JP4536031B2 - Coating composition and coating - Google Patents

Coating composition and coating Download PDF

Info

Publication number
JP4536031B2
JP4536031B2 JP2006122801A JP2006122801A JP4536031B2 JP 4536031 B2 JP4536031 B2 JP 4536031B2 JP 2006122801 A JP2006122801 A JP 2006122801A JP 2006122801 A JP2006122801 A JP 2006122801A JP 4536031 B2 JP4536031 B2 JP 4536031B2
Authority
JP
Japan
Prior art keywords
coating composition
coating
parts
carbon
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006122801A
Other languages
Japanese (ja)
Other versions
JP2007291280A (en
Inventor
昭治 黒山
博 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GSI Creos Corp
Original Assignee
GSI Creos Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GSI Creos Corp filed Critical GSI Creos Corp
Priority to JP2006122801A priority Critical patent/JP4536031B2/en
Priority to EP07742853.0A priority patent/EP2011838B1/en
Priority to PCT/JP2007/059418 priority patent/WO2007132684A1/en
Priority to US12/298,178 priority patent/US20100239838A1/en
Priority to TW096114970A priority patent/TW200800600A/en
Publication of JP2007291280A publication Critical patent/JP2007291280A/en
Application granted granted Critical
Publication of JP4536031B2 publication Critical patent/JP4536031B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/386Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • C09D133/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/26Corrosion of reinforcement resistance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/046Carbon nanorods, nanowires, nanoplatelets or nanofibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/08Crosslinking by silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component

Description

本発明は、被覆組成物および被覆物に関する。より詳細には、本発明は、優れた機械的強度と耐食性とを同時に有する被膜を形成し得る被覆組成物およびそのような被膜を有する被覆物に関する。   The present invention relates to coating compositions and coatings. More specifically, the present invention relates to a coating composition capable of forming a film having both excellent mechanical strength and corrosion resistance, and a coating having such a film.

炭素鋼等からなる機械部品や締結部材の表面に耐食性を付与し、摩擦や湿気等による劣化を防止する方法として、当該部品や部材表面への無機系塗料の塗布および亜鉛等の金属メッキが一般的によく知られている。しかし、これらの方法は、自然環境におけるまたは化学薬品に対する耐食性が不十分であるという問題がある。   As a method of imparting corrosion resistance to the surface of mechanical parts and fastening members made of carbon steel, etc., and preventing deterioration due to friction, moisture, etc., the application of inorganic paint to the surfaces of the parts and members and metal plating of zinc etc. are common Well known. However, these methods have the problem of insufficient corrosion resistance in the natural environment or against chemicals.

耐食性を改善する手段として、長期耐食性に優れるフッ素樹脂を被覆する方法が提案されている。フッ素樹脂は摩擦係数が小さく良好な摩擦特性を示すので摺動材への被覆に用いられ、また、締め付けトルクも低いのでボルト・ナット等の締結部材にも用いられている。しかし、フッ素樹脂被膜は軟らかく弱いので、摺動材や締結部材等に適用した場合には、金属材料等の表面に施した被覆の損傷を招きやすく、過酷な摺動(摩擦)条件下では摩耗が著しいという問題がある。   As means for improving corrosion resistance, a method of coating a fluororesin excellent in long-term corrosion resistance has been proposed. Fluororesin has a small coefficient of friction and exhibits good friction characteristics, so it is used for coating on sliding materials, and it is also used for fastening members such as bolts and nuts because of its low tightening torque. However, since the fluororesin coating is soft and weak, when it is applied to sliding materials and fastening members, it tends to cause damage to the coating applied to the surface of metal materials, etc., and wears under severe sliding (friction) conditions. There is a problem that is remarkable.

上記フッ素樹脂被覆における問題を解決する手段として、フッ素樹脂中にフィブリル化アラミド繊維を添加する技術が提案されている(特許文献1参照)。また、過酷な摩擦条件下においても耐はく離性を確保するために、フッ素樹脂を含む樹脂で構成される摺動層と、被覆材表面と摺動層との間にポリイミド樹脂および/またはポリアミドイミド樹脂とフッ素樹脂とを含む樹脂接合層とを設けた2層被覆方式が提案されている(特許文献2参照)。このような技術によれば、フッ素樹脂皮膜の耐損傷性に多少の改善は見られるものの、フッ素樹脂皮膜が損傷を受けやすいという本質的な問題はなんら解決されていない。さらに、特許文献2に記載の技術によれば、製造コストが大幅に増大するという問題も生じる。   As a means for solving the problem in the fluororesin coating, a technique of adding fibrillated aramid fibers to the fluororesin has been proposed (see Patent Document 1). Further, in order to ensure peeling resistance even under severe friction conditions, a polyimide resin and / or a polyamideimide is formed between a sliding layer composed of a resin containing a fluororesin and a surface of the coating material and the sliding layer. A two-layer coating method in which a resin bonding layer containing a resin and a fluororesin is provided has been proposed (see Patent Document 2). According to such a technique, although there is some improvement in the damage resistance of the fluororesin film, the essential problem that the fluororesin film is easily damaged has not been solved. Furthermore, according to the technique described in Patent Document 2, there is a problem that the manufacturing cost is significantly increased.

上記のような問題を解決するために、合成樹脂バインダー中に炭素ナノ繊維を含有する被覆剤が提案されている(特許文献3参照)。この技術によれば、耐損傷性は大幅に改善される。しかし、この被覆剤による被膜は、耐食性が不十分であるという問題がある。   In order to solve the above problems, a coating agent containing carbon nanofibers in a synthetic resin binder has been proposed (see Patent Document 3). According to this technique, the damage resistance is greatly improved. However, the coating with this coating agent has a problem that the corrosion resistance is insufficient.

以上のように、耐損傷性のような機械的特性と耐食性とを同時に満足する被覆剤はいまだ得られていない。
特開平6−122785号公報 特開2002−276665号公報 特開2005−28802号公報
As described above, a coating material that satisfies both mechanical properties such as damage resistance and corrosion resistance has not been obtained yet.
JP-A-6-122785 JP 2002-276665 A JP-A-2005-28802

本発明はこのような問題を解決するためになされたものであり、その目的とするところは、優れた長期耐食性を有し、同時に、耐衝撃性、延性、硬度、耐屈曲性等の機械的特性に優れ、かつ、摺動に対する耐損傷性に優れる被膜を形成し得る被覆組成物およびそのような被膜を有する被覆物を提供することにある。   The present invention has been made in order to solve such problems, and its object is to have excellent long-term corrosion resistance, and at the same time, mechanical properties such as impact resistance, ductility, hardness, and bending resistance. An object of the present invention is to provide a coating composition capable of forming a film having excellent properties and excellent damage resistance against sliding, and a coating having such a film.

本発明の被覆組成物は、合成樹脂バインダーと、非導電性物質で表面処理された多層炭素ナノ繊維と、分散媒とを含む。   The coating composition of the present invention includes a synthetic resin binder, multi-layer carbon nanofibers surface-treated with a non-conductive substance, and a dispersion medium.

好ましい実施形態においては、上記多層炭素ナノ繊維の表面の少なくとも一部は、グラフト化されている。   In a preferred embodiment, at least a part of the surface of the multilayer carbon nanofiber is grafted.

好ましい実施形態においては、上記多層炭素ナノ繊維は、底の無いカップ形状を有する炭素網層が入れ子状に多数積層した構造を有する。別の実施形態においては、上記多層炭素ナノ繊維は、径の異なる複数の筒状の炭素網層が同軸状に配置された構造を有する。   In a preferred embodiment, the multilayer carbon nanofiber has a structure in which a large number of carbon network layers having a cup shape without a bottom are stacked in a nested manner. In another embodiment, the multilayer carbon nanofiber has a structure in which a plurality of cylindrical carbon network layers having different diameters are coaxially arranged.

好ましい実施形態においては、上記被覆組成物は、上記合成樹脂バインダー100重量部に対して、上記多層炭素ナノ繊維を3〜15重量部、上記分散媒を10〜300重量部含む。   In preferable embodiment, the said coating composition contains 3-15 weight part of said multilayer carbon nanofibers, and 10-300 weight part of said dispersion media with respect to 100 weight part of said synthetic resin binders.

好ましい実施形態においては、上記合成樹脂バインダーは熱硬化性樹脂である。別の実施形態においては、上記合成樹脂バインダーは、フェノール樹脂、エポキシ樹脂、ポリウレタン樹脂、ケイ素樹脂、ポリアミドイミド樹脂および水系フッ素樹脂からなる群から選択される少なくとも1つである。   In a preferred embodiment, the synthetic resin binder is a thermosetting resin. In another embodiment, the synthetic resin binder is at least one selected from the group consisting of a phenol resin, an epoxy resin, a polyurethane resin, a silicon resin, a polyamideimide resin, and an aqueous fluororesin.

好ましい実施形態においては、上記分散媒は極性溶媒である。さらに好ましい実施形態においては、上記分散媒は、水、アルコール類、N−メチル−2−ピロリドン、ジメチルアセトアミド、メチルエチルケトンおよびメチルイソブチルケトンからなる群から選択される少なくとも1つである。   In a preferred embodiment, the dispersion medium is a polar solvent. In a further preferred embodiment, the dispersion medium is at least one selected from the group consisting of water, alcohols, N-methyl-2-pyrrolidone, dimethylacetamide, methyl ethyl ketone and methyl isobutyl ketone.

好ましい実施形態においては、上記被覆組成物によれば、得られる被膜のヌープ硬さが20Hk以上であり、かつ、塩水噴霧試験による防錆力が200時間以上である。   In preferable embodiment, according to the said coating composition, the Knoop hardness of the film obtained is 20 Hk or more, and the rust prevention power by a salt spray test is 200 hours or more.

本発明の別の局面によれば、被覆物が提供される。この被覆物は、基体表面の少なくとも一部に、上記の被覆組成物による被膜が形成されている。好ましい実施形態においては、上記基体は、金属製工業部品、ボルト・ナット、軸受け、シール部品、締結フランジ、座金、ブレーキシュー、ジャッキ部品および半導体製造装置の摺動部品からなる群から選択される。   According to another aspect of the invention, a coating is provided. In this coating, a film made of the above coating composition is formed on at least a part of the substrate surface. In a preferred embodiment, the base is selected from the group consisting of metal industrial parts, bolts and nuts, bearings, seal parts, fastening flanges, washers, brake shoes, jack parts, and sliding parts of semiconductor manufacturing equipment.

本発明によれば、表面が非導電性物質で処理された多層炭素ナノ繊維を用いることにより、機械的強度と耐食性とを同時に満足する被膜を形成し得る被覆組成物を提供することができる。すなわち、本発明によれば、いわゆるカーボンナノチューブによる被覆剤の機械的強度の改善という効果を維持しつつ、カーボンナノチューブの導電性に起因する被膜の腐食という問題を解決することができる。   ADVANTAGE OF THE INVENTION According to this invention, the coating composition which can form the film which satisfies mechanical strength and corrosion resistance simultaneously can be provided by using the multilayer carbon nanofiber by which the surface was processed with the nonelectroconductive substance. That is, according to the present invention, it is possible to solve the problem of corrosion of the coating film due to the conductivity of the carbon nanotubes while maintaining the effect of improving the mechanical strength of the coating agent by the so-called carbon nanotubes.

本発明の被覆組成物は、合成樹脂バインダーと、非導電性物質で表面処理された多層炭素ナノ繊維と、分散媒とを含む。   The coating composition of the present invention includes a synthetic resin binder, multi-layer carbon nanofibers surface-treated with a non-conductive substance, and a dispersion medium.

合成樹脂バインダーとしては、目的や被覆される基体の種類に応じて任意の適切な合成樹脂が採用され得る。上記合成樹脂は、熱可塑性樹脂であってもよく、熱硬化性樹脂であってもよい。合成樹脂の具体例としては、フェノール樹脂、エポキシ樹脂、ポリウレタン樹脂、ケイ素樹脂、ポリアミドイミド樹脂、フッ素樹脂、ポリイミド樹脂、ポリ塩化ビニル樹脂、アルキド樹脂、アクリル樹脂、メラミン樹脂、ポリスチレン樹脂、ビニルエステル樹脂、ポリエステル樹脂、ならびに、これらのブレンド、共重合体および変性体が挙げられる。1つの実施形態においては、好ましい合成樹脂は熱硬化性樹脂である。機械的強度(特に、硬度)に優れた被膜を形成することができるからである。1つの実施形態においては、好ましい合成樹脂は、フェノール樹脂、エポキシ樹脂、ポリウレタン樹脂、ケイ素樹脂、ポリアミドイミド樹脂または水系フッ素樹脂である。炭素ナノ繊維の分散性に特に優れるからである。特に好ましい合成樹脂は、フェノール樹脂またはポリアミドイミド樹脂である。なお、合成樹脂の形態も特に限定されない。例えば、粉末であってもよく、ペレットであってもよく、合成樹脂を含む液状組成物であってもよい。   As the synthetic resin binder, any appropriate synthetic resin can be adopted depending on the purpose and the type of the substrate to be coated. The synthetic resin may be a thermoplastic resin or a thermosetting resin. Specific examples of the synthetic resin include phenol resin, epoxy resin, polyurethane resin, silicon resin, polyamideimide resin, fluorine resin, polyimide resin, polyvinyl chloride resin, alkyd resin, acrylic resin, melamine resin, polystyrene resin, vinyl ester resin. , Polyester resins, and blends, copolymers and modified products thereof. In one embodiment, the preferred synthetic resin is a thermosetting resin. This is because a film excellent in mechanical strength (particularly hardness) can be formed. In one embodiment, a preferable synthetic resin is a phenol resin, an epoxy resin, a polyurethane resin, a silicon resin, a polyamideimide resin, or a water-based fluororesin. This is because the dispersibility of the carbon nanofibers is particularly excellent. Particularly preferred synthetic resins are phenol resins or polyamideimide resins. The form of the synthetic resin is not particularly limited. For example, it may be a powder, a pellet, or a liquid composition containing a synthetic resin.

本明細書において「多層炭素ナノ繊維」とは、単層炭素ナノ繊維以外のすべての炭素ナノ繊維を包含する。より具体的には、多層炭素ナノ繊維とは、2つ以上の炭素網層を構造中に有する炭素ナノ繊維である。多層炭素ナノ繊維は、その構造に起因して、表面に非常に多くの官能基が存在し得、および/または、表面に非常に多くの官能基を導入し得る。したがって、下記で詳述する表面処理が非常に良好に行われる。その結果、炭素ナノ繊維として被膜の機械的強度の大幅な向上に寄与し、かつ、簡便な表面処理により非導電性とされるので、従来のカーボンナノチューブの問題であった被膜の耐食性という問題を解決することができる。多層炭素ナノ繊維の形状および/またはサイズは、本発明の効果が得られる限りにおいて、適切に選択され得る。1つの実施形態においては、多層ナノ繊維の長さは、好ましくは5nm〜100μm、さらに好ましくは20nm〜10μmである。1つの実施形態においては、繊維径(直径)は、好ましくは5nm〜300nm、さらに好ましくは5nm〜250nmである。さらに、多層ナノ繊維の代表例としては、底の無いカップ形状を有する炭素網層が入れ子状に多数積層した構造を有する炭素ナノ繊維、および、径の異なる複数の筒状の炭素網層が同軸状に配置された構造を有する炭素ナノ繊維が挙げられる。底の無いカップ形状を有する炭素網層が入れ子状に多数積層した構造を有する炭素ナノ繊維の詳細は、特開2003-147644号公報に記載されている(本公報の開示は、本明細書に参考として援用される)。このような炭素ナノ繊維は、株式会社GSIクレオスから商品名カルベール(登録商標)として入手可能である。径の異なる複数の筒状の炭素網層が同軸状に配置された構造を有する炭素ナノ繊維の代表例としては、気相成長炭素繊維(VGCF)が挙げられる。気相成長炭素繊維は、例えば、昭和電工株式会社から商品名VGCF(R)として市販されている   As used herein, “multilayer carbon nanofiber” includes all carbon nanofibers other than single-layer carbon nanofibers. More specifically, the multi-layer carbon nanofiber is a carbon nanofiber having two or more carbon network layers in the structure. Multilayer carbon nanofibers can have a very large number of functional groups on the surface and / or can introduce a large number of functional groups on the surface due to their structure. Therefore, the surface treatment described in detail below is performed very well. As a result, the carbon nanofiber contributes to a significant improvement in the mechanical strength of the coating and is made non-conductive by a simple surface treatment. Can be solved. The shape and / or size of the multi-layer carbon nanofiber can be appropriately selected as long as the effects of the present invention are obtained. In one embodiment, the length of the multilayer nanofiber is preferably 5 nm to 100 μm, more preferably 20 nm to 10 μm. In one embodiment, the fiber diameter (diameter) is preferably 5 nm to 300 nm, more preferably 5 nm to 250 nm. Furthermore, as a representative example of multilayer nanofibers, carbon nanofibers having a structure in which a large number of carbon network layers having a cup shape with no bottom are nested and a plurality of cylindrical carbon network layers having different diameters are coaxial. And carbon nanofibers having a structure arranged in a shape. Details of carbon nanofibers having a structure in which many carbon network layers having a cup shape without a bottom are laminated in a nested manner are described in JP-A-2003-147644 (the disclosure of this publication is disclosed in this specification) Incorporated by reference). Such carbon nanofibers are available from GSI Creos Co., Ltd. under the trade name Calvert (registered trademark). As a typical example of the carbon nanofiber having a structure in which a plurality of cylindrical carbon network layers having different diameters are coaxially arranged, vapor grown carbon fiber (VGCF) can be given. Vapor-grown carbon fiber is commercially available from Showa Denko Co., Ltd. under the trade name VGCF (R), for example.

上記多層炭素ナノ繊維は、その表面の少なくとも一部が非導電性物質で表面処理されている。このような多層炭素ナノ繊維を用いることにより、優れた機械的強度を維持しつつ、耐食性が格段に改善された被膜を得ることができる。このような優れた効果は、表面処理された多層炭素ナノ繊維を被覆組成物に適用してはじめて得られた知見であり、予期せぬ優れた効果である。これは、適切な表面処理を行うことにより、多層炭素ナノ繊維の表面が電気的に絶縁され、その結果、被膜の導電性が抑制されて、耐食性が格段に改善されると推定される。表面処理された多層炭素ナノ繊維を用いることにより、被膜の機械的強度と耐食性とを両立させたことが、本発明の大きな成果の1つである。   The multilayer carbon nanofibers are at least partly surface-treated with a nonconductive material. By using such multi-layered carbon nanofibers, it is possible to obtain a coating with significantly improved corrosion resistance while maintaining excellent mechanical strength. Such an excellent effect is a knowledge obtained only after applying the surface-treated multilayer carbon nanofiber to the coating composition, and is an unexpectedly excellent effect. This is presumed that by performing an appropriate surface treatment, the surface of the multilayer carbon nanofiber is electrically insulated, and as a result, the conductivity of the coating is suppressed and the corrosion resistance is remarkably improved. One of the great achievements of the present invention is that the mechanical strength and corrosion resistance of the coating are made compatible by using the surface-treated multilayer carbon nanofibers.

上記表面処理は、化学的表面処理であってもよく、物理的表面処理であってもよい。化学的表面処理と物理的表面処理とを組み合わせてもよい。本明細書において、「化学的表面処理」とは、化学変化により表面性状を改変する処理のことをいい、「物理的表面処理」とは、化学反応を伴うことなく表面性状を改変する処理のことをいう。上記非導電性物質としては、採用される表面処理の種類に応じて任意の適切な非導電性物質が採用され得る。   The surface treatment may be a chemical surface treatment or a physical surface treatment. Chemical surface treatment and physical surface treatment may be combined. In this specification, “chemical surface treatment” refers to a treatment that modifies the surface properties by chemical change, and “physical surface treatment” refers to a treatment that modifies the surface properties without chemical reaction. That means. As the non-conductive substance, any appropriate non-conductive substance can be adopted depending on the type of surface treatment to be adopted.

化学的表面処理の代表例としては、グラフト化が挙げられる。グラフト化の方法としては、代表的には、「グラフト・フロム法」および「グラフト・トゥ法」が挙げられる。グラフト・フロム法は、多層炭素ナノ繊維の表面の少なくとも一部に重合開始能を有する官能基を化学的に導入し、当該官能基を起点に低分子または高分子を成長させる方法である。グラフト・トゥ法は、分子末端および/または側鎖に官能基を有する低分子または高分子物質と多層炭素ナノ繊維表面とを化学反応で結合させる方法である。グラフト・フロム法で用いる低分子または高分子の成長法(代表的には重合法)としては、任意の適切な方法が用いられる。具体例としては、ラジカル重合法、アニオン重合法、カチオン重合法、縮合重合法、配位重合法が挙げられる。例えば、ラジカル重合法による炭素ナノ繊維のグラフト化は、特開2005-29696号公報に記載の方法に従って行うことができる。本公報の開示は、本明細書に参考として援用される。グラフト・トゥ法で用いる低分子または高分子物質の官能基としては、多層炭素ナノ繊維の表面と所望の化学反応を起こし得る任意の官能基が採用され得る。有用な官能基の具体例としては、トリメトキシシリル基が挙げられる。このような化学表面処理により多層炭素ナノ繊維表面に導入される非導電性物質としては、本発明の効果が得られる限りにおいて任意の適切な物質が採用され得る。具体例としては、ポリメチルメタクリレート(PMMA)が挙げられる。導入される非導電性物質の数、種類、分子量、分子量分布、導入量、被覆厚み等は、目的に応じて適切に設定され得る。   A representative example of chemical surface treatment is grafting. Representative examples of the grafting method include a “graft-from method” and a “graft-to-method”. The graft-from method is a method in which a functional group having a polymerization initiating ability is chemically introduced into at least a part of the surface of a multilayer carbon nanofiber, and a low molecule or a polymer is grown from the functional group as a starting point. The graft-to method is a method in which a low-molecular or high-molecular substance having a functional group at the molecular end and / or side chain is bonded to the surface of the multilayer carbon nanofiber by a chemical reaction. Any appropriate method is used as a growth method (typically a polymerization method) of a low molecule or polymer used in the graft-from method. Specific examples include a radical polymerization method, an anionic polymerization method, a cationic polymerization method, a condensation polymerization method, and a coordination polymerization method. For example, grafting of carbon nanofibers by radical polymerization can be performed according to the method described in JP-A-2005-29696. The disclosure of this publication is incorporated herein by reference. As the functional group of the low-molecular or high-molecular substance used in the graft-to method, any functional group capable of causing a desired chemical reaction with the surface of the multilayer carbon nanofiber can be adopted. Specific examples of useful functional groups include trimethoxysilyl groups. As the non-conductive substance introduced into the multilayer carbon nanofiber surface by such chemical surface treatment, any appropriate substance can be adopted as long as the effects of the present invention can be obtained. A specific example is polymethyl methacrylate (PMMA). The number, type, molecular weight, molecular weight distribution, introduction amount, coating thickness, and the like of the nonconductive substance to be introduced can be appropriately set according to the purpose.

物理的表面処理の代表例としては、混合、コーティング、界面活性剤による処理が挙げられる。界面活性剤による処理が好ましい。多層炭素ナノ繊維に適切な非導電性を付与するのみならず、多層炭素ナノ繊維の被覆組成物における分散性を改善するからである。上記界面活性剤としては、上記のような表面処理の効果が得られる限りにおいて任意の適切な界面活性剤が採用され得る。したがって、界面活性剤は、アニオン性界面活性剤であってもよく、カチオン性界面活性剤であってもよく、非イオン性界面活性剤であってもよく、両性界面活性剤であってもよい。カチオン性界面活性剤が好ましい。得られる被膜の耐食性の改善が顕著だからである。界面活性剤の具体例としては、ビックケミー社製のDisperbyk-130が挙げられる。界面活性剤の使用量は、合成樹脂バインダー100重量部に対して、好ましくは2〜20重量部、さらに好ましくは2〜5重量部である。   Representative examples of physical surface treatment include mixing, coating, and treatment with a surfactant. Treatment with a surfactant is preferred. This is because not only imparting appropriate non-conductivity to the multilayer carbon nanofibers but also improving the dispersibility of the multilayer carbon nanofibers in the coating composition. Any appropriate surfactant can be adopted as the surfactant as long as the effect of the surface treatment as described above is obtained. Therefore, the surfactant may be an anionic surfactant, a cationic surfactant, a nonionic surfactant, or an amphoteric surfactant. . Cationic surfactants are preferred. This is because the improvement in corrosion resistance of the resulting coating is remarkable. Specific examples of the surfactant include Disperbyk-130 manufactured by Big Chemie. The amount of the surfactant used is preferably 2 to 20 parts by weight, more preferably 2 to 5 parts by weight with respect to 100 parts by weight of the synthetic resin binder.

上記多層炭素ナノ繊維は、好ましくは、界面活性剤およびグラフト化の両方で処理される。両方の処理を行うことにより相乗的な効果が得られるので、組成物における分散性、被膜の機械的強度および耐食性がいずれもきわめて優れたものとなる。   The multi-layer carbon nanofibers are preferably treated with both surfactant and grafting. Since a synergistic effect is obtained by performing both treatments, the dispersibility in the composition, the mechanical strength of the coating, and the corrosion resistance are all excellent.

上記多層炭素ナノ繊維は、上記表面処理に加えて、目的に応じて任意の適切な処理に供されてもよい。そのような処理としては、例えば、多層炭素ナノ繊維の切断処理が挙げられる。切断処理の具体的手段としては、超音波を用いる方法、酸溶液を用いる方法が挙げられる。多層炭素ナノ繊維を切断処理することにより、平均アスペクト比を小さくすることができる。その結果、被覆組成物における多層炭素ナノ繊維の分散性を向上させることができる。さらに、被膜の機械的特性を適正化することができる。   In addition to the surface treatment, the multilayer carbon nanofiber may be subjected to any appropriate treatment depending on the purpose. Examples of such treatment include cutting treatment of multi-layer carbon nanofibers. Specific means for the cutting treatment include a method using ultrasonic waves and a method using acid solutions. By cutting the multilayer carbon nanofiber, the average aspect ratio can be reduced. As a result, the dispersibility of the multilayer carbon nanofiber in the coating composition can be improved. Furthermore, the mechanical properties of the coating can be optimized.

上記炭素ナノ繊維は、上記合成樹脂バインダー100重量部に対して、好ましくは3〜15重量部、さらに好ましくは4〜12重量部の割合で被覆組成物中に含有される。含有量が3重量部未満では、所望の機械的特性を有する被膜が得られない可能性がある。含有量が15重量部を超えると、防錆能力が不十分となる可能性がある。   The carbon nanofibers are contained in the coating composition in an amount of preferably 3 to 15 parts by weight, more preferably 4 to 12 parts by weight, with respect to 100 parts by weight of the synthetic resin binder. If the content is less than 3 parts by weight, a film having desired mechanical properties may not be obtained. When the content exceeds 15 parts by weight, the rust prevention ability may be insufficient.

上記分散媒としては、上記合成樹脂および上記多層炭素ナノ繊維を適切に溶解および/または分散し均一な被覆組成物を調製し得る限りにおいて、任意の適切な液状物質が採用され得る。分散媒は、好ましくは極性溶媒である。上記炭素ナノ繊維を非常に良好に分散させることができるからである。極性溶媒の具体例としては、水、アルコール類、N−メチル−2−ピロリドン、ジメチルアセトアミド、メチルエチルケトンおよびメチルイソブチルケトンが挙げられる。これらは、単独でまたは2種以上を組み合わせて用いられ得る。また、合成樹脂バインダーや多層炭素ナノ繊維の種類に応じて、極性溶媒と非極性溶媒(有機溶媒および/または無機溶媒)とを組み合わせて用いてもよいことはいうまでもない。   As the dispersion medium, any appropriate liquid substance can be adopted as long as the synthetic resin and the multilayer carbon nanofibers are appropriately dissolved and / or dispersed to prepare a uniform coating composition. The dispersion medium is preferably a polar solvent. This is because the carbon nanofibers can be dispersed very well. Specific examples of the polar solvent include water, alcohols, N-methyl-2-pyrrolidone, dimethylacetamide, methyl ethyl ketone and methyl isobutyl ketone. These may be used alone or in combination of two or more. Needless to say, a polar solvent and a nonpolar solvent (an organic solvent and / or an inorganic solvent) may be used in combination depending on the type of the synthetic resin binder or the multilayer carbon nanofiber.

分散媒の使用量は、分散媒の種類、多層炭素ナノ繊維の種類および量、被覆組成物に所望される粘度等に応じて適切に設定され得る。例えば、分散媒は、上記合成樹脂バインダー100重量部に対して、好ましくは10〜300重量部、さらに好ましくは30〜150重量部の割合で被覆組成物中に含有される。   The amount of the dispersion medium used can be appropriately set according to the kind of the dispersion medium, the kind and amount of the multilayer carbon nanofiber, the viscosity desired for the coating composition, and the like. For example, the dispersion medium is contained in the coating composition at a ratio of preferably 10 to 300 parts by weight, more preferably 30 to 150 parts by weight with respect to 100 parts by weight of the synthetic resin binder.

本発明の被覆組成物は、必要に応じて、顔料をさらに含み得る。顔料は、天然顔料、合成有機顔料または合成無機顔料のいずれであってもよい。顔料は、好ましくは防錆顔料である。防錆顔料を用いることにより、さらに耐食性に優れた被膜を形成することができる。防錆顔料の具体例としては、複合酸化物系顔料、酸化クロム系顔料、有機顔料が挙げられる。顔料の使用量は目的に応じて変化し得る。例えば、顔料は、合成樹脂バインダー100重量部に対して、好ましくは1〜30重量部、さらに好ましくは5〜20重量部の割合で被覆組成物に含有され得る。顔料の粒径は、組成物中における分散性および凝集性等に応じて適切に設定され得るが、できるだけ微細であることが好ましい。例えば、顔料の平均粒径は4〜6μmであり、粒径分布は0.5〜10μmの範囲である。   The coating composition of the present invention may further contain a pigment, if necessary. The pigment may be a natural pigment, a synthetic organic pigment, or a synthetic inorganic pigment. The pigment is preferably a rust preventive pigment. By using a rust preventive pigment, it is possible to form a film having further excellent corrosion resistance. Specific examples of the rust preventive pigment include composite oxide pigments, chromium oxide pigments, and organic pigments. The amount of pigment used can vary depending on the purpose. For example, the pigment can be contained in the coating composition at a ratio of preferably 1 to 30 parts by weight, more preferably 5 to 20 parts by weight, with respect to 100 parts by weight of the synthetic resin binder. The particle size of the pigment can be appropriately set according to the dispersibility and cohesion in the composition, but is preferably as fine as possible. For example, the average particle size of the pigment is 4 to 6 μm, and the particle size distribution is in the range of 0.5 to 10 μm.

本発明の被覆組成物は、必要に応じて、潤滑剤をさらに含み得る。潤滑剤を用いることにより、被覆物表面の摩擦係数を制御することができる。その結果、例えば本発明の被覆組成物を摺動部材に適用した場合に、摺動によって生じる摩耗を顕著に低減することができる。潤滑剤の具体例としては、フッ素樹脂粉末、二硫化モリブデン、ダイヤモンドナノ粉末が挙げられる。これらは、単独でまたは2種以上を組み合わせて用いられ得る。潤滑剤の使用量は目的(例えば、被覆物の使用環境)に応じて変化し得る。例えば、潤滑剤は、合成樹脂バインダー100重量部に対して、好ましくは0.5〜10重量部の割合で被覆組成物に含有され得る。潤滑剤の平均粒径は好ましくは0.01〜4μmであり、粒径の実質的な最大値は好ましくは4〜6μmである。   The coating composition of the present invention may further contain a lubricant, if necessary. By using the lubricant, the coefficient of friction on the surface of the coating can be controlled. As a result, for example, when the coating composition of the present invention is applied to a sliding member, wear caused by sliding can be significantly reduced. Specific examples of the lubricant include fluororesin powder, molybdenum disulfide, and diamond nano powder. These may be used alone or in combination of two or more. The amount of the lubricant used may vary depending on the purpose (for example, the usage environment of the coating). For example, the lubricant may be contained in the coating composition in a proportion of preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the synthetic resin binder. The average particle size of the lubricant is preferably 0.01-4 μm, and the substantial maximum value of the particle size is preferably 4-6 μm.

本発明の被覆組成物は、任意の適切な添加剤をさらに含み得る。添加剤の具体例としては、可塑剤、熱安定剤、光安定剤、抗酸化剤、紫外線吸収剤、難燃剤、帯電防止剤、相溶化剤、架橋剤、レベリング剤、増粘剤、消泡剤、静電助剤、触媒、スリップ防止剤が挙げられる。添加される添加剤の数、種類および量は、目的に応じて適切に選択され得る。   The coating composition of the present invention may further comprise any suitable additive. Specific examples of additives include plasticizers, heat stabilizers, light stabilizers, antioxidants, UV absorbers, flame retardants, antistatic agents, compatibilizers, crosslinking agents, leveling agents, thickeners, antifoaming agents. Agents, electrostatic assistants, catalysts, and anti-slip agents. The number, type and amount of additives to be added can be appropriately selected depending on the purpose.

以下、本発明の被覆組成物の調製方法の好ましい一例について説明する。   Hereinafter, a preferable example of the method for preparing the coating composition of the present invention will be described.

まず、任意の適切な容器内に所定量の分散媒(好ましくは、極性溶媒)を入れる。当該分散媒中に、上記非導電性物質で表面処理された多層炭素ナノ繊維を上記所定量投入する。例えば、上記のグラフト化された多層炭素ナノ繊維を投入してもよく、上記の多層炭素ナノ繊維と界面活性剤とを投入してもよく、上記のグラフト化された多層炭素ナノ繊維と界面活性剤とを組み合わせて投入してもよい。好ましくは、多層炭素ナノ繊維は、徐々に分散媒に投入される。このような操作により、分散媒中に多層炭素ナノ繊維をより均一に分散させることができる。   First, a predetermined amount of a dispersion medium (preferably a polar solvent) is placed in any appropriate container. The predetermined amount of multi-layer carbon nanofibers surface-treated with the non-conductive substance is put into the dispersion medium. For example, the above-mentioned grafted multilayer carbon nanofibers may be input, the above-mentioned multilayer carbon nanofibers and a surfactant may be input, and the above-mentioned grafted multilayer carbon nanofibers and surfactant An agent may be added in combination. Preferably, the multi-layer carbon nanofibers are gradually introduced into the dispersion medium. By such an operation, the multilayer carbon nanofibers can be more uniformly dispersed in the dispersion medium.

次に、多層炭素ナノ繊維を分散媒中に均一に分散させる処理を行う。分散処理の具体例としては、機械的に撹拌する方法、超音波を利用する方法が挙げられる。機械的に攪拌する方法としては、例えば、市販のホモジナイザーを用いて撹拌羽または撹拌棒の回転により分散媒/多層炭素ナノ繊維を分散させる方法が挙げられる。回転数は、分散媒の種類、炭素ナノ繊維の量等に応じて適切に設定され得る。例えば、回転数は、2000〜10000rpmである。超音波を利用する方法としては、市販の超音波発生器を用いることができる。これらの二つの方法を併用してもよい。このようにして、分散媒/多層炭素ナノ繊維の分散体が調製される。分散媒/多層炭素ナノ繊維の分散体をあらかじめ調製することにより、多層炭素ナノ繊維を被覆組成物中に均一に分散させることができる。   Next, the process which disperse | distributes multilayer carbon nanofiber uniformly in a dispersion medium is performed. Specific examples of the dispersion treatment include a mechanical stirring method and a method using ultrasonic waves. Examples of the mechanical stirring method include a method of dispersing the dispersion medium / multi-layer carbon nanofibers by rotating a stirring blade or a stirring bar using a commercially available homogenizer. The number of rotations can be appropriately set according to the type of dispersion medium, the amount of carbon nanofibers, and the like. For example, the rotation speed is 2000 to 10000 rpm. As a method using ultrasonic waves, a commercially available ultrasonic generator can be used. These two methods may be used in combination. In this way, a dispersion medium / multi-layer carbon nanofiber dispersion is prepared. By preparing a dispersion medium / multilayer carbon nanofiber dispersion in advance, the multilayer carbon nanofiber can be uniformly dispersed in the coating composition.

次に、上記分散体と合成樹脂バインダーとを混合する。この混合も、上記分散処理と同様にして行われ得る。顔料、潤滑剤および/または任意の他の添加剤は、その種類や量等に応じて適切な時点で添加され得る。例えば、顔料は、合成樹脂バインダーと共に上記分散体に添加してもよく、合成樹脂バインダーの混合に続いて上記分散体に添加してもよい。最後に、当該混合物に、例えば市販の超音波発生器を用いて超音波を付与することにより、分散および混合の際に発生した泡を除去することができる。このようにして、本発明の被覆組成物が調製される。   Next, the dispersion and the synthetic resin binder are mixed. This mixing can also be performed in the same manner as the dispersion process. Pigments, lubricants and / or any other additive may be added at an appropriate time depending on the type, amount, etc. For example, the pigment may be added to the dispersion together with the synthetic resin binder, or may be added to the dispersion following the mixing of the synthetic resin binder. Finally, bubbles generated during dispersion and mixing can be removed by applying ultrasonic waves to the mixture using, for example, a commercially available ultrasonic generator. In this way, the coating composition of the present invention is prepared.

本発明の別の局面によれば、被覆物が提供される。この被覆物は、基体表面の少なくとも一部に、上記の被覆組成物による被膜が形成されている。基体の具体例としては、金属製工業部品、ボルト・ナット、軸受け、シール部品、締結フランジ、座金、ブレーキシュー、ジャッキ部品および半導体製造装置の摺動部品が挙げられる。基体の材質としては、炭素鋼、ステンレス鋼、アルミニウム、チタン、各種合金等の金属、アルミナ、ジルコニア、人造黒鉛、ガラス等のセラミック、各種プラスチック、各種複合材料が挙げられる。   According to another aspect of the invention, a coating is provided. In this coating, a film made of the above coating composition is formed on at least a part of the substrate surface. Specific examples of the base include metal industrial parts, bolts / nuts, bearings, seal parts, fastening flanges, washers, brake shoes, jack parts, and sliding parts of semiconductor manufacturing equipment. Examples of the material of the base include metals such as carbon steel, stainless steel, aluminum, titanium, and various alloys, ceramics such as alumina, zirconia, artificial graphite, and glass, various plastics, and various composite materials.

基体表面に被膜を形成する方法としては、被覆組成物を塗布する方法、被覆組成物に基体を浸漬する方法が挙げられる。塗布手段の具体例としては、スプレー、はけ塗り、ロール塗りが挙げられる。塗布後、適切な温度で熱処理または乾燥することにより、均質性の高い被膜が形成される。熱処理または乾燥温度は、合成樹脂バインダーの種類に応じて変化し得る。例えば、合成樹脂バインダーが熱硬化性樹脂である場合には、熱処理温度は好ましくは100〜300℃である。この場合、熱処理により、バインダーが架橋することにより硬化して、非常に硬度の高い被膜が形成され得る。また例えば、合成樹脂バインダーが熱可塑性樹脂である場合には、乾燥温度は好ましくは30〜100℃である。この場合、乾燥処理により、被覆組成物中の分散媒が蒸発して、均質性の高い被膜が形成され得る。   Examples of the method for forming a film on the surface of the substrate include a method of applying a coating composition and a method of immersing the substrate in the coating composition. Specific examples of the application means include spraying, brush coating, and roll coating. After application, a highly uniform film is formed by heat treatment or drying at an appropriate temperature. The heat treatment or drying temperature can vary depending on the type of synthetic resin binder. For example, when the synthetic resin binder is a thermosetting resin, the heat treatment temperature is preferably 100 to 300 ° C. In this case, the binder can be cured by crosslinking by heat treatment to form a very hard film. For example, when the synthetic resin binder is a thermoplastic resin, the drying temperature is preferably 30 to 100 ° C. In this case, the dispersion medium in the coating composition evaporates by the drying treatment, and a highly uniform film can be formed.

形成される被膜の厚みは、目的に応じて適切に設定され得る。厚みは、被覆組成物の塗布量を調整することにより制御され得る。厚みは、例えば1mm以上の厚膜であってもよく、5〜50μmの薄膜であってもよい。例えば、厚みを5〜50μmに調整することにより、基体が金属製であって機械部品として使用するような場合に、寸法公差内に収めることが容易になる。   The thickness of the film to be formed can be appropriately set according to the purpose. The thickness can be controlled by adjusting the coating amount of the coating composition. The thickness may be, for example, a thick film of 1 mm or more, or a thin film of 5 to 50 μm. For example, by adjusting the thickness to 5 to 50 μm, when the base is made of metal and used as a machine part, it becomes easy to fit within the dimensional tolerance.

本発明においては、上記被膜のヌープ硬さは、好ましくは20Hk以上、さらに好ましくは30Hk以上、最も好ましくは60Hk以上である。このようなヌープ硬さであれば、実用上十分な摺動に対する耐損傷性を提供することができる。例えば、亜鉛粉末の無機系塗料によって形成された被膜のヌープ硬さは約30Hkであり、亜鉛メッキのヌープ硬さは約150Hkである。本発明の被覆組成物による被膜は、好ましい実施形態によれば亜鉛メッキと同等のヌープ硬さが実現可能であり、かつ、後述のようにメッキに比べて耐食性に格段に優れるので、きわめて有用である。実用的なヌープ硬さの上限は約200Hkである。なお、本明細書において、「ヌープ硬さ」とは、JIS Z 2251に記載の「ヌープ硬さ試験方法」に従って得られる値をいう。   In the present invention, the Knoop hardness of the coating is preferably 20 Hk or more, more preferably 30 Hk or more, and most preferably 60 Hk or more. With such Knoop hardness, it is possible to provide practically sufficient damage resistance against sliding. For example, the Knoop hardness of the coating formed by the inorganic coating of zinc powder is about 30 Hk, and the Knoop hardness of the galvanizing is about 150 Hk. The coating by the coating composition of the present invention is very useful because it can realize Knoop hardness equivalent to galvanization according to a preferred embodiment and has excellent corrosion resistance compared to plating as described later. is there. The upper limit of practical Knoop hardness is about 200 Hk. In the present specification, “Knoop hardness” refers to a value obtained according to “Knoop hardness test method” described in JIS Z 2251.

さらに、上記被膜のトルク係数値は、好ましくは0.15以下、さらに好ましくは0.10以下である。このようなトルク係数値であれば、摺動時の摩擦が低減され摺動によって生じる損傷を十分に回避することができる。実用的なトルク係数値の下限は約0.05である。なお、本明細書において、「トルク係数値」とは、JIS B 1186に記載の「セットのトルク係数値」に従って得られる値をいう。   Further, the torque coefficient value of the coating is preferably 0.15 or less, more preferably 0.10 or less. With such a torque coefficient value, friction during sliding is reduced, and damage caused by sliding can be sufficiently avoided. The lower limit of the practical torque coefficient value is about 0.05. In the present specification, “torque coefficient value” refers to a value obtained according to “set torque coefficient value” described in JIS B 1186.

さらに、上記被膜の防錆力は好ましくは200時間以上、さらに好ましくは450時間以上、最も好ましくは1000時間以上である。防錆力は長ければ長いほど好ましい。上記のような機械的強度(例えば、ヌープ硬さおよびトルク係数値)を維持しつつ、このようなきわめて優れた防錆力(すなわち、耐食性)を実現したことが、本発明の大きな成果の1つである。なお、本明細書における「防錆力」とは、JIS Z 2371に記載の「塩水噴霧試験」に従って得られる値をいう。   Further, the rust prevention power of the coating is preferably 200 hours or more, more preferably 450 hours or more, and most preferably 1000 hours or more. The longer the rust prevention power, the better. One of the great achievements of the present invention is that such excellent rust prevention power (that is, corrosion resistance) is achieved while maintaining the mechanical strength as described above (for example, Knoop hardness and torque coefficient value). One. In addition, "rust prevention power" in this specification means the value obtained according to the "salt spray test" described in JIS Z 2371.

以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例には限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.

N−メチル−2−ピロリドン90gあたりに5gのTMSP−PMMAを室温で溶解させ、溶液を調製した。ここで、TMSP−PMMAは、分子末端に3−(トリメトキシシリル)プロピル基を有するポリメチルメタクリレートであり、その数平均分子量は2700、分子量分布は1.2であった。この溶液に、底の無いカップ形状を有する炭素網層が入れ子状に多数積層した構造を有する炭素ナノ繊維(株式会社GSIクレオス製、商品名カルベール(登録商標))5gを徐々に添加した。次に、市販の超音波発生器(100kHz)を用いて約30分間超音波を与え、炭素ナノ繊維の分散を促進した後、100℃で一晩(12時間)攪拌して、炭素ナノ繊維表面へのTMSP−PMMAのグラフト反応を進行させた。図1は、反応生成物の熱重量分析の結果を示すグラフである。グラフ中の実線Aが反応生成物の挙動を示し、破線BおよびCは、それぞれ、炭素ナノ繊維単独およびTMSP−PMMA単独の挙動を示す。このグラフを解析した結果、炭素ナノ繊維100重量部に対して約5重量部のTMSP−PMMAがグラフトされたと考えられる。さらに、図2は、グラフト化された炭素ナノ繊維の電子顕微鏡写真である。この写真から明らかなように、中央部の筒状の炭素ナノ繊維がPMMAで被覆されていることがわかる。ここで、未反応(添加量の約95%)のTMSP−PMMAが当該反応溶液中に存在していると考えられるが、これは適切な手段で除去してもよい。本実施例においては、上記で得られた反応溶液をそのまま、以下の被覆組成物の調製に用いた。未反応のTMSP−PMMAは、物理的表面処理剤として機能し得る場合があると考えられる。   A solution was prepared by dissolving 5 g of TMSP-PMMA per 90 g of N-methyl-2-pyrrolidone at room temperature. Here, TMSP-PMMA is polymethylmethacrylate having a 3- (trimethoxysilyl) propyl group at the molecular end, and its number average molecular weight was 2700 and the molecular weight distribution was 1.2. To this solution, 5 g of carbon nanofibers having a structure in which a carbon network layer having a cup shape without a bottom was stacked in a nested manner was gradually added (product name Carval (registered trademark), manufactured by GSI Creos Co., Ltd.). Next, after applying ultrasonic waves for about 30 minutes using a commercially available ultrasonic generator (100 kHz) to promote the dispersion of the carbon nanofibers, the carbon nanofiber surface was stirred at 100 ° C. overnight (12 hours). The grafting reaction of TMSP-PMMA to the polymer was allowed to proceed. FIG. 1 is a graph showing the results of thermogravimetric analysis of the reaction product. The solid line A in the graph indicates the behavior of the reaction product, and the broken lines B and C indicate the behavior of the carbon nanofiber alone and TMSP-PMMA alone, respectively. As a result of analyzing this graph, it is considered that about 5 parts by weight of TMSP-PMMA was grafted with respect to 100 parts by weight of the carbon nanofibers. Further, FIG. 2 is an electron micrograph of the grafted carbon nanofiber. As is apparent from this photograph, it can be seen that the cylindrical carbon nanofiber in the center is coated with PMMA. Here, although it is considered that unreacted (about 95% of the added amount) of TMSP-PMMA is present in the reaction solution, it may be removed by an appropriate means. In this example, the reaction solution obtained above was used as it was for the preparation of the following coating composition. It is thought that unreacted TMSP-PMMA may sometimes function as a physical surface treatment agent.

上記反応溶液に、室温で、液状のレゾールタイプのフェノール樹脂の所定量を徐々に加えた。次に、上記と同様にして超音波処理を行った後、市販のホモジナイザー攪拌装置(4枚羽の攪拌羽)を用いて10000rpmで約20分間攪拌処理し、被覆組成物を得た。なお、当該被覆組成物においては、フェノール樹脂の固形分100重量部に対して、N−メチル−2−ピロリドンを100重量部、炭素ナノ繊維を5重量部、TMSP−PMMA(未反応および既反応の両方の合計)5重量部を用いた。   A predetermined amount of a liquid resol type phenol resin was gradually added to the reaction solution at room temperature. Next, ultrasonic treatment was performed in the same manner as described above, and then the mixture was stirred for about 20 minutes at 10,000 rpm using a commercially available homogenizer stirring device (four stirring blades) to obtain a coating composition. In the coating composition, 100 parts by weight of phenol resin with 100 parts by weight of N-methyl-2-pyrrolidone, 5 parts by weight of carbon nanofibers, TMSP-PMMA (unreacted and already reacted) 5 parts by weight).

次に、エチルアルコールを用いて脱脂したSPCC冷間圧延鋼板(長さ150mm、幅70mm、厚み0.8mm)を基体とした。この基体全面に、上記被覆組成物をスプレー法によって塗布し、約200℃で熱処理して、厚み40〜50μmの被膜を形成した。スプレー塗布は、圧送式エアースプレーガン(イワタ製 WIDER−61型:口径1.3mm)を用い、エアー圧力0.29〜0.34MPa、被覆組成物の吐出量95〜200ml/minの条件で行った。被膜の厚みは、電磁式膜厚計(ケット科学製 LZ−330型)を用いてJIS K 5600−1−7に従って測定した。また、被覆物の断面を走査型顕微鏡で観察して基体と被膜との界面に顕著なボイド等がないことを確認した。さらに、基体として、M20でネジ部の長さが100mmのボルトおよびM20で高さ16mmの六角ナットを用い、それぞれの基体全面に上記と同様にして被膜を形成した。   Next, a SPCC cold rolled steel sheet (length 150 mm, width 70 mm, thickness 0.8 mm) degreased with ethyl alcohol was used as a base. The coating composition was applied to the entire surface of the substrate by a spray method and heat-treated at about 200 ° C. to form a film having a thickness of 40 to 50 μm. Spray coating is performed using a pressure-feed type air spray gun (WITER-61 type manufactured by Iwata: caliber 1.3 mm) under the conditions of an air pressure of 0.29 to 0.34 MPa and a coating composition discharge rate of 95 to 200 ml / min. It was. The thickness of the coating was measured according to JIS K 5600-1-7 using an electromagnetic film thickness meter (LZ-330 type, manufactured by Kett Science). Further, the cross section of the coating was observed with a scanning microscope, and it was confirmed that there were no significant voids at the interface between the substrate and the coating. Further, as a base, a bolt having a screw part length of 100 mm with M20 and a hex nut with a height of 16 mm and M20 were used, and a coating was formed on the entire surface of each base in the same manner as described above.

得られた被膜について、下記の評価を行った。結果を下記表1に示す。
(1)密着性:SPCC冷間圧延鋼板基体に対する被膜の密着性を、JIS K 5600−5−6に従って評価した。
(2)硬度:SPCC冷間圧延鋼板基体に形成された被膜について、鉛筆引っかき硬さおよびヌープ硬さを測定して評価した。鉛筆引っかき硬さは、JIS K 5600−5−4に従って測定を行った。鉛筆引っかき硬さは、被膜にきず跡を生じなかった硬さ(鉛筆硬度)を測定した。ヌープ硬さは、JIS Z 2251に従って測定を行った。
(3)折り曲げ性:JIS K 5600−5−4に従って評価した。このとき、定められた条件下において折り曲げた後の折り曲げ部分の被膜表面を40倍の顕微鏡で観察し、割れまたははく離の有無を確認して判断した。
(4)耐衝撃性:JIS K 5600−5−3のデュポン式に従って測定を行った。先端の曲率半径の異なる1000gの重りを50cmの高さから被膜に落下させた後、40倍の顕微鏡で観察し、割れまたははく離の有無を確認して判断した。
(5)ボルト・ナット嵌合試験:上記被膜が形成されたボルト・ナットのネジ部について、トルク係数値(摩擦抵抗)および被膜の破壊の評価を行った。ボルトとナットには、軸力20トンを与えた。ネジ部のトルク係数値は、JIS B 1186に従って求めた。試験は、ボルト・ナット5セットについて行った。被膜の破壊は、ボルトとナットの被膜が損傷を受けて欠落した部分の割合を求めて評価した。
(6)耐食性:塩水噴霧試験により評価した。塩水噴霧試験は、JIS Z 2371に従って行った。
さらに、塩水噴霧から1500時間後の状態の写真を図3に示す。
The following evaluation was performed about the obtained film. The results are shown in Table 1 below.
(1) Adhesion: The adhesion of the coating to the SPCC cold-rolled steel plate substrate was evaluated according to JIS K 5600-5-6.
(2) Hardness: The film formed on the SPCC cold-rolled steel plate substrate was evaluated by measuring pencil scratch hardness and Knoop hardness. The pencil scratch hardness was measured according to JIS K 5600-5-4. The pencil scratch hardness was determined by measuring the hardness (pencil hardness) at which no scar was formed on the film. Knoop hardness was measured according to JIS Z 2251.
(3) Bendability: Evaluated according to JIS K 5600-5-4. At this time, the film surface of the bent portion after being bent under the specified conditions was observed with a 40-fold microscope, and the presence or absence of cracking or peeling was confirmed and judged.
(4) Impact resistance: Measured according to the DuPont method of JIS K 5600-5-3. A 1000 g weight with a different curvature radius at the tip was dropped onto the coating from a height of 50 cm, and then observed with a 40-fold microscope to determine the presence or absence of cracking or peeling.
(5) Bolt / nut fitting test: The torque coefficient value (friction resistance) and the destruction of the coating were evaluated for the threaded portion of the bolt / nut on which the coating was formed. The bolt and nut were given an axial force of 20 tons. The torque coefficient value of the thread portion was determined according to JIS B 1186. The test was conducted on 5 sets of bolts and nuts. The destruction of the coating film was evaluated by determining the ratio of the missing portion of the bolt and nut coating film.
(6) Corrosion resistance: evaluated by a salt spray test. The salt spray test was conducted according to JIS Z 2371.
Furthermore, the photograph of the state after 1500 hours after salt spray is shown in FIG.

N−メチル−2−ピロリドン100mlあたりカチオン性界面活性剤(ビックケミー社製、Disperbyk-130)2mlを用いて炭素ナノ繊維の表面処理溶液を調製した。この表面処理溶液に、底の無いカップ形状を有する炭素網層が入れ子状に多数積層した構造を有する炭素ナノ繊維(株式会社GSIクレオス製、商品名カルベール(登録商標))の所定量を徐々に添加し、ステンレス製の攪拌棒を用いて2〜3分攪拌し、炭素ナノ繊維の表面処理(界面活性剤処理)を行った。次に、市販の超音波発生器(100kHz)を用いて約30分間超音波を与え、炭素ナノ繊維の分散および表面処理を促進した。さらに、市販のホモジナイザー攪拌装置(4枚羽の攪拌羽)を用いて、10000rpmで約20分間攪拌し、炭素ナノ繊維の分散および表面処理をさらに促進した。このようにして、分散媒/表面処理された炭素ナノ繊維の分散体を調製した。   A surface treatment solution of carbon nanofibers was prepared using 2 ml of a cationic surfactant (Disperbyk-130, manufactured by Big Chemie) per 100 ml of N-methyl-2-pyrrolidone. Gradually a predetermined amount of carbon nanofibers (manufactured by GSI Creos Co., Ltd., trade name Calvert (registered trademark)) having a structure in which a large number of carbon network layers having a cup shape without a bottom are laminated in this surface treatment solution. The mixture was added and stirred for 2 to 3 minutes using a stainless steel stirring rod, and surface treatment (surfactant treatment) of the carbon nanofibers was performed. Next, ultrasonic waves were applied for about 30 minutes using a commercially available ultrasonic generator (100 kHz) to promote the dispersion and surface treatment of carbon nanofibers. Furthermore, using a commercially available homogenizer stirring device (four stirring blades), stirring was performed at 10,000 rpm for about 20 minutes to further promote the dispersion and surface treatment of carbon nanofibers. Thus, a dispersion medium / dispersion of surface-treated carbon nanofibers was prepared.

次に、上記分散体に、液状のレゾールタイプのフェノール樹脂の所定量を徐々に加えた。次に、上記と同様にして、超音波およびホモジナイザーによる分散処理を行い、被覆組成物を得た。なお、当該被覆組成物においては、フェノール樹脂の固形分100重量部に対して、N−メチル−2−ピロリドンを100重量部、炭素ナノ繊維を4.73重量部用いた。この被覆組成物を用いて、実施例1と同様にして被膜を形成した。得られた被膜を実施例1と同様の評価に供した。結果を表1に示す。   Next, a predetermined amount of a liquid resol type phenol resin was gradually added to the dispersion. Next, in the same manner as described above, dispersion treatment was performed using ultrasonic waves and a homogenizer to obtain a coating composition. In the coating composition, 100 parts by weight of N-methyl-2-pyrrolidone and 4.73 parts by weight of carbon nanofibers were used with respect to 100 parts by weight of the solid content of the phenol resin. Using this coating composition, a film was formed in the same manner as in Example 1. The obtained coating film was subjected to the same evaluation as in Example 1. The results are shown in Table 1.

フェノール樹脂の固形分100重量部に対して炭素ナノ繊維を11.05重量部用いたこと以外は実施例2と同様にして被覆組成物を調製した。この被覆組成物を用いて、実施例1と同様にして被膜を形成した。得られた被膜を実施例1と同様の評価に供した。結果を表1に示す。さらに、塩水噴霧から2000時間後の状態を後述の比較例4と比較した写真を図4に示す。   A coating composition was prepared in the same manner as in Example 2 except that 11.05 parts by weight of carbon nanofibers were used with respect to 100 parts by weight of the solid content of the phenol resin. Using this coating composition, a film was formed in the same manner as in Example 1. The obtained coating film was subjected to the same evaluation as in Example 1. The results are shown in Table 1. Furthermore, the photograph which compared the state 2000 hours after salt spray with the below-mentioned comparative example 4 is shown in FIG.

フェノール樹脂(固形分)100重量部の代わりにポリアミドイミド樹脂(固形分)100重量部を用いたこと、および、ポリアミドイミド樹脂の固形分100重量部に対して炭素ナノ繊維を4.55重量部用いたこと以外は実施例2と同様にして被覆組成物を調製した。この被覆組成物を用いて、乾燥温度を180℃としたこと以外は実施例1と同様にして被膜を形成した。得られた被膜を実施例1と同様の評価に供した。結果を表1に示す。   Instead of 100 parts by weight of phenol resin (solid content), 100 parts by weight of polyamideimide resin (solid content) was used, and 4.55 parts by weight of carbon nanofibers with respect to 100 parts by weight of solid content of polyamideimide resin A coating composition was prepared in the same manner as in Example 2 except that it was used. Using this coating composition, a coating film was formed in the same manner as in Example 1 except that the drying temperature was 180 ° C. The obtained coating film was subjected to the same evaluation as in Example 1. The results are shown in Table 1.

ポリアミドイミド樹脂の固形分100重量部に対して炭素ナノ繊維を10.64重量部用いたこと以外は実施例4と同様にして被覆組成物を調製した。この被覆組成物を用いて、実施例4と同様にして被膜を形成した。得られた被膜を実施例1と同様の評価に供した。結果を表1に示す。   A coating composition was prepared in the same manner as in Example 4 except that 10.64 parts by weight of carbon nanofibers were used with respect to 100 parts by weight of the solid content of the polyamideimide resin. Using this coating composition, a film was formed in the same manner as in Example 4. The obtained coating film was subjected to the same evaluation as in Example 1. The results are shown in Table 1.

カチオン系界面活性剤の代わりにアニオン系界面活性剤(ビックケミー社製、商品名Anti-Terre-206)を用いたこと以外は実施例2と同様にして被覆組成物を調製した。この被覆組成物を用いて、実施例1と同様にして被膜を形成した。得られた被膜を実施例1と同様の評価に供した。結果を表1に示す。   A coating composition was prepared in the same manner as in Example 2 except that an anionic surfactant (manufactured by Big Chemie, trade name Anti-Terre-206) was used instead of the cationic surfactant. Using this coating composition, a film was formed in the same manner as in Example 1. The obtained coating film was subjected to the same evaluation as in Example 1. The results are shown in Table 1.

カチオン系界面活性剤の代わりにアニオン系界面活性剤を用いたこと以外は実施例4と同様にして被覆組成物を調製した。この被覆組成物を用いて、実施例1と同様にして被膜を形成した。得られた被膜を実施例1と同様の評価に供した。結果を表1に示す。   A coating composition was prepared in the same manner as in Example 4 except that an anionic surfactant was used instead of the cationic surfactant. Using this coating composition, a film was formed in the same manner as in Example 1. The obtained coating film was subjected to the same evaluation as in Example 1. The results are shown in Table 1.

底の無いカップ形状を有する炭素網層が入れ子状に多数積層した構造を有する炭素ナノ繊維の代わりに、径の異なる複数の筒状の炭素網層が同軸状に配置された構造を有する炭素ナノ繊維(昭和電工株式会社製、VGCF(R))4.73重量部を用いたこと以外は実施例2と同様にして被覆組成物を調製した。この被覆組成物を用いて、実施例1と同様にして被膜を形成した。得られた被膜を実施例1と同様の評価に供した。結果を表1に示す。   Carbon nano having a structure in which a plurality of cylindrical carbon network layers having different diameters are arranged coaxially instead of a carbon nano fiber having a structure in which many carbon network layers having a cup shape without a bottom are laminated in a nested manner A coating composition was prepared in the same manner as in Example 2 except that 4.73 parts by weight of a fiber (manufactured by Showa Denko KK, VGCF (R)) was used. Using this coating composition, a film was formed in the same manner as in Example 1. The obtained coating film was subjected to the same evaluation as in Example 1. The results are shown in Table 1.

底の無いカップ形状を有する炭素網層が入れ子状に多数積層した構造を有する炭素ナノ繊維の代わりに、径の異なる複数の筒状の炭素網層が同軸状に配置された構造を有する炭素ナノ繊維(昭和電工株式会社製、VGCF(R))4.55重量部を用いたこと以外は実施例4と同様にして被覆組成物を調製した。この被覆組成物を用いて、実施例4と同様にして被膜を形成した。得られた被膜を実施例1と同様の評価に供した。結果を表1に示す。   Carbon nano having a structure in which a plurality of cylindrical carbon network layers having different diameters are arranged coaxially instead of a carbon nano fiber having a structure in which many carbon network layers having a cup shape without a bottom are laminated in a nested manner A coating composition was prepared in the same manner as in Example 4 except that 4.55 parts by weight of a fiber (manufactured by Showa Denko KK, VGCF (R)) was used. Using this coating composition, a film was formed in the same manner as in Example 4. The obtained coating film was subjected to the same evaluation as in Example 1. The results are shown in Table 1.

(比較例1)
底の無いカップ形状を有する炭素網層が入れ子状に多数積層した構造を有する炭素ナノ繊維の代わりに、通常の単層カーボンナノチューブ(SWCNT:CNI社製)4.73重量部を用いたこと以外は実施例2と同様にして被覆組成物を調製した。この被覆組成物を用いて、実施例1と同様にして被膜を形成した。得られた被膜を実施例1と同様の評価に供した。結果を表1に示す。
(Comparative Example 1)
Other than using 4.73 parts by weight of ordinary single-walled carbon nanotubes (SWCNT: manufactured by CNI) instead of carbon nanofibers having a structure in which a large number of carbon network layers having a cup shape without a bottom are stacked in a nested manner Was the same as in Example 2 to prepare a coating composition. Using this coating composition, a film was formed in the same manner as in Example 1. The obtained coating film was subjected to the same evaluation as in Example 1. The results are shown in Table 1.

(比較例2)
単層カーボンナノチューブ11.05重量部を用いたこと以外は比較例1と同様にして被覆組成物を調製した。この被覆組成物を用いて、実施例1と同様にして被膜を形成した。得られた被膜を実施例1と同様の評価に供した。結果を表1に示す。
(Comparative Example 2)
A coating composition was prepared in the same manner as Comparative Example 1 except that 11.05 parts by weight of single-walled carbon nanotubes were used. Using this coating composition, a film was formed in the same manner as in Example 1. The obtained coating film was subjected to the same evaluation as in Example 1. The results are shown in Table 1.

(比較例3)
底の無いカップ形状を有する炭素網層が入れ子状に多数積層した構造を有する炭素ナノ繊維の代わりに、通常の単層カーボンナノチューブ(SWCNT:CNI社製)4.55重量部を用いたこと以外は実施例4と同様にして被覆組成物を調製した。この被覆組成物を用いて、実施例1と同様にして被膜を形成した。得られた被膜を実施例1と同様の評価に供した。結果を表1に示す。
(Comparative Example 3)
Other than using 4.55 parts by weight of ordinary single-walled carbon nanotubes (SWCNT: manufactured by CNI) instead of carbon nanofibers having a structure in which a large number of carbon network layers having a cup shape with no bottom are laminated in a nested manner Was the same as in Example 4 to prepare a coating composition. Using this coating composition, a film was formed in the same manner as in Example 1. The obtained coating film was subjected to the same evaluation as in Example 1. The results are shown in Table 1.

(比較例4)
単層カーボンナノチューブ10.64重量部を用いたこと以外は比較例3と同様にして被覆組成物を調製した。この被覆組成物を用いて、実施例1と同様にして被膜を形成した。得られた被膜を実施例1と同様の評価に供した。結果を表1に示す。さらに、塩水噴霧から2000時間後の状態の写真を実施例3と併せて図4に、24時間後の状態の写真を図5に示す。
(Comparative Example 4)
A coating composition was prepared in the same manner as Comparative Example 3 except that 10.64 parts by weight of single-walled carbon nanotubes were used. Using this coating composition, a film was formed in the same manner as in Example 1. The obtained coating film was subjected to the same evaluation as in Example 1. The results are shown in Table 1. Further, a photograph of the state after 2000 hours from the spraying of salt water is shown in FIG. 4 together with Example 3, and a photograph of the state after 24 hours is shown in FIG.

(比較例5)
底の無いカップ形状を有する炭素網層が入れ子状に多数積層した構造を有する炭素ナノ繊維の代わりに、カーボンブラック4.73重量部を用いたこと以外は実施例2と同様にして被覆組成物を調製した。この被覆組成物を用いて、実施例1と同様にして被膜を形成した。得られた被膜を実施例1と同様の評価に供した。結果を表1に示す。
(Comparative Example 5)
A coating composition in the same manner as in Example 2 except that 4.73 parts by weight of carbon black was used instead of carbon nanofibers having a structure in which a large number of carbon network layers having a cup shape without a bottom were laminated in a nested manner. Was prepared. Using this coating composition, a film was formed in the same manner as in Example 1. The obtained coating film was subjected to the same evaluation as in Example 1. The results are shown in Table 1.

(比較例6)
底の無いカップ形状を有する炭素網層が入れ子状に多数積層した構造を有する炭素ナノ繊維の代わりに、カーボンブラック4.55重量部を用いたこと以外は実施例4と同様にして被覆組成物を調製した。この被覆組成物を用いて、実施例4と同様にして被膜を形成した。得られた被膜を実施例1と同様の評価に供した。結果を表1に示す。
(Comparative Example 6)
A coating composition in the same manner as in Example 4 except that 4.55 parts by weight of carbon black was used instead of carbon nanofibers having a structure in which a large number of carbon network layers having a cup shape without a bottom were laminated in a nested manner. Was prepared. Using this coating composition, a film was formed in the same manner as in Example 4. The obtained coating film was subjected to the same evaluation as in Example 1. The results are shown in Table 1.

表1から明らかなように、本発明の実施例の被覆組成物は、機械的特性(特に、鉛筆硬さおよびヌープ硬さ)と耐食性(塩水噴霧試験)とを同時に満足する被膜を形成することがわかる。より具体的には、本発明の実施例の被覆組成物は、単層炭素ナノ繊維を用いた比較例1〜4に比べて耐食性の改善が著しい。特に、底の無いカップ形状を有する炭素網層が入れ子状に多数積層した構造を有する炭素ナノ繊維をPMMAでグラフトしたものを用いた実施例1、および、カチオン性界面活性剤で表面処理した実施例2〜5は、単層炭素ナノ繊維を用いた比較例1〜4に比べて、耐食性が桁違いに改善されている。また、本発明の実施例の被覆組成物は、炭素ナノ繊維を用いていない(カーボンブラックを用いた)比較例5〜6に比べて、機械的特性(特に、ヌープ硬さ、折り曲げ性、耐衝撃性および被膜破壊)が格段に改善されている。   As is apparent from Table 1, the coating composition of the example of the present invention forms a film satisfying both mechanical properties (particularly pencil hardness and Knoop hardness) and corrosion resistance (salt spray test). I understand. More specifically, the coating compositions of the examples of the present invention have a marked improvement in corrosion resistance as compared with Comparative Examples 1 to 4 using single-walled carbon nanofibers. In particular, Example 1 using a carbon nanofiber having a structure in which a carbon network layer having a bottomless cup shape is nested and laminated with PMMA, and the surface treatment with a cationic surfactant In Examples 2 to 5, the corrosion resistance is improved by orders of magnitude compared to Comparative Examples 1 to 4 using single-walled carbon nanofibers. In addition, the coating compositions of the examples of the present invention have mechanical properties (particularly Knoop hardness, bendability, resistance) compared to Comparative Examples 5 to 6 that do not use carbon nanofibers (use carbon black). Impact and film breakage) are significantly improved.

本発明の被覆組成物は、金属製工業部品、ボルト・ナット等の各種締結部品、軸受け、各種シール部品、締結フランジ、座金、ブレーキシュー、ジャッキ部品、半導体製造装置の摺動部品等の機械部品の被覆に好適に利用され得る。さらに、各種の環境遮断ライニング被覆にも利用可能である。   The coating composition of the present invention includes metal industrial parts, various fastening parts such as bolts and nuts, bearings, various sealing parts, fastening flanges, washers, brake shoes, jack parts, and sliding parts of semiconductor manufacturing equipment. It can be suitably used for coating. Furthermore, it can be used for various environmental barrier lining coatings.

本発明の実施例1の被覆組成物に用いられるグラフト化された炭素ナノ繊維の熱重量分析の結果を示すグラフである。It is a graph which shows the result of the thermogravimetric analysis of the grafted carbon nanofiber used for the coating composition of Example 1 of this invention. 本発明の実施例1の被覆組成物に用いられるグラフト化された炭素ナノ繊維の電子顕微鏡写真である。It is an electron micrograph of the grafted carbon nanofiber used for the coating composition of Example 1 of this invention. 本発明の実施例1により得られた被覆物の塩水噴霧から1500時間後の状態を示す写真である。It is a photograph which shows the state 1500 hours after salt spray of the coating obtained by Example 1 of this invention. 本発明の実施例3により得られた被覆物の塩水噴霧から2000時間後の状態を、比較例4の被覆物の状態と比較して示す写真である。It is a photograph which shows the state after 2000 hours from salt spray of the coating obtained by Example 3 of this invention compared with the state of the coating of the comparative example 4. 比較例4により得られた被覆物の塩水噴霧から24時間後の状態を示す写真である。It is a photograph which shows the state 24 hours after the salt spray of the coating obtained by the comparative example 4. FIG.

Claims (12)

合成樹脂バインダーと、その表面が電気的に絶縁されるように非導電性物質で表面処理された多層炭素ナノ繊維と、分散媒とを含む、被覆組成物。 A coating composition comprising a synthetic resin binder, multi-layer carbon nanofibers surface-treated with a non-conductive material so that the surface thereof is electrically insulated, and a dispersion medium. 前記多層炭素ナノ繊維の表面の少なくとも一部が、グラフト化されている、請求項1に記載の被覆組成物。   The coating composition according to claim 1, wherein at least a part of the surface of the multilayer carbon nanofiber is grafted. 前記多層炭素ナノ繊維が、底の無いカップ形状を有する炭素網層が入れ子状に多数積層した構造を有する、請求項1または2に記載の被覆組成物。   The coating composition according to claim 1 or 2, wherein the multi-layer carbon nanofiber has a structure in which a large number of carbon network layers having a cup shape without a bottom are laminated in a nested manner. 前記多層ナノ繊維が、径の異なる複数の筒状の炭素網層が同軸状に配置された構造を有する、請求項1または2に記載の被覆組成物。   The coating composition according to claim 1 or 2, wherein the multilayer nanofiber has a structure in which a plurality of cylindrical carbon network layers having different diameters are arranged coaxially. 前記合成樹脂バインダー100重量部に対して、前記多層炭素ナノ繊維を3〜15重量部、前記分散媒を10〜300重量部含む、請求項1から4のいずれかに記載の被覆組成物。   The coating composition according to any one of claims 1 to 4, comprising 3 to 15 parts by weight of the multilayer carbon nanofibers and 10 to 300 parts by weight of the dispersion medium with respect to 100 parts by weight of the synthetic resin binder. 前記合成樹脂バインダーが熱硬化性樹脂である、請求項1から5のいずれかに記載の被覆組成物。   The coating composition according to any one of claims 1 to 5, wherein the synthetic resin binder is a thermosetting resin. 前記合成樹脂バインダーが、フェノール樹脂、エポキシ樹脂、ポリウレタン樹脂、ケイ素樹脂、ポリアミドイミド樹脂および水系フッ素樹脂からなる群から選択される少なくとも1つである、請求項1から5のいずれかに記載の被覆組成物。   The coating according to any one of claims 1 to 5, wherein the synthetic resin binder is at least one selected from the group consisting of a phenol resin, an epoxy resin, a polyurethane resin, a silicon resin, a polyamideimide resin, and an aqueous fluororesin. Composition. 前記分散媒が極性溶媒である、請求項1から7のいずれかに記載の被覆組成物。   The coating composition according to any one of claims 1 to 7, wherein the dispersion medium is a polar solvent. 前記分散媒が、水、アルコール類、N−メチル−2−ピロリドン、ジメチルアセトアミド、メチルエチルケトンおよびメチルイソブチルケトンからなる群から選択される少なくとも1つである、請求項8に記載の被覆組成物。   The coating composition according to claim 8, wherein the dispersion medium is at least one selected from the group consisting of water, alcohols, N-methyl-2-pyrrolidone, dimethylacetamide, methyl ethyl ketone, and methyl isobutyl ketone. 得られる被膜のヌープ硬さが20Hk以上であり、かつ、塩水噴霧試験による防錆力が200時間以上である、請求項1から9のいずれかに記載の被覆組成物。   The coating composition according to any one of claims 1 to 9, wherein the resulting coating has a Knoop hardness of 20 Hk or more and a rust-preventing power by a salt spray test of 200 hours or more. 基体表面の少なくとも一部に、請求項1から10のいずれかに記載の被覆組成物による被膜が形成されている、被覆物。   The coating by which the film by the coating composition in any one of Claim 1 to 10 is formed in at least one part of the base-material surface. 前記基体が、金属製工業部品、ボルト・ナット、軸受け、シール部品、締結フランジ、座金、ブレーキシュー、ジャッキ部品および半導体製造装置の摺動部品からなる群から選択される、請求項11に記載の被覆物。   The said base | substrate is selected from the group which consists of a metal industrial component, a volt | bolt nut, a bearing, a seal component, a fastening flange, a washer, a brake shoe, a jack component, and a sliding component of a semiconductor manufacturing apparatus. Coating.
JP2006122801A 2006-04-27 2006-04-27 Coating composition and coating Active JP4536031B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006122801A JP4536031B2 (en) 2006-04-27 2006-04-27 Coating composition and coating
EP07742853.0A EP2011838B1 (en) 2006-04-27 2007-04-25 Coating composition comprising surface-treated multilayer carbon nanofibers and coated article
PCT/JP2007/059418 WO2007132684A1 (en) 2006-04-27 2007-04-25 Coating composition and coated article
US12/298,178 US20100239838A1 (en) 2006-04-27 2007-04-25 Coating Composition and Coated Article
TW096114970A TW200800600A (en) 2006-04-27 2007-04-27 Coating composition and coated article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006122801A JP4536031B2 (en) 2006-04-27 2006-04-27 Coating composition and coating

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008026093A Division JP2008144185A (en) 2008-02-06 2008-02-06 Coating composition and coated product

Publications (2)

Publication Number Publication Date
JP2007291280A JP2007291280A (en) 2007-11-08
JP4536031B2 true JP4536031B2 (en) 2010-09-01

Family

ID=38693782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006122801A Active JP4536031B2 (en) 2006-04-27 2006-04-27 Coating composition and coating

Country Status (5)

Country Link
US (1) US20100239838A1 (en)
EP (1) EP2011838B1 (en)
JP (1) JP4536031B2 (en)
TW (1) TW200800600A (en)
WO (1) WO2007132684A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20070886A0 (en) * 2007-11-21 2007-11-21 Noella Oy Procedure for the prevention of corrosion
FR2924133B1 (en) * 2007-11-26 2012-12-14 Porcher Ind LONGITUDINAL REINFORCING ELEMENT BASED ON MINERAL OR ORGANIC FIBERS AND METHOD OF OBTAINING THE SAME
CN101925659B (en) * 2008-01-24 2014-03-26 油研工业股份有限公司 Anticorrosive coating composition and process for producing member with anticorrosive coating film using composition
CN102030987B (en) * 2009-09-30 2013-12-04 E.I.内穆尔杜邦公司 Corrosion-resistant film and product containing same
ITBS20100147A1 (en) * 2010-08-31 2012-03-01 Lucchini Rs Spa PROTECTIVE COATING FOR SALT FITTED RAILWAYS AND APPLICATION METHOD
CZ302989B6 (en) * 2010-12-09 2012-02-08 Výzkumný ústav anorganické chemie, a. s. Liquid geopolymeric resin with nanofibers and process for preparing thereof
CN102288352B (en) * 2011-07-20 2012-12-19 三一电气有限责任公司 Method and device for determining torque coefficient of bolt
JP2018002789A (en) * 2016-06-29 2018-01-11 株式会社東芝 Composite material and curable resin composition
CN106085137A (en) * 2016-08-04 2016-11-09 浙江无奇涂料有限公司 A kind of novel high rigidity anticorrosive paint
CN108532291A (en) * 2018-03-30 2018-09-14 陕西科技大学 A kind of preparation method of carbon cloth surfaces growth in situ manganese dioxide nano-plates reinforced resin base frication material
CN110643255A (en) * 2019-09-05 2020-01-03 天恒涂料有限公司 Epoxy zinc-rich graphene anticorrosive paint and preparation method thereof
CN115368769A (en) * 2020-12-10 2022-11-22 熊秀 Electrostatic discharge solution, preparation method thereof and electrostatic discharge device
CN115160909B (en) * 2022-08-17 2023-01-06 广东邦固化学科技有限公司 Water-based high-temperature-resistant paint with enamel-like effect on surface of hardware and preparation method thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06122785A (en) 1991-12-10 1994-05-06 Nikkiso Co Ltd Conductive composition, conductive coating material, conductive ink, and electric circuit board
US6203814B1 (en) * 1994-12-08 2001-03-20 Hyperion Catalysis International, Inc. Method of making functionalized nanotubes
JPH11263916A (en) * 1998-03-17 1999-09-28 Fujitsu Ltd Low dielectric constant insulating material for wiring circuit and electronic parts using the same
AU2001286655A1 (en) * 2000-08-24 2002-03-04 William Marsh Rice University Polymer-wrapped single wall carbon nanotubes
JP2002276665A (en) 2001-03-14 2002-09-25 Ndc Co Ltd Resin coated sliding material
JP3981567B2 (en) * 2001-03-21 2007-09-26 守信 遠藤 Carbon fiber length adjustment method
JP3665969B2 (en) * 2001-03-26 2005-06-29 エイコス・インコーポレーテッド Method for producing carbon nanotube-containing film and carbon nanotube-containing coating
EP1444701A4 (en) * 2001-07-27 2005-01-12 Eikos Inc Conformal coatings comprising carbon nanotubes
WO2003024798A1 (en) * 2001-09-18 2003-03-27 Eikos, Inc. Esd coatings for use with spacecraft
JP3879991B2 (en) * 2002-06-03 2007-02-14 独立行政法人農業・食品産業技術総合研究機構 Polymer-coated carbon nanotubes
JP2004183127A (en) * 2002-12-02 2004-07-02 Achilles Corp Modified carbon nanofiber, and resin composition and coating material containing the same
JP4005048B2 (en) * 2003-04-09 2007-11-07 日信工業株式会社 Carbon fiber composite material and method for producing the same
JP2005007622A (en) * 2003-06-17 2005-01-13 Takenaka Seisakusho:Kk Coated article having functional film formed thereon, functional coating agent and method for manufacturing functional coating agent
JP4129209B2 (en) 2003-07-04 2008-08-06 株式会社Gsiクレオス Carbon nanomaterial
JP4340489B2 (en) 2003-07-09 2009-10-07 株式会社竹中製作所 COATING WITH DAMAGE RESISTANT COATING, DAMAGE RESISTANT COATING, AND METHOD FOR PRODUCING DAMAGE RESISTANT COATING
WO2005012171A2 (en) * 2003-07-28 2005-02-10 William Marsh Rice University Sidewall functionalization of carbon nanotubes with organosilanes for polymer composites
JP2005163203A (en) * 2003-12-01 2005-06-23 Norio Tsubokawa Modified carbon fiber, and resin composition and coating containing the same
US20050186378A1 (en) * 2004-02-23 2005-08-25 Bhatt Sanjiv M. Compositions comprising carbon nanotubes and articles formed therefrom
FR2870251B1 (en) * 2004-05-11 2010-09-17 Arkema COMPOSITE MATERIALS BASED ON CARBON NANOTUBES AND POLYMERIC MATRICES AND METHODS OF OBTAINING THEM
CN101010137B (en) * 2004-05-13 2011-02-02 国立大学法人北海道大学 Fine carbon dispersion

Also Published As

Publication number Publication date
EP2011838A1 (en) 2009-01-07
EP2011838A4 (en) 2010-04-14
TW200800600A (en) 2008-01-01
US20100239838A1 (en) 2010-09-23
EP2011838B1 (en) 2016-12-21
JP2007291280A (en) 2007-11-08
WO2007132684A1 (en) 2007-11-22
TWI377129B (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP4536031B2 (en) Coating composition and coating
JP6899916B2 (en) Graphene-containing film lubricant
Radhamani et al. Nanocomposite coatings on steel for enhancing the corrosion resistance: A review
Bobby et al. Enhancement of tribological performance of epoxy bulk composites and composite coatings using micro/nano fillers: a review
CN102272253B (en) Resin composition for surface treatment of steel sheet and surface-treated steel sheet using the same
Upadhyay et al. A novel approach to minimize dry sliding friction and wear behavior of epoxy by infusing fullerene C70 and multiwalled carbon nanotubes
US9914152B2 (en) Polytetrafluoroethylene thin film with polydopamine adhesive layer
JP2011522912A (en) How to reduce friction
Li et al. Fabrication and tribological behaviors of a novel environmental friendly water-based PAI-PTFE-LaF3 bonded solid lubricating composite coating
US20210403755A1 (en) Curable coating compostions comprising nanoparticle-polymer compositions and superamphiphobic nanoparticles having anti-corrosion and superamphiphobicity properties
Zhang et al. Anti-friction, wear-proof and self-lubrication application of carbon nanotubes
CN105949946A (en) Wear-resistant and anti-corrosion coating and preparation method thereof
AT506181A1 (en) BEARING ELEMENT
WO2005071052A1 (en) Lubricating aqueous polyurethane resin composition, method for lubricating surface of zinc-plated steel sheet using same, and surface-treated steel sheet
US20210163776A1 (en) Coating compositions, processes, and applications for low friction and high durability substrates
KR20200131896A (en) Multifunctional coating for use in humid environments
WO2019236503A1 (en) Coating compositions, processes, and applications for low friction and high durability substrates
US11401436B2 (en) Method of making UHMWPE hybrid nanocomposite coating reinforced with nanoclay and carbon nanotubes
Zhou et al. Wear and corrosion resistance of fluorocarbon/epoxy blended coatings nanofilled by mechanically peeled few-layer fluorinated graphene
Hojjati Najafabadi et al. A new approach of improving rain erosion resistance of nanocomposite sol-gel coatings by optimization process factors
Xavier Novel multilayer structural epoxy composite coating containing graphene oxide and silanized chromium carbide for the protection of steel structures
JP5618467B2 (en) Epoxy coating composition
JP4340489B2 (en) COATING WITH DAMAGE RESISTANT COATING, DAMAGE RESISTANT COATING, AND METHOD FOR PRODUCING DAMAGE RESISTANT COATING
JP2005007622A (en) Coated article having functional film formed thereon, functional coating agent and method for manufacturing functional coating agent
JP2008144185A (en) Coating composition and coated product

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071218

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4536031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250