JP4532001B2 - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
JP4532001B2
JP4532001B2 JP2001052975A JP2001052975A JP4532001B2 JP 4532001 B2 JP4532001 B2 JP 4532001B2 JP 2001052975 A JP2001052975 A JP 2001052975A JP 2001052975 A JP2001052975 A JP 2001052975A JP 4532001 B2 JP4532001 B2 JP 4532001B2
Authority
JP
Japan
Prior art keywords
measurement chamber
gas sensor
measurement
oxygen
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001052975A
Other languages
Japanese (ja)
Other versions
JP2002257777A (en
Inventor
真治 熊澤
雄二 大井
暢博 早川
峰次 那須
宏治 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2001052975A priority Critical patent/JP4532001B2/en
Publication of JP2002257777A publication Critical patent/JP2002257777A/en
Application granted granted Critical
Publication of JP4532001B2 publication Critical patent/JP4532001B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気ガス等に含まれる窒化酸化物等のガスを測定するための、酸素イオン伝導性固体電解質を用いたガスセンサに関する。更に詳しくは、ガスセンサを短時間で使用可能にするとともに、酸素イオン伝導性固体電解質及び制御回路等のの破壊を防ぐガスセンサに関する。
【0002】
【従来の技術】
窒素酸化物の濃度を検出するためのガスセンサとして、酸素イオン伝導性固体電解質層に電極を設けた酸素イオンポンプセルを2基使用したガスセンサがある。このガスセンサは被測定ガスを、図1に示すガスセンサ素子の第1拡散通路41を介して第1測定室21に導入し、且つ、第1測定室21の第1電極311、312に電圧を印加して、第2測定室22入り口の酸素濃度を一定にするように酸素を素子外へ汲み出す。尚、この汲み出しによって一酸化窒素等の窒化酸化物も幾らか分解される。
【0003】
更に、第2測定室22の第2電極321、322に電圧を印加して、第1測定室21の被測定ガスが第2拡散通路42を介して流入する第2測定室22内の酸素を汲み出すとともに、窒化酸化物を分解する。このとき、第2測定室22の第2電極321、322に流れる電流Ip2は、窒化酸化物の濃度に比例する。このため、電流Ip2から窒化酸化物濃度を算出するとともに、第1測定室21の第1電極311、312に流れる電流Ip1を用いた補正を行うことで、正確な窒化酸化物濃度を求めることができる。
【0004】
また、このセンサ素子は酸素イオン伝導性固体電解質を用いているため、この固体電解質が電解質として機能する温度域(例えば500〜900℃)で使用することが必要であり、温度域以外に電位差がある場合は、無理にポンプとして機能しようとした結果、素子破壊が起きる場合があった。このため、昇温中は素子破壊を防ぐために、第2電極321、322に電圧を印加しないことで、電位差を生じないようにしていた。
【0005】
【発明が解決しようとする課題】
しかし、第2電極321、322に電圧を印加することなく昇温を行うと、自然に生じた電位差によって第2測定室22側に酸素が汲みこまれる場合があり、昇温後、酸素を余分に汲み出す必要が生じて、使用できない時間が増えることがあった。
本発明は、このような問題点を解決するものであり、昇温中に第2測定室へ酸素が汲みこまれることがなく、短時間で使用可能となり、素子破壊が起きることがないガスセンサを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明のガスセンサは、拡散通路を介して測定ガスを拡散できる少なくとも1つの測定室と、該測定室に面して酸素イオン伝導性固体電解質体からなる少なくとも1つのポンプセルを具備し、該ポンプセルに電流を流すことで酸素を測定室内外へポンピングし、その時に流れる電流値から測定ガス中の被検出ガス濃度を測定するガスセンサであって、該ポンプセルに流れる電流該測定室内から酸素を汲み出す方向に流、該方向とは逆の方向に流れる電流を抑制する逆電流抑制手段を備え、上記ポンプセルがポンピング可能である活性状態にあるかを判定する判定手段を備え、上記逆電流抑制手段は該判定手段の結果が未活性状態であれば上記測定室内へ酸素を汲み入れる方向に流れる電流を抑制することを特徴とする。
【0009】
また、本ガスセンサは、拡散通路を介して測定ガスを拡散できる第1及び第2測定室と、該第1及び第2測定室に面して酸素イオン伝導性固体電解質体からなる第1及び第2ポンプセルを具備し、該第1ポンプセルは該第1測定室に面し、該第2ポンプセルは該第2測定室に面し、該第1測定室は拡散抵抗下で周囲の測定ガスと連通し、該第2測定室は拡散抵抗下で該第1測定室と連通し、該第1ポンプセルによって該第1測定室中の酸素濃度を制御することで、第2測定室に流入する酸素量を所定量に制御し、該第2ポンプセルによって該第2測定室中の酸素濃度を制御することで、該第2測定室に流入する被検出ガス濃度を測定するガスセンサであって、該第2ポンプセルに流れる電流を該第2測定室内から酸素を汲み出す方向に流し、該方向とは逆の方向に流れる電流を抑制する逆電流抑制手段を備え、上記第2ポンプセルがポンピング可能である活性状態にあるかを判定する判定手段を備え、上記逆電流抑制手段は該判定手段の結果が未活性状態であれば上記第2測定室内へ酸素を汲み入れる方向に流れる電流を抑制することを特徴とする。
【0010】
上記「逆電流抑制手段」は、酸素イオン伝導性固体電解質体や制御回路の各素子に逆電流が流れ、素子破壊を防ぐ為の手段である。この手段は任意に選択することができる。つまり、上記逆電流抑制手段は、ダイオードとしたり、直流電源を用いることを挙げることができる。
また、トランジスタや電界効果トランジスタ等の制御素子としてもよいし、制御回路の各素子内に一体として備えることもできる。
また、上記直流電源の電圧は10〜200mV(特に20〜120mV、更に好ましくは30〜100mV)が好ましい。電位の範囲が10mV未満では、十分な抑止効果が得られず第2測定室に酸素が汲みこまれる恐れがあるし、200mVを超えると、無理に第2測定室から酸素を汲み出すほどの電位となって、固体電解質積層の破壊を起こす恐れが生じるからである。
【0011】
更に、このようなガスセンサは、上記ポンプセルがポンピング可能である活性状態にあるかを判定する判定手段を備え、上記逆電流抑制手段は該判定手段の結果が未活性状態であれば上記逆の方向に流れる電流を抑制することができる。
この活性状態の判断は任意の方法で行うことができるが、動作可能温度未満であれば未活性状態とし、動作可能温度以上であれば活性状態とすることを例示できる。
尚、上記測定ガスは窒素酸化物等とすることができる。
【0012】
【発明の実施の形態】
以下、本発明のガスセンサに関する実施例により本発明を更に詳しく説明する。本ガスセンサは、ガソリンエンジン等の内燃機関の排気管に接続され、排気ガス中の窒化酸化物ガス濃度を測定するために用いられる。
【0013】
〔実施例1〕
本実施例1のガスセンサは、逆電流抑制手段にダイオードを用いたガスセンサである。本ガスセンサに用いられるガスセンサ素子は、図1に示すように、対向する2枚のヒータ61、62と、ヒータ61、62の間に設けられる、薄膜状ジルコニアからなる第1固体電解質層11、第2固体電解質層12及び第3固体電解質層13を備える。また、各固体電解質層11、12、13の間には、それぞれアルミナからなる絶縁層51、52が挟まれている。
第1固体電解質層11及び第2固体電解質層12の間には空隙とした第1測定室21が設けられている。また、第2固体電解質層12及び第3固体電解質層13の間には、第2測定室22と、絶縁層52内に形成される基準酸素室23とが設けられている。
更に、第1測定室21は、連通孔を設けた絶縁層41である第1拡散通路41を介して外気に通じる。また、第2測定室22は、第2固体電解質層12に設けられた第2拡散通路42を介して第1測定室21に接続されている。
【0014】
第1固体電解質層11の表裏面上には第1電極(P1)が設けられており、第1ポンプセルとして機能する。このうち、陽極側である第1電極311(P1+)はヒータ61側であり、陰極側である第1電極312(P1-)は第1測定室21内に位置する。
また、第3固体電解質層13の表面上には第2電極(P2)が設けられており、第2ポンプセルとして機能する。このうち、陽極側である第2電極321(P2+)は基準酸素室23内、陰極側である第2電極322(P2-)は第2測定室22内に位置する。
更に、第2固体電解質層12の表裏面上には基準電極(S)が設けられている。このうち、陽極側である基準電極331(S+)は基準酸素室23内、陰極側である基準電極332(S-)は第1測定室21内に位置する。
【0015】
図2に本実施例1のガスセンサ素子の制御回路図を示す。第1電極312(P1-)、第2電極322(P2-)及び基準電極332(S-)は互いに接続され、オペアンプ71の入力側、PID(比例積分微分)素子73の出力側に接続されている。
また、第1電極311(P1+)はオペアンプ71の出力側に、第2電極321(P2+)は、逆電流抑制手段であるダイオード8を介してオペアンプ72の出力側に、そして基準電極331(S+)はPID73の入力側に接続されている。
【0016】
次いで、上記ガスセンサ素子及びその制御回路を用いたガスセンサの昇温時の動作を説明する。
各固体電解質層11、12、13を活性化し、ガスセンサ素子を使用可能な温度域にするには、ヒータ61、62を通電し、ガスセンサ素子の温度が500〜900℃に達するまで加熱する。
【0017】
ガスセンサ素子の昇温時に第2電極(P2)に電位を掛けないことで、第2測定室22に酸素が汲みこまれるのを防止することができる。このため、活性後は早期に第2測定室22の酸素濃度を低減させ、窒素酸化物濃度を求めることができる。更に、オペアンプ72の出力先に逆電流抑制手段であるダイオード8を設けたため、第2測定室22に酸素が汲みこむ方向に電流が流れるのを防止することができるとともに、オペアンプ72の破壊を防止することができる。
【0018】
尚、各固体電解質層11、12、13が活性化し、使用可能な温度域に達した後は、第1電極(P1)、第2電極(P2)に通常の印加を行い、窒素酸化物濃度を求めることができる。また、第1電極(P1)311、312間では、400mV程度の電位差があるため、窒素酸化物も20〜30%程度分解される。
【0019】
〔実施例2〕
本実施例2のガスセンサは、逆電流抑制手段に定電圧電源を用いたガスセンサである。本ガスセンサに用いられるガスセンサ素子は図1に示すように、実施例1と同じ構成である。
【0020】
図3に本実施例1のガスセンサ素子の制御回路図を示す。第1電極312(P1-)、第2電極322(P2-)及び基準電極332(S-)は互いに接続され、オペアンプ71の入力側、PID(比例積分微分)素子73の出力側、及び定電圧電源82の入力側に接続されている。
また、第1電極311(P1+)はオペアンプ71の出力側に、第2電極321(P2+)は、定電圧電源82及びオペアンプ72の出力側に、そして基準電極331(S+)はPID素子73の入力側に接続されている。
【0021】
次いで、上記ガスセンサ素子及びその制御回路を用いたガスセンサの昇温時の動作を説明する。
各固体電解質層11、12、13を活性化し、ガスセンサ素子を使用可能な温度域にするには、ヒータ61、62を通電し、ガスセンサ素子の温度が500〜900℃に達するまで加熱する。
また、第2電極(P2)には、定電圧電源82を用いて、酸素が該基準酸素室側へ移動する極性の電位を印加する。つまり、第2電極321(P2+)が正、第2電極322(P2-)が負となるように、40〜70mVの電位をかける。
【0022】
ガスセンサ素子の昇温時に第2電極(P2)にポンピングが起きない程度の電位を掛けることで、第2電極(P2)間の電位によるポンプ作用が起きず、第2測定室22に酸素が汲みこまれるのを防止することができる。このため、活性後は早期に第2測定室22の酸素濃度を低減させ、窒素酸化物濃度を求めることができる。また、印加する電位は、酸素の汲み出しに必要な電位より低い200mV以下の40〜70mVであるため、実際には酸素の移動が抑制され、固体電解質の破壊を防止することができる。
【0023】
〔実施例3〕
本実施例3のガスセンサは、第2ポンプセルの電圧印加用の電源自体を逆電流抑制手段として用いたガスセンサである。本ガスセンサに用いられるガスセンサ素子は図1に示すように、実施例1と同じ構成である。
【0024】
図4に本実施例1のガスセンサ素子の制御回路図を示す。第1電極312(P1-)、第2電極322(P2-)及び基準電極332(S-)は互いに接続され、オペアンプ71の入力側、PID(比例積分微分)素子73の出力側に接続されている。
また、第1電極311(P1+)はオペアンプ71の出力側に、第2電極321(P2+)はオペアンプ72の出力側に、そして基準電極331(S+)はPID素子73の入力側に接続されている。
【0025】
次いで、上記ガスセンサ素子及びその制御回路を用いたガスセンサの昇温時の動作を説明する。
各固体電解質層11、12、13を活性化し、ガスセンサ素子を使用可能な温度域にするには、ヒータ61、62を通電し、ガスセンサ素子の温度が500〜900℃に達するまで加熱する。
また、第2電極(P2)には、定電圧源Vref2及びオペアンプ72を用いて、酸素が該基準酸素室側へ移動する極性の電位を印加する。つまり、第2電極321(P2+)が正、第2電極322(P2-)が負となるように、40〜70mVの電位をかける。
【0026】
ガスセンサ素子の昇温時に第2電極(P2)にポンピングが起きない程度の電位を掛けることで、第2電極(P2)間の電位によるポンプ作用が起きず、第2測定室22に酸素が汲みこまれるのを防止することができる。このため、活性後は早期に第2測定室22の酸素濃度を低減させ、窒素酸化物濃度を求めることができる。また、印加する電位は、酸素の汲み出しに必要な電位より低い200mV以下の40〜70mVであるため、実際には酸素の移動が抑制され、固体電解質の破壊を防止することができる。
【0027】
尚、本発明においては、上記実施例に示すものに限られず、目的、用途に応じて本発明の範囲内で種々変更した態様とすることができる。即ち、ガスセンサ素子の制御回路に用いられている逆電流抑制手段は、図2に示すダイオード8に限らず、任意の素子を用いることができる。また、オペアンプ72内に一体として備えることができる。更に、必要に応じてオペアンプ71及びPID73に逆電流抑制手段を設けることができる。また、本実施例で検知するガスの種類は、窒素酸化物ガスのみとしたが、電極Sを酸素濃度検出用として用い、酸素及び窒素酸化物ガス濃度を求めることができる。
【0028】
【発明の効果】
本発明のガスセンサによれば、ガスセンサ素子の昇温中に第2測定室に酸素が汲みこまれることが無く、短時間で使用可能にすることができる。また、ガスセンサ素子の素子破壊を防ぐことができる。更に、ガスセンサ素子昇温時に制御回路の破壊を防止することができる。
【図面の簡単な説明】
【図1】本実施例のガスセンサに用いるガスセンサ素子の構造を説明するための断面図である。
【図2】本実施例1のガスセンサの制御回路を説明するための回路図である。
【図3】本実施例2のガスセンサの制御回路を説明するための回路図である。
【図4】本実施例2のガスセンサの制御回路を説明するための回路図である。
【符号の説明】
11;第1固体電解質層、12;第2固体電解質層、13;第3固体電解質層、21;第1測定室、22;第2測定室、23;基準酸素室、311;第1電極(P1+)、312;第1電極(P1-)、321;第2電極(P2+)、322;第2電極(P2-)、331;基準電極(S+)、332;基準電極(S-)、41;第1拡散通路、42;第2拡散通路、51、52;絶縁層、61、62;ヒータ、71、72;オペアンプ、73;PID素子、81;ダイオード、82;定電圧電源。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas sensor using an oxygen ion conductive solid electrolyte for measuring a gas such as nitride oxide contained in exhaust gas or the like of an internal combustion engine. More specifically, the present invention relates to a gas sensor that enables the gas sensor to be used in a short time and prevents the destruction of an oxygen ion conductive solid electrolyte and a control circuit.
[0002]
[Prior art]
As a gas sensor for detecting the concentration of nitrogen oxide, there is a gas sensor using two oxygen ion pump cells each having an electrode provided on an oxygen ion conductive solid electrolyte layer. This gas sensor introduces a gas to be measured into the first measurement chamber 21 via the first diffusion passage 41 of the gas sensor element shown in FIG. 1 and applies a voltage to the first electrodes 311 and 312 of the first measurement chamber 21. Then, oxygen is pumped out of the element so that the oxygen concentration at the entrance of the second measurement chamber 22 is constant. This pumping also decomposes some nitride oxides such as nitric oxide.
[0003]
Further, a voltage is applied to the second electrodes 321 and 322 of the second measurement chamber 22, and the oxygen in the second measurement chamber 22 into which the gas to be measured in the first measurement chamber 21 flows through the second diffusion passage 42 is changed. Pumps out and decomposes nitride oxide. At this time, the current Ip2 flowing through the second electrodes 321 and 322 of the second measurement chamber 22 is proportional to the concentration of the nitrided oxide. Therefore, it is possible to obtain an accurate nitride oxide concentration by calculating the nitride oxide concentration from the current Ip2 and performing correction using the current Ip1 flowing through the first electrodes 311 and 312 of the first measurement chamber 21. it can.
[0004]
Further, since this sensor element uses an oxygen ion conductive solid electrolyte, it is necessary to use the sensor element in a temperature range (for example, 500 to 900 ° C.) in which the solid electrolyte functions as an electrolyte. In some cases, device breakdown may occur as a result of trying to function as a pump forcibly. For this reason, in order to prevent element destruction during temperature rise, a voltage difference is not generated by not applying a voltage to the second electrodes 321 and 322.
[0005]
[Problems to be solved by the invention]
However, if the temperature is raised without applying a voltage to the second electrodes 321, 322, oxygen may be pumped into the second measurement chamber 22 side due to a potential difference that occurs naturally. There was a case where it was not possible to use it due to the necessity of pumping it out.
The present invention solves such problems, and a gas sensor that does not cause oxygen to be pumped into the second measurement chamber during temperature rise, can be used in a short time, and does not cause element destruction. The purpose is to provide.
[0006]
[Means for Solving the Problems]
The gas sensor of the present invention includes at least one measurement chamber capable of diffusing a measurement gas through a diffusion passage, and at least one pump cell made of an oxygen ion conductive solid electrolyte body facing the measurement chamber. A gas sensor that pumps oxygen into and out of the measurement chamber by flowing an electric current , and measures the concentration of the gas to be detected in the measurement gas from the current value flowing at that time, and pumps out the oxygen flowing from the measurement chamber to the pump cell and flow direction, comprising a reverse current inhibiting means inhibits the current flowing in the opposite direction to the said direction, comprising a determining means for determining said pump cell is active can be pumped, the reverse current inhibiting means characterized that you suppressing a current flowing in a direction pumped into result of oxygen into it if the measuring chamber is not activated state of the determining means.
[0009]
In addition, the gas sensor includes first and second measurement chambers that can diffuse the measurement gas through the diffusion passage, and first and second chambers that are made of an oxygen ion conductive solid electrolyte body facing the first and second measurement chambers. 2 pump cells, the first pump cell faces the first measurement chamber, the second pump cell faces the second measurement chamber, and the first measurement chamber communicates with the surrounding measurement gas under diffusion resistance. The second measurement chamber communicates with the first measurement chamber under diffusion resistance, and the amount of oxygen flowing into the second measurement chamber is controlled by controlling the oxygen concentration in the first measurement chamber by the first pump cell. Is a gas sensor that measures the concentration of the gas to be detected flowing into the second measurement chamber by controlling the oxygen concentration in the second measurement chamber by the second pump cell, Let the current flowing through the pump cell flow in the direction of pumping out oxygen from the second measurement chamber, Comprising a reverse current inhibiting means inhibits the current flowing in the opposite direction to the direction, provided with a determination means for determining the second pump cell is active can be pumped, is the reverse current inhibiting unit said determining means if the result is not activated condition characterized that you suppressing a current flowing in a direction pumped into the oxygen into the second measuring chamber.
[0010]
The “reverse current suppressing means” is a means for preventing element breakdown by causing a reverse current to flow through each element of the oxygen ion conductive solid electrolyte body and the control circuit. This means can be arbitrarily selected. That is, the reverse current suppressing means can be a diode or a direct current power source.
Moreover, it is good also as control elements, such as a transistor and a field effect transistor, and can also be provided integrally in each element of a control circuit.
The voltage of the DC power source is preferably 10 to 200 mV (particularly 20 to 120 mV, more preferably 30 to 100 mV). If the potential range is less than 10 mV, a sufficient deterrent effect cannot be obtained, and oxygen may be pumped into the second measurement chamber. If the potential range exceeds 200 mV, the potential is such that oxygen is forcibly pumped from the second measurement chamber. This is because the solid electrolyte stack may be destroyed.
[0011]
Further, such a gas sensor includes a determination unit that determines whether the pump cell is in an active state that can be pumped, and the reverse current suppression unit is in the reverse direction if the result of the determination unit is an inactive state. The current flowing through can be suppressed.
The determination of the active state can be performed by an arbitrary method, but it can be exemplified that the inactive state is set when the temperature is lower than the operable temperature, and the active state is set when the temperature is higher than the operable temperature.
The measurement gas may be nitrogen oxide or the like.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail by way of examples relating to the gas sensor of the present invention. This gas sensor is connected to an exhaust pipe of an internal combustion engine such as a gasoline engine and is used for measuring the concentration of a nitrided oxide gas in the exhaust gas.
[0013]
[Example 1]
The gas sensor according to the first embodiment is a gas sensor using a diode as a reverse current suppressing unit. As shown in FIG. 1, the gas sensor element used in this gas sensor includes two heaters 61 and 62 facing each other, a first solid electrolyte layer 11 made of thin-film zirconia provided between the heaters 61 and 62, a first 2 solid electrolyte layer 12 and 3rd solid electrolyte layer 13 are provided. Insulating layers 51 and 52 made of alumina are sandwiched between the solid electrolyte layers 11, 12 and 13, respectively.
Between the 1st solid electrolyte layer 11 and the 2nd solid electrolyte layer 12, the 1st measurement chamber 21 made into the space | gap is provided. A second measurement chamber 22 and a reference oxygen chamber 23 formed in the insulating layer 52 are provided between the second solid electrolyte layer 12 and the third solid electrolyte layer 13.
Further, the first measurement chamber 21 communicates with the outside air through the first diffusion passage 41 which is the insulating layer 41 provided with the communication hole. The second measurement chamber 22 is connected to the first measurement chamber 21 via a second diffusion passage 42 provided in the second solid electrolyte layer 12.
[0014]
A first electrode (P1) is provided on the front and back surfaces of the first solid electrolyte layer 11, and functions as a first pump cell. Among these, the first electrode 311 (P1 + ) on the anode side is on the heater 61 side, and the first electrode 312 (P1 ) on the cathode side is located in the first measurement chamber 21.
A second electrode (P2) is provided on the surface of the third solid electrolyte layer 13 and functions as a second pump cell. Among these, the second electrode 321 (P2 + ) on the anode side is located in the reference oxygen chamber 23, and the second electrode 322 (P2 ) on the cathode side is located in the second measurement chamber 22.
Furthermore, a reference electrode (S) is provided on the front and back surfaces of the second solid electrolyte layer 12. Among these, the reference electrode 331 (S + ) on the anode side is located in the reference oxygen chamber 23, and the reference electrode 332 (S ) on the cathode side is located in the first measurement chamber 21.
[0015]
FIG. 2 shows a control circuit diagram of the gas sensor element of the first embodiment. The first electrode 312 (P1 ), the second electrode 322 (P2 ), and the reference electrode 332 (S ) are connected to each other, and are connected to the input side of the operational amplifier 71 and the output side of the PID (proportional integral derivative) element 73. ing.
Further, the first electrode 311 (P1 + ) is on the output side of the operational amplifier 71, the second electrode 321 (P2 + ) is on the output side of the operational amplifier 72 via the diode 8 which is a reverse current suppression means, and the reference electrode 331. (S + ) is connected to the input side of the PID 73.
[0016]
Next, the operation of the gas sensor using the gas sensor element and its control circuit when the temperature is raised will be described.
In order to activate the solid electrolyte layers 11, 12, and 13 to make the gas sensor element usable, the heaters 61 and 62 are energized and heated until the temperature of the gas sensor element reaches 500 to 900 ° C.
[0017]
By not applying a potential to the second electrode (P2) when the gas sensor element is heated, it is possible to prevent oxygen from being pumped into the second measurement chamber 22. For this reason, the oxygen concentration in the second measurement chamber 22 can be reduced early after activation, and the nitrogen oxide concentration can be obtained. Furthermore, since the diode 8 as the reverse current suppression means is provided at the output destination of the operational amplifier 72, it is possible to prevent the current from flowing into the second measurement chamber 22 in the direction in which oxygen is pumped and to prevent the operational amplifier 72 from being destroyed. can do.
[0018]
After each solid electrolyte layer 11, 12, 13 is activated and reaches a usable temperature range, normal application is performed to the first electrode (P 1) and the second electrode (P 2), and the nitrogen oxide concentration Can be requested. Further, since there is a potential difference of about 400 mV between the first electrodes (P1) 311 and 312, the nitrogen oxide is also decomposed by about 20 to 30%.
[0019]
[Example 2]
The gas sensor according to the second embodiment is a gas sensor using a constant voltage power source as a reverse current suppressing unit. As shown in FIG. 1, the gas sensor element used in this gas sensor has the same configuration as that of the first embodiment.
[0020]
FIG. 3 shows a control circuit diagram of the gas sensor element of the first embodiment. The first electrode 312 (P1 ), the second electrode 322 (P2 ), and the reference electrode 332 (S ) are connected to each other, the input side of the operational amplifier 71, the output side of the PID (proportional integral derivative) element 73, and the constant electrode. It is connected to the input side of the voltage power source 82.
The first electrode 311 (P1 + ) is on the output side of the operational amplifier 71, the second electrode 321 (P2 + ) is on the output side of the constant voltage power supply 82 and the operational amplifier 72, and the reference electrode 331 (S + ) is PID. It is connected to the input side of the element 73.
[0021]
Next, the operation of the gas sensor using the gas sensor element and its control circuit when the temperature is raised will be described.
In order to activate the solid electrolyte layers 11, 12, and 13 to make the gas sensor element usable, the heaters 61 and 62 are energized and heated until the temperature of the gas sensor element reaches 500 to 900 ° C.
The second electrode (P2) is applied with a potential having a polarity such that oxygen moves to the reference oxygen chamber side using a constant voltage power source 82. That is, a potential of 40 to 70 mV is applied so that the second electrode 321 (P2 + ) is positive and the second electrode 322 (P2 ) is negative.
[0022]
By applying a potential that does not cause pumping to the second electrode (P2) when the temperature of the gas sensor element rises, pumping action due to the potential between the second electrodes (P2) does not occur, and oxygen is pumped into the second measurement chamber 22. It can be prevented from being broken. For this reason, the oxygen concentration in the second measurement chamber 22 can be reduced early after activation, and the nitrogen oxide concentration can be obtained. Further, since the applied potential is 40 to 70 mV, which is 200 mV or less lower than the potential necessary for pumping out oxygen, the movement of oxygen is actually suppressed, and the destruction of the solid electrolyte can be prevented.
[0023]
Example 3
The gas sensor of the third embodiment is a gas sensor that uses the power supply itself for voltage application of the second pump cell as a reverse current suppressing means. As shown in FIG. 1, the gas sensor element used in this gas sensor has the same configuration as that of the first embodiment.
[0024]
FIG. 4 shows a control circuit diagram of the gas sensor element of the first embodiment. The first electrode 312 (P1 ), the second electrode 322 (P2 ), and the reference electrode 332 (S ) are connected to each other, and are connected to the input side of the operational amplifier 71 and the output side of the PID (proportional integral derivative) element 73. ing.
The first electrode 311 (P1 + ) is on the output side of the operational amplifier 71, the second electrode 321 (P2 + ) is on the output side of the operational amplifier 72, and the reference electrode 331 (S + ) is on the input side of the PID element 73. It is connected.
[0025]
Next, the operation of the gas sensor using the gas sensor element and its control circuit when the temperature is raised will be described.
In order to activate the solid electrolyte layers 11, 12, and 13 to make the gas sensor element usable, the heaters 61 and 62 are energized and heated until the temperature of the gas sensor element reaches 500 to 900 ° C.
The second electrode (P2) is applied with a potential having a polarity such that oxygen moves to the reference oxygen chamber side using the constant voltage source Vref2 and the operational amplifier 72. That is, a potential of 40 to 70 mV is applied so that the second electrode 321 (P2 + ) is positive and the second electrode 322 (P2 ) is negative.
[0026]
By applying a potential that does not cause pumping to the second electrode (P2) when the temperature of the gas sensor element rises, pumping action due to the potential between the second electrodes (P2) does not occur, and oxygen is pumped into the second measurement chamber 22. It can be prevented from being broken. For this reason, the oxygen concentration in the second measurement chamber 22 can be reduced early after activation, and the nitrogen oxide concentration can be obtained. Further, since the applied potential is 40 to 70 mV, which is 200 mV or less lower than the potential necessary for pumping out oxygen, the movement of oxygen is actually suppressed, and the destruction of the solid electrolyte can be prevented.
[0027]
In addition, in this invention, it can be set as the aspect variously changed within the range of this invention according to the objective and use, without being restricted to what is shown in the said Example. That is, the reverse current suppression means used in the control circuit of the gas sensor element is not limited to the diode 8 shown in FIG. 2, and any element can be used. Further, it can be provided integrally in the operational amplifier 72. Furthermore, reverse current suppression means can be provided in the operational amplifier 71 and the PID 73 as necessary. Further, although the type of gas detected in this embodiment is only nitrogen oxide gas, the concentration of oxygen and nitrogen oxide gas can be obtained using the electrode S for oxygen concentration detection.
[0028]
【The invention's effect】
According to the gas sensor of the present invention, oxygen is not pumped into the second measurement chamber during the temperature rise of the gas sensor element, and can be used in a short time. Moreover, element destruction of the gas sensor element can be prevented. Furthermore, it is possible to prevent the control circuit from being destroyed when the gas sensor element is heated.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view for explaining the structure of a gas sensor element used in a gas sensor of the present embodiment.
FIG. 2 is a circuit diagram for explaining a control circuit of the gas sensor according to the first embodiment.
FIG. 3 is a circuit diagram for explaining a control circuit of a gas sensor according to a second embodiment.
FIG. 4 is a circuit diagram for explaining a control circuit of a gas sensor according to a second embodiment.
[Explanation of symbols]
11; first solid electrolyte layer, 12; second solid electrolyte layer, 13; third solid electrolyte layer, 21; first measurement chamber, 22; second measurement chamber, 23; reference oxygen chamber, 311; P1 + ), 312; first electrode (P1 ), 321; second electrode (P2 + ), 322; second electrode (P2 ), 331; reference electrode (S + ), 332; reference electrode (S ), 41; first diffusion passage, 42; second diffusion passage, 51, 52; insulating layers, 61, 62; heater, 71, 72; operational amplifier, 73; PID element, 81; diode, 82;

Claims (6)

拡散通路を介して測定ガスを拡散できる少なくとも1つの測定室と、該測定室に面して酸素イオン伝導性固体電解質体からなる少なくとも1つのポンプセルを具備し、該ポンプセルに電流を流すことで酸素を測定室内外へポンピングし、その時に流れる電流値から測定ガス中の被検出ガス濃度を測定するガスセンサであって、
該ポンプセルに流れる電流を該測定室内から酸素を汲み出す方向に流し、該方向とは逆の方向に流れる電流を抑制する逆電流抑制手段を備え、
上記ポンプセルがポンピング可能である活性状態にあるかを判定する判定手段を備え、上記逆電流抑制手段は該判定手段の結果が未活性状態であれば上記測定室内へ酸素を汲み入れる方向に流れる電流を抑制することを特徴とするガスセンサ。
It comprises at least one measurement chamber capable of diffusing a measurement gas through a diffusion passage, and at least one pump cell made of an oxygen ion conductive solid electrolyte facing the measurement chamber, and allows oxygen to flow through the pump cell. Is a gas sensor that measures the concentration of the gas to be detected in the measurement gas from the current value flowing at that time,
A reverse current suppressing means for flowing the current flowing through the pump cell in the direction of pumping out oxygen from the measurement chamber and suppressing the current flowing in the direction opposite to the direction;
A determination unit configured to determine whether the pump cell is in an active state capable of being pumped, and the reverse current suppression unit includes a current flowing in a direction in which oxygen is pumped into the measurement chamber if a result of the determination unit is an inactive state. A gas sensor characterized by suppressing gas.
拡散通路を介して測定ガスを拡散できる第1及び第2測定室と、該第1及び第2測定室に面して酸素イオン伝導性固体電解質体からなる第1及び第2ポンプセルを具備し、
該第1ポンプセルは該第1測定室に面し、該第2ポンプセルは該第2測定室に面し、該第1測定室は拡散抵抗下で周囲の測定ガスと連通し、該第2測定室は拡散抵抗下で該第1測定室と連通し、該第1ポンプセルによって該第1測定室中の酸素濃度を制御することで、第2測定室に流入する酸素量を所定量に制御し、該第2ポンプセルによって該第2測定室中の酸素濃度を制御することで、該第2測定室に流入する被検出ガス濃度を測定するガスセンサであって、
該第2ポンプセルに流れる電流を該第2測定室内から酸素を汲み出す方向に流し、該方向とは逆の方向に流れる電流を抑制する逆電流抑制手段を備え、
上記第2ポンプセルがポンピング可能である活性状態にあるかを判定する判定手段を備え、上記逆電流抑制手段は該判定手段の結果が未活性状態であれば上記第2測定室内へ酸素を汲み入れる方向に流れる電流を抑制することを特徴とするガスセンサ。
First and second measurement chambers capable of diffusing the measurement gas through the diffusion passage, and first and second pump cells made of an oxygen ion conductive solid electrolyte facing the first and second measurement chambers,
The first pump cell faces the first measurement chamber, the second pump cell faces the second measurement chamber, the first measurement chamber communicates with the surrounding measurement gas under diffusion resistance, and the second measurement cell The chamber communicates with the first measurement chamber under diffusion resistance, and the oxygen concentration in the first measurement chamber is controlled by the first pump cell, thereby controlling the amount of oxygen flowing into the second measurement chamber to a predetermined amount. A gas sensor for measuring a concentration of a gas to be detected flowing into the second measurement chamber by controlling an oxygen concentration in the second measurement chamber by the second pump cell,
A reverse current suppression means for flowing a current flowing through the second pump cell in a direction of pumping out oxygen from the second measurement chamber and suppressing a current flowing in a direction opposite to the direction;
And determining means for determining whether the second pump cell is in an active state capable of being pumped, and the reverse current suppressing means pumps oxygen into the second measurement chamber if the result of the determining means is inactive. A gas sensor characterized by suppressing a current flowing in a direction.
上記逆電流抑制手段は、ダイオードである請求項1又は2記載のガスセンサ。The gas sensor according to claim 1 or 2 , wherein the reverse current suppressing means is a diode. 上記逆電流抑制手段は、直流電源である請求項1又は2記載のガスセンサ。The gas sensor according to claim 1 or 2 , wherein the reverse current suppressing means is a DC power source. 上記直流電源の電圧は10〜200mVである請求項記載のガスセンサ。The gas sensor according to claim 4 , wherein the voltage of the DC power source is 10 to 200 mV. 上記測定ガスは窒素酸化物である請求項1乃至5のいずれか一項に記載のガスセンサ。  The gas sensor according to any one of claims 1 to 5, wherein the measurement gas is nitrogen oxide.
JP2001052975A 2001-02-27 2001-02-27 Gas sensor Expired - Fee Related JP4532001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001052975A JP4532001B2 (en) 2001-02-27 2001-02-27 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001052975A JP4532001B2 (en) 2001-02-27 2001-02-27 Gas sensor

Publications (2)

Publication Number Publication Date
JP2002257777A JP2002257777A (en) 2002-09-11
JP4532001B2 true JP4532001B2 (en) 2010-08-25

Family

ID=18913514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001052975A Expired - Fee Related JP4532001B2 (en) 2001-02-27 2001-02-27 Gas sensor

Country Status (1)

Country Link
JP (1) JP4532001B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4592570B2 (en) * 2005-11-25 2010-12-01 日本特殊陶業株式会社 Sensor element deterioration determination device and sensor element deterioration determination method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162175A (en) * 1998-11-25 2000-06-16 Ngk Spark Plug Co Ltd Gas sensor, its production, and gas sensor system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065221B2 (en) * 1985-04-15 1994-01-19 横河電機株式会社 Zirconia oxygen analyzer
JPS62175658A (en) * 1986-01-30 1987-08-01 Honda Motor Co Ltd Method of discriminating activity of oxygen concentration sensor
JP3450084B2 (en) * 1995-03-09 2003-09-22 日本碍子株式会社 Method and apparatus for measuring combustible gas components
JP3648063B2 (en) * 1997-09-22 2005-05-18 日本特殊陶業株式会社 Gas sensor, gas sensor system using the same, and method of manufacturing gas sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162175A (en) * 1998-11-25 2000-06-16 Ngk Spark Plug Co Ltd Gas sensor, its production, and gas sensor system

Also Published As

Publication number Publication date
JP2002257777A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
US5686654A (en) Measuring sensor for determining the oxygen content in gas mixtures
US8361306B2 (en) Gas sensor control apparatus and method
JP2000028576A (en) Gas sensor and nitrogen oxide sensor
JPH1172473A (en) Air/fuel ratio detecting device
JPH11183434A (en) Nox concentration measuring device
JP3234080B2 (en) Sensor for measuring gas components and / or gas concentrations in gas mixtures
JP2020008559A (en) Gas sensor and sensor element
CN116490771A (en) Gas sensor
JP2002071633A (en) Heater control device for air-fuel ratio sensor
US20070007134A1 (en) Gas concentration measuring apparatus designed to establish quick determination of degree of activation of gas sensor
JP4385423B2 (en) Exhaust temperature measuring device
JP4532001B2 (en) Gas sensor
JP2003083936A (en) Gas sensor element
US20230280303A1 (en) Gas sensor and gas sensor operation method
JPH03138560A (en) Heat type air/fuel ratio detector
JP2001133429A (en) Method for recalibrating offset of onboard nox sensor
JP2001074693A (en) Heater control device for gas concentration sensor
JP4520652B2 (en) Abnormality detection method for air-fuel ratio sensor
JP2929038B2 (en) Air-fuel ratio sensor drive circuit
JP4563606B2 (en) Multilayer sensor element
JP3563941B2 (en) Method and apparatus for detecting state of deterioration of full-range air-fuel ratio sensor
JP2007101201A (en) Air-fuel ratio sensor and air-fuel ratio detector
JP6805072B2 (en) Gas concentration detector
JP3110848B2 (en) Air-fuel ratio detector
JP4681468B2 (en) Sensor element deterioration determination device and sensor element deterioration determination method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees