes a constant voltage power supply unit. 2, a microcomputer unit 3, a periodic signal generation unit 4, a reverse voltage divided voltage detection unit 5, a surplus voltage divided voltage detection unit 10, and a signal voltage divided voltage detection unit 11.

点火時点制御装置1が組付けられる容量放電型点火回路は、二次側に点火栓9を接続している点火コイル8と、内燃機関により駆動される高圧磁石発電機を構成する発電コイル6と、点火コイル8の一次側に設けられて、発電コイル6の出力電圧Eの順電圧分e1で充電される充電コンデンサc6と、この充電コンデンサc6の電荷を導通により点火コイル8の一次コイルに放電させる、放電用スイッチング素子7と、発電コイル6を一方の脚部に巻装したコの字状鉄心コア12(図8参照)の、他方の脚部に巻装された信号コイル13とを有して構成されている。   The capacity discharge type ignition circuit to which the ignition timing control device 1 is assembled includes an ignition coil 8 having a spark plug 9 connected to the secondary side, and a power generation coil 6 constituting a high-pressure magnet generator driven by an internal combustion engine. A charging capacitor c6 that is provided on the primary side of the ignition coil 8 and is charged by the forward voltage e1 of the output voltage E of the power generation coil 6, and the electric charge of the charging capacitor c6 is discharged to the primary coil of the ignition coil 8 by conduction. A discharge switching element 7 and a U-shaped core core 12 (see FIG. 8) in which the generator coil 6 is wound around one leg, and a signal coil 13 wound around the other leg. Configured.

信号コイル13が巻装された鉄心コア12の脚部は、フライホイール14の周端部に埋設固定されて高圧磁石発電機を構成する永久磁石15の移動ラインに沿って、発電コイル6が巻装された脚部よりも下流側に位置(図8参照)している。   The leg portion of the iron core 12 around which the signal coil 13 is wound is embedded and fixed in the peripheral end portion of the flywheel 14, and the generator coil 6 is wound along the moving line of the permanent magnet 15 constituting the high-voltage magnet generator. It is located downstream of the mounted leg (see FIG. 8).

発電コイル6に誘起した出力電圧Eの順電圧分e1は、充電用ダイオードd2を通って充電コンデンサc6に充電され、この充電コンデンサc6に充電された電荷は、放電エネルギー回生用ダイオードd6を逆並列接続し、ゲート安定化抵抗r8を接続したサイリスタである放電用スイッチング素子7のトリガにより点火コイル8の一次コイルに放電され、これにより点火コイル8の二次コイルに高電圧を誘起して点火栓9に火花放電を発生させて、内燃機関を点火動作させる。   The forward voltage component e1 of the output voltage E induced in the power generation coil 6 is charged into the charging capacitor c6 through the charging diode d2, and the charge charged in the charging capacitor c6 causes the discharge energy regeneration diode d6 to be anti-parallel. Connected and discharged to the primary coil of the ignition coil 8 by the trigger of the discharge switching element 7 which is a thyristor to which the gate stabilization resistor r8 is connected, thereby inducing a high voltage in the secondary coil of the ignition coil 8 to spark plug 9 generates a spark discharge to ignite the internal combustion engine.

なお、放電用スイッチング素子7と並列に接続された放電用抵抗r20は、何らかの原因により点火動作が失火した際の、充電コンデンサc6の充電電荷を放電するためのものである。   The discharging resistor r20 connected in parallel with the discharging switching element 7 is for discharging the charging charge of the charging capacitor c6 when the ignition operation is misfired for some reason.

点火時点制御装置1の定電圧電源部2は、発電コイル6の出力電圧Eの逆電圧分e2(図2参照)を充電して、一定電圧値の出力を、マイコン部3、周期信号発生部4、逆電圧分電圧検出部5、余剰電圧分電圧検出部10、そして信号電圧分電圧検出部11に供給するもので、整流ダイオードd3で整流された発電コイル6の出力電圧Eの逆電圧分e2を、電流制限抵抗r1を通して、過電圧防止用ツェナーダイオード22を並列接続している電源コンデンサc1に充電し、この充電電圧が予め設定された一定電圧値に達すると、ベースに電圧安定化ツェナーダイオード21とベース抵抗r2とを接続した電圧安定化トランジスタ20が導通して、一定電圧を出力する。   The constant voltage power supply unit 2 of the ignition timing control device 1 charges a reverse voltage component e2 (see FIG. 2) of the output voltage E of the power generation coil 6, and outputs a constant voltage value to the microcomputer unit 3 and the periodic signal generation unit. 4. The reverse voltage component voltage detector 5, the surplus voltage component voltage detector 10, and the signal voltage component voltage detector 11 are supplied to the reverse voltage component of the output voltage E of the power generation coil 6 rectified by the rectifier diode d3. e2 is charged through the current limiting resistor r1 to the power supply capacitor c1 connected in parallel with the overvoltage prevention Zener diode 22, and when this charging voltage reaches a preset constant voltage value, the voltage stabilizing Zener diode is applied to the base. The voltage stabilizing transistor 20 connecting the base 21 and the base resistor r2 becomes conductive and outputs a constant voltage.

この定電圧電源部2の一定電圧値は、マイコン部3のマイコン30の動作可能電圧の上限値に近い値、具体的には5Vに設定されており、これにより定電圧出力信号中にサージノイズが侵入したとしても、このサージノイズの影響を受けないようにしている。   The constant voltage value of the constant voltage power supply unit 2 is set to a value close to the upper limit value of the operable voltage of the microcomputer 30 of the microcomputer unit 3, specifically, 5 V, thereby causing surge noise in the constant voltage output signal. Even if it intrudes, it is made not to be affected by this surge noise.

マイコン部3は、マイコン30とリセットIC32とから構成されていて、定電圧電源部2の出力端子に並列に挿入接続されたリセットIC32は、安定した動作を確実に得るために出力を遅延させる遅延用コンデンサc7を接続し、リセットノイズ除去用コンデンサc3を接続した出力端子を、マイコン30のリセットポートに接続し、定電圧電源部2の出力電圧値が予め設定した一定値に達したことを検出して、マイコン30を立ち上げる。   The microcomputer unit 3 includes a microcomputer 30 and a reset IC 32, and the reset IC 32 inserted and connected in parallel to the output terminal of the constant voltage power source unit 2 delays the output in order to reliably obtain a stable operation. Connected to the reset port of the microcomputer 30 to detect that the output voltage value of the constant voltage power supply unit 2 has reached a preset constant value. Then, the microcomputer 30 is started up.

クロック発生部31を組付けたマイコン30は、電源ノイズ除去用コンデンサc2を介して定電圧電源部2から定電圧信号を入力し、点火信号供給用抵抗r3を介して点火信号s4を、放電用スイッチング素子7に出力する。   The microcomputer 30 assembled with the clock generator 31 inputs a constant voltage signal from the constant voltage power supply 2 via the power supply noise removing capacitor c2, and outputs the ignition signal s4 via the ignition signal supply resistor r3. Output to the switching element 7.

周期信号発生部4は、定電圧電源部2から定電圧信号を、波形整形用抵抗r5を介して、ベース・エミッタ間に給電用抵抗r12を接続した信号発生トランジスタ40に与えておき、信号発生トランジスタ40のベースに接続された検出ツェナーダイオード41と電圧検出抵抗r4との直列回路により、発電コイル6の出力電圧Eの順電圧分e1が、予め設定した周期検出電圧値v1を越えたならば、信号発生トランジスタ40をオンさせ、この信号発生トランジスタ40と波形整形用抵抗r5との接続点の電位を、保護用抵抗r10とr11との直列回路を介して周期検出信号s1としてマイコン部3に出力する。   The periodic signal generator 4 gives a constant voltage signal from the constant voltage power source 2 to a signal generation transistor 40 having a power supply resistor r12 connected between a base and an emitter via a waveform shaping resistor r5 to generate a signal. If the forward voltage e1 of the output voltage E of the generator coil 6 exceeds a preset period detection voltage value v1 by the series circuit of the detection Zener diode 41 and the voltage detection resistor r4 connected to the base of the transistor 40 The signal generation transistor 40 is turned on, and the potential at the connection point between the signal generation transistor 40 and the waveform shaping resistor r5 is sent to the microcomputer unit 3 as the cycle detection signal s1 through the series circuit of the protection resistors r10 and r11. Output.

なお、信号発生トランジスタ40と波形整形用抵抗r5との直列回路には、ノイズ除去用ダイオードd1とノイズ除去用コンデンサc4との直列回路が並列接続されており、検出ツェナーダイオード41には電位安定用抵抗r9とサージ吸収コンデンサc8が接続されている。   The series circuit of the signal generating transistor 40 and the waveform shaping resistor r5 is connected in parallel with a series circuit of a noise removing diode d1 and a noise removing capacitor c4, and the detection Zener diode 41 has a potential stabilizing potential. A resistor r9 and a surge absorbing capacitor c8 are connected.

逆電圧分電圧検出部5は、発電コイル6の出力電圧Eの遅れ側逆電圧分e2を、電圧設定用分圧抵抗r6とr7との直列回路に加え、両電圧設定用分圧抵抗r6、r7の分圧点の電圧を電圧信号s6として、マイコン部3に出力する。なお、両電圧設定用分圧抵抗r6、r7の分圧点とアースとの間には、ノイズ除去用コンデンサc5を接続し、同じく分圧点とマイコン部30との間には保護抵抗r13が、そして分圧点と定電圧電源部2との間にはノイズ除去用ダイオードd7がそれぞれ接続されている。   The reverse voltage dividing voltage detector 5 adds a delay-side reverse voltage component e2 of the output voltage E of the power generation coil 6 to a series circuit of voltage setting voltage dividing resistors r6 and r7, and both voltage setting voltage dividing resistors r6, The voltage at the voltage dividing point r7 is output to the microcomputer unit 3 as the voltage signal s6. A noise removing capacitor c5 is connected between the voltage dividing point of both voltage setting voltage dividing resistors r6 and r7 and the ground, and a protective resistor r13 is similarly connected between the voltage dividing point and the microcomputer unit 30. A noise removing diode d7 is connected between the voltage dividing point and the constant voltage power supply unit 2, respectively.

余剰電圧分電圧検出部10は、整流ダイオードd8を介して入力した、発電コイル6の出力電圧Eの遅れ側逆電圧分e2の後に現れる余剰電圧分e3(図3および4参照)を、電圧設定用分圧抵抗r14とr15との直列回路に加え、両電圧設定用分圧抵抗r14、r15の分圧点の電圧を余剰電圧信号s7として、マイコン部3に出力する。なお、両電圧設定用分圧抵抗r14、r15の分圧点とアースとの間には、ノイズ除去用コンデンサc9を接続し、同じく分圧点とマイコン部30との間には保護抵抗r16が、そして分圧点と定電圧電源部2との間にはノイズ除去用ダイオードd9がそれぞれ接続されている。   The surplus voltage component voltage detection unit 10 sets the surplus voltage component e3 (see FIGS. 3 and 4) that appears after the delay-side reverse voltage component e2 of the output voltage E of the power generation coil 6 input via the rectifier diode d8. In addition to the series circuit of the voltage dividing resistors r14 and r15, the voltage at the voltage dividing point of both voltage setting voltage dividing resistors r14 and r15 is output to the microcomputer unit 3 as the surplus voltage signal s7. A noise removing capacitor c9 is connected between the voltage dividing point of both voltage setting voltage dividing resistors r14 and r15 and the ground, and a protective resistor r16 is similarly connected between the voltage dividing point and the microcomputer unit 30. A noise removing diode d9 is connected between the voltage dividing point and the constant voltage power supply unit 2, respectively.

信号電圧分電圧検出部11は、整流ダイオードd10を介して入力した、信号コイル13の信号電圧F(図3および4参照)の遅れ側信号逆電圧分f2の後に現れる余剰信号電圧分f3を、電圧設定用分圧抵抗r17とr18との直列回路に加え、両電圧設定用分圧抵抗r17、r18の分圧点の電圧を余剰信号電圧信号s8として、マイコン部3に出力する。なお、両電圧設定用分圧抵抗r17、r18の分圧点とアースとの間には、ノイズ除去用コンデンサc10を接続し、同じく分圧点とマイコン部30との間には保護抵抗r19が、そして分圧点と定電圧電源部2との間にはノイズ除去用ダイオードd11がそれぞれ接続されている。   The signal voltage component voltage detection unit 11 receives the surplus signal voltage component f3 that appears after the delayed signal inverse voltage component f2 of the signal voltage F (see FIGS. 3 and 4) of the signal coil 13 input via the rectifier diode d10. In addition to the series circuit of voltage setting voltage dividing resistors r17 and r18, the voltage at the voltage dividing point of both voltage setting voltage dividing resistors r17 and r18 is output to the microcomputer unit 3 as a surplus signal voltage signal s8. A noise removing capacitor c10 is connected between the voltage dividing point of both voltage setting voltage dividing resistors r17 and r18 and the ground, and a protective resistor r19 is also provided between the voltage dividing point and the microcomputer unit 30. A noise removing diode d11 is connected between the voltage dividing point and the constant voltage power supply unit 2, respectively.

周期信号発生部4で設定した周期検出電圧値v1は、内燃機関を安定して起動させることができる回転速度域になって得られる順電圧分e1の値に従って、例えば40V程度に設定されるが、この順電圧分e1の値が周期検出電圧値v1に達するのと前後して、定電圧電源部2の定電圧出力信号が出力されるので、周期検出信号s1の出力とほぼ同時にマイコン30が立ち上げられる。   The period detection voltage value v1 set by the period signal generator 4 is set to about 40 V, for example, in accordance with the value of the forward voltage e1 obtained in the rotational speed range where the internal combustion engine can be stably started. Since the constant voltage output signal of the constant voltage power supply unit 2 is output before and after the value of the forward voltage component e1 reaches the cycle detection voltage value v1, the microcomputer 30 almost simultaneously outputs the cycle detection signal s1. Launched.

マイコン30は、周期検出信号s1が入力されると、この入力時点を点火時期算出開始時点t1として、次の点火時期算出開始時点t1までの時間を測定して回転速度を演算し、この演算した回転速度に対応した点火時期を、予め記憶した多数のデータの中から選定して、この次の点火時期算出開始時点t1が位置するサイクルの点火時期演算信号s5を作成する。   When the period detection signal s1 is input, the microcomputer 30 calculates the rotation speed by measuring the time until the next ignition timing calculation start time t1 with the input time as the ignition timing calculation start time t1. The ignition timing corresponding to the rotation speed is selected from a large number of data stored in advance, and the ignition timing calculation signal s5 of the cycle where the next ignition timing calculation start time t1 is located is created.

また、マイコン30は、逆電圧分電圧検出部5から電圧信号s6が入力されると、これをA/Dコンバータに入力し、遅れ側逆電圧分e2の電圧値がピーク電圧値v2に達したことを検出するピーク電圧検出信号s2をピーク検出時点t3に、また内燃機関の上死点にできる限り近く位置し、かつ確実に検出できる値、例えば0.3Vに設定された起動電圧値v3に達したことを検出する起動電圧検出信号s3を起動時点t2に出力する。   In addition, when the voltage signal s6 is input from the reverse voltage component voltage detector 5, the microcomputer 30 inputs the voltage signal s6 to the A / D converter, and the voltage value of the delay side reverse voltage component e2 has reached the peak voltage value v2. The peak voltage detection signal s2 is detected at the peak detection time t3, and as close as possible to the top dead center of the internal combustion engine, and a value that can be reliably detected, for example, the starting voltage value v3 set to 0.3V. An activation voltage detection signal s3 for detecting the arrival is output at the activation time t2.

そして、マイコン30は、測定した回転速度が下限域速度x以下の下限速度域にある場合には、余剰電圧分電圧検出部10から余剰電圧分e3の検出信号である余剰電圧信号s7が、および信号電圧分電圧検出部11から余剰信号電圧分f3の検出信号である余剰信号電圧信号s8が入力されると、これをA/Dコンバータに入力し、余剰信号電圧分f3が予め設定された検知電圧値v4に達した余剰検知時点t4に、余剰電圧分e3が予め設定された逆転電圧値v5に達したかどうかを判断する。   Then, when the measured rotational speed is in the lower limit speed range equal to or lower than the lower limit range speed x, the surplus voltage signal s7, which is a detection signal of the surplus voltage component e3, from the surplus voltage component voltage detection unit 10, and When the surplus signal voltage signal s8, which is the detection signal of the surplus signal voltage f3, is input from the signal voltage voltage detector 11, this is input to the A / D converter, and the surplus signal voltage f3 is detected in advance. At the surplus detection time t4 when the voltage value v4 is reached, it is determined whether or not the surplus voltage e3 has reached a preset reverse voltage value v5.

余剰検知時点t4に余剰電圧分e3が逆転電圧値v5に達していない場合には、マイコン部30は、内燃機関の回転動作に逆転が発生しておらず、正常に回転していると判断して、点火信号s4を放電用スイッチング素子7に出力する。   If the surplus voltage e3 does not reach the reverse voltage value v5 at the surplus detection time point t4, the microcomputer unit 30 determines that no reverse rotation has occurred in the rotation operation of the internal combustion engine and the engine is rotating normally. Thus, the ignition signal s4 is output to the discharge switching element 7.

次に、点火装置の動作を、起動時から順に説明する。
内燃機関を回転させて、定電圧電源部2から一定電圧が出力されると、これをリセットIC32が検知して、マイコン30を、そのリセットを解除して立ち上げるので、マイコン30は、初期設定を行ってから待機状態に入る。
Next, operation | movement of an ignition device is demonstrated in order from the time of starting.
When a constant voltage is output from the constant voltage power supply unit 2 by rotating the internal combustion engine, this is detected by the reset IC 32, and the microcomputer 30 is started up after releasing the reset. After entering the standby state.

この状態から(以下、図2参照)、最初の周期検出信号s1が入力されると、これに従って直後に入力される電圧信号s6から、予め設定した起動電圧値v3を検出して起動電圧検出信号s3を発生させ、この起動電圧検出信号s3の発生に従って、直ちに点火信号s4を点火回路の放電用スイッチング素子7に出力して点火動作を行い、内燃機関を安全にかつ確実に起動させる。   From this state (refer to FIG. 2 below), when the first cycle detection signal s1 is input, the startup voltage value v3 set in advance is detected from the voltage signal s6 that is input immediately after this, and the startup voltage detection signal is detected. s3 is generated, and in response to the generation of the starting voltage detection signal s3, the ignition signal s4 is immediately output to the discharge switching element 7 of the ignition circuit to perform an ignition operation, thereby starting the internal combustion engine safely and reliably.

この点火時点を起動時点t2とした点火動作は、ケッチンを起こすことなく安全にかつ確実に行われるので、回転動作が必ずしも安定しない起動し始めの時期、すなわち起動モード時には、予め設定した時間または速度設定した下限域速度x(例えば、1500rpm)以下の下限速度域で、点火時点を起動時点t2にして運転する。   Since the ignition operation with the ignition time t2 as the start time t2 is performed safely and reliably without causing any kicking, a predetermined time or speed is set at the start time when the rotation operation is not always stable, that is, in the start mode. The engine is operated with the ignition time as the start time t2 in the lower speed range below the set lower speed range x (for example, 1500 rpm).

起動モード経過後に、内燃機関の回転速度が下限域速度x以下の下限速度域にあると、余剰信号電圧分f3が検知電圧値v4に達した余剰検知時点t4で、余剰電圧分e3が逆転電圧値v5に達するかどうかを検出する。   If the rotational speed of the internal combustion engine is in the lower limit speed range equal to or lower than the lower limit range speed x after the start mode has elapsed, the excess voltage component e3 becomes the reverse voltage at the excess detection time t4 when the excess signal voltage component f3 reaches the detection voltage value v4. Whether the value v5 is reached is detected.

余剰検知時点t4に余剰電圧分e3が逆転電圧値v5に達していない場合には、内燃機関が正常に回転していると判断して、マイコン30から点火信号s4を出力して(図3参照)、点火動作を行う。   If the surplus voltage e3 does not reach the reverse voltage value v5 at the surplus detection time t4, it is determined that the internal combustion engine is rotating normally, and the ignition signal s4 is output from the microcomputer 30 (see FIG. 3). ), Ignition operation is performed.

すなわち、図3における出力電圧Eの余剰電圧分e3、および信号電圧Fの余剰信号電圧分f3は、図8に示すように、内燃機関が正常に回転して、フライホイール14に埋設された永久磁石15の磁極面が鉄心コア12のコア端面から離れて行く時に、わずかに誘起されるものであるので、この余剰電圧分e3が間違いなく小さな値であることを、余剰信号電圧分f3を利用して検出し、これにより内燃機関が正常に回転していると判断するのである。   In other words, the surplus voltage e3 of the output voltage E and the surplus signal voltage f3 of the signal voltage F in FIG. 3 are permanent when the internal combustion engine rotates normally and is embedded in the flywheel 14 as shown in FIG. Since the magnetic pole surface of the magnet 15 is slightly induced when going away from the core end surface of the iron core 12, the surplus signal voltage component f3 is used to confirm that the surplus voltage component e3 is definitely a small value. Thus, it is determined that the internal combustion engine is rotating normally.

反対に、余剰検知時点t4に余剰電圧分e3が逆転電圧値v5に達した場合には、内燃機関に逆転が発生したと判断し、また余剰信号電圧分f3が検知電圧値v4に達しないで、余剰検知時点t4を決定することができない場合には、内燃機関が停止したと判断して、マイコン30から点火信号s4は出力されず(図4参照)、点火動作は行われない。   On the other hand, if the surplus voltage e3 reaches the reverse voltage value v5 at the surplus detection time t4, it is determined that the internal combustion engine has reversed, and the surplus signal voltage f3 does not reach the detection voltage value v4. If the surplus detection time t4 cannot be determined, it is determined that the internal combustion engine has stopped, the ignition signal s4 is not output from the microcomputer 30 (see FIG. 4), and the ignition operation is not performed.

すなわち、圧縮工程中にフライホイール14の慣性力不足等によりフライホイール効果が充分に発揮されないで内燃機関に逆転が発生すると、フライホイール14は、図8の位置の直前から逆方向に回転することになり、このため永久磁石15の磁極面と鉄心コア12のコア端面とが対向する、遅れ側逆電圧分e2および遅れ側信号逆電圧分f2を誘起した位置に近づくことになるので、この時の余剰電圧分e3および余剰信号電圧分f3は、図4に示すように、遅れ側逆電圧分e2および遅れ側信号逆電圧分f2を逆転させた程度近くの大きさとなり、このため少なくとも余剰検知時点t4までには、余剰電圧分e3が逆転電圧値v5に達するので、これにより内燃機関に逆転が発生したと判断することができるのである。 That is, if the flywheel effect is not fully exhibited during the compression process due to insufficient inertial force of the flywheel 14 and the internal combustion engine is reversed, the flywheel 14 rotates in the reverse direction immediately before the position shown in FIG. For this reason, since the magnetic pole surface of the permanent magnet 15 and the core end surface of the iron core 12 face each other, it approaches the position where the delayed reverse voltage component e2 and the delayed signal reverse voltage component f2 are induced. As shown in FIG. 4, the surplus voltage component e3 and the surplus signal voltage component f3 have a magnitude close to that obtained by reversing the lag-side reverse voltage component e2 and the lag-side signal reverse voltage component f2, and therefore at least the surplus detection. By the time t4, the surplus voltage e3 reaches the reverse voltage value v5, so that it can be determined that the internal combustion engine has been reversely rotated.

このように、フライホイール効果が充分に発揮されないと共に、内燃機関の回転が必ずしも安定しない、内燃機関の回転速度が下限域速度x以下の下限速度域では、内燃機関の回転速度に関係なく、キックバックエリア外の、キックバックエリアの下限に近い進角角度(例えば、上死点前5°)位置と云う確かな位置を点火時点として点火動作を行い、これにより内燃機関は、高い確実性で安全に点火動作を持続することになる。   As described above, the flywheel effect is not sufficiently exhibited, and the rotation of the internal combustion engine is not always stable. In the lower limit speed range where the rotation speed of the internal combustion engine is equal to or lower than the lower limit range speed x, the kick is performed regardless of the rotation speed of the internal combustion engine. The ignition operation is performed with a certain position outside the back area close to the lower limit of the kickback area (for example, 5 ° before the top dead center) as the ignition time point. The ignition operation will be continued safely.

また、この下限速度域で、万が一、内燃機関の回転動作に逆転または停止が発生したとしても、この場合には、点火動作を停止させるので、不都合な事態の発生を未然に防止することができる。   Further, even if the rotation operation of the internal combustion engine is reversed or stopped in this lower speed range, the ignition operation is stopped in this case, so that it is possible to prevent the occurrence of an inconvenient situation. .

内燃機関の回転速度が、回転動作が安定する下限域速度xから、負荷を結合しても良い速度として予め設定した通常域速度y(例えば、4000rpm)までの速度範囲に上昇したならば、図5に示すように、ピーク電圧値v2を検出したピーク電圧検出信号s2が出力されるピーク検出時点t3のすぐ後に、点火信号s4を出力する。   If the rotational speed of the internal combustion engine rises from a lower limit range speed x at which the rotational operation is stable to a speed range up to a normal range speed y (for example, 4000 rpm) preset as a speed at which a load can be combined, As shown in FIG. 5, the ignition signal s4 is output immediately after the peak detection time t3 when the peak voltage detection signal s2 in which the peak voltage value v2 is detected is output.

この、下限域速度xから通常域速度yまでの速度範囲では、上記したように、点火時点はピーク検出時点t3のすぐ後となるのであるが、この“ピーク検出時点t3のすぐ後”とは、“ピーク電圧検出を確認してから”を意味しており、この確認処理は、回転速度が低いほど長くなるように設定し、これによりこの速度範囲での点火時点のわずかな進角を得るようにしている。   In this speed range from the lower limit range speed x to the normal range speed y, as described above, the ignition time is immediately after the peak detection time t3. What is “immediately after the peak detection time t3”? , Meaning "after confirming peak voltage detection", and this confirmation process is set so that the lower the rotational speed, the longer the ignition timing within this speed range. I am doing so.

内燃機関の回転速度が、負荷を結合して稼動する通常域速度yから、効率の良い稼動を得ることのできるほぼ上限である、予め設定された高速域速度z(例えば、8000rpm)までの速度範囲では、図6に示すように、前回の周期検出信号s1の入力時点である点火時期算出開始時点t1から今回の点火時期算出開始時点t1までの時間から、この今回の点火時期算出開始時点t1での回転速度を算出し、この算出した回転速度に対応して予め設定記憶させてある点火時期信号を選定する点火時期演算信号s5を得、この点火時期演算信号s5で得た点火時期信号を今回の点火時期算出開始時点t1からカウントし、点火時期信号の時間経過後に点火信号s4を出力する。   The rotational speed of the internal combustion engine is a speed from a normal speed y at which the load is combined to a preset high speed speed z (for example, 8000 rpm), which is almost the upper limit at which efficient operation can be obtained. In the range, as shown in FIG. 6, the current ignition timing calculation start time t1 from the time from the ignition timing calculation start time t1 to the current ignition timing calculation start time t1 that is the input time of the previous cycle detection signal s1. , The ignition timing calculation signal s5 for selecting the ignition timing signal set and stored in advance corresponding to the calculated rotation speed is obtained, and the ignition timing signal obtained from the ignition timing calculation signal s5 is obtained. It counts from the ignition timing calculation start time t1 this time, and outputs the ignition signal s4 after the time of the ignition timing signal has elapsed.

この通常域速度yから高速域速度zまでの速度範囲域にあっては、各回転速度に最も適合した進角が得られるので、内燃機関の出力は充分に高められ、結合した負荷の効率の良い稼動を得ることができる。   In the speed range from the normal range speed y to the high speed range speed z, an advance angle most suitable for each rotational speed is obtained, so that the output of the internal combustion engine is sufficiently increased, and the efficiency of the combined load is improved. Good operation can be obtained.

内燃機関の回転速度が、高速域速度zを越えて上昇すると、図7に示すように、点火時期演算信号s5が、得られた点火時期信号よりもその時間が長くなり、このため点火信号s4を得ることができなくなるので、前のサイクルの点火時期演算信号s5で得られた点火時期信号を、そのまま次のサイクルで使用する。   When the rotational speed of the internal combustion engine increases beyond the high speed range speed z, as shown in FIG. 7, the ignition timing calculation signal s5 becomes longer than the obtained ignition timing signal, and therefore the ignition signal s4. Therefore, the ignition timing signal obtained from the ignition timing calculation signal s5 of the previous cycle is used as it is in the next cycle.

この場合、当然の事ながら、内燃機関の効率は低下することになるので、内燃機関の速度上昇は抑制され、これにより過回転防止効果が発揮されることになる。   In this case, as a matter of course, the efficiency of the internal combustion engine is reduced, so that an increase in the speed of the internal combustion engine is suppressed, thereby exhibiting an effect of preventing over-rotation.

本発明による点火時点制御装置の回路構成の一例を示す、電機回路である。It is an electrical machinery circuit which shows an example of the circuit structure of the ignition time control apparatus by this invention. 本発明の起動時の動作例を示す、動作線図である。It is an operation | movement diagram which shows the operation example at the time of starting of this invention. 本発明の下限速度域範囲での正常回転時の動作例を示す、動作線図である。It is an operation | movement diagram which shows the operation example at the time of normal rotation in the minimum speed range range of this invention. 本発明の下限域速度範囲での逆転動作時の動作例を示す、動作線図である。It is an operation diagram which shows the operation example at the time of reverse rotation operation | movement in the lower limit area | region speed range of this invention. 本発明の下限域速度から通常域速度までの範囲の動作例を示す、動作線図である。It is an operation | movement diagram which shows the operation example of the range from the lower limit area | region speed of this invention to a normal area | region speed. 本発明の通常域速度から高速域速度までの範囲の動作例を示す、動作線図である。It is an operation | movement diagram which shows the operation example of the range from the normal area speed of this invention to a high speed area speed. 本発明の高速域速度以上の範囲での動作例を示す、動作線図である。It is an operation | movement diagram which shows the operation example in the range beyond the high-speed area | region speed of this invention. 本発明に使用される高圧磁石発電機の構成例を示す、簡略説明図である。It is a simplified explanatory drawing which shows the structural example of the high voltage | pressure magnet generator used for this invention.

符号の説明Explanation of symbols

1 ; 点火時点制御装置
2 ; 定電圧電源部
20 ; 電圧安定化トランジスタ
21 ; 電圧安定化ツェナーダイオード
22 ; 過電圧防止用ツェナーダイオード
c1 ; 電源コンデンサ
r1 ; 電流制限抵抗
r2 ; ベース抵抗
3 ; マイコン部
30 ; マイコン
31 ; クロック発生部
32 ; リセットIC
c2 ; 電源ノイズ除去用コンデンサ
c3 ; リセットノイズ除去用コンデンサ
r3 ; 点火信号供給用抵抗
c7 ; 遅延用コンデンサ
4 ; 周期信号発生部
40 ; 信号発生トランジスタ
41 ; 検出ツェナーダイオード
r4 ; 電圧検出抵抗
r5 ; 波形整形用抵抗
d1 ; ノイズ除去用ダイオード
c4 ; ノイズ除去用コンデンサ
c8 ; サージ吸収コンデンサ
r9 ; 電位安定用抵抗
r10 ; 保護用抵抗
r11 ; 保護用抵抗
r12 ; 給電用抵抗
5 ; 逆電圧分電圧検出部
r6 ; 電圧設定用分圧抵抗
r7 ; 電圧設定用分圧抵抗
c5 ; ノイズ除去コンデンサ
d7 ; ノイズ除去用ダイオード
r13 ; 保護抵抗
10 ; 余剰電圧分電圧検出部
d8 ; 整流ダイオード
r14 ; 電圧設定用分圧抵抗
r15 ; 電圧設定用分圧抵抗
c9 ; ノイズ除去用コンデンサ
d9 ; ノイズ除去用ダイオード
r16 ; 保護抵抗
11 ; 信号電圧分電圧検出部
d10 ; 整流ダイオード
r17 ; 電圧設定用分圧抵抗
r18 ; 電圧設定用分圧抵抗
c10 ; ノイズ除去用コンデンサ
d11 ; ノイズ除去用ダイオード
r19 ; 保護抵抗
6 ; 発電コイル
7 ; 放電用スイッチング素子
8 ; 点火コイル
9 ; 点火栓
12 ; 鉄心コア
13 ; 信号コイル
14 ; フライホイール
15 ; 永久磁石
c6 ; 充電コンデンサ
d2 : 充電用ダイオード
d3 ; 整流ダイオード
d4 ; 整流ダイオード
d5 ; 整流ダイオード
d6 ; 放電エネルギー回生用ダイオード
r8 ; ゲート安定化抵抗
r20 ; 放電用抵抗
E ; 出力電圧
e1 ; 順電圧分
e2 ; 逆電圧分
e3 ; 余剰電圧分
F ; 信号電圧
f1 ; 信号順電圧分
f2 ; 信号逆電圧分
f3 ; 余剰信号電圧分
v1 ; 周期検出電圧値
v2 ; ピーク電圧値
v3 ; 起動電圧値
v4 ; 検知電圧値
v5 ; 逆転電圧値
s1 ; 周期検出信号
s2 ; ピーク電圧検出信号
s3 ; 起動電圧検出信号
s4 ; 点火信号
s5 ; 点火時期演算信号
s6 ; 電圧信号
s7 ; 余剰電圧信号
s8 ; 余剰信号電圧信号
t1 ; 点火時期算出開始時点
t2 ; 起動時点
t3 ; ピーク検出時点
t4 ; 余剰検知時点
x ; 下限域速度
y ; 通常域速度
z ; 高速域速度
DESCRIPTION OF SYMBOLS 1; Ignition time control apparatus 2; Constant voltage power supply part 20; Voltage stabilization transistor 21; Voltage stabilization Zener diode 22; Overvoltage prevention Zener diode c1; Power supply capacitor r1; Current limiting resistance r2; Base resistance 3; ; Microcomputer 31; Clock generator 32; Reset IC
c2; power supply noise removing capacitor c3; reset noise removing capacitor r3; ignition signal supply resistor c7; delay capacitor 4; periodic signal generating unit 40; signal generating transistor 41; detection zener diode r4; voltage detecting resistor r5; Shaping resistor d1; Noise removing diode c4; Noise removing capacitor c8; Surge absorbing capacitor r9; Potential stabilizing resistor r10; Protection resistor r11; Protection resistor r12; Feeding resistor 5; Reverse voltage divider voltage detector r6 Voltage setting voltage dividing resistor r7; voltage setting voltage dividing resistor c5; noise removing capacitor d7; noise removing diode r13; protection resistor 10; surplus voltage voltage dividing detector d8; rectifier diode r14; voltage setting voltage dividing resistor r15: Voltage setting voltage division Anti-c9; Noise removing capacitor d9; Noise removing diode r16; Protection resistor 11; Signal voltage dividing voltage detector d10; Rectifier diode r17; Voltage setting voltage dividing resistor r18; Voltage setting voltage dividing resistor c10; Capacitor d11; Noise removing diode r19; Protection resistor 6; Generator coil 7; Discharge switching element 8; Ignition coil 9; Spark plug 12; Iron core 13; Signal coil 14; Flywheel 15; Permanent magnet c6; Rectifier diode d4; rectifier diode d5; rectifier diode d6; discharge energy regeneration diode r8; gate stabilization resistor r20; discharge resistor E; output voltage e1; forward voltage component e2; reverse voltage component e3; surplus Voltage component F; Signal voltage f1; Signal forward voltage component f2; Signal reverse voltage component f3; Surplus signal voltage component v1; Period detection voltage value v2; Peak voltage value v3; Startup voltage value v4; Detection voltage value v5; s1; period detection signal s2; peak voltage detection signal s3; start-up voltage detection signal s4; ignition signal s5; ignition timing calculation signal s6; voltage signal s7; surplus voltage signal s8; surplus signal voltage signal t1; ignition timing calculation start time t2 Start time t3; peak detection time t4; excess detection time x; lower limit speed y; normal speed z; high speed

Claims (2)

二次側に点火栓(9)を接続した点火コイル(8)と、内燃機関により駆動される高圧磁石発電機内の発電コイル(6)と、前記点火コイル(8)の一次側に設けられて、前記発電コイル(6)の出力電圧(E)の順電圧分(e1)で充電される充電コンデンサ(c6)と、点火信号(s4)の入力により導通して、前記充電コンデンサ(c6)の電荷を点火コイル(8)の一次コイルに放電させる放電用スイッチング素子(7)と、を有する容量放電型内燃機関用点火回路に、前記順電圧分(e1)が、継続した点火動作を得ることができる電圧値として、予め設定した周期検出電圧値(v1)に達した点火時期算出開始時点(t1)で発生させた周期検出信号(s1)に従って、回転速度を算出すると共に、該算出した回転速度に対応した時間信号である点火時期信号を決定する点火時期演算信号(s5)を作成し、また逆電圧分電圧検知部(5)からの電圧信号(s6)により、前記出力電圧(E)の遅れ側逆電圧分(e2)がピーク電圧値(v2)に達したピーク検出時点(t3)でピーク電圧検出信号(s2)を発生させ、さらに点火信号(s4)を出力するマイコン部(3)を有する点火時点制御装置(1)を組付けた内燃機関用点火装置において、前記発電コイル(6)の遅れ側逆電圧分(e2)の後に現れる余剰電圧分(e3)の値として、内燃機関の正常回転動作時の最大値よりも十分に大きく、かつ逆転発生時の範囲内の値である逆転電圧値(v5)を設定すると共に、前記発電コイル(6)の出力電圧(E)と同相で出力される信号コイル(13)の信号電圧(F)の、遅れ側信号逆電圧分(f2)の後に現れる余剰信号電圧分(f3)の値として、内燃機関のキックバックエリア外の、該キックバックエリアの下限に近い進角角度に対応する値である検知電圧値(v4)を設定し、内燃機関の回転動作が不安定である設定された下限域速度(x)以下の下限速度域で、前記余剰信号電圧分(f3)の値が検知電圧値(v4)に達した余剰検知時点(t4)に、前記余剰電圧分(e3)の値が、前記逆転電圧値(v5)に達していないことにより、前記点火信号(s4)を放電用スイッチング素子(7)に出力する内燃機関用点火装置の下限速度域における点火動作制御方法。   An ignition coil (8) having an ignition plug (9) connected to the secondary side, a power generation coil (6) in a high voltage magnet generator driven by an internal combustion engine, and a primary side of the ignition coil (8) The charging capacitor (c6) charged by the forward voltage (e1) of the output voltage (E) of the power generation coil (6) is electrically connected to the charging capacitor (c6) by the input of the ignition signal (s4). The forward voltage (e1) obtains a continuous ignition operation in an ignition circuit for a capacitive discharge internal combustion engine having a discharge switching element (7) for discharging electric charge to a primary coil of an ignition coil (8). As a voltage value that can be calculated, the rotational speed is calculated according to the cycle detection signal (s1) generated at the ignition timing calculation start time (t1) that has reached a preset cycle detection voltage value (v1), and the calculated rotation Corresponding to speed An ignition timing calculation signal (s5) for determining an ignition timing signal, which is a time signal, is created, and the output voltage (E) on the delay side is reversed by a voltage signal (s6) from the reverse voltage component voltage detector (5). Ignition having a microcomputer unit (3) that generates a peak voltage detection signal (s2) at a peak detection time (t3) when the voltage component (e2) reaches the peak voltage value (v2), and further outputs an ignition signal (s4) In the internal combustion engine ignition device assembled with the time point control device (1), the value of the surplus voltage (e3) appearing after the delay side reverse voltage (e2) of the power generation coil (6) is used as the normal rotation of the internal combustion engine. A reverse voltage value (v5) that is sufficiently larger than the maximum value during operation and within the range when reverse rotation occurs is set, and is output in phase with the output voltage (E) of the generator coil (6). Signal coil (13) Corresponding to the advance angle close to the lower limit of the kickback area outside the kickback area of the internal combustion engine, as the value of the surplus signal voltage (f3) appearing after the delayed signal reverse voltage (f2) in (F) The value of the surplus signal voltage (f3) is set in a lower limit speed range that is equal to or lower than the set lower limit speed (x) where the rotation operation of the internal combustion engine is unstable. Since the value of the surplus voltage (e3) does not reach the reverse voltage value (v5) at the surplus detection time point (t4) when reaches the detection voltage value (v4), the ignition signal (s4) is An ignition operation control method in a lower limit speed range of an internal combustion engine ignition device that outputs to a discharge switching element (7). 二次側に点火栓(9)を接続した点火コイル(8)と、内燃機関により駆動される高圧磁石発電機内の発電コイル(6)と、前記点火コイル(8)の一次側に設けられて、前記発電コイル(6)の出力電圧(E)の順電圧分(e1)で充電される充電コンデンサ(c6)と、点火信号(s4)の入力により導通して、前記充電コンデンサ(c6)の電荷を点火コイル(8)の一次コイルに放電させる放電用スイッチング素子(7)と、を有する容量放電型内燃機関用点火回路に、前記順電圧分(e1)が、継続した点火動作を得ることができる電圧値として、予め設定した周期検出電圧値(v1)に達した点火時期算出開始時点(t1)で発生させた周期検出信号(s1)に従って、回転速度を算出すると共に、該算出した回転速度に対応した時間信号である点火時期信号を決定する点火時期演算信号(s5)を作成し、また逆電圧分電圧検知部(5)からの電圧信号(s6)により、前記出力電圧(E)の遅れ側逆電圧分(e2)がピーク電圧値(v2)に達したピーク検出時点(t3)でピーク電圧検出信号(s2)を発生させ、さらに点火信号(s4)を出力するマイコン部(3)を有する点火時点制御装置(1)を組付けた内燃機関用点火装置において、前記発電コイル(6)と同一鉄心コア(12)の、前記発電コイル(6)と組合わさって高圧磁石発電機を構成する永久磁石(15)の移動ラインに沿って、前記発電コイル(6)が巻装された脚部よりも下流側に位置した脚部に巻装された、前記発電コイル(6)の出力電圧(E)と同相の信号電圧(F)を出力する信号コイル(13)と、前記出力電圧(E)の遅れ側逆電圧分(e2)の後に現れる余剰電圧分(e3)を検出してマイコン部(3)に出力する余剰電圧分電圧検出部(10)と、前記信号電圧(F)の遅れ側信号逆電圧分(f2)の後に現れる余剰信号電圧分(f3)を検出してマイコン部(3)に出力する信号電圧分検出部(11)とを有し、前記マイコン部(3)を、前記余剰電圧分(e3)の値として、内燃機関の正常回転動作時の最大値よりも十分に大きく、かつ逆転発生時の範囲内の値である逆転電圧値(v5)を設定すると共に、前記余剰信号電圧分(f3)の値として、内燃機関のキックバックエリア外の、該キックバックエリアの下限に近い進角角度に対応する値である検知電圧値(v4)を設定し、内燃機関の回転動作が不安定である設定された下限域速度(x)以下の下限速度域で、前記余剰信号電圧分(f3)の値が検知電圧値(v4)に達した余剰検知時点(t4)に、前記余剰電圧分(e3)の値が、前記逆転電圧値(v5)に達していないことにより、前記点火信号(s4)を放電用スイッチング素子(7)に出力するものとした、内燃機関用点火装置の下限速度域における点火動作制御装置。 An ignition coil (8) having an ignition plug (9) connected to the secondary side, a power generation coil (6) in a high voltage magnet generator driven by an internal combustion engine, and a primary side of the ignition coil (8) The charging capacitor (c6) charged by the forward voltage (e1) of the output voltage (E) of the power generation coil (6) is electrically connected to the charging capacitor (c6) by the input of the ignition signal (s4). The forward voltage (e1) obtains a continuous ignition operation in an ignition circuit for a capacitive discharge internal combustion engine having a discharge switching element (7) for discharging electric charge to a primary coil of an ignition coil (8). As a voltage value that can be calculated, the rotational speed is calculated according to the cycle detection signal (s1) generated at the ignition timing calculation start time (t1) that has reached a preset cycle detection voltage value (v1), and the calculated rotation Corresponding to the speed An ignition timing calculation signal (s5) for determining an ignition timing signal, which is a time signal, is created, and the output voltage (E) on the delay side is reversed by a voltage signal (s6) from the reverse voltage component voltage detector (5). Ignition having a microcomputer unit (3) that generates a peak voltage detection signal (s2) at a peak detection time (t3) when the voltage component (e2) reaches the peak voltage value (v2), and further outputs an ignition signal (s4) In the internal combustion engine ignition device assembled with the time point control device (1), a permanent magnet constituting the high-pressure magnet generator is combined with the power generation coil (6) of the same iron core (12) as the power generation coil (6). Along the moving line of the magnet (15), the output voltage (E) of the generator coil (6) wound around the leg located downstream of the leg around which the generator coil (6) is wound. ) Outputs the same phase signal voltage (F) as A surplus voltage component voltage detection unit (13) that detects a surplus voltage component (e3) that appears after a delay side reverse voltage component (e2) of the output voltage (E) and outputs it to the microcomputer unit (3). 10) and a signal voltage component detection unit (11) for detecting the surplus signal voltage component (f3) appearing after the delay side signal reverse voltage component (f2) of the signal voltage (F) and outputting it to the microcomputer unit (3) The microcomputer unit (3) is set to a value that is sufficiently larger than the maximum value during normal rotation operation of the internal combustion engine and that is within the range when reverse rotation occurs, as the value of the surplus voltage (e3). A certain reverse voltage value (v5) is set, and the value of the surplus signal voltage (f3) corresponds to an advance angle close to the lower limit of the kickback area outside the kickback area of the internal combustion engine. set the detection voltage value (v4), rotation of the internal combustion engine The surplus is detected at the surplus detection time point (t4) when the value of the surplus signal voltage (f3) reaches the detection voltage value (v4) in the lower limit speed range that is less than or equal to the set lower limit speed (x). An ignition device for an internal combustion engine in which the ignition signal (s4) is output to the discharge switching element (7) because the value of the voltage component (e3) does not reach the reverse voltage value (v5). Ignition operation control device in the lower limit speed range.
JP2004248164A 2004-08-27 2004-08-27 Ignition operation control method and ignition operation control device in lower limit speed range of ignition device for internal combustion engine Expired - Fee Related JP4538831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004248164A JP4538831B2 (en) 2004-08-27 2004-08-27 Ignition operation control method and ignition operation control device in lower limit speed range of ignition device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004248164A JP4538831B2 (en) 2004-08-27 2004-08-27 Ignition operation control method and ignition operation control device in lower limit speed range of ignition device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006063901A JP2006063901A (en) 2006-03-09
JP4538831B2 true JP4538831B2 (en) 2010-09-08

Family

ID=36110606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004248164A Expired - Fee Related JP4538831B2 (en) 2004-08-27 2004-08-27 Ignition operation control method and ignition operation control device in lower limit speed range of ignition device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4538831B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4978915B2 (en) * 2009-02-09 2012-07-18 飯田電機工業株式会社 Ignition point control device for ignition device for internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200676U (en) * 1987-06-17 1988-12-23
JPS63200675U (en) * 1987-06-17 1988-12-23
JP2003307171A (en) * 2002-04-12 2003-10-31 Iida Denki Kogyo Kk Method and device for controlling ignition timing of ignition device for internal-combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200676U (en) * 1987-06-17 1988-12-23
JPS63200675U (en) * 1987-06-17 1988-12-23
JP2003307171A (en) * 2002-04-12 2003-10-31 Iida Denki Kogyo Kk Method and device for controlling ignition timing of ignition device for internal-combustion engine

Also Published As

Publication number Publication date
JP2006063901A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
US6973911B2 (en) Method and device for controlling ignition timing of ignition device for internal combustion engine
US7931014B2 (en) Kickback preventing circuit for engine
JP4538831B2 (en) Ignition operation control method and ignition operation control device in lower limit speed range of ignition device for internal combustion engine
JP4337470B2 (en) Ignition system for capacitor discharge internal combustion engine
JPWO2018180814A1 (en) Stroke determining device for 4-stroke engine
JP4524635B2 (en) Ignition operation control method and ignition point control device in lower limit speed range of internal combustion engine ignition device.
JP3460192B1 (en) Ignition time control method and ignition time control device for ignition device for internal combustion engine
JP4314439B2 (en) Trigger signal control method and trigger signal control circuit in ignition device for internal combustion engine
JP4214828B2 (en) Ignition device for internal combustion engine
JP4665215B2 (en) Trigger signal control method and trigger signal control circuit in ignition device for internal combustion engine
JP3149755B2 (en) Capacitor discharge type ignition device for internal combustion engine
JP2007198220A (en) Non-contact ignition device of internal combustion engine
JP3986006B2 (en) Non-contact ignition device for internal combustion engine
JP3985597B2 (en) Ignition device for internal combustion engine
JP4582445B2 (en) Ignition operation control method in standby speed range of ignition device for internal combustion engine
JP3460194B1 (en) Method for preventing overspeed of internal combustion engine
JP3460195B1 (en) Method and device for stopping ignition device for internal combustion engine
JP3075095B2 (en) Ignition device for internal combustion engine
JP6707370B2 (en) Internal combustion engine operating mode setting device
JP4367230B2 (en) Ignition system for capacitor discharge internal combustion engine
JP2004080853A (en) Power generation controller for vehicle
JP2004176625A (en) Igniter for internal combustion engine
JP3609668B2 (en) Capacitor charge / discharge ignition system
JP3460196B1 (en) Starting method and starting device for ignition device for internal combustion engine
JP3460193B1 (en) Low-speed ignition control method for ignition device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees