JP4538014B2 - Catalyst for hydrorefining - Google Patents

Catalyst for hydrorefining Download PDF

Info

Publication number
JP4538014B2
JP4538014B2 JP2007068319A JP2007068319A JP4538014B2 JP 4538014 B2 JP4538014 B2 JP 4538014B2 JP 2007068319 A JP2007068319 A JP 2007068319A JP 2007068319 A JP2007068319 A JP 2007068319A JP 4538014 B2 JP4538014 B2 JP 4538014B2
Authority
JP
Japan
Prior art keywords
catalyst
weight
hydrorefining
pore
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007068319A
Other languages
Japanese (ja)
Other versions
JP2007203297A (en
Inventor
博紀 小山
徹 齋藤
秀晶 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP2007068319A priority Critical patent/JP4538014B2/en
Publication of JP2007203297A publication Critical patent/JP2007203297A/en
Application granted granted Critical
Publication of JP4538014B2 publication Critical patent/JP4538014B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、石油留分などの炭化水素の水素化精製に用いられる触媒及びその製造方法に関し、特に、原油、タールサンド、シェールオイル、石炭液化油などの重質油を常圧蒸留または減圧蒸留することにより得られる各種の重質留分及び残渣油などを水素化脱金属するために用いられる触媒及びその製造方法に関する。   The present invention relates to a catalyst used for hydrorefining of hydrocarbons such as petroleum fractions and a method for producing the same, and in particular, heavy oil such as crude oil, tar sand, shale oil, and coal liquefied oil is subjected to atmospheric distillation or vacuum distillation. The present invention relates to a catalyst used for hydrodemetallation of various heavy fractions, residual oils, and the like obtained by the above and a method for producing the same.

常圧蒸留または減圧蒸留の残渣油などの重質油には、ニッケル、バナジウムなどの金属分が多く含まれている。この金属分は、脱硫、脱窒素、分解などのための水素化精製触媒を被毒し、触媒活性を低下させるため、予め、脱金属を目的とした水素化精製用触媒(以下、脱金属触媒ともいう)で処理を行っている。   Heavy oil such as residual oil obtained by atmospheric distillation or vacuum distillation contains a large amount of metal such as nickel and vanadium. This metal component poisons a hydrorefining catalyst for desulfurization, denitrogenation, decomposition, etc., and lowers the catalytic activity. (Also called).

かかる脱金属触媒は、同程度の中央細孔直径を有し且つ同じ活性金属種が担持されていても、脱金属活性及び金属堆積容量(触媒が活性を失うまでに細孔内に堆積可能な金属量)が大きく異なることがわかっている。これは、細孔径分布またはその他の触媒構造が相違するためであると考えられる。例えば、脱金属触媒として細孔直径60nm以下の細孔にほとんどの細孔容積を有する触媒を用いた場合、脱金属活性は高まるが、細孔入口近傍に多くの金属が堆積し、細孔入口を閉塞するために金属堆積容量が小さくなってしまう。これに対し、細孔直径60nm以下の細孔群(メソポア)を有するとともに、細孔直径60nmを超える細孔群(マクロポア)を有する触媒(バイモーダル型触媒)を用いた場合には、金属堆積容量を大きくすることができるが、相対的に脱金属活性は低下してしまう。   Such demetallization catalysts have the same central pore diameter and are supported by the same active metal species, but can be deposited in the pores before the catalyst loses activity. It is known that the amount of metal is greatly different. This is thought to be because the pore size distribution or other catalyst structures are different. For example, when a catalyst having most pore volumes in pores having a pore diameter of 60 nm or less is used as a demetallation catalyst, the metal removal activity is increased, but a large amount of metal is deposited near the pore inlet, Therefore, the metal deposition capacity is reduced. In contrast, when a catalyst having a pore group (mesopore) having a pore diameter of 60 nm or less and a pore group (macropore) having a pore diameter exceeding 60 nm (macropore) is used, metal deposition is performed. Although the capacity can be increased, the metal removal activity is relatively lowered.

従来、上記のようなバイモーダル型触媒として、特公昭60−49135号(ローヌ・プーラン・アンデュストリ)及び特開平6−88081号(テキサコ・デベロップメント・コーポレーション)が知られている。しかしながら、本発明との関係において、前者は球状担体を開示しているが、触媒が脱金属反応に用いられることは何ら言及していない。後者の文献は、全細孔容積が0.5〜0.8cm/gの担体を教示しているが、触媒の金属堆積容量は高くない。 Conventionally, Japanese Patent Publication No. 60-49135 (Rhône-Poulean Andustri) and Japanese Patent Application Laid-Open No. 6-88081 (Texaco Development Corporation) are known as such bimodal catalysts. However, in the context of the present invention, the former discloses a spherical support, but does not mention that the catalyst is used for the demetallation reaction. The latter document teaches a support with a total pore volume of 0.5 to 0.8 cm 3 / g, but the metal deposition capacity of the catalyst is not high.

すなわち、従来、脱金属活性と金属堆積容量の両方が高い水素化精製触媒は存在していなかった。   That is, heretofore, there has not been a hydrorefining catalyst having both high metal removal activity and high metal deposition capacity.

本発明の目的は、脱金属活性と金属堆積容量がともに高い水素化精製触媒及びその製造方法を提供することである。  An object of the present invention is to provide a hydrorefining catalyst having a high metal removal activity and a high metal deposition capacity, and a method for producing the same.

本発明の第1の態様に従えば、耐火性多孔質担体に水素化活性金属成分を担持した水素化精製用触媒において、
窒素吸着法により測定した中央細孔直径が8〜20nmであり;
窒素吸着法により測定した細孔容積が0.56cm/g以上であり;且つ
水銀圧入法により測定した50nm以上の細孔直径を有する細孔の細孔容積が0.32cm/g以上であることを特徴とする水素化精製用触媒が提供される。
According to the first aspect of the present invention, in a hydrorefining catalyst in which a hydrogenation active metal component is supported on a refractory porous carrier,
The median pore diameter measured by nitrogen adsorption method is 8-20 nm;
The pore volume measured by the nitrogen adsorption method is 0.56 cm 3 / g or more; and the pore volume of the pore having a pore diameter of 50 nm or more measured by the mercury intrusion method is 0.32 cm 3 / g or more. There is provided a hydrorefining catalyst characterized by that.

本発明の水素化精製用触媒は、中央細孔直径と、窒素吸着法により測定した細孔(概ね60nm以下の細孔直径を有する細孔)の細孔容積と、水銀圧入法により測定した細孔であって50nmを超える細孔直径を有する細孔の細孔容積とを前記規定範囲の値とすることにより、水素化精製、特には、水素化脱金属において、脱金属活性及び金属堆積容量をいずれも高くすることができ、それゆえ、長期間に渡って高い金属分除去率を維持することができる。例えば、本発明の水素化精製用触媒は、後に定義した条件の下で100gの新触媒に対して70g以上の有効メタル堆積量を示すことが分かった。本発明の触媒は、重質油の脱金属または脱アスファルテンに特に好適に用いられる。   The hydrorefining catalyst of the present invention comprises a central pore diameter, a pore volume measured by a nitrogen adsorption method (a pore having a pore diameter of approximately 60 nm or less), and a fine pore size measured by a mercury intrusion method. By setting the pore volume of pores having a pore diameter exceeding 50 nm to a value within the above specified range, in hydrorefining, particularly hydrodemetallation, demetalization activity and metal deposition capacity Therefore, it is possible to maintain a high metal content removal rate over a long period of time. For example, it has been found that the hydrorefining catalyst of the present invention exhibits an effective metal deposition amount of 70 g or more with respect to 100 g of the new catalyst under the conditions defined later. The catalyst of the present invention is particularly preferably used for heavy metal demetalization or deasphaltenization.

本発明の水素化精製触媒は、一層良好な脱金属活性を有するためには、水銀圧入法により測定して0.87cm/g以上の細孔容積を有するのが好ましい。また、水素化精製触媒は、充分な機械的強度が得られるという理由から、水銀圧入法により測定して1000nm以上の細孔直径を有する細孔の細孔容積が0.2cm/g以下であることが望ましい。また、本発明の触媒は、脱金属活性が高いのでかさ密度を0.52cm/g以下にすることができる。これにより、触媒が充填された反応器の荷重を減らすことができ、差圧が多少高くても反応器の耐久性を向上させ得る。 The hydrorefining catalyst of the present invention preferably has a pore volume of 0.87 cm 3 / g or more as measured by a mercury intrusion method in order to have a better metal removal activity. Moreover, the hydrorefining catalyst has a pore volume of 0.2 cm 3 / g or less having a pore diameter of 1000 nm or more as measured by a mercury intrusion method because sufficient mechanical strength is obtained. It is desirable to be. Further, since the catalyst of the present invention has a high metal removal activity, the bulk density can be reduced to 0.52 cm 3 / g or less. Thereby, the load of the reactor filled with the catalyst can be reduced, and the durability of the reactor can be improved even if the differential pressure is somewhat high.

本発明の水素化精製触媒は、水素化活性金属成分として、モリブデンを2〜6重量%含み得、ニッケルまたはコバルトを0.5〜2重量%含み得る。さらに、水素化精製触媒はリンまたはホウ素を0.5〜1.5重量%含み得る。   The hydrorefining catalyst of the present invention may contain 2 to 6% by weight of molybdenum and 0.5 to 2% by weight of nickel or cobalt as the hydrogenation active metal component. Further, the hydrorefining catalyst may contain 0.5 to 1.5% by weight of phosphorus or boron.

本発明の第2の態様に従えば、水素化活性金属を含む水素化精製用触媒の製造方法であって:γ−アルミナを主成分とし、細孔容積が0.75cm/g以上であり、平均粒子直径が10〜200μmである多孔性の原料粉体を混練して混練物を調製すること;上記混練物を成形及び焼成すること;及び、活性金属成分を混練物または焼成後の混練物に担持させることを含む水素化精製用触媒の製造方法が提供される。本発明の方法では、主成分としてγ−アルミナ粉体を用い、且つ上記規定の細孔容積及び平均粒子径を有する多孔性の粉体を原料として用いているために、脱金属活性と金属堆積容量がともに高い水素化精製触媒及びそれに用いられる触媒担体を容易に且つ低コストで製造することができる。 According to a second aspect of the present invention, there is provided a method for producing a hydrorefining catalyst containing a hydrogenation active metal, comprising γ-alumina as a main component and a pore volume of 0.75 cm 3 / g or more. Kneading a porous raw material powder having an average particle diameter of 10 to 200 μm to prepare a kneaded product; molding and firing the kneaded product; and kneading the active metal component or kneading after firing There is provided a method for producing a hydrorefining catalyst comprising supporting a product. In the method of the present invention, γ-alumina powder is used as a main component, and a porous powder having the above defined pore volume and average particle diameter is used as a raw material. A hydrorefining catalyst having a high capacity and a catalyst carrier used therefor can be easily produced at low cost.

本書において、「γ−アルミナを主成分とする」とは、原料粉体の70重量%以上がγ−アルミナであることを意味し、残部は、例えば、擬ベーマイトなどのベーマイトにし得る。触媒の脱金属活性と金属堆積容量を一層良好にするには、原料粉体の90重量%以上、特には、95重量%以上がγ−アルミナであることが好ましい。さらに、望ましくは、原料粉体のほぼ100%がγ−アルミナ粉体である。また、本書において、用語「γ−アルミナ」とは、波長0.154nmのX線回析において、2θ=46°及び67°にピークを有する遷移アルミナである。γ−アルミナ粉体は、ベーマイト粉体を焼成することによって調製するのが好適である。本明細書でベーマイト粉体とは、ベーマイトまたは擬ベーマイトの粉体を意味する。なお、擬ベーマイトは、結晶内に余分の水分子を持つα−アルミナ水和物であり、Al・XHOで表され、Xは1以上2未満である。 In this document, “having γ-alumina as a main component” means that 70% by weight or more of the raw material powder is γ-alumina, and the remainder can be boehmite such as pseudoboehmite. In order to further improve the demetalization activity and metal deposition capacity of the catalyst, 90% by weight or more, particularly 95% by weight or more of the raw material powder is preferably γ-alumina. Further, desirably, almost 100% of the raw material powder is γ-alumina powder. Further, in this document, the term “γ-alumina” is a transition alumina having peaks at 2θ = 46 ° and 67 ° in X-ray diffraction with a wavelength of 0.154 nm. The γ-alumina powder is preferably prepared by firing boehmite powder. In the present specification, boehmite powder means boehmite or pseudoboehmite powder. Pseudoboehmite is α-alumina hydrate having extra water molecules in the crystal, represented by Al 2 O 3 .XH 2 O, and X is 1 or more and less than 2.

本発明の水素化精製触媒の製造方法において、成形コスト及び触媒担体の高空隙率という観点から、例えば、成形器を用いた押出成形により成形するのが好ましい。   In the method for producing a hydrorefining catalyst of the present invention, it is preferable to perform molding by, for example, extrusion molding using a molding machine from the viewpoint of molding cost and high porosity of the catalyst carrier.

以下に本発明の水素化精製触媒及びその製造方法を具体的に説明する。   The hydrorefining catalyst of the present invention and the production method thereof will be specifically described below.

i)触媒の中央細孔直径、細孔容積及び比表面積
本発明の水素化精製触媒において、窒素吸着法により測定された細孔、例えば、1.8〜60nmの細孔直径を有する細孔の中央細孔直径は、8nm以上、例えば、8〜20nm、好ましくは8〜15nm、特に好ましくは8〜13nmである。水素化精製触媒において、窒素吸着法により測定された細孔、例えば、1.8〜60nmの細孔直径を有する細孔の細孔容積は、0.56cm/g以上、好ましくは0.56〜1.0cm/g、特に好ましくは0.56〜0.8cm/g、一層特に好ましくは0.62〜0.8cm/gである。本発明の触媒の比表面積は、150m/g以上、好ましくは170〜300m/g、特に好ましくは180〜280m/gである。上記中央細孔直径、細孔容積及び比表面積は、窒素吸着法により測定される。中央細孔直径は、窒素ガスの脱離過程における相対圧0.967の条件で得られる窒素ガスの吸着量を液体として換算した体積の値を細孔容積(V)とし、BJH法によって算出された細孔容積と細孔直径の関係から、細孔直径の大きい側からの累積細孔容積が細孔容積Vの半分(V/2)となる細孔直径として測定することができる。窒素吸着法により細孔直径約2〜60nmの細孔分布を測定することができる。なお、BJH法は、Journal of The American Chemical Society,vol.73,p.373〜(1951)に開示されている。
i) Central pore diameter, pore volume and specific surface area of catalyst In the hydrorefining catalyst of the present invention, pores measured by a nitrogen adsorption method, for example, pores having a pore diameter of 1.8 to 60 nm are used. The central pore diameter is 8 nm or more, for example, 8 to 20 nm, preferably 8 to 15 nm, particularly preferably 8 to 13 nm. In the hydrorefining catalyst, the pore volume of the pores measured by the nitrogen adsorption method, for example, pores having a pore diameter of 1.8 to 60 nm is 0.56 cm 3 / g or more, preferably 0.56. It is -1.0cm < 3 > / g, Most preferably, it is 0.56-0.8cm < 3 > / g, More preferably, it is 0.62-0.8cm < 3 > / g. The specific surface area of the catalyst of the present invention is 150 m 2 / g or more, preferably 170 to 300 m 2 / g, particularly preferably 180 to 280 m 2 / g. The central pore diameter, pore volume and specific surface area are measured by a nitrogen adsorption method. The median pore diameter is calculated by the BJH method with the volume value of the nitrogen gas adsorption amount obtained under the condition of a relative pressure of 0.967 in the nitrogen gas desorption process converted as a liquid and the pore volume (V). From the relationship between the pore volume and the pore diameter, the cumulative pore volume from the larger pore diameter side can be measured as the pore diameter that is half the pore volume V (V / 2). A pore distribution having a pore diameter of about 2 to 60 nm can be measured by a nitrogen adsorption method. The BJH method is described in Journal of The American Chemical Society, vol. 73, p. 373- (1951).

本発明の水素化精製触媒において、水銀圧入法により測定した細孔の細孔容積は、0.87cm/g以上、好ましくは0.87〜1.1cm/g、特に好ましくは0.88〜1.05cm/gである。また、水銀圧入法により測定した細孔の内、1000nm以上の細孔直径を有する細孔の細孔容積は、0.2cm/g以下であることが好ましい。なお、水銀圧入法による測定は、水銀の接触角度140°、表面張力480dyne/cmとし、2〜4225kg/cm(30.4〜60000psia)の範囲で行った。 In the hydrorefining catalyst of the present invention, the pore volume measured by mercury porosimetry is 0.87 cm 3 / g or more, preferably 0.87 to 1.1 cm 3 / g, particularly preferably 0.88. -1.05 cm < 3 > / g. Of the pores measured by mercury porosimetry, the pore volume of pores having a pore diameter of 1000 nm or more is preferably 0.2 cm 3 / g or less. The measurement by the mercury intrusion method was performed in a range of 2 to 4225 kg / cm 2 (30.4 to 60000 psia) with a mercury contact angle of 140 ° and a surface tension of 480 dyne / cm.

本発明において、細孔容積の測定に窒素吸着法と水銀圧入法を用いたのは、当業界で知られたように、前者の方法は細孔壁に吸着した窒素量を測定しているために約60nm以下の比較的小さい細孔直径の細孔の細孔容積しか測定することができず、一方、後者では、細孔に充填された水銀の容量を測定するために数nm以上の広範囲の細孔直径を有する細孔を測定することができるからである。   In the present invention, the nitrogen adsorption method and the mercury intrusion method were used to measure the pore volume because the former method measured the amount of nitrogen adsorbed on the pore wall, as known in the art. Can measure only the pore volume of pores with a relatively small pore diameter of about 60 nm or less, while the latter has a wide range of several nm or more to measure the capacity of mercury filled in the pores. This is because it is possible to measure pores having a pore diameter of.

ii)触媒のかさ密度
本発明による触媒のかさ密度は、0.52cm/g以下、特には0.40〜0.52cm/g、さらには0.42〜0.52cm/gが好ましい。これを超えた場合には、脱金属性能が相対的に低下する。本発明の触媒を得るために用いられる触媒用担体のかさ密度は、0.50cm/g以下、特には、0.35〜0.50cm/gが好ましい。かさ密度は、目盛りのついた100cmのシリンダーに触媒又は担体を充填し、100回振動を与えた後の見かけ上の体積から求めることができる。
ii) Bulk density of the catalyst The bulk density of the catalyst according to the present invention is preferably 0.52 cm 3 / g or less, particularly preferably 0.40 to 0.52 cm 3 / g, more preferably 0.42 to 0.52 cm 3 / g. . When this is exceeded, the metal removal performance is relatively lowered. The bulk density of the catalyst carrier used for obtaining the catalyst of the present invention is preferably 0.50 cm 3 / g or less, particularly preferably 0.35 to 0.50 cm 3 / g. The bulk density can be determined from the apparent volume after a 100 cm 3 cylinder with a scale is filled with a catalyst or a support and subjected to vibration 100 times.

iii)耐火性多孔質担体
本発明による触媒の好ましい担体は、γ−アルミナを主成分とし、細孔容積が0.75cm/g以上であり、平均粒子直径が10〜200μmである多孔性の原料粉体を混練して混練物を調製し、この混練物を成形・焼成して製造することができる。このγ−アルミナは、触媒重量に対し70%以上、特には80%以上含有されていることが好ましい。この触媒は、γ−アルミナ以外にシリカ−アルミナ、ゼオライト、ボリア、チタニア、ジルコニア、マグネシアまたはその他の複合酸化物を含んでもよい。γ−アルミナを主成分として用いるのは、得られる触媒担体がγ−アルミナであれば高活性となるからである。
iii) Refractory porous support A preferred support of the catalyst according to the present invention is a porous support having γ-alumina as a main component, a pore volume of 0.75 cm 3 / g or more, and an average particle diameter of 10 to 200 μm. A kneaded material can be prepared by kneading the raw material powder, and the kneaded material can be formed and fired for production. This γ-alumina is preferably contained in an amount of 70% or more, particularly 80% or more based on the catalyst weight. The catalyst may contain silica-alumina, zeolite, boria, titania, zirconia, magnesia or other complex oxides in addition to γ-alumina. The reason why γ-alumina is used as a main component is that if the obtained catalyst carrier is γ-alumina, the activity becomes high.

担体の製造に用いられる多孔性の原料粉体は、γ−アルミナを主成分とし、細孔容積が0.75cm/g以上、特には0.9〜1.3cm/gであり、平均粒子直径が10〜200μm、特には10〜150μm、さらには30〜150μmであることが好ましい。なお、ここでいう細孔容積の値は、窒素ガスの脱離過程における相対圧0.967の条件で得られる窒素ガスの吸着量を液体として換算した体積の値として測定できる。また、ここでいう平均粒子直径とは、湿式のレーザー光散乱法で測定される粒度分布のメジアン直径として測定できる。 The porous raw material powder used for the production of the carrier is mainly composed of γ-alumina, and has a pore volume of 0.75 cm 3 / g or more, particularly 0.9 to 1.3 cm 3 / g, average The particle diameter is preferably 10 to 200 μm, particularly 10 to 150 μm, and more preferably 30 to 150 μm. The value of the pore volume mentioned here can be measured as a volume value obtained by converting the adsorption amount of nitrogen gas obtained under the condition of a relative pressure of 0.967 in the desorption process of nitrogen gas as a liquid. The average particle diameter here can be measured as the median diameter of the particle size distribution measured by a wet laser light scattering method.

細孔容積が0.75cm/g未満または平均粒子直径10μm未満の原料粉体を用いると、混練物の可塑性が悪く、これを成形すると成形体の構造に欠陥が生じ、触媒の摩耗強度が低くなる。このような触媒を反応器に充填すると、充填の際に粉が生成し、触媒の空隙を埋めて、差圧増大の原因となる。平均粒子直径が200μmを越える原料粉体を用いると、触媒の破壊強度が小さくなり、反応器に充填後、触媒自体の荷重により破壊してしまう。 If a raw material powder having a pore volume of less than 0.75 cm 3 / g or an average particle diameter of less than 10 μm is used, the plasticity of the kneaded product is poor, and if this is molded, defects occur in the structure of the molded product and the wear strength of the catalyst is reduced. Lower. When such a catalyst is filled in the reactor, powder is generated during filling, filling the voids of the catalyst and causing an increase in the differential pressure. When the raw material powder having an average particle diameter exceeding 200 μm is used, the breaking strength of the catalyst is reduced, and after the reactor is filled, it is broken by the load of the catalyst itself.

この原料粉体には、シリカ−アルミナ、ゼオライト、ボリア、チタニア、ジルコニア、マグネシアまたはその他の複合酸化物を含むことができるが、原料粉体の内、担体の重量に対し、70%以上、特には80%以上をγ−アルミナとすることが好ましい。細孔直径2〜60nmの細孔分布における中央細孔直径が8〜15nmであり、比表面積が230〜330m/gであることが、高い触媒活性を得るために好ましい。原料粉体の主成分となるγ−アルミナは、擬ベーマイト粉体を450〜650℃で焼成したものであることが好ましい。 This raw material powder can contain silica-alumina, zeolite, boria, titania, zirconia, magnesia or other complex oxides, but 70% or more, especially with respect to the weight of the carrier in the raw material powder. 80% or more is preferably γ-alumina. In order to obtain a high catalytic activity, it is preferable that the median pore diameter in the pore distribution having a pore diameter of 2 to 60 nm is 8 to 15 nm and the specific surface area is 230 to 330 m 2 / g. The γ-alumina that is the main component of the raw material powder is preferably one obtained by firing pseudo boehmite powder at 450 to 650 ° C.

iv)混練
混練は、一般に触媒調製に用いられている混練機により行うことができる。上述の原料粉体に水を加えて投入し、攪拌羽根で混合する方法が好適に用いられる。通常、混練の際には水を加えるが、加える液体としては、アルコールやケトンでもよい。また、硝酸、酢酸、蟻酸などの酸やアンモニアなどの塩基、有機化合物、界面活性剤、活性成分等を加えて混練してもよく、特には、水溶性セルロースエーテルなどの有機化合物からなるバインダー成分を原料粉体に対して0.2〜5重量%加えることが好ましい。混練時間及び混練温度は、適宜選択できるが、混線物を直径33mm、高さ40mmの円柱状の試験体にし、重さ1192gの円盤(直径120mm、高さ7.5mm)を試験体の底面から186mmの高さから落下させ(Pfefferkornの可塑性試験機;セラミックスの製造プロセス−粉末調整と成形−、窯業協会編集委員会講座小委員会編、社団法人窯業協会、1984)、変形した試験体の高さ(以下、PF値という)が、15mmから25mmとなるまで混練することが好ましい。
iv) Kneading Kneading can be performed by a kneader generally used for catalyst preparation. A method in which water is added to the raw material powder described above and then mixed with a stirring blade is preferably used. Usually, water is added at the time of kneading, but the liquid to be added may be alcohol or ketone. Further, it may be kneaded by adding an acid such as nitric acid, acetic acid or formic acid, a base such as ammonia, an organic compound, a surfactant, an active ingredient, etc., and in particular, a binder component comprising an organic compound such as a water-soluble cellulose ether. Is preferably added in an amount of 0.2 to 5% by weight based on the raw material powder. The kneading time and kneading temperature can be selected as appropriate, but the mixed line is made into a cylindrical specimen having a diameter of 33 mm and a height of 40 mm, and a disk having a weight of 1192 g (diameter of 120 mm and height of 7.5 mm) is taken from the bottom surface of the specimen. Dropped from a height of 186 mm (Pfefferkorn plasticity testing machine; ceramic manufacturing process-powder preparation and molding-edited by the Ceramic Industry Association Editorial Committee Lecture Committee, Ceramic Association of Japan, 1984) It is preferable to knead until the thickness (hereinafter referred to as PF value) is 15 mm to 25 mm.

v)成形・焼成
成形は、プランジャー式押出機、スクリュー式押出機などの装置を用いて、容易にペレット状、ハニカム状などの形状とすることができる。本発明においては、プランジャー式押出機が好適である。通常、0.5〜6mm径、特には、0.5〜5mm径の円柱状、中空円筒状、断面が三葉または四葉の柱状などの形状の成形体が用いられる。成形した後、常温〜150℃で、特には100〜140℃で乾燥した後、350〜900℃で0.5時間以上、特には500〜850℃で0.5〜5時間焼成することが好ましい。
v) Molding / Firing Molding can be easily formed into a pellet shape, a honeycomb shape, or the like using an apparatus such as a plunger type extruder or a screw type extruder. In the present invention, a plunger type extruder is suitable. Usually, a molded body having a shape of a column having a diameter of 0.5 to 6 mm, particularly a column having a diameter of 0.5 to 5 mm, a hollow cylinder, and a three-leaf or four-leaf cross section is used. After molding, it is preferably dried at room temperature to 150 ° C., particularly 100 to 140 ° C., and then calcined at 350 to 900 ° C. for 0.5 hour or more, particularly 500 to 850 ° C. for 0.5 to 5 hours. .

vi)水素化活性金属成分
水素化活性金属成分としては、第6族、第8族、第9族及び第10族元素を、特には、モリブデン、タングステン、ニッケル、コバルトの中から1種、あるいは2種以上組み合わせて用いることが好適である。これらの元素は、触媒中に金属、酸化物あるいは硫化物状態で含有させることが好ましい。これらの元素の含有量は、金属重量の合計として触媒全体中に0.1重量%〜20重量%の範囲が好ましく、特には、1重量%〜10重量%の範囲が好ましい。
vi) Hydrogenation active metal component As the hydrogenation active metal component, Group 6, Group 8, Group 9 and Group 10 elements, in particular, one of molybdenum, tungsten, nickel and cobalt, or It is preferable to use a combination of two or more. These elements are preferably contained in the catalyst in a metal, oxide or sulfide state. The content of these elements is preferably in the range of 0.1% by weight to 20% by weight, particularly preferably in the range of 1% by weight to 10% by weight, based on the total weight of the metal in the entire catalyst.

水素化活性金属成分を触媒中に含有させる方法としては、担持法、練り込み法などを用いることができる。少なくとも1種類の水素化活性金属成分を練り込み法により含有させることで、脱金属活性を高めることができる。練り込み法としては、水素化活性金属成分を予め原料粉体に含ませておいてもよいし、原料粉体とともに混練して練り込んでもよい。   As a method for containing the hydrogenation active metal component in the catalyst, a supporting method, a kneading method, or the like can be used. By including at least one hydrogenation active metal component by a kneading method, the metal removal activity can be enhanced. As the kneading method, the hydrogenation active metal component may be previously contained in the raw material powder, or may be kneaded and kneaded together with the raw material powder.

また、水素化活性金属成分を触媒担体に担持してもよく、担持する方法としては、通常用いられる含浸法、例えば、pore−filling法、加熱含浸法、真空含浸法等、浸漬法等の公知の手法を用いることができる。金属成分を担持した後、80〜200℃の温度で10分〜24時間乾燥し、400〜600℃、特には、450〜550℃の温度で15分〜10時間焼成することが好ましい。   In addition, the hydrogenation active metal component may be supported on a catalyst carrier, and as a method for supporting, a commonly used impregnation method, for example, a pore-filling method, a heat impregnation method, a vacuum impregnation method, a dipping method, or the like is known. Can be used. After supporting the metal component, it is preferable to dry at a temperature of 80 to 200 ° C. for 10 minutes to 24 hours and to fire at 400 to 600 ° C., particularly at a temperature of 450 to 550 ° C. for 15 minutes to 10 hours.

vii)他の活性成分
本発明の触媒には、リンおよび/またはホウ素の酸化物を触媒中に元素重量として0.1重量%〜20重量%、特には、0.2重量%〜5重量%、一層特には0.5重量%〜1.5重量%加えることが好ましく、これにより、脱金属活性が向上する。
vii) Other active ingredients The catalyst of the present invention contains phosphorus and / or boron oxides in an amount of 0.1 to 20% by weight, in particular 0.2 to 5% by weight, in terms of elemental weight in the catalyst. More preferably, it is preferably added in an amount of 0.5 to 1.5% by weight, thereby improving the metal removal activity.

viii)水素化精製の対象物
本発明の触媒は、沸点が350℃以上の留分を含む重質油、すなわち、原油、タールサンド、シェールオイルあるいは石炭液化油等を常圧蒸留または減圧蒸留することにより得られる各種の重質留分や残渣油、あるいはこれらの分解、異性化、改質、溶剤抽出等の処理を行った重質油に、好ましく用いられるが、特には、減圧残渣油、常圧残渣油など金属分を多く含む、具体的には、ニッケルまたはバナジウムなどを金属重量として45重量ppm以上、特に、50重量ppm以上、さらには60重量ppm以上含む重質油の処理に好適である。また、アスファルテン分を3%以上含む重質油の処理に好適である。なお、代表的なアスファルテン分の測定は、アメリカ鉱山局法(Anal. Chem.,Vol.20,p460−,(1968))により規定されている。
viii) Object of hydrorefining The catalyst of the present invention distills heavy oil containing a fraction having a boiling point of 350 ° C. or higher, that is, crude oil, tar sand, shale oil, coal liquefied oil, or the like at atmospheric pressure or reduced pressure. It is preferably used for various heavy fractions and residual oils obtained by the above, or heavy oils that have undergone treatments such as decomposition, isomerization, modification, solvent extraction, etc. Suitable for treatment of heavy oil containing a large amount of metal such as atmospheric residue oil, specifically, nickel or vanadium as metal weight of 45 ppm by weight or more, especially 50 ppm by weight or more, and even 60 ppm by weight or more It is. Moreover, it is suitable for processing heavy oil containing 3% or more of asphaltenes. In addition, the measurement of typical asphaltene content is prescribed | regulated by the American Mining Bureau method (Anal. Chem., Vol.20, p460-, (1968)).

ix)水素化精製条件
本発明の触媒を用いて重質油を水素化精製する場合の好ましい条件は、反応温度300〜450℃、水素分圧30〜250kg/cm、液空間速度0.1〜10hr−1、水素対重質油の比100〜4000L/L、より好ましくは、反応温度350〜420℃、水素分圧80〜200kg/cm、液空間速度0.15〜1.0hr−1、水素対重質油の比500〜1000L/Lである。
ix) Hydrorefining conditions The preferred conditions for hydrorefining heavy oil using the catalyst of the present invention are as follows: reaction temperature 300 to 450 ° C., hydrogen partial pressure 30 to 250 kg / cm 2 , liquid space velocity 0.1 ~10Hr -1, the ratio 100~4000L / L of hydrogen to heavy oil, and more preferably, the reaction temperature three hundred and fifty to four hundred and twenty ° C., a hydrogen partial pressure 80~200kg / cm 2, a liquid hourly space velocity 0.15~1.0Hr - 1. Hydrogen to heavy oil ratio of 500 to 1000 L / L.

以下、本発明の水素化精製触媒の製造方法及び触媒を用いた原油の脱金属活性試験について実施例及び比較例を用いて具体的に説明する。   Hereinafter, the method for producing the hydrorefining catalyst of the present invention and the crude metal demetallation activity test using the catalyst will be described in detail with reference to Examples and Comparative Examples.

(1)触媒の調製
実施例1
〔触媒3056の調製〕
市販の擬ベーマイトからなる粉体Aを600℃で焼成し、γ−アルミナからなる粉体Gを作製した。この粉体Gの物性は、平均粒子直径が101μm、比表面積が268m/g、細孔容積が1.01cm/g、中央細孔直径が12nmであった。ここに示した細孔特性は、Micromeritics社製ASAP2400型測定機を用いて測定した。平均粒子直径は、日機装(株)MICROTRAC粒度分析計を用い、湿式法で測定した。この分析計は、試料を水中に分散させ、レーザー光を照射し、その前方散乱光により粒度分析を行う。
(1) Preparation of catalyst Example 1
[Preparation of catalyst 3056]
A powder A made of commercially available pseudoboehmite was fired at 600 ° C. to prepare a powder G made of γ-alumina. The physical properties of this powder G were an average particle diameter of 101 μm, a specific surface area of 268 m 2 / g, a pore volume of 1.01 cm 3 / g, and a central pore diameter of 12 nm. The pore characteristics shown here were measured using an ASAP2400 type measuring machine manufactured by Micromeritics. The average particle diameter was measured by a wet method using a Nikkiso Co., Ltd. MICROTRAC particle size analyzer. This analyzer disperses a sample in water, irradiates a laser beam, and performs a particle size analysis using the forward scattered light.

次いで、得られた粉体G1500gに、イオン交換水2058g、水溶性セルロースエーテル15gを加えて混練を行った。スクリュー式押し出し成形機を用いて、混練物を直径1.6mmの円形開口から押し出し、円柱状の成形物とした。この成形物を、乾燥機を用いて130℃で15時間乾燥させた後、空気の気流下で800℃で1時間焼成を行い、担体とした。   Next, 2058 g of ion-exchanged water and 15 g of water-soluble cellulose ether were added to 1500 g of the obtained powder G and kneaded. The kneaded product was extruded from a circular opening having a diameter of 1.6 mm using a screw-type extrusion molding machine to obtain a cylindrical molded product. The molded product was dried at 130 ° C. for 15 hours using a dryer, and then fired at 800 ° C. for 1 hour in an air stream to obtain a carrier.

この担体に、モリブデン酸アンモニウム水溶液からなる担持液をスプレー法で含浸し、130℃で20時間乾燥した後、硝酸ニッケル水溶液からなる担持液を再度スプレー法で含浸し、130℃で20時間乾燥し、空気の気流下で450℃で25分間焼成を行い、モリブデンを3.0重量%、ニッケルを1.0重量%含有する触媒3056を調製した。   The carrier was impregnated with a supporting liquid composed of an ammonium molybdate aqueous solution by a spray method and dried at 130 ° C. for 20 hours, and then impregnated with a supporting liquid composed of an aqueous nickel nitrate solution again by a spray method and dried at 130 ° C. for 20 hours. The catalyst 3056 containing 3.0% by weight of molybdenum and 1.0% by weight of nickel was prepared by firing at 450 ° C. for 25 minutes under an air stream.

実施例2
〔触媒3066の調製〕
実施例1で調製した粉体G1500gに、イオン交換水2177g、水溶性セルロースエーテル15gを加えて混練を行った。PF値が20mmになるまで混練した。次いで、プランジャー式押し出し成形機を用いて成形し、実施例1と同様の条件で焼成して担体とした。得られた担体に、モリブデン酸アンモニウム、硝酸ニッケル及びリン酸の水溶液からなる担持液をスプレー法で含浸し、130℃で20時間乾燥し、空気の気流下で450℃で25分間焼成を行い、モリブデンを3.0重量%、ニッケルを1.0重量%、リンを0.6重量%含有する触媒3066を調製した。
Example 2
[Preparation of catalyst 3066]
To 1500 g of the powder G prepared in Example 1, 2177 g of ion-exchanged water and 15 g of water-soluble cellulose ether were added and kneaded. The kneading was continued until the PF value reached 20 mm. Subsequently, it shape | molded using the plunger type | mold extrusion molding machine, was baked on the conditions similar to Example 1, and was set as the support | carrier. The resulting support was impregnated with a support liquid composed of an aqueous solution of ammonium molybdate, nickel nitrate and phosphoric acid by a spray method, dried at 130 ° C. for 20 hours, and baked at 450 ° C. for 25 minutes in an air stream. A catalyst 3066 containing 3.0% by weight of molybdenum, 1.0% by weight of nickel and 0.6% by weight of phosphorus was prepared.

実施例3
〔触媒3070の調製〕
実施例1と同様にして調製した担体に、モリブデン酸アンモニウム及びホウ酸の水溶液からなる担持液をスプレー法で含浸し、130℃で20時間乾燥した後、硝酸ニッケル水溶液からなる担持液を再度スプレー法で含浸し、130℃で20時間乾燥し、空気の気流下で450℃で25分間焼成を行い、モリブデンを3.0重量%、ニッケルを1.0重量%、ホウ素を1.0重量%含有する触媒3070を調製した。
Example 3
[Preparation of catalyst 3070]
A carrier prepared in the same manner as in Example 1 was impregnated with a supporting liquid composed of an aqueous solution of ammonium molybdate and boric acid by a spray method, dried at 130 ° C. for 20 hours, and then sprayed again with a supporting liquid composed of an aqueous nickel nitrate solution. Impregnated by the method, dried at 130 ° C. for 20 hours, fired at 450 ° C. for 25 minutes in an air stream, molybdenum 3.0% by weight, nickel 1.0% by weight, boron 1.0% by weight A containing catalyst 3070 was prepared.

実施例4
〔触媒3057の調製〕
粉体G1500gに、モリブデン酸アンモニウム水溶液2062g、水溶性セルロースエーテル7gを加えて混練を行った。スクリュー式押し出し成形機を用いて、混練物を直径1.6mmの円形開口から押し出し、円柱状の成形物とした。この成形物を、乾燥機を用いて130℃で15時間乾燥させた後、空気の気流下で600℃で1時間焼成を行い、担体とした。
Example 4
[Preparation of catalyst 3057]
Kneading was carried out by adding 2062 g of ammonium molybdate aqueous solution and 7 g of water-soluble cellulose ether to 1500 g of the powder G. The kneaded product was extruded from a circular opening having a diameter of 1.6 mm using a screw-type extrusion molding machine to obtain a cylindrical molded product. The molded product was dried at 130 ° C. for 15 hours using a dryer, and then fired at 600 ° C. for 1 hour in an air stream to obtain a carrier.

この担体に、硝酸ニッケル水溶液からなる担持液をスプレー法で含浸し、130℃で20時間乾燥した後、空気の気流下で450℃で25分間焼成を行い、モリブデンを3.0重量%、ニッケルを1.0重量%含有する触媒3057を調製した。   This carrier was impregnated with a carrier solution composed of an aqueous nickel nitrate solution by spraying, dried at 130 ° C. for 20 hours, and then fired at 450 ° C. for 25 minutes in an air stream to obtain 3.0 wt% molybdenum, nickel Catalyst 3057 containing 1.0 wt% was prepared.

実施例5
〔触媒3058の調製〕
乾燥後の成形物を空気の気流下で800℃で1時間焼成を行って担体とした以外は、実施例4と同様にして触媒を調製し、モリブデンを3.0重量%、ニッケルを1.0重量%含有する触媒3058を得た。
Example 5
[Preparation of catalyst 3058]
A catalyst was prepared in the same manner as in Example 4 except that the dried molded product was calcined at 800 ° C. for 1 hour under an air stream to prepare a carrier, and 3.0% by weight of molybdenum and 1.% of nickel. A catalyst 3058 containing 0% by weight was obtained.

実施例6
〔触媒3009の調製〕
市販の擬ベーマイトからなる粉体Bを600℃で焼成し、γ−アルミナからなる粉体Hを作製した。この粉体Hの物性は、平均粒子直径が12μm、比表面積が236m2/g、細孔容積が0.82cm/g、中央細孔直径が12nmであった。粉体H1137g及び擬ベーマイトからなる粉体E363gに、イオン交換水1627gを加えて混練を行った。スクリュー式押し出し成形機を用いて、混練物を直径1.6mmの円形開口から押し出し、円柱状の成形物とした。この成形物を、乾燥機を用いて130℃で15時間乾燥させた後、空気の気流下で600℃で1時間焼成を行い、担体とした。
Example 6
[Preparation of catalyst 3009]
A powder B made of commercially available pseudoboehmite was fired at 600 ° C. to prepare a powder H made of γ-alumina. The physical properties of this powder H were an average particle diameter of 12 μm, a specific surface area of 236 m 2 / g, a pore volume of 0.82 cm 3 / g, and a central pore diameter of 12 nm. To 1363 g of powder H and 363 g of powder E consisting of pseudoboehmite, 1627 g of ion-exchanged water was added and kneaded. The kneaded product was extruded from a circular opening having a diameter of 1.6 mm using a screw-type extrusion molding machine to obtain a cylindrical molded product. The molded product was dried at 130 ° C. for 15 hours using a dryer, and then fired at 600 ° C. for 1 hour in an air stream to obtain a carrier.

この担体を用いて、実施例1と同様にして触媒を調製し、モリブデンを3.0重量%、ニッケルを1.0重量%含有する触媒3009を得た。   Using this carrier, a catalyst was prepared in the same manner as in Example 1 to obtain a catalyst 3009 containing 3.0% by weight of molybdenum and 1.0% by weight of nickel.

実施例7
〔触媒3032の調製〕
乾燥後の成形物を空気の気流下で800℃で1時間焼成を行った以外は、実施例6と同様にして担体を調製した。得られた担体を用いて、実施例2(触媒3066)と同様にして触媒を調製し、モリブデンを3.0重量%、ニッケルを1.0重量%、リンを1.0重量%含有する触媒3032を得た。
Example 7
[Preparation of catalyst 3032]
A carrier was prepared in the same manner as in Example 6 except that the dried molded product was baked at 800 ° C. for 1 hour under an air stream. Using the obtained carrier, a catalyst was prepared in the same manner as in Example 2 (Catalyst 3066), and a catalyst containing 3.0% by weight of molybdenum, 1.0% by weight of nickel and 1.0% by weight of phosphorus 3032 was obtained.

実施例8
〔触媒3076の調製〕
PF値が19mmとなるまで混練した混練物を直径1.3mmの円形開口から押し出した以外は、実施例2(触媒3066)と同様にして触媒を調製し、モリブデンを3.0重量%、ニッケルを1.0重量%、リンを0.6重量%含有する触媒3076を得た。
Example 8
[Preparation of catalyst 3076]
A catalyst was prepared in the same manner as in Example 2 (Catalyst 3066) except that the kneaded material kneaded until the PF value reached 19 mm was extruded from a circular opening having a diameter of 1.3 mm. A catalyst 3076 containing 1.0 wt% and 0.6 wt% phosphorus was obtained.

実施例9
〔触媒3087の調製〕
PF値が16mmとなるまで混練した混練物を直径1.7mmの四葉状開口から押し出した以外は、実施例2(触媒3066)と同様にして触媒を調製し、モリブデンを3.0重量%、ニッケルを1.0重量%、リンを0.6重量%、それぞれ含有する触媒3087を得た。
Example 9
[Preparation of catalyst 3087]
A catalyst was prepared in the same manner as in Example 2 (Catalyst 3066) except that the kneaded material kneaded until the PF value reached 16 mm was extruded from a four-leaf opening having a diameter of 1.7 mm. A catalyst 3087 containing 1.0% by weight of nickel and 0.6% by weight of phosphorus was obtained.

比較例1
〔触媒3043の調製〕
市販の擬ベーマイトからなる粉体Cを600℃で焼成し、γ−アルミナからなる粉体Iを調製した。この粉体Iの物性は、平均粒子直径が17μm、比表面積が256m/g、細孔容積が0.70cm/g、中央細孔直径が10nmであった。
Comparative Example 1
[Preparation of catalyst 3043]
Powder C made of commercially available pseudoboehmite was fired at 600 ° C. to prepare Powder I made of γ-alumina. As for the physical properties of this powder I, the average particle diameter was 17 μm, the specific surface area was 256 m 2 / g, the pore volume was 0.70 cm 3 / g, and the central pore diameter was 10 nm.

粉体Iを用いて、空気の気流下で600℃で1時間焼成して担体とした以外は、実施例1(触媒3056)と同様にして触媒を調製し、モリブデンを3.0重量%、ニッケルを1.0重量%含有する触媒3043を得た。   A catalyst was prepared using the powder I in the same manner as in Example 1 (Catalyst 3056) except that it was calcined at 600 ° C. for 1 hour under an air stream to prepare a carrier. A catalyst 3043 containing 1.0% by weight of nickel was obtained.

比較例2
〔触媒3010の調製〕
実施例6で用いた粉体H8059及び粉体E695gに対して、イオン交換水1589gを加えて混練を行った。次いで、実施例6(触媒3009)と同様にして触媒を調製し、モリブデンを3.0重量%、ニッケルを1.0重量%含有する触媒3010を得た。
Comparative Example 2
[Preparation of catalyst 3010]
To the powder H8059 and the powder E695 g used in Example 6, 1589 g of ion-exchanged water was added and kneaded. Next, a catalyst was prepared in the same manner as in Example 6 (Catalyst 3009) to obtain a catalyst 3010 containing 3.0% by weight of molybdenum and 1.0% by weight of nickel.

比較例3
〔触媒3093の調製〕
粉体G1500gに、イオン交換水2068g、水溶性セルロースエーテル15gを加え、PF値が25mmになるまで混練した。次いで、実施例2(触媒3066)と同様にして触媒を調製し、モリブデンを3.0重量%、ニッケルを1.0重量%、リンを0.6重量%含有する触媒3093を得た。
Comparative Example 3
[Preparation of catalyst 3093]
To 1,500 g of powder G, 2068 g of ion-exchanged water and 15 g of water-soluble cellulose ether were added and kneaded until the PF value became 25 mm. Next, a catalyst was prepared in the same manner as in Example 2 (Catalyst 3066) to obtain a catalyst 3093 containing 3.0% by weight of molybdenum, 1.0% by weight of nickel and 0.6% by weight of phosphorus.

比較例4
〔触媒3041の調製〕
1456gの粉体I及び市販の擬ベーマイトからなる粉体F44gに、イオン交換水431g、硝酸水溶液1000g、ポリビニルアルコール水溶液255gを加えて混練を行った。次いで、比較例1(触媒3043)と同様にして触媒を調製し、モリブデンを3.0重量%、ニッケルを1.0重量%含有する触媒3041を得た。
Comparative Example 4
[Preparation of catalyst 3041]
Kneading was conducted by adding 431 g of ion-exchanged water, 1000 g of nitric acid aqueous solution, and 255 g of polyvinyl alcohol aqueous solution to 44 g of powder F consisting of 1456 g of powder I and commercially available pseudoboehmite. Next, a catalyst was prepared in the same manner as in Comparative Example 1 (Catalyst 3043) to obtain a catalyst 3041 containing 3.0% by weight of molybdenum and 1.0% by weight of nickel.

比較例5
〔触媒3021の調製〕
市販の擬ベーマイトからなる粉体Dを600℃で焼成し、γ−アルミナからなる粉体Jを調製した。この粉体Jの物性は、平均粒子直径が66μm、比表面積が299m/g、細孔容積が0.92cm/g、中央細孔直径が11nmであった。
Comparative Example 5
[Preparation of catalyst 3021]
Commercially available powder D made of pseudoboehmite was fired at 600 ° C. to prepare powder J made of γ-alumina. The physical properties of the powder J were an average particle diameter of 66 μm, a specific surface area of 299 m 2 / g, a pore volume of 0.92 cm 3 / g, and a central pore diameter of 11 nm.

粉体J1500gに、イオン交換水854g、硝酸水溶液752gを加えて混練を行った。次いで、プランジャー式押し出し成形機を用いて成形する以外は、比較例1(触媒3043)と同様にして触媒を調製し、モリブデンを3.0重量%、ニッケルを1.0重量%含有する触媒3021を得た。   Kneading was performed by adding 854 g of ion-exchanged water and 752 g of an aqueous nitric acid solution to 1500 g of the powder J. Next, a catalyst was prepared in the same manner as in Comparative Example 1 (Catalyst 3043) except that it was molded using a plunger type extrusion molding machine, and a catalyst containing 3.0% by weight of molybdenum and 1.0% by weight of nickel. 3021 was obtained.

比較例6
〔触媒3023の調製〕
粉体J1162g及び粉体E338gに、イオン交換水1381gを加えて混練を行った。次いで、比較例1(触媒3043)と同様にして触媒を調製し、モリブデンを3.0重量%、ニッケルを1.0重量%含有する触媒3023を得た。
Comparative Example 6
[Preparation of catalyst 3023]
To the powder J1162g and the powder E338g, 1381 g of ion-exchanged water was added and kneaded. Next, a catalyst was prepared in the same manner as in Comparative Example 1 (Catalyst 3043) to obtain Catalyst 3023 containing 3.0% by weight of molybdenum and 1.0% by weight of nickel.

比較例7
〔触媒3025の調製〕
粉体J1500gに、イオン交換水792g及び硝酸水溶液753gを加えて混練を行った。次いで、プランジャー式押し出し成形機を用いて成形する以外は、実施例1(触媒3056)と同様にして触媒を調製して、モリブデンを6.0重量%、ニッケルを1.5重量%含有する触媒3025を得た。
Comparative Example 7
[Preparation of catalyst 3025]
Kneading was performed by adding 792 g of ion-exchanged water and 753 g of an aqueous nitric acid solution to 1500 g of the powder J. Next, a catalyst was prepared in the same manner as in Example 1 (Catalyst 3056) except that it was molded using a plunger type extrusion molding machine, and contained 6.0% by weight of molybdenum and 1.5% by weight of nickel. Catalyst 3025 was obtained.

比較例8
〔触媒HOP606〕
市販されているバイモーダル触媒HOP606(オリエントキャタリスト製)を用いた。
Comparative Example 8
[Catalyst HOP606]
A commercially available bimodal catalyst HOP606 (manufactured by Orient Catalyst) was used.

比較例9
〔触媒3069の調製〕
粉体Iを粉体Gの代わりに用いた以外は、実施例2(触媒3066)と同様にして触媒を調製し、モリブデンを3.0重量%、ニッケルを1.0重量%、リンを0.6重量%それぞれ含有する触媒3069を得た。
Comparative Example 9
[Preparation of catalyst 3069]
A catalyst was prepared in the same manner as in Example 2 (Catalyst 3066) except that Powder I was used instead of Powder G. Molybdenum was 3.0% by weight, nickel was 1.0% by weight, and phosphorus was 0%. A catalyst 3069 containing 6 wt% each was obtained.

(2)触媒の物性評価
上記実施例及び比較例で製造した触媒の比表面積、細孔容積及び中央細孔直径を、それぞれ、前述の窒素吸着法で測定した。測定結果を図1の表1−Aに示す。また、それらの触媒の細孔容積を、前述の水銀圧入法を用いて測定した。水銀圧入法を用いて50nm以上の細孔直径の細孔の細孔容積及び1000nm以上の細孔直径の細孔の細孔容積についても測定した。それらの水銀圧入法による細孔容積の測定結果を、図2に示した表1−Bに示す。
(2) Evaluation of physical properties of catalyst The specific surface area, pore volume and central pore diameter of the catalysts produced in the above Examples and Comparative Examples were measured by the above-mentioned nitrogen adsorption method. The measurement results are shown in Table 1-A in FIG. Moreover, the pore volume of these catalysts was measured using the mercury intrusion method described above. Using the mercury intrusion method, the pore volume of pores having a pore diameter of 50 nm or more and the pore volume of pores having a pore diameter of 1000 nm or more were also measured. The measurement results of the pore volume by the mercury intrusion method are shown in Table 1-B shown in FIG.

なお、表1−Aには、前述した触媒形状及び寸法、担持した活性成分及び担体重量に対するγ−アルミナの重量比についても合わせて示した。また、触媒のかさ密度の測定結果について、表1−B中に示した。かさ密度の測定は、内径28mm、測定容器100cmのシリンダーを有する測定装置(SEISIN TAPDENSERKYT−3000)を用いて測定した。さらに、表1−Bには、成形時に用いた押し出し機の種類を、S(スクリュー式押し出し機)またはP(プランジャー式押し出し機)により示した。 In Table 1-A, the catalyst shape and dimensions described above, the supported active ingredient, and the weight ratio of γ-alumina to the weight of the carrier are also shown. The measurement results of the bulk density of the catalyst are shown in Table 1-B. The bulk density was measured using a measuring device (SEISIN TAPDENSERKYT-3000) having a cylinder with an inner diameter of 28 mm and a measuring container of 100 cm 3 . Furthermore, in Table 1-B, the type of the extruder used at the time of molding is shown by S (screw type extruder) or P (plunger type extruder).

表1−A及び1−Bの結果より、実施例1〜9の触媒では、窒素吸着法による細孔容積は0.59cm/g以上であり、中央細孔直径が8.2nm以上であり、水銀圧入法による細孔容積は0.88cm/g以上であり、水銀圧入法により測定した50nm以上の細孔直径の細孔の細孔容積は0.33cm/g以上であることがわかる。 From the results of Tables 1-A and 1-B, in the catalysts of Examples 1 to 9, the pore volume by the nitrogen adsorption method is 0.59 cm 3 / g or more, and the central pore diameter is 8.2 nm or more. The pore volume by mercury intrusion method is 0.88 cm 3 / g or more, and the pore volume of pores having a pore diameter of 50 nm or more measured by mercury intrusion method is 0.33 cm 3 / g or more. Recognize.

(3)触媒の脱メタル活性の評価
上記実施例及び比較例で製造した触媒の脱金属活性を評価するために、下記表2に示した性状のボスカン原油とラタウィ残渣油を原料油として用い、下記表3の運転条件で水素化脱金属反応を行った。
(3) Evaluation of catalyst demetallization activity In order to evaluate the demetallization activity of the catalysts produced in the above Examples and Comparative Examples, the properties of Boskan crude oil and Latawi residue oil shown in Table 2 below were used as raw material oils, The hydrodemetallation reaction was performed under the operating conditions shown in Table 3 below.

なお、ラタウィ残渣油は、ラタウィ原油の常圧残渣油50%と減圧残渣油50%の混合油である。   The Latawi residue oil is a mixed oil of 50% atmospheric pressure residue oil and 50% reduced pressure residue oil of Latawi crude oil.

Figure 0004538014
Figure 0004538014

Figure 0004538014
Figure 0004538014

硫化処理した各触媒を用いて、表3に示した触媒反応条件下で反応温度380℃から385℃、390℃に昇温して、ラタウィ残渣油を原油油として水素化精製反応を行って精製油のバナジウム及びニッケル濃度を測定した。測定されたバナジウム及びニッケル濃度から390℃の1次脱金属反応速度定数を求めて初期脱金属活性として、それらの値を表1‐Bに示した。   Using each sulfurated catalyst, the temperature was raised from 380 ° C. to 385 ° C. and 390 ° C. under the catalytic reaction conditions shown in Table 3, and refined by conducting a hydrorefining reaction using Latawi residue oil as crude oil. The vanadium and nickel concentrations of the oil were measured. The primary demetallation rate constant at 390 ° C. was determined from the measured vanadium and nickel concentrations, and the values are shown in Table 1-B as the initial demetallation activity.

実施例2,6,7,8,9及び比較例3,7,8で得られた触媒については、原料油をボスカン原油に切り替えて反応温度390℃で水素化精製を継続することにより触媒上のバナジウム及びニッケル金属堆積量の増加及び脱金属率の変化を求めた。その結果を、図3に示した。図3中、縦軸は脱金属率を示し、横軸は新触媒100gに堆積した金属量(g)を示す。   For the catalysts obtained in Examples 2, 6, 7, 8, and 9 and Comparative Examples 3, 7, and 8, the feedstock oil was switched to Boskan crude oil and hydrorefining was continued at a reaction temperature of 390 ° C. The increase of vanadium and nickel metal deposits and the change of metal removal rate were obtained. The results are shown in FIG. In FIG. 3, the vertical axis represents the metal removal rate, and the horizontal axis represents the amount of metal (g) deposited on the new catalyst 100 g.

図3からわかるように、使用初期の脱金属率は、HOP606を除く触媒ではほぼ同じであるが、金属堆積量が増えると、触媒3025(比較例7)3093(比較例3)は急速に脱金属率が低下して、触媒活性を失ってゆく。これに対して、実施例の触媒は金属堆積量が増えても比較的高い脱金属活性を維持していることがわかる。   As can be seen from FIG. 3, the demetalization rate at the initial stage of use is almost the same for the catalyst except for HOP606, but when the amount of deposited metal increases, the catalyst 3025 (Comparative Example 7) 3093 (Comparative Example 3) rapidly desorbs. The metal ratio decreases and the catalytic activity is lost. On the other hand, it can be seen that the catalyst of the example maintains a relatively high demetalization activity even when the amount of metal deposition increases.

脱金属堆積量の値を評価する基準として、以下のようにして有効金属堆積量を定義した。有効金属堆積量は、バナジウム及びニッケル含有量が非常に多いボスカン原油を、反応温度390℃、水素圧力140kg/cmG、液空間速度1.0hr−1、水素オイル比670NL/NLの条件で反応を行い、脱メタル率が50%まで低下した時点までに、充填時の触媒重量100gに対して、触媒上に蓄積したバナジウム及びニッケルを合計した重量で定義する。触媒上に蓄積したバナジウム及びニッケルの重量は、原料油と精製油のバナジウム及びニッケルの濃度差を経時的に積算することによって求められる。実施例2,6,7,8,9及び比較例3,7,8で得られた触媒についての有効金属堆積量の値を、図3及び表1‐Bに示した。有効金属堆積量の値から触媒の寿命を評価することができる。すなわち、実施例に従う触媒は比較例の触媒に比べて、バナジウム及びニッケルが触媒細孔に堆積しても良好な脱金属活性を長期間に渡って維持することができる。 The effective metal deposition amount was defined as follows as a standard for evaluating the value of the metal removal amount. The effective metal deposition amount is Boskan crude oil with a very high vanadium and nickel content under the conditions of a reaction temperature of 390 ° C., a hydrogen pressure of 140 kg / cm 2 G, a liquid space velocity of 1.0 hr −1 , and a hydrogen oil ratio of 670 NL / NL. By the time when the reaction is carried out and the demetallation rate is reduced to 50%, the total weight of vanadium and nickel accumulated on the catalyst is defined with respect to 100 g of the catalyst weight at the time of filling. The weights of vanadium and nickel accumulated on the catalyst are determined by integrating the concentration difference between vanadium and nickel in the feedstock oil and refined oil over time. The values of the effective metal deposition amount for the catalysts obtained in Examples 2, 6, 7, 8, and 9 and Comparative Examples 3, 7, and 8 are shown in FIG. 3 and Table 1-B. The life of the catalyst can be evaluated from the value of the effective metal deposition amount. That is, the catalyst according to the example can maintain a good metal removal activity over a long period of time even when vanadium and nickel are deposited in the catalyst pores, as compared with the catalyst of the comparative example.

なお、表1‐Bには、初期脱金属活性と有効金属堆積量の観点から総合評価を示した。評価において、○は両者が高い値を示していることを意味し、×はいずれかが、低い値を示していることを意味する。   Table 1-B shows a comprehensive evaluation from the viewpoint of initial metal removal activity and effective metal deposition amount. In the evaluation, ◯ means that both values are high, and x means that either value is low.

以上のことより、本発明に従う水素化精製触媒は、脱金属活性及び有効金属堆積量のいずれもが従来の水素化精製触媒に比べて優れていることがわかる。   From the above, it can be seen that the hydrorefining catalyst according to the present invention is superior in both the metal removal activity and the effective metal deposition amount as compared with the conventional hydrotreating catalyst.

実施例6及び比較例8については、ボスカン原油を用い、金属堆積量の増加と脱金属率の変化を求める途中で原料油を一時的にラタウィ残渣油に交換して、脱アスファルテン率の変化を求めた。その結果を、図4に示した。図4中、縦軸は脱アスファルテン率を示し、横軸は新触媒100gに堆積した金属量(g)を示す。   For Example 6 and Comparative Example 8, using Boskan crude oil, the raw oil was temporarily replaced with the Latawi residue oil in the middle of obtaining the increase in the amount of deposited metal and the change in the demetallation rate, Asked. The results are shown in FIG. In FIG. 4, the vertical axis represents the deasphalted rate, and the horizontal axis represents the amount of metal (g) deposited on 100 g of the new catalyst.

図4から分かるように、実施例の触媒は、金属堆積量が増えても高い脱アスファルテン率を維持していることがわかる。   As can be seen from FIG. 4, it can be seen that the catalyst of the example maintains a high deasphaltene ratio even when the amount of deposited metal increases.

(4)触媒の摩耗率の評価
実施例2、比較例3及び9の触媒の摩耗率を、標準試験法(ASTM D4058−92)により求めた。その結果を表1−Bに示した。細孔容積が0.75cm/g以上の粉体を用いた触媒は、摩耗率が低く、水素化精製反応器の差圧上昇などを生じないことがわかる。
(4) Evaluation of catalyst wear rate The wear rates of the catalysts of Example 2, Comparative Examples 3 and 9 were determined by a standard test method (ASTM D4058-92). The results are shown in Table 1-B. It can be seen that a catalyst using a powder having a pore volume of 0.75 cm 3 / g or more has a low wear rate and does not cause an increase in the differential pressure of the hydrotreating reactor.

本発明の水素化精製触媒は、脱金属活性が高く、有効金属堆積量が多いために、減圧残渣油、常圧残渣油などニッケルまたはバナジウムなどの金属分を多く含む重質油の脱金属処理に好適である。また、アスファルテン分を3%以上含む重質油の処理にも好適である。また、本発明の水素化精製触媒の製造方法を用いることにより、脱金属活性及び有効金属堆積量に優れた水素化精製触媒を容易に且つ低コストで製造することができる。   Since the hydrorefining catalyst of the present invention has high demetallation activity and a large amount of effective metal deposit, demetallation treatment of heavy oil containing a large amount of metal such as nickel or vanadium such as reduced-pressure residue oil and atmospheric residue oil. It is suitable for. It is also suitable for treating heavy oil containing 3% or more of asphaltenes. Further, by using the method for producing a hydrotreating catalyst of the present invention, a hydrotreating catalyst having excellent metal removal activity and effective metal deposition amount can be produced easily and at low cost.

図1は、実施例及び比較例で製造した触媒の特性を示す表(表1−A)である。FIG. 1 is a table (Table 1-A) showing the characteristics of the catalysts produced in Examples and Comparative Examples. 図2は、実施例及び比較例で製造した触媒の性能を示す表(表1−B)である。FIG. 2 is a table (Table 1-B) showing the performance of the catalysts produced in Examples and Comparative Examples. 図3は、実施例及び比較例で調製した触媒の金属堆積量の増加に伴う脱金属率の変化を示すグラフである。FIG. 3 is a graph showing the change in the metal removal rate with an increase in the amount of metal deposited on the catalysts prepared in Examples and Comparative Examples. 図4は、実施例及び比較例で調整した触媒の金属堆積量の増加に伴う脱アスファルテン率の変化を示すグラフである。FIG. 4 is a graph showing a change in the deasphalten ratio with an increase in the amount of deposited metal of the catalyst prepared in Examples and Comparative Examples.

Claims (6)

耐火性多孔質担体に水素化活性金属成分を担持した水素化精製用触媒において、
窒素吸着法により測定した中央細孔径が8〜20nmであり;
窒素吸着法により測定した細孔容積が0.56cm/g以上であり;且つ
水銀圧入法により測定した50nm以上の細孔直径を有する細孔の細孔容積が0.32cm/g以上であり、
水銀圧入法により測定した細孔容積が0.87cm/g以上であり、
水素化活性金属成分として、モリブデンを2〜6重量%、ニッケルまたはコバルトを0.5〜2重量%含み、
比表面積が180〜280m/gであることを特徴とする水素化精製用触媒。
In a hydrorefining catalyst in which a hydrogenation active metal component is supported on a refractory porous carrier,
The median pore diameter measured by nitrogen adsorption method is 8-20 nm;
The pore volume measured by the nitrogen adsorption method is 0.56 cm 3 / g or more; and the pore volume of the pore having a pore diameter of 50 nm or more measured by the mercury intrusion method is 0.32 cm 3 / g or more. Yes,
The pore volume measured by the mercury intrusion method is 0.87 cm 3 / g or more,
As a hydrogenation active metal component, it contains 2 to 6% by weight of molybdenum, 0.5 to 2% by weight of nickel or cobalt,
A catalyst for hydrorefining having a specific surface area of 180 to 280 m 2 / g.
水銀圧入法により測定した1000nm以上の細孔直径を有する細孔の細孔容積が0.2cm/g以下であることを特徴とする請求項1に記載の水素化精製用触媒。 2. The hydrorefining catalyst according to claim 1, wherein the pore volume of pores having a pore diameter of 1000 nm or more measured by a mercury intrusion method is 0.2 cm 3 / g or less. かさ密度が、0.52cm/g以下であることを特徴とする請求項1に記載の水素化精製用触媒。 The catalyst for hydrorefining according to claim 1, wherein the bulk density is 0.52 cm 3 / g or less. リンまたはホウ素を0.5〜1.5重量%含むことを特徴とする請求項1に記載の水素化精製用触媒。   2. The hydrorefining catalyst according to claim 1, comprising 0.5 to 1.5% by weight of phosphorus or boron. 押出成形により成形されたことを特徴とする請求項1に記載の水素化精製用触媒。   2. The hydrorefining catalyst according to claim 1, which is formed by extrusion molding. 100gの新触媒に対して70g以上の有効メタル堆積量を有することを特徴とする請求項1に記載の水素化精製用触媒。   2. The hydrorefining catalyst according to claim 1, which has an effective metal deposition amount of 70 g or more per 100 g of the new catalyst.
JP2007068319A 1998-12-08 2007-03-16 Catalyst for hydrorefining Expired - Lifetime JP4538014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007068319A JP4538014B2 (en) 1998-12-08 2007-03-16 Catalyst for hydrorefining

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP34840298 1998-12-08
JP2007068319A JP4538014B2 (en) 1998-12-08 2007-03-16 Catalyst for hydrorefining

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000586443 Division 1999-12-02

Publications (2)

Publication Number Publication Date
JP2007203297A JP2007203297A (en) 2007-08-16
JP4538014B2 true JP4538014B2 (en) 2010-09-08

Family

ID=38483216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007068319A Expired - Lifetime JP4538014B2 (en) 1998-12-08 2007-03-16 Catalyst for hydrorefining

Country Status (1)

Country Link
JP (1) JP4538014B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5092906A (en) * 1973-12-19 1975-07-24
JPS5740588A (en) * 1980-07-02 1982-03-06 Catalyse Soc Prod Francais Hydrogenation purification of hydrocarbon residue
JPS58252A (en) * 1981-06-17 1983-01-05 アモコ コ−ポレ−シヨン Improved catalyst and carrier and production and use thereof
JPS6265750A (en) * 1983-12-19 1987-03-25 インテヴエツプ,エス・エイ・ Catalyst for hydrogenation treatment of heavy oil, etc. and manufacture thereof
JPH06154598A (en) * 1992-11-20 1994-06-03 Sumitomo Metal Mining Co Ltd Manufacture of gamma-alumina catalyst carrier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5092906A (en) * 1973-12-19 1975-07-24
JPS5740588A (en) * 1980-07-02 1982-03-06 Catalyse Soc Prod Francais Hydrogenation purification of hydrocarbon residue
JPS58252A (en) * 1981-06-17 1983-01-05 アモコ コ−ポレ−シヨン Improved catalyst and carrier and production and use thereof
JPS6265750A (en) * 1983-12-19 1987-03-25 インテヴエツプ,エス・エイ・ Catalyst for hydrogenation treatment of heavy oil, etc. and manufacture thereof
JPH06154598A (en) * 1992-11-20 1994-06-03 Sumitomo Metal Mining Co Ltd Manufacture of gamma-alumina catalyst carrier

Also Published As

Publication number Publication date
JP2007203297A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
US6780817B1 (en) Catalyst for hydrofining and method for preparation thereof
KR102193676B1 (en) Improved resid hydrotreating catalyst containing titania
US4435278A (en) Hydroprocessing with a catalyst having bimodal pore distribution
JP2009529405A (en) Catalyst and hydrotreating method
TWI611836B (en) Catalyst support and preparation method thereof
WO2001094012A1 (en) Hydrofining catalyst and hydrofining process
JP3662495B2 (en) Hydrocracking catalyst, production method thereof, and hydrocracking method
KR20160064123A (en) Hydrogenation catalyst for heavy hydrocarbon oil, production method for hydrogenation catalyst for heavy hydrocarbon oil, and hydrogenation method for heavy hydrocarbon oil
WO2003066215A1 (en) Method for preparing hydrogenation purification catalyst
EP0804288B1 (en) Low macropore resid conversion catalyst
US4595667A (en) Catalyst for the hydrotreating of heavy hydrocarbon oils
KR970008727B1 (en) Catalyst composition for hydrogenation of heavy hydrocarbon oil
US4908344A (en) Hydroprocessing catalyst and support having bidisperse pore structure
US4791090A (en) Hydroprocessing catalyst and support having bidisperse pore structure
JP4689198B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
EP0243894B1 (en) Hydroprocessing catalyst and support having bidisperse pore structure
JP4538014B2 (en) Catalyst for hydrorefining
US4456701A (en) Hydroprocessing catalyst having bimodal pore distribution and process for preparing the catalyst
JPH0295443A (en) Catalyst for hydrogenation treatment of residual oil
JPH0253478B2 (en)
JP2022156584A (en) Production method of hydrogenation catalyst for hydrocarbon oil, and hydrogenation method for hydrocarbon oil
JPWO2001094012A1 (en) Hydrorefining catalyst and hydrorefining method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4538014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term