JP4537123B2 - High temperature and humidity resistant structural member and gas turbine - Google Patents

High temperature and humidity resistant structural member and gas turbine Download PDF

Info

Publication number
JP4537123B2
JP4537123B2 JP2004173262A JP2004173262A JP4537123B2 JP 4537123 B2 JP4537123 B2 JP 4537123B2 JP 2004173262 A JP2004173262 A JP 2004173262A JP 2004173262 A JP2004173262 A JP 2004173262A JP 4537123 B2 JP4537123 B2 JP 4537123B2
Authority
JP
Japan
Prior art keywords
layer
structural member
temperature
titanium oxide
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004173262A
Other languages
Japanese (ja)
Other versions
JP2005351183A (en
Inventor
誠 河瀬
融 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2004173262A priority Critical patent/JP4537123B2/en
Publication of JP2005351183A publication Critical patent/JP2005351183A/en
Application granted granted Critical
Publication of JP4537123B2 publication Critical patent/JP4537123B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Description

本発明は高温耐湿構造部材、特にガスタービンの動翼及び静翼や、燃焼器及びジェットエンジンなどの高温機器の部品を構成する高温耐湿構造部材およびガスタービンに関する。   The present invention relates to a high-temperature and moisture-resistant structural member, and more particularly to a high-temperature and moisture-resistant structural member and a gas turbine that constitute parts of high-temperature equipment such as a moving blade and a stationary blade of a gas turbine, a combustor, and a jet engine.

従来、ガスタービンなどの高温機器の部品の構造材としては、優れた耐熱性及び耐食性を備えたSiやSiCが用いられてきた。しかし、それらの材料からなるガスタービン翼を備えたガスタービンを約1300℃の高温で数百時間稼動させると、ガス中の水蒸気とガスタービン翼を構成するSiやSiCのSiとが反応し、Siの水酸化物となって蒸発するため、ガスタービン翼が減肉し、破損する危険性があった。このため、水蒸気と反応しない物質を表面にコーティングしたガスタービン翼が研究されてきた(例えば、特許文献1参照)。 Conventionally, Si 3 N 4 or SiC having excellent heat resistance and corrosion resistance has been used as a structural material for components of high-temperature equipment such as gas turbines. However, when a gas turbine equipped with gas turbine blades made of these materials is operated at a high temperature of about 1300 ° C. for several hundred hours, water vapor in the gas and Si 3 N 4 and SiC of SiC constituting the gas turbine blades are Since it reacted and evaporated as Si hydroxide, there was a risk that the gas turbine blades were thinned and damaged. For this reason, a gas turbine blade whose surface is coated with a substance that does not react with water vapor has been studied (for example, see Patent Document 1).

このようなコーティング材として、水蒸気と反応しない安定化ジルコニア、例えばYで安定化されたジルコニアなどが挙げられる。しかし、SiやSiCのSiはジルコニア層中に拡散し易いため、SiやSiCと安定化ジルコニア層とが接していると、加熱されることによってSiやSiCのSiが安定化ジルコニア層中に拡散し、安定化ジルコニア層を構成するZrO、Yと容易に反応して、ZrSiO、YSiOなどのシリケイトを生成する。その結果、たとえSiやSiCで構成され、その表面上に安定化ジルコニア層が設けられたガスタービン翼であっても、安定化ジルコニア層の表面にSiが現れ、上述したように水蒸気と反応することで、ガスタービン翼が減肉し、破損する危険性があるという問題があった。また、例えば、ZrO−8%Yである安定化ジルコニアの膨張率(10.9×10−6/K)とSiの膨張率(3.2×10−6/K)とには3倍程度の差があり、高温時の熱応力よって安定化ジルコニア層が剥離しやすいという問題もあった。 Examples of such a coating material include stabilized zirconia that does not react with water vapor, such as zirconia stabilized with Y 2 O 3 . However, since Si of Si 3 N 4 or SiC easily diffuses into the zirconia layer, if the Si 3 N 4 or SiC and the stabilized zirconia layer are in contact with each other, the Si 3 N 4 or SiC is heated by heating. Si diffuses into the stabilized zirconia layer and easily reacts with ZrO 2 and Y 2 O 3 constituting the stabilized zirconia layer to generate silicates such as ZrSiO 4 and Y 2 SiO 5 . As a result, even if it is a gas turbine blade composed of Si 3 N 4 or SiC and provided with a stabilized zirconia layer on its surface, Si appears on the surface of the stabilized zirconia layer, and as described above, water vapor There is a problem that the gas turbine blades are reduced in thickness and may be damaged by the reaction. Further, for example, the expansion coefficient of stabilized zirconia which is ZrO 2 -8% Y 2 O 3 (10.9 × 10 −6 / K) and the expansion coefficient of Si 3 N 4 (3.2 × 10 −6 / K). ) And about 3 times the difference, and there was also a problem that the stabilized zirconia layer was easily peeled off due to thermal stress at high temperature.

特開平8−67583号公報(特許請求の範囲参照)JP-A-8-67583 (refer to the claims)

本発明は、上述した事情に鑑み、長期間にわたって優れた高温耐湿性を発揮し、減肉しにくく、かつジルコニア層が剥離しにくい高温耐湿構造部材及びガスタービンを提供することを目的とする。   In view of the circumstances described above, an object of the present invention is to provide a high-temperature and moisture-resistant structural member and a gas turbine that exhibit excellent high-temperature and humidity resistance over a long period of time, are not easily reduced in thickness, and are difficult to peel off from a zirconia layer.

上記目的を達成する本発明の第1の態様は、ケイ素系セラミックス基材とジルコニア層との間にチタン酸化物を主成分とする層を有することを特徴とする高温耐湿構造部材にある。 A first aspect of the present invention that achieves the above object is a high-temperature and moisture-resistant structural member having a layer mainly composed of titanium oxide between a silicon-based ceramic substrate and a zirconia layer.

かかる第1の態様では、長期間にわたって優れた高温耐湿性を発揮し、減肉しにくく、かつジルコニア層が剥離しにくい高温耐湿構造部材を提供することができる。   In the first aspect, it is possible to provide a high-temperature and moisture-resistant structural member that exhibits excellent high-temperature and humidity resistance over a long period of time, is difficult to reduce the thickness, and does not easily peel off the zirconia layer.

本発明の第2の態様は、第1の態様において、前記ケイ素系セラミックス基材と前記チタン酸化物を主成分とする層との間及び前記チタン酸化物を主成分とする層と前記ジルコニア層との間にそれらの拡散反応により生じた中間層を有することを特徴とする高温耐湿構造部材にある。 According to a second aspect of the present invention, in the first aspect, between the silicon-based ceramic base material and the layer mainly composed of the titanium oxide, and the layer mainly composed of the titanium oxide and the zirconia layer. A high-temperature moisture-resistant structural member having an intermediate layer produced by a diffusion reaction between them.

かかる第2の態様においても、上述した第1の態様と同様の効果が得られる。   In the second aspect, the same effect as that of the first aspect described above can be obtained.

本発明の第3の態様は、第1又は2の態様において、前記ケイ素系セラミックス基材がSiC、Si、又は少なくともいずれか一方を主成分とするセラミックスであることを特徴とする高温耐湿構造部材にある。 According to a third aspect of the present invention, in the first or second aspect, the silicon-based ceramic substrate is SiC, Si 3 N 4 , or a ceramic mainly comprising at least one of at least one of the high temperatures It is in a moisture-resistant structural member.

かかる第3の態様では、長期間にわたってより優れた高温耐湿性を発揮し、より減肉しにくく、かつジルコニア層がより剥離しにくい高温耐湿構造部材を提供することができる。   In the third aspect, it is possible to provide a high-temperature and moisture-resistant structural member that exhibits superior high-temperature and humidity resistance over a long period of time, is less likely to be thinned, and is less likely to peel off the zirconia layer.

本発明の第4の態様は、第1〜3の何れかの態様において、前記ジルコニア層が、安定化ジルコニアからなることを特徴とする高温耐湿構造部材にある。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the high-temperature moisture-resistant structural member is characterized in that the zirconia layer is made of stabilized zirconia.

かかる第4の態様では、長期間にわたってより優れた高温耐湿性を発揮する高温耐湿構造部材を提供することができる。   In the fourth aspect, it is possible to provide a high-temperature moisture-resistant structural member that exhibits better high-temperature moisture resistance over a long period of time.

本発明の第5の態様は、第1〜4の何れかの態様において、前記チタン酸化物を主成分とする層の厚さが5μm以上であることを特徴とする高温耐湿構造部材にある。 According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the high-temperature and humidity-resistant structural member is characterized in that the layer mainly composed of the titanium oxide has a thickness of 5 μm or more.

かかる第5の態様では、ケイ素系セラミックス基材からジルコニア層へのSiの拡散を十分に防止することができ、上述した第1の態様の効果を十分に達成することができる。   In the fifth aspect, Si can be sufficiently prevented from diffusing from the silicon-based ceramic base material to the zirconia layer, and the effect of the first aspect described above can be sufficiently achieved.

本発明の第6の態様は、第1〜5の何れかの態様の高温耐湿構造部材からなるガスタービン翼を有することを特徴とするガスタービンにある。   According to a sixth aspect of the present invention, there is provided a gas turbine comprising gas turbine blades comprising the high-temperature and moisture-resistant structural member according to any one of the first to fifth aspects.

かかる第6の態様では、長期間にわたって優れた高温耐湿性を備え、減肉しにくく、かつジルコニア層が剥離しにくく、耐久性に優れたガスタービンを提供することができる。   In the sixth aspect, it is possible to provide a gas turbine that has excellent high temperature and humidity resistance over a long period of time, is difficult to reduce the thickness, and is difficult to peel off the zirconia layer, and is excellent in durability.

本発明の高温耐湿構造部材は、長期間にわたって優れた高温耐湿性を発揮し、減肉しにくく、かつジルコニア層が剥離しにくいので、この高温耐湿構造部材を使用した機器の信頼性及び耐久性を飛躍的に改善することができる。   The high-temperature and moisture-resistant structural member of the present invention exhibits excellent high-temperature and moisture-resistant properties over a long period of time, is not easily thinned, and the zirconia layer is difficult to peel off. Therefore, the reliability and durability of equipment using this high-temperature and moisture-resistant structural member Can be drastically improved.

以下、本発明を実施するための最良の形態について説明する。なお、本実施形態の説明は例示であり、本発明は以下の説明に限定されない。   Hereinafter, the best mode for carrying out the present invention will be described. The description of the present embodiment is an exemplification, and the present invention is not limited to the following description.

本発明の高温耐湿構造部材は、図1に示すように、ケイ素系セラミックス基材1の表面上に第1の層としてチタン酸化物層(チタン酸化物を主成分とする層;以下同じ)2を有し、そのチタン酸化物層2の表面上に第2の層としてさらにジルコニア層3を有するものである。すなわち、本発明の高温耐湿構造部材は、ケイ素系セラミックス基材1とジルコニア層3との間にチタン酸化物層2を有するものである。Siはチタン酸化物層2に拡散しにくい性質を有することから、かかる構造とすることによって、ケイ素系セラミックス基材1のSiがジルコニア層3中に拡散することを防止することができる。その結果、シリケイトが生成せず、水蒸気との反応の問題も生じなくなるので、高温耐湿構造部材の減肉を防止することができる。 As shown in FIG. 1, the high-temperature and moisture-resistant structural member of the present invention has a titanium oxide layer (a layer containing titanium oxide as a main component; the same shall apply hereinafter) as a first layer on the surface of the silicon-based ceramic substrate 1 2 And a zirconia layer 3 as a second layer on the surface of the titanium oxide layer 2. That is, the high-temperature moisture-resistant structural member of the present invention has the titanium oxide layer 2 between the silicon-based ceramic substrate 1 and the zirconia layer 3. Since Si has a property of not easily diffusing into the titanium oxide layer 2, the Si of the silicon-based ceramic substrate 1 can be prevented from diffusing into the zirconia layer 3 by adopting such a structure. As a result, silicate is not generated and the problem of reaction with water vapor does not occur, so that the thinning of the high-temperature and moisture-resistant structural member can be prevented.

また、チタン酸化物の膨張率(7.1×10−6/K)は、ジルコニアの膨張率(10.9×10−6/K)と、Siの膨張率(3.2×10−6/K)又はSiCの膨張率(4.3×10−6/K)との中間に位置するため、チタン酸化物層2がケイ素系セラミックス基材1とジルコニア層3との膨張率の差により発生する熱応力を緩和し、ジルコニア層3が剥離することを防止することができる。 The expansion coefficient of titanium oxide (7.1 × 10 −6 / K) is the same as that of zirconia (10.9 × 10 −6 / K) and the expansion coefficient of Si 3 N 4 (3.2 ×). 10 −6 / K) or the expansion coefficient of SiC (4.3 × 10 −6 / K), so that the titanium oxide layer 2 is expanded between the silicon-based ceramic substrate 1 and the zirconia layer 3. It is possible to relieve the thermal stress generated by the difference between the two and prevent the zirconia layer 3 from peeling off.

本発明において、ケイ素系セラミックス基材1として、SiC、Si、又は少なくともいずれか一方を主成分とするセラミックスなどが挙げられる。 In the present invention, examples of the silicon-based ceramic base material 1 include SiC, Si 3 N 4 , or ceramics mainly containing at least one of them.

また、本発明において、ジルコニアとしては、特に限定されないが、Y23 、MgO、CaO、およびCeO2 などの中から選択された少なくとも一種の化合物で安定化された安定化ジルコニアが好ましく、特にZrO−8%Yである組成の安定化ジルコニアが好ましい。なお、安定化ジルコニアとは、MgO、CaO、希土類酸化物などを数%添加することによって立方晶系の蛍石構造をとり、相転移を起こしにくいジルコニアをいう。 In the present invention, zirconia is not particularly limited, but stabilized zirconia stabilized with at least one compound selected from Y 2 O 3 , MgO, CaO, CeO 2 and the like is preferable. Stabilized zirconia having a composition of ZrO 2 -8% Y 2 O 3 is preferred. Stabilized zirconia refers to zirconia that takes a cubic fluorite structure by adding several percent of MgO, CaO, rare earth oxide, and the like, and hardly causes phase transition.

さらに、本発明において、チタン酸化物としては、例えば、TiO、Ti、TiO、Ti、TiO、又はこれらの混合状態などがある。チタン酸化物層2の厚さは、特に限定されないが、5μm以上が好ましく、特に5μm〜10μmの範囲が好ましい。この範囲の厚さのチタン酸化物層2は容易に設けることができ、かつ、ケイ素系セラミックス基材1からジルコニア層3へのSiの拡散を十分に防止することができる。 Furthermore, in the present invention, examples of the titanium oxide include TiO, Ti 2 O 3 , TiO 2 , Ti 2 O 5 , TiO 3 , or a mixed state thereof. Although the thickness of the titanium oxide layer 2 is not specifically limited, 5 micrometers or more are preferable and especially the range of 5 micrometers-10 micrometers is preferable. The titanium oxide layer 2 having a thickness in this range can be easily provided, and the diffusion of Si from the silicon-based ceramic substrate 1 to the zirconia layer 3 can be sufficiently prevented.

以下に、本発明に係る高温耐湿構造部材の製造方法を説明する。本発明に係る高温耐湿構造部材は、第1に、ケイ素系セラミックス基材1の表面上にTi層を形成し、その層を酸化処理してチタン酸化物層2を形成し、第2に、そのチタン酸化物層2の表面にZr層又は安定化成分を含むZr層を形成し、その層を酸化処理してジルコニア層又は安定化ジルコニア層3を形成することによって得られる。   Below, the manufacturing method of the high temperature moisture-resistant structure member based on this invention is demonstrated. The high-temperature and moisture-resistant structural member according to the present invention firstly forms a Ti layer on the surface of the silicon-based ceramic substrate 1, and oxidizes the layer to form a titanium oxide layer 2, and secondly, It is obtained by forming a Zr layer or a Zr layer containing a stabilizing component on the surface of the titanium oxide layer 2 and oxidizing the layer to form a zirconia layer or a stabilized zirconia layer 3.

ここで、ケイ素系セラミックス基材1の表面上にTi層を形成した後、酸化処理を行わずにZr層又は安定化成分を含むZr層を形成し、その後酸化処理をしてチタン酸化物層2及びジルコニア層又は安定化ジルコニア層3を同時に形成してもよい。かかる方法によれば、本発明に係る高温耐湿構造部材の製造工程を簡略化し、短縮でき、その結果、本発明に係る高温耐湿構造部材の製造コスト及び製造時間を減少させることができる。   Here, after a Ti layer is formed on the surface of the silicon-based ceramic substrate 1, a Zr layer or a Zr layer containing a stabilizing component is formed without performing an oxidation treatment, and then an oxidation treatment is performed to form a titanium oxide layer. 2 and the zirconia layer or the stabilized zirconia layer 3 may be formed simultaneously. According to this method, the manufacturing process of the high-temperature and moisture-resistant structural member according to the present invention can be simplified and shortened, and as a result, the manufacturing cost and manufacturing time of the high-temperature and humidity-resistant structural member according to the present invention can be reduced.

また、第1の層を形成する際に、Ti層ではなく直接チタン酸化物層2を形成してもよい。さらに、第2の層を形成する際に、Zr層又は安定化成分を含むZr層ではなく直接ジルコニア層又は安定化ジルコニア層3を形成してもよい。   Further, when forming the first layer, the titanium oxide layer 2 may be formed directly instead of the Ti layer. Further, when forming the second layer, the zirconia layer or the stabilized zirconia layer 3 may be formed directly instead of the Zr layer or the Zr layer containing the stabilizing component.

ケイ素系セラミックス基材1の表面上にTi層を形成する方法及びTi層又はチタン酸化物層2の表面上にZr層又は安定化成分を含むZr層を形成する方法として、真空蒸着法やCVD法などがあるが、これらの方法をガスタービン翼などの凹凸がある複雑な形状の基材に用いることは、平滑性、均一性の面から非常に困難である。そこで、ケイ素系セラミックス基材1の表面上にTi層を形成する方法及び表面上にTi層又はチタン酸化物層2が形成されたケイ素系セラミックス基材1の表面上にZr層又は安定化成分を含むZr層を形成する方法は、下記の電解メッキ方法により実施することが好ましい。   As a method of forming a Ti layer on the surface of the silicon-based ceramic substrate 1 and a method of forming a Zr layer or a Zr layer containing a stabilizing component on the surface of the Ti layer or the titanium oxide layer 2, a vacuum deposition method or CVD However, it is very difficult to use these methods on a substrate having a complicated shape such as a gas turbine blade in terms of smoothness and uniformity. Therefore, a method of forming a Ti layer on the surface of the silicon-based ceramic substrate 1 and a Zr layer or stabilizing component on the surface of the silicon-based ceramic substrate 1 on which the Ti layer or the titanium oxide layer 2 is formed. The method for forming a Zr layer containing s is preferably carried out by the following electrolytic plating method.

以下、図2に基づいて、ケイ素系セラミックス基材1の表面上にTi層を形成する方法、及び表面上にTi層又はチタン酸化物層が形成されたケイ素系セラミックス基材1の表面上にZr層を形成する方法を具体的に説明する。   Hereinafter, based on FIG. 2, a method of forming a Ti layer on the surface of the silicon-based ceramic substrate 1, and on the surface of the silicon-based ceramic substrate 1 on which the Ti layer or the titanium oxide layer is formed. A method for forming the Zr layer will be specifically described.

図2はケイ素系セラミックス基材1の表面上にTi層を形成するための電解メッキ装置の概略構成図である。Tiイオンを含有したLiCl−KCl系の溶融塩及び所望の添加剤を含む電解液10と、導電性物質11にケイ素系セラミックス基材1を密着させて構成される陰極電極部12と、陽極電極部13とを用いて電気メッキを行うと、導電性物質11の表面上にTi層が形成され、導電性物質11とケイ素系セラミックス基材1との密着部分からケイ素系セラミックス基材1へTi層が二次元的に成長して、ケイ素系セラミックス基材1の表面上にTi層が形成される。具体的には、電源14に電気的に接続された陰極電極部12と陽極電極部13とが電解液10に浸されており、Ar又はNなどの不活性ガス雰囲気中で、それらの電極部間に電圧を印加して、ケイ素系セラミックス基材1の表面上にTiを析出させるようになっている。この印加では、電流(例えば、直流電流又はパルス電流など)及び電位(例えば、定電位又はパルス電位など)の制御を行う。なお、ここで印加する電位は、Li/Liの標準電極電位を基準として0.3V以上が好ましい。印加する電位が0.3Vより低いとケイ素系セラミックス基材1の表面上にTiと共にLiが析出し、均質なTi層を形成することができない。 FIG. 2 is a schematic configuration diagram of an electroplating apparatus for forming a Ti layer on the surface of the silicon-based ceramic substrate 1. An electrolytic solution 10 containing a TiCl-containing LiCl—KCl-based molten salt and a desired additive; a cathode electrode portion 12 formed by adhering a silicon-based ceramic substrate 1 to a conductive material 11; and an anode electrode When electroplating is performed using the portion 13, a Ti layer is formed on the surface of the conductive material 11, and Ti is transferred from the contact portion between the conductive material 11 and the silicon-based ceramic substrate 1 to the silicon-based ceramic substrate 1. The layer grows two-dimensionally and a Ti layer is formed on the surface of the silicon-based ceramic substrate 1. Specifically, the cathode electrode portion 12 and the anode electrode portion 13 that are electrically connected to the power source 14 are immersed in the electrolytic solution 10, and these electrodes are used in an inert gas atmosphere such as Ar or N 2. A voltage is applied between the portions to deposit Ti on the surface of the silicon-based ceramic substrate 1. In this application, current (for example, direct current or pulse current) and potential (for example, constant potential or pulse potential) are controlled. Note that the potential applied here is preferably 0.3 V or more based on the standard electrode potential of Li / Li + . If the applied potential is lower than 0.3 V, Li precipitates together with Ti on the surface of the silicon-based ceramic substrate 1, and a homogeneous Ti layer cannot be formed.

ここで、導電性物質11としては、Zr、Ti、Fe、Niなどが用いられるが、これらに必ずしも限定されるものではなく、他の金属又は合金若しくは金属以外の導電性物質(例えば、炭素など)を用いてもよい。ケイ素系セラミックス基材1の形状としては、高温機器及びその部品の仕様や設計などにおいて要求される任意の形状、例えば、ガスタービン翼などの複雑な形状であってもよい。陽極電極部13の材料としては、形成するTi層への不純物の混入を避けるため、炭素、Tiが好ましいが、特にTiが好ましい。陽極電極部13にTiを用いると、電気メッキ中に陽極電極部13を構成するTiが溶解し、電解液10中のTiイオンの濃度を維持することができる。   Here, Zr, Ti, Fe, Ni, or the like is used as the conductive substance 11, but is not necessarily limited thereto, and other metals, alloys, or conductive substances other than metals (for example, carbon and the like) ) May be used. The shape of the silicon-based ceramic substrate 1 may be any shape required in the specifications and design of high-temperature equipment and its components, for example, a complicated shape such as a gas turbine blade. As a material for the anode electrode portion 13, carbon and Ti are preferable in order to avoid contamination of impurities into the Ti layer to be formed, but Ti is particularly preferable. When Ti is used for the anode electrode portion 13, Ti constituting the anode electrode portion 13 is dissolved during electroplating, and the concentration of Ti ions in the electrolytic solution 10 can be maintained.

また、陽極電極部13と陰極電極部12とを電気的に接続する方法は、特に限定されないが、本実施形態では、電源14と導電性物質11とを導線(リード線)15により電気的に接続し、電源14と陽極電極部13とを導線(リード線)15により電気的に接続するようになっている。ここで、リード線から漏れる電流を遮蔽する手段や、リード線15をできる限り電解液10に曝さないための手段を用いることが好ましい。例えば、本実施形態では、これらの手段として、リード線15を被覆するアルミナチューブ16を用いる。   In addition, the method for electrically connecting the anode electrode portion 13 and the cathode electrode portion 12 is not particularly limited, but in the present embodiment, the power source 14 and the conductive material 11 are electrically connected by a lead wire (lead wire) 15. The power supply 14 and the anode electrode portion 13 are electrically connected by a conducting wire (lead wire) 15. Here, it is preferable to use a means for shielding current leaking from the lead wire or a means for preventing the lead wire 15 from being exposed to the electrolytic solution 10 as much as possible. For example, in this embodiment, an alumina tube 16 that covers the lead wire 15 is used as these means.

なお、表面にTi層又はチタン酸化物層が形成されたケイ素系セラミックス基材1の表面上にZr層を形成する場合については、Tiイオンを含有したLiCl−KCl系の溶融塩の代わりにZrイオンを含有したLiCl−KCl系の溶融塩と、ケイ素系セラミックス基材1の代わりに表面上にTi層又はチタン酸化物層2が形成されたケイ素系セラミックス基材1を用いて、上記と同様の電気メッキを行えばよい。この場合の陽極電極部13の材料としては上記と同様の理由により、特にZrが好ましい。   In the case where the Zr layer is formed on the surface of the silicon-based ceramic substrate 1 having the Ti layer or the titanium oxide layer formed on the surface, Zr is used instead of the LiCl—KCl-based molten salt containing Ti ions. Similar to the above, using a LiCl—KCl-based molten salt containing ions and a silicon-based ceramic substrate 1 having a Ti layer or a titanium oxide layer 2 formed on the surface instead of the silicon-based ceramic substrate 1 The electroplating may be performed. In this case, Zr is particularly preferable as the material of the anode electrode portion 13 for the same reason as described above.

次に、図3に基づいて、Ti層又はチタン酸化物層2の表面上に安定化成分を含むZr層を形成する方法を具体的に説明する。図3はTi層又はチタン酸化物層2の表面上に安定化成分を含むZr層を形成するための電解メッキ装置の概略構成図である。Zrイオン及び安定化成分のイオンを含有したLiCl−KCl系の溶融塩及び所望の添加剤を含む電解液10と、図2で説明したようにして得られたTi層又はチタン酸化物層2が形成されたケイ素系セラミックス基材1からなる陰極電極部12と、陽極電極部13及び副陽極電極部18とを用いて電解メッキを行って、Ti層又はチタン酸化物層2の表面上に安定化成分を含むZr層が形成される。陽極電極部13の材料としては、形成する層への不純物の混入を避けるため、炭素、Zr、上記の安定化成分材料がよいが、特にZrが好ましい。陽極電極部13にZrを用いると、電気メッキ中に陽極電極部13を構成するZrが溶解し、電解液10中のZrイオンの濃度を維持することができる。同様の理由より、副陽極電極部18の材料としてはその電解溶液10含まれている上記の安定化成分材料が特に好ましい。その他の構成及び操作については図2と同様である。   Next, a method for forming a Zr layer containing a stabilizing component on the surface of the Ti layer or the titanium oxide layer 2 will be specifically described with reference to FIG. FIG. 3 is a schematic configuration diagram of an electrolytic plating apparatus for forming a Zr layer containing a stabilizing component on the surface of the Ti layer or the titanium oxide layer 2. An electrolyte solution 10 containing a LiCl—KCl-based molten salt containing Zr ions and stabilizing component ions and a desired additive, and a Ti layer or a titanium oxide layer 2 obtained as described with reference to FIG. Electrolytic plating is performed using the formed cathode electrode portion 12 made of the silicon-based ceramic base material 1, the anode electrode portion 13 and the sub-anode electrode portion 18, and stable on the surface of the Ti layer or the titanium oxide layer 2 A Zr layer containing a chemical component is formed. As a material for the anode electrode portion 13, carbon, Zr, and the above-described stabilizing component materials are preferable in order to avoid impurities from being mixed into the layer to be formed, but Zr is particularly preferable. When Zr is used for the anode electrode portion 13, Zr constituting the anode electrode portion 13 is dissolved during electroplating, and the concentration of Zr ions in the electrolytic solution 10 can be maintained. For the same reason, the above-described stabilizing component material contained in the electrolytic solution 10 is particularly preferable as the material of the sub-anode electrode portion 18. Other configurations and operations are the same as those in FIG.

なお、プラズマ溶射法やスラリーコート法などにより、ケイ素系セラミックス上にTi層を形成してもよいし、Ti層又はチタン酸化物層2の表面上に、Zr層、安定化成分を含むZr層又はジルコニア層3を形成してもよい。そして、Ti層、Zr層、及び安定化成分を含むZr層を酸化する方法としては、加熱酸化処理(例えば、大気中600〜1200℃で5〜20時間)、オゾン酸化法、又は酸素元素を含む溶融塩(溶融炭酸塩、溶融硝酸塩など)に浸漬する方法などが挙げられる。   Note that a Ti layer may be formed on the silicon-based ceramics by a plasma spraying method or a slurry coating method, or a Zr layer or a Zr layer containing a stabilizing component on the surface of the Ti layer or the titanium oxide layer 2. Alternatively, the zirconia layer 3 may be formed. As a method for oxidizing the Ti layer, the Zr layer, and the Zr layer containing the stabilizing component, a heat oxidation treatment (for example, in the atmosphere at 600 to 1200 ° C. for 5 to 20 hours), an ozone oxidation method, or an oxygen element is used. The method of immersing in molten salt (molten carbonate, molten nitrate, etc.) to contain is mentioned.

(実施例1)
(1)Si基材の表面へのTi層の形成
Siからなる板状試験片1上にTi層の形成を行った。この板状試験片1の大きさは4mm厚×40mm長×5mm巾とした。導電性物質11の材質にNiを用い、その大きさは4mm厚×5mm長×5mm巾とした。
Example 1
(1) Formation of Ti layer on the surface of Si 3 N 4 substrate A Ti layer was formed on the plate-like test piece 1 made of Si 3 N 4 . The size of the plate-like test piece 1 was 4 mm thick × 40 mm long × 5 mm wide. Ni was used as the material of the conductive substance 11 and the size thereof was 4 mm thick × 5 mm long × 5 mm wide.

この板状試験片1の表面をアセトンで脱脂し、濃度10質量%の硝酸水溶液で酸洗し、さらに水洗処理し乾燥させた。その後、板状試験片1を導電性物質11に密着させて陰極電極部12を作成した。この際、板状試験片1及び導電性物質11の陽極電極部13に対面する側の表が同一表面を成すようにした。具体的には、図2に示すように、東亞合成社製のアロンセラミック(アルミナが主成分のセラミック用接着剤)を用いて、板状試験片1にアルミナチューブ16を接着し、そのアルミナチューブ16の中を通して電源に接続するリード線15を、板状試験片1に密着している導電性物質11に接続させた。この板状試験片1付き陰極電極部12を乾燥させた後、以下に示す条件で電気メッキを施し、板状試験片1の表面上にTi層を形成した。   The surface of the plate-like test piece 1 was degreased with acetone, pickled with a 10% by weight aqueous nitric acid solution, further washed with water and dried. Thereafter, the plate-like test piece 1 was brought into close contact with the conductive material 11 to form a cathode electrode portion 12. At this time, the surfaces of the plate-shaped test piece 1 and the conductive material 11 facing the anode electrode portion 13 were made to have the same surface. Specifically, as shown in FIG. 2, an alumina tube 16 is bonded to the plate-shaped test piece 1 using an Aaron ceramic (alumina-based ceramic adhesive) manufactured by Toagosei Co., Ltd., and the alumina tube A lead wire 15 connected to a power source through 16 is connected to the conductive material 11 that is in close contact with the plate-like test piece 1. After the cathode electrode portion 12 with the plate-like test piece 1 was dried, electroplating was performed under the following conditions to form a Ti layer on the surface of the plate-like test piece 1.

本実施例では、陽極電極部13としてTiを用い、LiClとKClとTiClとを58.5mol対41.5mol対2.0molの比率で含有する電解液10を450〜560℃に加熱し、Ar雰囲気中で、Li/Liの標準電極電位を基準として電位1.3Vで6時間印加して板状試験片1の表面上にTi層を形成した。 In this example, Ti was used as the anode electrode part 13, and the electrolytic solution 10 containing LiCl, KCl, and TiCl 3 in a ratio of 58.5 mol to 41.5 mol to 2.0 mol was heated to 450 to 560 ° C., In an Ar atmosphere, a Ti layer was formed on the surface of the plate-shaped test piece 1 by applying a potential of 1.3 V for 6 hours with reference to the standard electrode potential of Li / Li + .

(2)チタン酸化物層の形成
次に、表面上にTi層が形成された板状試験片1を大気中700℃で12時間加熱酸化して、板状試験片1の表面上に厚さ約5μmのチタン酸化物層2を形成した。
(2) Formation of Titanium Oxide Layer Next, the plate-like test piece 1 having the Ti layer formed on the surface is heated and oxidized at 700 ° C. in the atmosphere for 12 hours to obtain a thickness on the surface of the plate-like test piece 1. A titanium oxide layer 2 of about 5 μm was formed.

(3)Yを約8%含むZr層の形成
さらに、図3に示すように、陽極電極部13及び副陽極電極18にそれぞれZr及びYを用い、LiClとKClとZrClとYClとを58.5mol対41.5mol対2.0mol対1.0molの比率で含有する電解液10を450〜560℃に加熱し、Ar雰囲気中で、Zrからなる陽極電極部13に6mA、Yからなる副陽極電極部18に0.5mAの電流を6時間流し、上述したチタン酸化物層2の表面上にYを約8%含むZr層を形成した。
(3) Formation of Zr layer containing about 8% Y Further, as shown in FIG. 3, Zr and Y are used for anode electrode part 13 and sub-anode electrode 18 respectively, and LiCl, KCl, ZrCl 4 and YCl 3 are used. The electrolyte solution 10 containing 58.5 mol: 41.5 mol: 2.0 mol: 1.0 mol is heated to 450 to 560 ° C., and in the Ar atmosphere, the anode electrode portion 13 made of Zr is made of 6 mA, Y. A current of 0.5 mA was passed through the sub-anode electrode portion 6 for 6 hours to form a Zr layer containing about 8% Y on the surface of the titanium oxide layer 2 described above.

(4)安定化ジルコニア(ZrO−8%Y)層の形成
また、表面層としてYを約8%含むZr層が形成された板状試験片1を大気中1000℃で12時間加熱酸化して、そのチタン酸化物層2の表面上に厚さ約5μmの安定化ジルコニア層3を形成して実施例1の構造部材を得た。
(4) Formation of Stabilized Zirconia (ZrO 2 -8% Y 2 O 3 ) Layer Further, the plate-like test piece 1 on which a Zr layer containing about 8% of Y as a surface layer was formed at 1000 ° C. in the atmosphere for 12 hours. Thermal oxidation was performed to form a stabilized zirconia layer 3 having a thickness of about 5 μm on the surface of the titanium oxide layer 2 to obtain the structural member of Example 1.

(比較例1)
チタン酸化物層を形成しない以外は実施例1の方法と同様にして、板状試験片1の表面上に、直接厚さ約5μmの安定化ジルコニア(ZrO−8%Y)層を形成して比較例1の構造部材を得た。
(Comparative Example 1)
A stabilized zirconia (ZrO 2 -8% Y 2 O 3 ) layer having a thickness of about 5 μm is directly formed on the surface of the plate-like test piece 1 in the same manner as in Example 1 except that no titanium oxide layer is formed. The structural member of Comparative Example 1 was obtained.

(試験例1)X線回折分析
実施例1及び比較例1で得られた構造部材を大気中1000℃で12時間加熱した後、それぞれの構造部材の表面のX線回折分析を行った。
(Test Example 1) X-ray diffraction analysis After the structural members obtained in Example 1 and Comparative Example 1 were heated in the atmosphere at 1000 ° C for 12 hours, X-ray diffraction analysis was performed on the surface of each structural member.

実施例1及び比較例1の構造部材の表面のX線回折分析により得られたスペクトルを図4に示す。図中の●はZrSiOのピークを示す。 The spectrum obtained by the X-ray diffraction analysis of the surface of the structural member of Example 1 and Comparative Example 1 is shown in FIG. In FIG ● shows a peak of ZrSiO 4.

図4に示すように、比較例1で得られた構造部材のX線回折分析により得られたスペクトルにはZrSiOの存在によるピークがあるが、実施例1で得られた構造部材のX線回折分析により得られたスペクトルにはZrSiOの存在によるピークがないことが分かった。 As shown in FIG. 4, the spectrum obtained by X-ray diffraction analysis of the structural member obtained in Comparative Example 1 has a peak due to the presence of ZrSiO 4 , but the X-ray of the structural member obtained in Example 1 The spectrum obtained by diffraction analysis was found to have no peak due to the presence of ZrSiO 4 .

本発明の一実施形態に係る高温耐湿構造部材の構成図である。It is a block diagram of the high temperature moisture-resistant structure member based on one Embodiment of this invention. ケイ素系セラミックス基材の表面にTi層を形成する電解メッキ装置の概略構成図である。It is a schematic block diagram of the electroplating apparatus which forms Ti layer on the surface of a silicon-type ceramic base material. ケイ素系セラミックス基材の表面にYを約8%含むZr層を形成する電解メッキ装置の概略構成図である。It is a schematic block diagram of the electroplating apparatus which forms the Zr layer which contains Y about 8% on the surface of a silicon-type ceramic base material. 試験例1のX線回折分析により得られたスペクトルを示す図である。2 is a diagram showing a spectrum obtained by X-ray diffraction analysis of Test Example 1. FIG.

符号の説明Explanation of symbols

1 ケイ素系セラミックス基材
2 チタン酸化物層
3 ジルコニア層
10 電解液
11 導電性物質
12 陰極電極部
13 陽極電極部
14 電源
15 リード線
16 アルミナチューブ
17 電解槽
18 副陽極電極部
19 副電源

DESCRIPTION OF SYMBOLS 1 Silicon-type ceramic base material 2 Titanium oxide layer 3 Zirconia layer 10 Electrolytic solution 11 Conductive substance 12 Cathode electrode part 13 Anode electrode part 14 Power supply 15 Lead wire 16 Alumina tube 17 Electrolyzer 18 Sub-anode electrode part 19 Sub power supply

Claims (6)

ケイ素系セラミックス基材とジルコニア層との間にチタン酸化物を主成分とする層を有することを特徴とする高温耐湿構造部材。 A high-temperature and moisture-resistant structural member comprising a layer mainly composed of titanium oxide between a silicon-based ceramic substrate and a zirconia layer. 請求項1において、前記ケイ素系セラミックス基材と前記チタン酸化物を主成分とする層との間及び前記チタン酸化物を主成分とする層と前記ジルコニア層との間にそれらの拡散反応により生じた中間層を有することを特徴とする高温耐湿構造部材。 In Claim 1, it arises by those diffusion reactions between the said silicon-type ceramic base material and the layer which has the said titanium oxide as a main component, and between the layer which has the said titanium oxide as a main component, and the said zirconia layer. A high-temperature and moisture-resistant structural member characterized by having an intermediate layer. 請求項1又は2において、前記ケイ素系セラミックス基材がSiC、Si、又は少なくともいずれか一方を主成分とするセラミックスであることを特徴とする高温耐湿構造部材。 The high-temperature and moisture-resistant structural member according to claim 1 or 2, wherein the silicon-based ceramic base material is SiC, Si 3 N 4 , or ceramics containing at least one of them as a main component. 請求項1〜3の何れかにおいて、前記ジルコニア層が安定化ジルコニアからなることを特徴とする高温耐湿構造部材。   4. The high-temperature and moisture-resistant structural member according to claim 1, wherein the zirconia layer is made of stabilized zirconia. 請求項1〜4の何れかにおいて、前記チタン酸化物を主成分とする層の厚さが5μm以上であることを特徴とする高温耐湿構造部材。 5. The high-temperature and moisture-resistant structural member according to claim 1, wherein a thickness of the layer mainly composed of the titanium oxide is 5 μm or more. 請求項1〜5の何れかの高温耐湿構造部材からなるガスタービン翼を有することを特徴とするガスタービン。   A gas turbine comprising gas turbine blades made of the high-temperature and moisture-resistant structural member according to claim 1.
JP2004173262A 2004-06-10 2004-06-10 High temperature and humidity resistant structural member and gas turbine Expired - Fee Related JP4537123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004173262A JP4537123B2 (en) 2004-06-10 2004-06-10 High temperature and humidity resistant structural member and gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004173262A JP4537123B2 (en) 2004-06-10 2004-06-10 High temperature and humidity resistant structural member and gas turbine

Publications (2)

Publication Number Publication Date
JP2005351183A JP2005351183A (en) 2005-12-22
JP4537123B2 true JP4537123B2 (en) 2010-09-01

Family

ID=35585859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004173262A Expired - Fee Related JP4537123B2 (en) 2004-06-10 2004-06-10 High temperature and humidity resistant structural member and gas turbine

Country Status (1)

Country Link
JP (1) JP4537123B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016024576A1 (en) * 2014-08-12 2016-02-18 旭硝子株式会社 Heat cycle system
JP7017290B2 (en) * 2018-07-12 2022-02-08 一般財団法人電力中央研究所 Corrosion resistant furnace wall member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11504075A (en) * 1995-04-25 1999-04-06 シーメンス アクチエンゲゼルシヤフト Superalloy component with protective coating system
JP2000143354A (en) * 1998-11-12 2000-05-23 Kyushu Refract Co Ltd Jig for baking electronic part
JP2001064783A (en) * 1999-06-21 2001-03-13 General Electric Co <Ge> Ceramic superalloy article

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679992B2 (en) * 1987-06-17 1994-10-12 日本碍子株式会社 Metal-ceramic composite
JPH05117064A (en) * 1991-04-09 1993-05-14 Tokyo Electric Power Co Inc:The Blade for gas turbine and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11504075A (en) * 1995-04-25 1999-04-06 シーメンス アクチエンゲゼルシヤフト Superalloy component with protective coating system
JP2000143354A (en) * 1998-11-12 2000-05-23 Kyushu Refract Co Ltd Jig for baking electronic part
JP2001064783A (en) * 1999-06-21 2001-03-13 General Electric Co <Ge> Ceramic superalloy article

Also Published As

Publication number Publication date
JP2005351183A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
TW515853B (en) Improved anode formulation and methods of manufacture
JP5512542B2 (en) Highly conductive surface for electrochemical applications
US9670586B1 (en) Solid oxide fuel cells, electrolyzers, and sensors, and methods of making and using the same
CN109311092A (en) Metal or ceramic component are made with the dissolvable carrier of different materials using 3D printing
EP0034408A1 (en) A method of forming an anticorrosive coating on a metal electrode substrate
JPS636636B2 (en)
TWI421373B (en) Tungsten coating method for metal base material
TW200534336A (en) Process chamber component having electroplated yttrium containing coating
US20200152426A1 (en) Semiconductor reactor and method for forming coating layer on metal base material for semiconductor reactor
JP4537123B2 (en) High temperature and humidity resistant structural member and gas turbine
JP4728306B2 (en) Electrostatic chuck member and manufacturing method thereof
US8168258B2 (en) Method of producing a temperature sensor
USRE25630E (en) Corrosion resistant coating
CN108431934A (en) The corrosion-resistant coating of semiconductor processing equipment
JPH0133909B2 (en)
CN101208378B (en) A corrosion resistant object having an outer layer of a ceramic material
JP6500683B2 (en) Method of surface modification of titanium base material
JP2013155050A (en) Coated metal processed body, and method for manufacturing the same
US6384533B1 (en) Metal component and discharge lamp
US3024177A (en) Corrosion resistant coating
CN108779568B (en) Method for electrochemically forming yttria on semiconductor processing equipment
JP2004360067A (en) Electrode for electrolysis, and its production method
JP2005308529A (en) Manufacturing method of thin-film metal oxide ion conductor used for reducing gas sensor
JPS62246878A (en) Method of jining metal to oxygen ion conductive ceramics
JPH09326258A (en) Manufacture of solid electrolyte film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees