JP4532709B2 - Tailored blank material excellent in deep drawability and manufacturing method thereof - Google Patents

Tailored blank material excellent in deep drawability and manufacturing method thereof Download PDF

Info

Publication number
JP4532709B2
JP4532709B2 JP2000290879A JP2000290879A JP4532709B2 JP 4532709 B2 JP4532709 B2 JP 4532709B2 JP 2000290879 A JP2000290879 A JP 2000290879A JP 2000290879 A JP2000290879 A JP 2000290879A JP 4532709 B2 JP4532709 B2 JP 4532709B2
Authority
JP
Japan
Prior art keywords
welded
tailored blank
deep drawability
strength
blank material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000290879A
Other languages
Japanese (ja)
Other versions
JP2002102946A (en
Inventor
浩二 橋本
幸久 栗山
康信 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000290879A priority Critical patent/JP4532709B2/en
Publication of JP2002102946A publication Critical patent/JP2002102946A/en
Application granted granted Critical
Publication of JP4532709B2 publication Critical patent/JP4532709B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、通常のプレス成形では成形できないような難成形部品で、かつ高強度材の適用が求められる部品に成形することができる素材ブランクである良成形性テーラードブランク材及びその製造方法に関する。
【0002】
【従来の技術】
自動車の構造部材などでは、車体構成部品としての剛性や衝突対策にともなう吸収エネルギー量の確保、または軽量化のためにより高強度の高張力鋼板を適用する気運が盛んである。しかし、実際の自動車部品などは、完成部品形状を与えるためにプレス成形を行う必要がある。一般に高強度材は延性が劣る上に深絞り性に効果があるr値なども軟鋼板と比べて低く、高張力鋼板の適用が望ましい部品でもプレス成形時に割れるなどの不良が発生するために、鋼板強度や適用部位に限界があった。
【0003】
このような成形特性の高強度材を難成形部品に供するためには、深絞り成形時の縦壁耐力を上げるか、絞りフランジ部の縮みフランジ変形抵抗力を下げるか、プレス工具との接触摩擦抵抗力を下げる必要がある。縦壁部耐力の向上のみならず部品強度を上げるためには、素材ブランクの段階から部品を構成する部位の強度を高く設定しておく必要がある。従って、素材ブランクでの深絞り性を高めるにはフランジの変形抵抗を下げるか、工具との摩擦力を下げる必要がある。
【0004】
フランジ部の変形抵抗を下げるにはしわ抑え部分に熱を加え、変形抵抗を下げる方法や流体潤滑条件で摩擦力を低減する対向液圧成形法があるが、このような手法は新規設備の投資が必要となり、かつ生産性が劣る。より単純にフランジ変形抵抗力を下げる方法として、単純形状部品の場合には、立体形の稜線部分にスリットを入れたブランクで成形し、成形後に稜線部分を溶接して立体形状を形成する方法(山口ら;第50回塑性加工連合講演会(1999)P355)、または成形品に影響しない範囲内でブランクの縮み変形部位にカットや切り込みを入れる方法がある。しかし、これら方法では後工程に時間とコストがかかるか、またはフランジ部に十分なしわ抑え力がかからずに成形品にしわを生じやすい。
【0005】
また、高強度鋼板の適用を促す別なアプローチとして、異材質・異板厚のいくつかの切り板をレーザー溶接、もしくはマッシュシーム溶接により締結したテーラードブランク材の適用が盛んである。例えば、Thyssen-Krupp-Hesch社(独)のテーラードブランク材のカタログには、ショックタワーハウジングのポンチ底及びポンチ肩部周辺までを円形状に高張力鋼板とし、縦壁部からフランジ先端に掛けて軟質鋼板としたテーラードブランク材の応用例が示されている。これは、絞り成形時の縦壁部耐力の向上と部品強度の向上を狙ったものである。しかし、従来のテーラードブランクは、上記例のように難成形部位に関しては軟鋼板を当て、剛性や強度の必要な部位にのみ高強度鋼板を配するもので、部品全体を高強度鋼板に置き換えたい場合には適用されていなかった。
【0006】
一方、ポンチ縦壁部に相当する部位に、あらかじめレーザー照射や高周波焼き入れ(または中周波焼入れ)を施して破断耐力を向上させる技術も開発されているが(例えばK.Tamada et al, 19th IDDRG(1996)P47または玉田ら;自動車技術会1995年度春季大会講演会など)、焼入れ部分に縮みやゆがみを生じたり、レーザー照射で必要強度を得るには何回もレーザー照射が必要であるなどの問題がある。
また、近年では対向液圧成形などが考案されているが、対向液圧成形を行う場合には特殊なプレス装置が必要となり初期投資が嵩む。
【0007】
従って、特殊な成形装置や後工程を必要とせず、かつ難成形部品形状でありながら完成部品全体に高強度材を適用できる素材ブランクの提供が望まれていた。
【0008】
【発明が解決しようとする課題】
本発明は、高強度材の難成形部品への適用にあたり、部品としての強度特性を十分満足し、特殊プレス機などの新規設備投資が必要でなく、かつ、後工程にアッセンブリ行程以外の溶接行程もいらず、しわなどの成形不良もなく形状も確保できる、深絞り成形性に優れたテーラードブランク材を提供することにある。
【0009】
【課題を解決するための手段】
本発明の要旨とするところは、冷延鋼板や熱延鋼板の高張力鋼板、またはこれらの表面処理鋼板やステンレス鋼板、アルミニウム板、アルミニウム合金板、チタン板などの難成形素材に、成形後に除去される絞りフランジ部に必要最小限度の良成形性板を溶接接合することを特徴とする深絞り性の優れたプレス成形用テーラードブランク材及びその製造方法である。
なお、本発明において、絞りフランジ部とは製品となる部分以外で、成形時にしわ抑え力を付与する部分と定義する。
【0010】
【発明の実施の形態】
一般に、円筒深絞り成形での成形荷重は
「縮みフランジ変形抵抗力」+「曲げ曲げ戻し抵抗力」+「摩擦力」
の3者の和で表され、ポンチ肩部の材料の破断強度以下であれば成形可能となる。
そこで、縮みフランジ部分の材料を良成形鋼板にしたテーラードブランク材を成形すれば、「縮みフランジ変形抵抗力」が低減することによってポンチ肩破断を防ぐことが可能である。
【0011】
難成形素材に良好な成形性を与えるためには、「縮みフランジ変形抵抗力」を十分に低減させるために難成形素材の引張強度(=TS)×板厚に対し、少なくとも 15%以上引張強度(=TS)×板厚が低い板か、または少なくとも5%以上延性の優れた板をフランジ部に適用する必要がある。
【0012】
良成形性鋼板の引張強度(TS)×板厚が難成形素材のそれより15%未満小さい場合には縮みフランジ変形抵抗力の低減効果が小さく、成形性の向上にまでは至らなくなり、また、良成形性素材の延性が難成形素材のそれより5%以上高い場合には一般的にフランジの変形抵抗力も低減する傾向があるため、成形性向上効果が現れるので、上記の範囲に限定する。
【0013】
また、良成形性鋼板の縮みフランジに占める面積割合としては、成形後除去する部分の少なくとも20%以上100%以下の範囲とすることが好ましく、絞りフランジ部の一部、もしくは外周全周に渡り1種類以上(すなわち1枚以上)溶接接合したテーラードブランク材が深絞り成形性に優れたテーラードブランク材となりうる。良成形性鋼板の縮みフランジに占める面積割合が20%未満では、縮みフランジ変形抵抗力の低減が加工性向上に寄与するに十分とはならないため、20%以上とすることが好ましい。一方、良成形性鋼板の縮みフランジに占める面積割合の上限は特に定めることはなく本発明の効果を得ることができるので、100%であっても構わない。
【0014】
この時、素材ブランクの接合方法はレーザー溶接、マッシュシーム溶接、電子ビーム溶接、高周波誘導溶接、アーク溶接、電子ビーム溶接、TIG溶接のいづれかで、溶接ビードが板厚増加を伴う場合には母材厚と同等になるように調整する必要がある。また、硬化した溶接ビード部分の軟化後熱処理やノルマライズを施すことはより良好な成形性を得るために望ましい。
【0015】
【実施例】
以下、実施例により、本発明の深絞り成形性に優れたテーラードブランク材を、さらに詳しく説明する。
【0016】
表1に、深絞り成形試験に用いた試験片の機械的特性を示す。成形試験には直径100mmでポンチ肩R5mm、ダイス直径105mmでダイス肩R5mmの円筒深絞り工具を用いた。潤滑は一般的な防錆油として出光興産製Z3を用いた。成形性の指針としてTZP試験(例えば、日刊工業社刊プレス成形難易ハンドブック第2版ページ465など)を行った。ちなみに、成形荷重50kNで破断荷重が70kNとした場合のTZP値は(70‐50)×100/70=28.6%となる。
【0017】
【表1】

Figure 0004532709
【0018】
本発明の深絞り成形性に優れたテーラードブランク材は、フランジ部の変形抵抗を下げるために、図1に示すように円筒工具底部に当たる部位、即ち直径140mmの中心部分に高張力鋼板を当て、外周部には表1の1の低強度鋼板(SPCEN)を配し、5kWCO2 レーザーで溶接接合して円形の異材質テーラードブランク材を作成した。このようにして作成した250mm×250mmのブランクを直径190mmから直径220mmまでの同心円状ブランクとして切断してプレス成形に用いた。なお、今回はレーザー溶接したままの試験片を用いたが、レーザー溶接や電子ビーム溶接などで高強度鋼板と他材料を接合する場合、冷却速度が早いために接合部強度が上昇してしまう事が知られている。図1の適用例のように溶接線を円周方向に設置する場合、溶接部強度の上昇は縮みフランジ変形の変形抵抗力を増すことになるので、溶接直後に後熱処理を施すか、成形前にノルマライズ処理することが好ましい。
【0019】
図2に、同心円状に切断された異材質テーラードブランク材を用いて、ポンチ直径100mmに対する絞り比1.9から2.2に相当する、ブランク(Blank)直径190mmから220mmまでのTZP試験結果を示す。横軸に示された各鋼種のうち、左側の濃い色の棒グラフは高張力鋼板単独での成形におけるTZP値を示す。一方、右側の色の薄い棒グラフは縮みフランジ部に良成形性鋼板を溶接した良成形性テーラードブランク材のTZP値を示す。なお、SPCENに関しては、SPCEN以上の良加工性鋼板が入手できなかったので、原板のみのTZP値を示した。なお、中心部にSPCC材を配し、外周にSPCENをレーザー溶接した直径200mmのブランクでの成形品例を図3に示す。
この結果から、図4に示すようにブランク径が大きくなってフランジに占める良加工性鋼板の割合が増えるほど、良加工性テーラードブランクの深絞り性が原板に比べて良くなることが判明した。特に、ブランク径が210mmを超えると、原板が最大成形荷重に達する前に破断するのに対して、良構成テーラードブランク材はかなり成形余裕を持っている事がわかる。また、成形性の改善効果は高高張力鋼板の成形性が低い程顕著となることから、成形の難しい難加工材ほど良加工性テーラードブランクにする効果が高いことになる。
【0020】
【発明の効果】
本発明によれば、冷延鋼板、熱延鋼板、亜鉛などのめっき鋼板の高張力鋼板、ステンレス鋼板や、チタン板、アルミニウム板、アルミニウム合金板等の非鉄金属の難成形薄板を素材とするプレス部品に、良加工性板を縮みフランジに配した異材質テーラードブランクとすることにより、従来技術では成形できなかった難成形部品でも成形可能となる、深絞り成形性に優れたテーラードブランク材を提供することが可能である。
【0021】
本発明による深絞り成形性に優れたテーラードブランク材は、難成形部品の加工に多く用いられる深絞り成形に対して特に有効であり、工業的価値の高いものである。
【図面の簡単な説明】
【図1】実施例で用いた本発明の良加工性テーラードブランク材の組み合わせ例を示す。中央部の円形ブランクが高張力鋼板で、周りのブランクが良加工性鋼板(SPCEN)で、レーザー溶接によりテーラードブランクとしている。
【図2】実施例で用いた良加工性テーラードブランクを直径100mmの円筒成形工具で成形したときのTZP値で成形性を評価したグラフである。
【図3】中心部に直径140mmのSPCC、外周部にSPCENを配した直径200mmのテーラードブランクTZP試験例である。
【図4】中心部に直径140mmのSPCC、SAFC370R,SAFC440R、SAFC690T、外周部にSPCENを配した直径190mmから220mmまでのテーラードブランク材の成形性向上効果を表した図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a well-formable tailored blank material, which is a material blank that can be formed into a difficult-to-mold part that cannot be formed by ordinary press molding and that requires application of a high-strength material, and a method for manufacturing the same.
[0002]
[Prior art]
In automobile structural members and the like, there is a strong tendency to apply high-strength, high-tensile steel sheets to ensure the rigidity as a vehicle body component and the amount of energy absorbed due to collision countermeasures or to reduce the weight. However, an actual automobile part or the like needs to be press-molded to give a finished part shape. In general, high-strength materials are inferior in ductility and r-value, which has an effect on deep drawability, is also lower than that of mild steel plates. There was a limit in steel plate strength and application site.
[0003]
In order to provide high strength materials with such forming characteristics to difficult-to-mold parts, increase the vertical wall strength during deep drawing, reduce the shrinkage flange deformation resistance of the drawing flange, or contact friction with the press tool. It is necessary to lower the resistance. In order to increase not only the vertical wall portion yield strength but also the component strength, it is necessary to set the strength of the part constituting the component high from the stage of the blank. Therefore, in order to improve the deep drawability of the blank material, it is necessary to reduce the deformation resistance of the flange or reduce the frictional force with the tool.
[0004]
There are two methods to reduce the deformation resistance of the flange part: heat is applied to the wrinkle suppression part to reduce the deformation resistance and the counter hydraulic forming method to reduce the frictional force under fluid lubrication conditions. Is required and productivity is inferior. As a method of lowering the flange deformation resistance more simply, in the case of a simple shape part, it is molded with a blank with slits in the solid ridge line part, and after molding, the ridge line part is welded to form a solid shape ( Yamaguchi et al .: The 50th Plastic Working Joint Lecture (1999) P355), or there is a method of making a cut or notch in the shrinkage deformation part of the blank within a range that does not affect the molded product. However, these methods are time-consuming and costly in the subsequent process, or the molded part is likely to be wrinkled without applying sufficient wrinkle restraining force to the flange portion.
[0005]
As another approach for promoting the application of high-strength steel plates, tailored blank materials in which several cut plates of different materials and thicknesses are fastened by laser welding or mash seam welding are actively used. For example, in the catalog of tailored blanks from Thyssen-Krupp-Hesch (Germany), the punch tower bottom and the punch shoulder of the shock tower housing are circularly made of high-tensile steel plate and hung from the vertical wall to the flange tip. An application example of a tailored blank material made of a soft steel plate is shown. This is intended to improve the strength of the vertical wall and the strength of the parts during drawing. However, conventional tailored blanks, like the example above, apply mild steel plates for difficult-to-form parts, and place high-strength steel sheets only in parts that require rigidity and strength. The case was not applied.
[0006]
On the other hand, techniques for improving the fracture strength by applying laser irradiation or induction hardening (or medium frequency hardening) to the part corresponding to the vertical wall of the punch have been developed (for example, K. Tamada et al, 19th IDDRG). (1996) P47 or Tamada et al .; Automotive Engineering Society 1995 Spring Conference Lecture, etc.), shrinkage and distortion in the quenched part, and laser irradiation is necessary many times to obtain the required intensity by laser irradiation, etc. There's a problem.
Further, in recent years, counter hydraulic forming and the like have been devised, but in the case of performing counter hydraulic forming, a special press device is required, and initial investment increases.
[0007]
Therefore, it has been desired to provide a blank material that does not require a special molding device or a post-process and that can apply a high-strength material to the entire finished part while having a difficult-to-mold part shape.
[0008]
[Problems to be solved by the invention]
The present invention, when applied to difficult-to-mold parts of high-strength materials, sufficiently satisfies the strength characteristics of the parts, does not require new equipment investment such as special press machines, and is a welding process other than the assembly process in the subsequent process. Therefore, it is an object of the present invention to provide a tailored blank material excellent in deep drawability and capable of securing a shape without forming defects such as wrinkles.
[0009]
[Means for Solving the Problems]
The gist of the present invention is that it is removed after forming into cold-rolled steel sheets, high-tensile steel sheets such as hot-rolled steel sheets, or difficult-to-form materials such as these surface-treated steel sheets, stainless steel sheets, aluminum plates, aluminum alloy plates, and titanium plates. A press-molded tailored blank material excellent in deep drawability and a method for producing the same, characterized in that a required minimum formability plate is welded to the drawn flange portion.
In the present invention, the narrowed flange portion is defined as a portion to which a wrinkle suppressing force is imparted at the time of molding other than a portion that becomes a product.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In general, the molding load in cylindrical deep drawing is “shrinking flange deformation resistance” + “bending and bending resistance” + “frictional force”.
If it is below the breaking strength of the material of the punch shoulder, it can be molded.
Therefore, if a tailored blank material in which the material of the shrinkage flange portion is a well-formed steel plate is formed, it is possible to prevent punch shoulder breakage by reducing the “shrinkage flange deformation resistance”.
[0011]
In order to give good formability to difficult-to-form materials, at least 15% or more of tensile strength (= TS) × plate thickness of difficult-to-form materials to sufficiently reduce the `` shrinkage flange deformation resistance '' It is necessary to apply (= TS) × plate with a low plate thickness or a plate with excellent ductility of at least 5% to the flange portion.
[0012]
If the tensile strength (TS) of the well-formable steel sheet is less than 15% less than that of the difficult-to-form material, the effect of reducing the shrinkage flange deformation resistance is small, and the formability cannot be improved. When the ductility of a good moldability material is 5% or more higher than that of a difficult molding material, the deformation resistance force of the flange generally tends to decrease, so that the effect of improving the moldability appears, so the range is limited to the above range.
[0013]
Further, the area ratio of the well-formable steel sheet to the shrink flange is preferably in the range of at least 20% to 100% of the portion to be removed after forming, and covers a part of the drawn flange portion or the entire outer periphery. One or more (ie, one or more) tailored blank materials welded and joined can be tailored blank materials with excellent deep drawability. If the area ratio of the well-formable steel sheet to the shrinkage flange is less than 20%, the reduction of the shrinkage flange deformation resistance will not be sufficient to contribute to the improvement of workability, so it is preferably 20% or more. On the other hand, the upper limit of the area ratio in the shrinkable flange of the well-formable steel sheet is not particularly defined and the effect of the present invention can be obtained, and may be 100%.
[0014]
At this time, the blank joining method is laser welding, mash seam welding, electron beam welding, high frequency induction welding, arc welding, electron beam welding, or TIG welding. If the weld bead is accompanied by an increase in the plate thickness, the base material is used. It is necessary to adjust it to be equal to the thickness. In addition, it is desirable to perform heat treatment or normalization after softening of the hardened weld bead portion in order to obtain better formability.
[0015]
【Example】
Hereinafter, the tailored blank material excellent in deep drawability of the present invention will be described in more detail by way of examples.
[0016]
Table 1 shows the mechanical properties of the test pieces used in the deep drawing test. For the molding test, a cylindrical deep drawing tool having a diameter of 100 mm and a punch shoulder of R5 mm, a die diameter of 105 mm and a die shoulder of R5 mm was used. For lubrication, Idemitsu Kosan Z3 was used as a general rust preventive oil. A TZP test (for example, Nikkan Kogyo Co., Ltd. Press Forming Difficulty Handbook, Second Edition, page 465) was conducted as a guide for formability. Incidentally, the TZP value when the forming load is 50 kN and the breaking load is 70 kN is (70-50) × 100/70 = 28.6%.
[0017]
[Table 1]
Figure 0004532709
[0018]
In order to reduce the deformation resistance of the flange portion, the tailored blank material excellent in deep drawability of the present invention is applied with a high-tensile steel plate at the portion that hits the bottom of the cylindrical tool as shown in FIG. The low strength steel plate (SPCEN) 1 shown in Table 1 was placed on the outer periphery and welded with a 5kW CO 2 laser to create a circular dissimilar tailored blank. The 250 mm × 250 mm blank thus prepared was cut as a concentric blank having a diameter of 190 mm to 220 mm and used for press molding. In addition, this time, the test piece was used as it was with laser welding. However, when joining high-strength steel sheets and other materials by laser welding or electron beam welding, the strength of the joint will increase due to the high cooling rate. It has been known. When the weld line is installed in the circumferential direction as in the application example of FIG. 1, the increase in weld strength reduces the deformation resistance of the flange deformation, so post-heat treatment is performed immediately after welding or before molding. It is preferable to perform normalization.
[0019]
FIG. 2 shows a TZP test result with a blank diameter of 190 mm to 220 mm, which corresponds to a drawing ratio of 1.9 to 2.2 with respect to a punch diameter of 100 mm, using a different material tailored blank cut concentrically. Among the steel types shown on the horizontal axis, the dark bar graph on the left side shows the TZP value in forming with a high-tensile steel plate alone. On the other hand, the thin bar graph on the right side shows the TZP value of a well-formable tailored blank material in which a well-formable steel plate is welded to the contracted flange portion. In addition, regarding SPCEN, a good workability steel plate of SPCEN or higher was not available, so only the TZP value of the original plate was shown. FIG. 3 shows an example of a molded product with a 200 mm diameter blank in which an SPCC material is arranged in the center and SPCEN is laser welded to the outer periphery.
From this result, as shown in FIG. 4, it was found that the deep drawability of the good workability tailored blank is improved as the blank diameter increases and the proportion of the good workability steel sheet occupying the flange increases. In particular, when the blank diameter exceeds 210 mm, the original plate breaks before reaching the maximum forming load, whereas the well-configured tailored blank material has a considerable forming margin. Moreover, since the improvement effect of a formability becomes so remarkable that the formability of a high-tensile steel plate is low, the difficult-to-form material which is difficult to form has a high effect of making a highly workable tailored blank.
[0020]
【The invention's effect】
According to the present invention, a cold-rolled steel plate, a hot-rolled steel plate, a high-strength steel plate of a plated steel plate such as zinc, a stainless steel plate, a non-ferrous metal difficult-to-form thin plate such as a titanium plate, an aluminum plate, and an aluminum alloy plate. Providing tailored blanks with excellent deep drawability that can be molded even in difficult-to-form parts that could not be molded by conventional technology by using different-material tailored blanks with well-processable plates and flanged parts. Is possible.
[0021]
The tailored blank material excellent in deep drawability according to the present invention is particularly effective for deep draw forming often used for processing difficult-to-form parts, and has high industrial value.
[Brief description of the drawings]
FIG. 1 shows a combination example of a highly workable tailored blank material of the present invention used in Examples. The circular blank at the center is a high-tensile steel plate, the surrounding blank is a good workability steel plate (SPCEN), and a tailored blank is formed by laser welding.
FIG. 2 is a graph in which formability is evaluated by a TZP value when a well-processed tailored blank used in Examples is formed with a cylindrical forming tool having a diameter of 100 mm.
FIG. 3 is an example of a tailored blank TZP test with a diameter of 200 mm in which a SPCC having a diameter of 140 mm is arranged at the center and SPCEN is arranged on the outer periphery.
FIG. 4 is a view showing the effect of improving the formability of a tailored blank material having a diameter of 190 mm to 220 mm with SPCC, SAFC370R, SAFC440R, and SAFC690T having a diameter of 140 mm in the center and SPCEN disposed on the outer periphery.

Claims (2)

少なくとも15%以上、中心部の材料より強度(TS)×板厚が低いか、少なくとも5%以上、中心部の材料より延性の優れた高張力鋼板またはチタン板が、深絞り成形後、製品となる部分以外で、成形時にしわ抑え力を付与する部分である絞りフランジ部の全周に亘り、鋼板同士またはチタン板同士と溶接されている事を特徴とする深絞り成形性に優れたプレス成形用テーラードブランク材。A high-tensile steel plate or titanium plate that is at least 15% or more stronger than the material in the center (TS) × thickness, or at least 5% or more ductile than the material in the center , Press forming with excellent deep drawability, characterized by being welded with steel plates or titanium plates over the entire circumference of the drawing flange, which is a portion that gives wrinkle suppression force during forming. Tailored blank material. 請求項1に記載のテーラードブランク材を製造する方法であって、鋼板同士又はチタン板同士をレーザー溶接、マッシュシーム溶接、高周波誘導溶接、アーク溶接、電子ビーム溶接又はTIG溶接することを特徴とする深絞り成形性に優れたプレス成形用テーラードブランク材の製造方法。It is a method of manufacturing the tailored blank material according to claim 1, wherein steel plates or titanium plates are laser welded, mash seam welded, high frequency induction welded, arc welded, electron beam welded or TIG welded. A method for producing tailored blanks for press molding with excellent deep drawability.
JP2000290879A 2000-09-25 2000-09-25 Tailored blank material excellent in deep drawability and manufacturing method thereof Expired - Fee Related JP4532709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000290879A JP4532709B2 (en) 2000-09-25 2000-09-25 Tailored blank material excellent in deep drawability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000290879A JP4532709B2 (en) 2000-09-25 2000-09-25 Tailored blank material excellent in deep drawability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002102946A JP2002102946A (en) 2002-04-09
JP4532709B2 true JP4532709B2 (en) 2010-08-25

Family

ID=18774041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000290879A Expired - Fee Related JP4532709B2 (en) 2000-09-25 2000-09-25 Tailored blank material excellent in deep drawability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4532709B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170103938A (en) 2015-02-19 2017-09-13 신닛테츠스미킨 카부시키카이샤 METHOD AND METHOD FOR FORMING METAL SHEET

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6583305B2 (en) * 2017-02-20 2019-10-02 Jfeスチール株式会社 Forming method of flanged hole shape

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10175024A (en) * 1996-12-16 1998-06-30 Nissan Motor Co Ltd Pressing and forming method of blank
JPH11104749A (en) * 1997-09-29 1999-04-20 Nippon Steel Corp Steel belt for press forming and manufacture therefor
JPH11104750A (en) * 1997-09-30 1999-04-20 Nissan Motor Co Ltd Press forming method for abutt welding board
JPH11343538A (en) * 1998-05-29 1999-12-14 Kawasaki Steel Corp Cold-rolled steel sheet suitable for high-density energy beam welding and its production
JP2000015353A (en) * 1998-06-30 2000-01-18 Kawasaki Steel Corp Welded joining metallic plate excellent in press formability and production thereof
JP2000197969A (en) * 1998-12-25 2000-07-18 Sumitomo Metal Ind Ltd Blank for integrally forming and forming method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10175024A (en) * 1996-12-16 1998-06-30 Nissan Motor Co Ltd Pressing and forming method of blank
JPH11104749A (en) * 1997-09-29 1999-04-20 Nippon Steel Corp Steel belt for press forming and manufacture therefor
JPH11104750A (en) * 1997-09-30 1999-04-20 Nissan Motor Co Ltd Press forming method for abutt welding board
JPH11343538A (en) * 1998-05-29 1999-12-14 Kawasaki Steel Corp Cold-rolled steel sheet suitable for high-density energy beam welding and its production
JP2000015353A (en) * 1998-06-30 2000-01-18 Kawasaki Steel Corp Welded joining metallic plate excellent in press formability and production thereof
JP2000197969A (en) * 1998-12-25 2000-07-18 Sumitomo Metal Ind Ltd Blank for integrally forming and forming method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170103938A (en) 2015-02-19 2017-09-13 신닛테츠스미킨 카부시키카이샤 METHOD AND METHOD FOR FORMING METAL SHEET

Also Published As

Publication number Publication date
JP2002102946A (en) 2002-04-09

Similar Documents

Publication Publication Date Title
RU2686728C1 (en) Steel for hardening in a stamp and a part hardened in a stamp made of such steel
JP3389562B2 (en) Method of manufacturing collision reinforcing material for vehicles
KR101532856B1 (en) Method for bending sheet metal and product of sheet metal
WO2012169640A1 (en) Hot press molded article, method for producing same, and thin steel sheet for hot press molding
US20120304448A1 (en) Process for producing components having regions of differing ductility
WO2017159783A1 (en) Method for manufacturing panel-shaped molded article
JP2007521964A (en) Method of joining two or more shaped parts or metal plates by mechanical joining and pressure welding at one or more connection points
WO2012169639A1 (en) Hot press molded article, method for producing same, and thin steel sheet for hot press molding
US20100086803A1 (en) Hot-formed profile
KR102133176B1 (en) Mechanical clinch joint parts and manufacturing method thereof
WO2017047601A1 (en) Panel-shaped molded article and production method therefor
JP2009214118A (en) Press molding method and plate for press molding
JP4532709B2 (en) Tailored blank material excellent in deep drawability and manufacturing method thereof
JP2006218501A (en) Press-forming die and forming method for butt-welded metallic sheet
Kinsey Tailor welded blanks for the automotive industry
RU2743046C1 (en) Method for producing a component as a result of additional forming of a pre-formed circuit
JP4520549B2 (en) Press forming method of different material tailored blanks with excellent formability
JP2007283341A (en) Press-forming die for butt-welded metal plate, and press-forming method
CA2984746C (en) Press-formed product and method for designing the same
JP4850570B2 (en) Butt weld metal plate
WO2002036281A1 (en) Press-forming tailored blank material excellent in formability and production method therefor
GB2320216A (en) A flanged product,method of pressing a blank into same , and a reinforced planar blank for use in the method
RU2811746C2 (en) Vehicle sidewall structural frame
JP2023055526A (en) Press-formed product manufacturing method
JPH04105721A (en) Press forming method for metallic sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090916

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090916

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100611

R151 Written notification of patent or utility model registration

Ref document number: 4532709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees