JP4537247B2 - Method for suppressing cracking in composite sandwich panel joints - Google Patents

Method for suppressing cracking in composite sandwich panel joints Download PDF

Info

Publication number
JP4537247B2
JP4537247B2 JP2005106320A JP2005106320A JP4537247B2 JP 4537247 B2 JP4537247 B2 JP 4537247B2 JP 2005106320 A JP2005106320 A JP 2005106320A JP 2005106320 A JP2005106320 A JP 2005106320A JP 4537247 B2 JP4537247 B2 JP 4537247B2
Authority
JP
Japan
Prior art keywords
reinforcing filler
sandwich panel
core layer
layer
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005106320A
Other languages
Japanese (ja)
Other versions
JP2006281664A (en
Inventor
康夫 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2005106320A priority Critical patent/JP4537247B2/en
Publication of JP2006281664A publication Critical patent/JP2006281664A/en
Application granted granted Critical
Publication of JP4537247B2 publication Critical patent/JP4537247B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、航空機の外板などに好適に実施することができる複合材サンドイッチパネル結合部の亀裂発生抑制方法に関する。   The present invention relates to a method for suppressing the occurrence of cracks in a composite material sandwich panel joint, which can be suitably applied to an outer panel of an aircraft.

図12は、従来の技術を説明するための航空機の機首1の構造を簡略化して示す斜視図であり、図13は図12の切断面線XIII−XIIIから見た一部の拡大断面図である。近年、航空機の機体にフォームコアサンドイッチパネル(Foam Core Sandwich Panel)とも呼ばれる繊維強化複合材サンドイッチパネル2が採用されている。この複合材サンドイッチパネル2は、疲労に強く、断熱性および遮音性にも優れ、一体成形によって重量および部品点数を低減できるという利点があり、ハニカムサンドイッチパネルのように、ハニカムコアへの水の浸入という問題もない優れた構造形態として着目されている。   FIG. 12 is a perspective view showing a simplified structure of the aircraft nose 1 for explaining the prior art, and FIG. 13 is a partially enlarged cross-sectional view taken along section line XIII-XIII of FIG. It is. In recent years, fiber reinforced composite sandwich panels 2, also called foam core sandwich panels, have been employed in aircraft bodies. This composite sandwich panel 2 is resistant to fatigue, has excellent heat insulation and sound insulation properties, and has the advantage of being able to reduce the weight and the number of parts by integral molding. Like the honeycomb sandwich panel, water can enter the honeycomb core. It has attracted attention as an excellent structural form without any problem.

実機への適用にあたっては、たとえば機首1への適用例について述べると、複合材サンドイッチパネル2の構造材3への結合部4が設計上の重要な要素となる。この結合部4の構造は、目視による点検が容易な突合せ結合とし、前記構造材3にハイロックボルトなどによって実現されるファスナ7によって接合されたスプライスプレートとも呼ばれる添え板5を介して、面方向に隣接する2枚の複合材サンドイッチパネル2を、ハイロックボルトなどによって実現される複数のファスナ6によって結合する手法を採用している。このような複合材サンドイッチパネル2をより軽量化するためには、層間剥離の防止を如何にして解決するかが重要な課題とされる。   In application to an actual machine, for example, an application example to the nose 1 will be described. The joint portion 4 of the composite sandwich panel 2 to the structural material 3 is an important design element. The structure of the coupling portion 4 is a butt coupling that can be easily inspected by visual inspection, and a surface direction is provided via a splicing plate 5 called a splice plate joined to the structural material 3 by a fastener 7 realized by a high lock bolt or the like. A method of joining two composite sandwich panels 2 adjacent to each other by a plurality of fasteners 6 realized by a high rock bolt or the like is employed. In order to reduce the weight of such a composite sandwich panel 2, it is an important issue how to prevent the delamination.

他の従来の技術では、加熱成形時にコア材の積層フォーム間に閉じ込められたガスに起因するボイド(泡状の)欠陥の発生を防止し、このボイド欠陥の発生による強度低下を防止して、軽量で高強度の複合繊維強化プラスチック構造体を実現するために、成形型上に、マトリックス樹脂中に低密度付与充填材を内包するコア材の少なくとも2層間に、マトリクス樹脂の成形温度よりも高い融点を有する合成樹脂からなる不織布を挟み、少なくとも片面のほぼ全域に繊維強化プラスチックのプリプレグを配置し、バッグフィルムによって全体を覆って気密化し、バッグフィルム内を真空引きしながら加熱することによって一体成形される複合材サンドイッチパネルおよびその製造方法が提案されている(たとえば、特許文献1参照)。   Other conventional techniques prevent the occurrence of void (foam-like) defects caused by the gas trapped between the laminated foams of the core material during thermoforming, and prevent the strength from being reduced due to the occurrence of these void defects, In order to realize a lightweight and high-strength composite fiber reinforced plastic structure, the molding temperature is higher than the molding temperature of the matrix resin between at least two layers of the core material containing the low density imparting filler in the matrix resin on the mold. Insert a non-woven fabric made of a synthetic resin with a melting point, place a fiber-reinforced plastic prepreg over almost the entire area of at least one side, cover the whole with a bag film, make it airtight, and heat it while evacuating the bag film. A composite sandwich panel and a manufacturing method thereof have been proposed (see, for example, Patent Document 1).

特開2005−22171号公報JP-A-2005-22171

前述の特許文献1に記載される従来の技術では、コア材の各層間のボイド欠陥の発生という製造上の問題は解消されるが、この複合材サンドイッチパネルに荷重が作用したとき、結合部の耐荷重強度に達する前に、結合部とコア層の傾斜部との間に亀裂が発生し、その亀裂が進展して層間剥離が生じ、終局的には破壊に至ってしまい、十分な耐荷重が得られないという実使用上の問題を有する。   In the conventional technique described in Patent Document 1 described above, the manufacturing problem of void defects occurring between the respective layers of the core material is solved. However, when a load is applied to the composite material sandwich panel, Before reaching the load-bearing strength, a crack occurs between the joint and the inclined portion of the core layer, and the crack progresses to cause delamination, eventually leading to breakage and sufficient load-bearing capacity. There is a problem in practical use that it cannot be obtained.

本発明の目的は、簡単な構成で、亀裂の発生または進展を防止し、耐荷重強度の向上を図ることができる複合材サンドイッチパネル結合部の亀裂発生抑制方法を提供することである。   It is an object of the present invention to provide a method for suppressing the occurrence of cracks in a composite material sandwich panel joint portion that can prevent the occurrence or progress of cracks and improve the load bearing strength with a simple configuration.

本発明は、発泡合成樹脂から成り、厚み方向一方側の第1表面と前記厚み方向他方側の第2表面とが平行な基部に、前記第1表面と第2表面とが相互に近接する方向に傾斜する傾斜部が連なるコア層と、
繊維強化複合材料から成り、コア層の前記第1表面上に一体的に形成される第1スキン層と、
繊維強化複合材料から成り、コア層の前記第2表面上に一体的に形成される第2スキン層とによって、
パネル本体部が形成されるとともに、
前記第1スキン層と第2スキン層とを積層して一体化した結合部が形成される複合材サンドイッチパネル結合部の亀裂発生抑制方法であって、
前記コア層の傾斜部と第1および第2スキン層の積層開始点との間に、硬化後の状態でコア層よりも剛性の高い未硬化のプリプレグから成る補強用充填材を介在させて、前記第1および第2スキン層ならびにコア層と前記補強用充填材とを一体化することを特徴とする複合材サンドイッチパネル結合部の亀裂発生抑制方法である。
The present invention is made of a foamed synthetic resin, and a direction in which the first surface and the second surface are close to each other in a base where the first surface on one side in the thickness direction and the second surface on the other side in the thickness direction are parallel to each other. A core layer with an inclined portion that is inclined to
A first skin layer comprising a fiber reinforced composite material and integrally formed on the first surface of the core layer;
A second skin layer comprising a fiber reinforced composite material and integrally formed on the second surface of the core layer;
A panel body is formed,
A method for suppressing crack occurrence in a composite material sandwich panel joint part in which a joint part in which the first skin layer and the second skin layer are laminated and integrated is formed,
Between the inclined portion of the core layer and the lamination start point of the first and second skin layers, interposing a reinforcing filler made of an uncured prepreg that is stiffer than the core layer in a state after curing , A method for suppressing cracking in a composite material sandwich panel joint, wherein the first and second skin layers and the core layer and the reinforcing filler are integrated.

本発明によれば、コア層の傾斜部と第1および第2スキン層の積層開始点との間に、第1および第2スキン層ならびにコア層に一体化した補強用充填材を介在させるので、複合材サンドイッチパネルに荷重が作用すると、補強用充填材にも荷重が負荷されて分散し、亀裂発生箇所の応力が低減されて、簡単な構成によって、亀裂の発生および進展を抑制することができる。   According to the present invention, the reinforcing filler integrated with the first and second skin layers and the core layer is interposed between the inclined portion of the core layer and the lamination start point of the first and second skin layers. When a load is applied to the composite sandwich panel, the load is also applied to the reinforcing filler to disperse, and the stress at the crack occurrence point is reduced. it can.

また、補強用充填材が未硬化の合成樹脂から成るので、複合材サンドイッチパネルの製造時において、補強用充填材の充填位置、充填範囲、被充填領域の形状などに応じて形態を柔軟に変更することが可能であり、これによって補強用充填材の設計上の自由度を向上することができる。 In addition , since the reinforcing filler is made of uncured synthetic resin, the shape can be flexibly changed according to the filling position of the reinforcing filler, the filling range, the shape of the region to be filled, etc., when manufacturing the composite sandwich panel This can improve the design freedom of the reinforcing filler.

図1は、本発明の実施の一形態の亀裂発生抑制方法が適用された複合材サンドイッチパネル20の構成を示す一部の断面図である。本実施の形態の亀裂発生抑制方法が適用された複合材サンドイッチパネル20は、発泡合成樹脂から成り、厚み方向一方側の第1表面21と前記厚み方向他方側の第2表面22とが平行な基部23に、前記第1表面21と第2表面22とが相互に近接する方向に傾斜する傾斜部24が連なるコア層25と、繊維強化複合材料から成り、コア層25の前記第1表面21上に一体的に形成される第1スキン層26と、繊維強化複合材料から成り、コア層25の前記第2表面22上に一体的に形成される第2スキン層27と、前記コア層25の傾斜部24と第1および第2スキン層26,27の積層開始点28との間に介在される補強用充填材29とを含む。   FIG. 1 is a partial cross-sectional view illustrating a configuration of a composite sandwich panel 20 to which a crack generation suppressing method according to an embodiment of the present invention is applied. The composite material sandwich panel 20 to which the crack generation suppressing method of the present embodiment is applied is made of foamed synthetic resin, and the first surface 21 on one side in the thickness direction and the second surface 22 on the other side in the thickness direction are parallel. The first surface 21 of the core layer 25 is composed of a core layer 25 in which an inclined portion 24 that is inclined in a direction in which the first surface 21 and the second surface 22 are close to each other is connected to the base 23, and a fiber reinforced composite material. A first skin layer 26 integrally formed thereon, a second skin layer 27 made of a fiber reinforced composite material and integrally formed on the second surface 22 of the core layer 25, and the core layer 25 A reinforcing filler 29 interposed between the inclined portion 24 and the lamination starting point 28 of the first and second skin layers 26 and 27.

第1スキン層26と第2スキン層27とコア層25とによって、3層構造のパネル本体部30が形成されるとともに、第1スキン層26と第2スキン層27とが積層して一体化することによって、2層構造の結合部31が形成される。図1において上方に配置される複合材サンドイッチパネル20と、下方に配置される複合材サンドイッチパネル20とは、上方の複合材サンドイッチパネル20の下部の結合部31と、下方の複合材サンドイッチパネル20の上部の結合部31とが上下に突合わせた状態で、スプライスプレートとも呼ばれる添え板33にシムあるいは接着材34を介して複数のファスナ35によって締結され、相互に結合されている。   The first skin layer 26, the second skin layer 27, and the core layer 25 form a three-layer panel main body 30, and the first skin layer 26 and the second skin layer 27 are laminated and integrated. As a result, the coupling portion 31 having a two-layer structure is formed. In FIG. 1, the composite sandwich panel 20 disposed on the upper side and the composite sandwich panel 20 disposed on the lower side are composed of a lower joint portion 31 of the upper composite sandwich panel 20 and a lower composite sandwich panel 20. In the state where the upper coupling portion 31 is in abutment with the upper and lower portions, they are fastened by a plurality of fasteners 35 via shims or adhesives 34 to a support plate 33 also called a splice plate, and are coupled to each other.

前記添え板33は、断面が略T字状の軽量アルミ合金から成り、前述の図12に示される航空機の機首1の構造材3にファスナ38によって接合される。前記ファスナ35,38は、ハイロックボルト36およびカラー37などを含んで構成される。   The accessory plate 33 is made of a lightweight aluminum alloy having a substantially T-shaped cross section, and is joined to the structural member 3 of the aircraft nose 1 shown in FIG. The fasteners 35 and 38 include a high lock bolt 36 and a collar 37.

第1および第2スキン層26,27を構成する材料としては、炭素繊維強化合成樹脂(略称CFRP)が用いられ、具体的には、異なる繊維方向を有する複数のプリプレグが用いられる。またコア層25を構成する材料としては、独立気泡発泡の硬質合成樹脂が用いられる。さらに補強用充填材を構成する材料としては、硬化後の状態でコア層25の剛性よりも高い剛性を有する材料、たとえば前記第1および第2スキン層26,27の材料と同一材料、すなわち未硬化のプリプレグが用いられる。これらの第1および第2スキン層26,27ならびにコア層25は、前記各材料に補強用充填材29の材料を充填した状態で、成形型上に乗載して、たとえばオートクレーブ内で2〜3時間、加熱されて一体化される。   As a material constituting the first and second skin layers 26 and 27, a carbon fiber reinforced synthetic resin (abbreviation CFRP) is used, and specifically, a plurality of prepregs having different fiber directions are used. Further, as a material constituting the core layer 25, a hard synthetic resin with closed cell foam is used. Further, the material constituting the reinforcing filler is a material having rigidity higher than that of the core layer 25 in the cured state, for example, the same material as the material of the first and second skin layers 26 and 27, that is, not yet formed. A curable prepreg is used. The first and second skin layers 26 and 27 and the core layer 25 are mounted on a mold in a state in which the respective materials are filled with the material of the reinforcing filler 29, and are, for example, 2 to 2 in an autoclave. It is heated and integrated for 3 hours.

図2は、本件発明者による引張り試験で用いた供試体41および歪ゲージA〜Dの取り付け位置を示す断面図であり、図3は引張り試験によって得られた荷重と歪との関係を示すグラフである。本件発明者は、従来の複合材サンドイッチパネル20を模擬した供試体41を作成し、この供試体41に引張り試験機によって引張り力Fを与えて引張り試験を行い、破壊モードおよび破壊荷重を確認した。その結果、試験荷重F=39kNでコア先端部46に図4に示されるように長さL=7mmの亀裂が生じ、試験荷重F=112kNで、結合部31で第1および第2スキン層26,27が破断した。   FIG. 2 is a cross-sectional view showing the mounting position of the specimen 41 and strain gauges A to D used in the tensile test by the present inventors, and FIG. 3 is a graph showing the relationship between the load and strain obtained by the tensile test. It is. The present inventor created a specimen 41 simulating the conventional composite sandwich panel 20, and applied the tensile force F to the specimen 41 with a tensile tester to perform a tensile test to confirm the fracture mode and the fracture load. . As a result, a crack having a length L = 7 mm as shown in FIG. 4 is generated at the core tip 46 at a test load F = 39 kN, and the first and second skin layers 26 at the joint 31 at a test load F = 112 kN. , 27 broke.

次に、図4に示される複合材サンドイッチパネル20の傾斜部24を含む供試体モデル45を作成し、この供試体モデル45を利用して、図5に示されるコア先端部46に補強用充填材29が挿入されないコア先端部46付近の供試体モデル47と、図6に示される補強用充填材29を挿入したコア先端部46付近の供試体モデル48とを作成し、単位荷重を負荷した状態を模擬したFEM(Finite-Element Method)解析を実施した。   Next, a specimen model 45 including the inclined portion 24 of the composite sandwich panel 20 shown in FIG. 4 is created, and the core tip 46 shown in FIG. A specimen model 47 near the core tip 46 where the material 29 is not inserted and a specimen model 48 near the core tip 46 inserted with the reinforcing filler 29 shown in FIG. An FEM (Finite-Element Method) analysis simulating the state was performed.

図7は、補強用充填材29を挿入しない場合の供試体モデル47のせん断応力の発生状態を示す図であり、図8は補強用充填材29を挿入した場合の供試体モデル48のせん断応力の発生状態を示す図である。前記FEM解析の結果、補強用充填材29を挿入しない場合は、図7に示されるように、亀裂発生想定位置Pでのせん断応力の最大値τmax1は、1.7×10−2MPaであった。これに対して、補強用充填材29を挿入した場合は、図8に示されるように、亀裂発生想定位置Pでのせん断応力の最大値τmax2は、1.1×10−2MPaであり、35%低減することを確認した。 FIG. 7 is a diagram showing the state of occurrence of shear stress in the specimen model 47 when the reinforcing filler 29 is not inserted, and FIG. 8 is the shear stress of the specimen model 48 when the reinforcing filler 29 is inserted. It is a figure which shows the generation | occurrence | production state of. As a result of the FEM analysis, when the reinforcing filler 29 is not inserted, as shown in FIG. 7, the maximum value τmax1 of the shear stress at the crack initiation position P is 1.7 × 10 −2 MPa. It was. On the other hand, when the reinforcing filler 29 is inserted, as shown in FIG. 8, the maximum value τmax2 of the shear stress at the assumed crack generation position P is 1.1 × 10 −2 MPa, A reduction of 35% was confirmed.

また、補強用充填材29を挿入しない場合は、図7に示されるように、コア先端部46付近のせん断応力τ1は、1.5×10−6MPaであった。これに対して、補強用充填材29を挿入した場合は、図8に示されるように、コア先端部46付近のせん断応力τ2は、6.9×10−4MPaに増加した。この現象は、発泡コアより剛性が高い補強用充填材29がコア先端部46と結合部31との間に存在することによって、補強用充填材29が荷重を負担して、亀裂先端部の応力が減少したことを示している。この亀裂先端部の応力低下により、亀裂の発生および進展を遅延させることが確認された。このように補強用充填材29の剛性については、コア層25以上のせん断剛性があれば、十分なせん断応力の緩和が期待できることが判明した。 Further, when the reinforcing filler 29 was not inserted, as shown in FIG. 7, the shear stress τ1 near the core tip 46 was 1.5 × 10 −6 MPa. On the other hand, when the reinforcing filler 29 was inserted, as shown in FIG. 8, the shear stress τ2 near the core tip 46 increased to 6.9 × 10 −4 MPa. This phenomenon is caused by the fact that the reinforcing filler 29 having higher rigidity than the foamed core exists between the core tip 46 and the coupling portion 31, so that the reinforcing filler 29 bears a load and stress at the crack tip. Indicates a decrease. It was confirmed that the stress reduction at the crack tip delayed the generation and propagation of the crack. As described above, it has been found that the rigidity of the reinforcing filler 29 can be expected to sufficiently relax the shear stress if it has a shear rigidity higher than that of the core layer 25.

図9は、挿入される補強用充填材の材料剛性を説明するためのグラフであり、図10は補強用充填材29の範囲を説明するための供試体モデルを示す図であり、図11は補強用充填材29のせん断応力への影響の範囲を示すグラフである。補強用充填材29の範囲について評価したところ、コア先端部46から10mm程度の範囲内に充填すれば、十分なせん断応力の緩和が期待できることを確認した。補強用充填材29の材料選定や充填範囲Xの決定は、安価な合成樹脂を、限定した範囲で充填すれば十分な効果が得られることがわかる。   FIG. 9 is a graph for explaining the material rigidity of the reinforcing filler to be inserted, FIG. 10 is a diagram showing a specimen model for explaining the range of the reinforcing filler 29, and FIG. It is a graph which shows the range of the influence with respect to the shear stress of the filler 29 for reinforcement. When the range of the reinforcing filler 29 was evaluated, it was confirmed that sufficient shear stress relaxation could be expected if it was filled within a range of about 10 mm from the core tip 46. It can be seen that the material selection of the reinforcing filler 29 and the determination of the filling range X are sufficiently effective if an inexpensive synthetic resin is filled in a limited range.

本実施の形態によれば、コア層25の傾斜部24と第1および第2スキン層26,27の積層開始点28との間に、第1および第2スキン層26,27ならびにコア層25に一体化した補強用充填材29を介在させるので、複合材サンドイッチパネル20に荷重が作用すると、補強用充填材29にも荷重が負荷されて分散し、亀裂発生箇所の応力が低減されて、簡単な構成によって、亀裂の発生および進展を抑制することができる。   According to the present embodiment, the first and second skin layers 26 and 27 and the core layer 25 are provided between the inclined portion 24 of the core layer 25 and the lamination start point 28 of the first and second skin layers 26 and 27. Since the reinforcing filler 29 integrated in the middle is interposed, when a load acts on the composite sandwich panel 20, the load is also applied to the reinforcing filler 29 and dispersed, and the stress at the crack occurrence point is reduced. With a simple configuration, the occurrence and development of cracks can be suppressed.

また、補強用充填材29がコア層25よりも剛性の高い合成樹脂から成るので、補強材充填材29による分担される荷重を大きくして、亀裂の発生および進展の抑制範囲を大きくして、耐荷重特性を向上することができる。   In addition, since the reinforcing filler 29 is made of a synthetic resin having rigidity higher than that of the core layer 25, the load shared by the reinforcing filler 29 is increased, and the range in which cracks are generated and progressed is increased, The load bearing characteristics can be improved.

さらに、補強用充填材29が未硬化の合成樹脂から成るので、複合材サンドイッチパネル20の製造時において、補強用充填材29の充填位置、充填範囲、被充填領域の形状などに応じて形態を柔軟に変更することが可能であり、これによって補強用充填材29の設計上の自由度を向上することができる。   Further, since the reinforcing filler 29 is made of an uncured synthetic resin, the shape of the reinforcing filler 29 according to the filling position, the filling range, the shape of the region to be filled, etc., when the composite sandwich panel 20 is manufactured. It is possible to change flexibly, and thereby the degree of freedom in designing the reinforcing filler 29 can be improved.

本発明の実施の他の形態では、前記補強用充填材29は、硬化した合成樹脂から成ってもよい。このような構成によれば、補強用充填材29が硬化した合成樹脂から成るので、複合材サンドイッチパネル20の製造時において、補強用充填材29の形態が一定であり、これによって補強用充填材29の充填作業上の取り扱いが容易であり、製造作業の作業性が向上され、複合材サンドイッチパネル20の生産性を向上することができる。   In another embodiment of the present invention, the reinforcing filler 29 may be made of a cured synthetic resin. According to such a configuration, since the reinforcing filler 29 is made of a cured synthetic resin, the form of the reinforcing filler 29 is constant when the composite sandwich panel 20 is manufactured, thereby the reinforcing filler. 29 is easy to handle in the filling operation, the workability of the manufacturing operation is improved, and the productivity of the composite sandwich panel 20 can be improved.

本発明の実施のさらに他の形態では、図1の仮想線51,52で示されるように、前述と同様なプレプリグから成る幅b=約6cmの補助充填材をコア先端部の両側に成形前に貼着し、前述と同様にオートクレーブによって加熱成形して硬化させて一体形成してもよい。この場合には、亀裂発生想定位置のせん断応力τは1.76×10−3kg/mm2から1.72×10−3kg/mm2に変化し、約2%低減することができる。このような低減量はわずかであるが、前述の補強用充填材と併用することによって、せん断応力を微調整するために利用することができる。 In still another embodiment of the present invention, as indicated by phantom lines 51 and 52 in FIG. 1, an auxiliary filler made of a prepreg similar to the above and having a width b = about 6 cm is formed on both sides of the core tip before molding. In the same manner as described above, the film may be formed by heating and curing with an autoclave and then integrally formed. In this case, the shear stress τ at the assumed crack generation position changes from 1.76 × 10 −3 kg / mm 2 to 1.72 × 10 −3 kg / mm 2, and can be reduced by about 2%. Although such a reduction amount is slight, it can be used to finely adjust the shear stress by using it together with the reinforcing filler described above.

本発明の実施の一形態の亀裂発生抑制方法が適用された複合材サンドイッチパネル20の構成を示す一部の断面図である。1 is a partial cross-sectional view illustrating a configuration of a composite sandwich panel 20 to which a crack generation suppressing method according to an embodiment of the present invention is applied. 本件発明者による引張り試験で用いた供試体41および歪ゲージA〜Dの取り付け位置を示す断面図である。It is sectional drawing which shows the attachment position of the specimen 41 used by the inventor's tensile test, and strain gauge AD. 本件発明者による引張り試験によって得られた荷重と歪との関係を示すグラフである。It is a graph which shows the relationship between the load and strain which were obtained by the tension test by this inventor. 複合材サンドイッチパネル20の傾斜部24を含む供試体モデル45を示す図である。It is a figure which shows the specimen model 45 containing the inclination part 24 of the composite material sandwich panel. コア先端部46に補強用充填材29が挿入されないコア先端部46付近の供試体モデル47を示す図である。It is a figure which shows the specimen model 47 of the core front-end | tip part vicinity of the core front-end | tip part 46 where the reinforcing filler 29 is not inserted. 補強用充填材29を挿入したコア先端部46付近の供試体モデル48を示す図である。It is a figure which shows the specimen model 48 of the core front-end | tip part 46 vicinity which inserted the filler 29 for reinforcement. 補強用充填材29を挿入しない場合の供試体モデル47のせん断応力の発生状態を示す図である。It is a figure which shows the generation | occurrence | production state of the shear stress of the specimen model 47 when not inserting the reinforcing filler 29. 補強用充填材29を挿入した場合の供試体モデル48のせん断応力の発生状態を示す図である。It is a figure which shows the generation | occurrence | production state of the shear stress of the specimen model 48 at the time of inserting the reinforcing filler 29. 挿入される補強用充填材の材料剛性を説明するためのグラフである。It is a graph for demonstrating the material rigidity of the filler for reinforcement inserted. 補強用充填材29の範囲を説明するための供試体モデルを示す図である。It is a figure which shows the specimen model for demonstrating the range of the reinforcing filler 29. FIG. 補強用充填材29のせん断応力への影響の範囲を示すグラフである。It is a graph which shows the range of the influence with respect to the shear stress of the filler 29 for reinforcement. 従来の技術を説明するための航空機の機首1の構造を簡略化して示す斜視図である。It is a perspective view which simplifies and shows the structure of the nose 1 of the aircraft for demonstrating the prior art. 図12の切断面線XIII−XIIIから見た一部の拡大断面図である。FIG. 13 is a partial enlarged cross-sectional view as seen from a section line XIII-XIII in FIG. 12.

符号の説明Explanation of symbols

20 複合材サンドイッチパネル
21 第1表面
22 第2表面
23 基部
24 傾斜部
25 コア層
26 第1スキン層
27 第2スキン層
28 積層開始点
29 補強用充填材
30 パネル本体部
31 結合部
33 添え板
35 ファスナ
41 供試体
45,47,48 供試体モデル
46 コア先端部
P 亀裂発生想定位置
A〜D 歪ゲージ
DESCRIPTION OF SYMBOLS 20 Composite material sandwich panel 21 1st surface 22 2nd surface 23 Base 24 Inclined part 25 Core layer 26 1st skin layer 27 2nd skin layer 28 Lamination start point 29 Reinforcing filler 30 Panel body part 31 Joint part 33 Attachment plate 35 Fastener 41 Specimen 45, 47, 48 Specimen model 46 Core tip P Crack initiation position A to D Strain gauge

Claims (1)

発泡合成樹脂から成り、厚み方向一方側の第1表面と前記厚み方向他方側の第2表面とが平行な基部に、前記第1表面と第2表面とが相互に近接する方向に傾斜する傾斜部が連なるコア層と、
繊維強化複合材料から成り、コア層の前記第1表面上に一体的に形成される第1スキン層と、
繊維強化複合材料から成り、コア層の前記第2表面上に一体的に形成される第2スキン層とによって、
パネル本体部が形成されるとともに、
前記第1スキン層と第2スキン層とを積層して一体化した結合部が形成される複合材サンドイッチパネル結合部の亀裂発生抑制方法であって、
前記コア層の傾斜部と第1および第2スキン層の積層開始点との間に、硬化後の状態でコア層よりも剛性の高い未硬化のプリプレグから成る補強用充填材を介在させて、前記第1および第2スキン層ならびにコア層と前記補強用充填材とを一体化することを特徴とする複合材サンドイッチパネル結合部の亀裂発生抑制方法。
A slope made of a synthetic foamed resin, in which a first surface on one side in the thickness direction and a second surface on the other side in the thickness direction are parallel to each other, and the first surface and the second surface are inclined in a direction close to each other. A core layer of continuous parts,
A first skin layer comprising a fiber reinforced composite material and integrally formed on the first surface of the core layer;
A second skin layer comprising a fiber reinforced composite material and integrally formed on the second surface of the core layer;
A panel body is formed,
A method for suppressing crack occurrence in a composite material sandwich panel joint part in which a joint part is formed by laminating and integrating the first skin layer and the second skin layer,
Between the inclined portion of the core layer and the lamination start point of the first and second skin layers, interposing a reinforcing filler made of an uncured prepreg that is stiffer than the core layer in a state after curing , A method for suppressing the occurrence of cracks in a composite material sandwich panel joint, wherein the first and second skin layers, the core layer, and the reinforcing filler are integrated.
JP2005106320A 2005-04-01 2005-04-01 Method for suppressing cracking in composite sandwich panel joints Active JP4537247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005106320A JP4537247B2 (en) 2005-04-01 2005-04-01 Method for suppressing cracking in composite sandwich panel joints

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005106320A JP4537247B2 (en) 2005-04-01 2005-04-01 Method for suppressing cracking in composite sandwich panel joints

Publications (2)

Publication Number Publication Date
JP2006281664A JP2006281664A (en) 2006-10-19
JP4537247B2 true JP4537247B2 (en) 2010-09-01

Family

ID=37404065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005106320A Active JP4537247B2 (en) 2005-04-01 2005-04-01 Method for suppressing cracking in composite sandwich panel joints

Country Status (1)

Country Link
JP (1) JP4537247B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010013370B4 (en) * 2010-03-30 2013-09-26 Eads Deutschland Gmbh Wall component for an aircraft

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2905739B1 (en) * 2006-09-08 2008-11-07 Airbus France Sas PANEL ASSEMBLY AND METHOD OF MOUNTING PANEL ASSEMBLY
DE102007003275B4 (en) * 2007-01-23 2013-11-28 Airbus Operations Gmbh Shell element as part of an aircraft fuselage
JP4928403B2 (en) * 2007-09-27 2012-05-09 社団法人日本航空宇宙工業会 Structure for preventing delamination of sandwich panels
DE102007055233A1 (en) * 2007-11-20 2009-05-28 Airbus Deutschland Gmbh Coupling device for joining fuselage sections, combination of a coupling device and at least one fuselage section and method for producing the coupling device
JP5357586B2 (en) * 2009-03-19 2013-12-04 ジャパンマリンユナイテッド株式会社 FRP molded product
GB201012552D0 (en) 2010-07-23 2010-11-17 Bae Systems Plc Aircraft thermal insulation
JP5875147B2 (en) * 2011-11-21 2016-03-02 学校法人金沢工業大学 Composite structure and aircraft fuselage
DE102012111022A1 (en) 2012-11-15 2014-06-26 Airbus Operations Gmbh Reinforced vehicle structure part, vehicle and process
WO2015008536A1 (en) * 2013-07-18 2015-01-22 日産自動車株式会社 Molded fiber-reinforced composite material, method for producing same, and panel material
EP2993124B1 (en) * 2014-09-08 2019-04-03 Airbus Operations GmbH Preventing cracks at bolted or riveted joints of aircraft structural parts
KR102213059B1 (en) * 2015-01-06 2021-02-05 에스케이케미칼 주식회사 Composite material panel for ship and menufacturing method thereof
JP2018168893A (en) * 2017-03-29 2018-11-01 積水化成品工業株式会社 Joint structure
FR3101388B1 (en) * 2019-10-01 2022-02-25 Airbus Operations Sas ASSEMBLY COMPRISING A STRUCTURE, TWO PANELS AND A WATERPROOFING SYSTEM

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454837U (en) * 1990-09-17 1992-05-11
JP2001278039A (en) * 2000-03-30 2001-10-10 Kawasaki Heavy Ind Ltd Soundproofing structure of structural body using sandwich panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454837U (en) * 1990-09-17 1992-05-11
JP2001278039A (en) * 2000-03-30 2001-10-10 Kawasaki Heavy Ind Ltd Soundproofing structure of structural body using sandwich panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010013370B4 (en) * 2010-03-30 2013-09-26 Eads Deutschland Gmbh Wall component for an aircraft
DE102010013370B8 (en) * 2010-03-30 2013-12-12 Eads Deutschland Gmbh Wall component for an aircraft

Also Published As

Publication number Publication date
JP2006281664A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4537247B2 (en) Method for suppressing cracking in composite sandwich panel joints
Park et al. The strength of composite bonded T-joints transversely reinforced by carbon pins
Fang et al. Mechanical performance of innovative GFRP-bamboo-wood sandwich beams: Experimental and modelling investigation
CN107921725B (en) Composite sandwich structure
Marasco et al. Mechanical properties balance in novel Z-pinned sandwich panels: Out-of-plane properties
Kim et al. Evaluation of durability and strength of stitched foam-cored sandwich structures
EP2440392B1 (en) Method of producing an aircraft structure comprising a nano-reinforced radius filler
Mitra et al. Improving delamination resistance capacity of sandwich composite columns with initial face/core debond
Fatima et al. Influence of interfacial adhesive on impact and post-impact behaviors of CFRP/end-grain balsawood sandwich composites
Guo et al. Numerical analysis and experiment of composite sandwich T-joints subjected to pulling load
Mostafa et al. Experimental, theoretical and numerical investigation of the flexural behaviour of the composite sandwich panels with PVC foam core
JP5875147B2 (en) Composite structure and aircraft fuselage
Arıkan et al. Improvement of load carrying capacity of sandwich composites by different patch repair types
US20070264472A1 (en) Sandwich Panel and a Method of Producing a Sandwich Panel
CA3006619A1 (en) Improvements to a fiber metal laminate and a method of production thereof
Dawood et al. Enhancing the resistance of composite sandwich panels to localized forces for civil infrastructure and transportation applications
Srinivasan et al. Comparative study of composite scarf and strap joints for equivalent repair signature under uniaxial tension
Zhang et al. Damage behaviors of foam sandwiched composite materials under quasi-static three-point bending
Hou et al. Failure characteristics of composite metallic foam core hat-shaped tubular T-joints under static and impact loading
Hirose et al. Experimental evaluation of splice-type crack arrester with a filler under mode-I type loading
Guo et al. Design, analysis and testing of composite sandwich T-joint structures
JP2008044347A (en) Joint structure of frp shaped article and joint bonding process
Abdolpour Development of prefabricated modular houses in pure composite sandwich panels
JP2019069561A (en) Honeycomb structure and method for manufacturing the same
Hashim Strength of resin-coated-adhesive-bonded double lap-shear pultrusion joints at ambient temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4537247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250