JP4531226B2 - Method for producing 4,4'-bisphenolsulfone - Google Patents

Method for producing 4,4'-bisphenolsulfone Download PDF

Info

Publication number
JP4531226B2
JP4531226B2 JP2000273084A JP2000273084A JP4531226B2 JP 4531226 B2 JP4531226 B2 JP 4531226B2 JP 2000273084 A JP2000273084 A JP 2000273084A JP 2000273084 A JP2000273084 A JP 2000273084A JP 4531226 B2 JP4531226 B2 JP 4531226B2
Authority
JP
Japan
Prior art keywords
solvent
bps
reaction
alcohol
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000273084A
Other languages
Japanese (ja)
Other versions
JP2002088053A (en
Inventor
友也 肥高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Nisso Metallochemical Co Ltd
Original Assignee
Nippon Soda Co Ltd
Nisso Metallochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd, Nisso Metallochemical Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2000273084A priority Critical patent/JP4531226B2/en
Priority to PCT/JP2002/002702 priority patent/WO2003078388A1/en
Priority to CNB2006101678559A priority patent/CN100567261C/en
Priority claimed from PCT/JP2002/002702 external-priority patent/WO2003078388A1/en
Publication of JP2002088053A publication Critical patent/JP2002088053A/en
Application granted granted Critical
Publication of JP4531226B2 publication Critical patent/JP4531226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C315/00Preparation of sulfones; Preparation of sulfoxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、フェノールと硫酸とを反応させて4,4’−ビスフェノールスルホン(又は4,4’−ジヒドロキシジフェニルスルホン、以下4,4’−BPSという。)を製造する方法に関する。
【0002】
【従来の技術】
4,4’−BPSはポリスルホン(PSF)やポリエーテルスルホン(PES)等のエンジニアリングプラスチックの原料として用いられるなど有用な化合物である。この4,4’−BPSを製造するためにフェノールと硫酸とを反応させる方法は従来からよく検討されているが、その技術的な課題は、主として、水の除去を如何に効率よく行うかということと、副生物である異性体の2,4’−BPSを如何に少なくして4,4’−BPSの収率を上げるかという点にあった。例えば、特開昭51−98239号公報には、フェノールと硫酸との反応を、2,4’−BPSよりも4,4’−BPSを溶解しない溶媒中で行うことにより4,4’−BPSを析出させ、最終的に溶媒の全てを留去して4,4’−BPSを製造する方法が記載されている。この方法では、溶媒に溶解している2,4’−BPSの4,4’−BPSへの異性化反応を進行させるために溶媒を反応系から留去することが必要であり、このため溶媒の留去後に得られる反応生成物は工業的に取り扱い難い固体塊になってしまう点が問題であった。
【0003】
特開平3−206073号公報には、この問題点を改善するため反応溶媒として特にメシチレンを用い、酸触媒下2,4’−BPSと4,4’−BPSを懸濁させ溶媒を留去しながら異性化反応を進行させることを特徴とする方法が記載されている。この場合、得られる固相は塊にならずサラサラの状態であるので取り扱いが容易になるが、異性化を進行させるためには同じく溶媒を留去しなければならないため、溶媒の除去速度と異性化速度とを調整するための反応条件の管理が必要である。また溶媒を完全に留去するには減圧装置が必要であり、更に溶媒留去後固体状態のまま生成物を高温で加熱する状態がつづくと着色の原因ともなり好ましくない。
特公平4−74347号公報には、ジクロルベンゼンやトリクロルベンゼン中でフェノールと硫酸を反応させ、選択的に4,4’−BPSを結晶化させることにより、最終的に結晶性の4,4’−BPSと溶液状態の2,4’−BPSを得ることが記載されている。この場合、溶媒を留去していないので、それに伴う煩雑な反応調整は必要ないが、溶液状態の2,4’−BPSが残るため、結果的に4,4’−BPSの収率が下がるという問題がある。
【0004】
特開昭64−9970号公報には、脂肪族炭化水素を溶媒として、フェノールと硫酸を反応させる4,4’−BPSの製造方法が記載されている。脂肪族炭化水素の有利な点は、4,4’−BPS、2,4’−BPSともにこの溶媒にほとんど溶解しないことから、溶媒を留去しなくても2,4’−BPSから4,4’−BPSへの転位が進行し、扱いやすいスラリー状の反応生成物を得ることができるという利点を有する。しかし、反応後の後処理操作については有利な方法がなかった。また、この発明では、懸濁剤(例えばアイソパー(エクソン化学(株)の登録商標)H、初留点 176℃)と共沸剤(例えばアイソパーE、初留点115℃)の2種の溶媒の使用が不可欠であるが、このように物性の異なる溶媒を用いると溶媒を再利用する場合に沸点等の管理が困難になり、製造コストが上昇する要因となる等の欠点がある。
また、特開昭50−106937には、フェノールと濃硫酸との反応生成物をメタノール水溶液に溶解させて、このメタノール水溶液中で4,4’−BPSを再結晶させて2,4’−BPSの分離効率を高める方法が開示されているが、これは無溶媒の反応系での製法であり、濃度のかなり低いメタノール水溶液を使用しているところに特徴がある。
【0005】
【発明が解決しようとする課題】
この発明は、このような従来の問題を解決するために、フェノールと硫酸との反応において脂肪族炭化水素という有利な溶媒を用いた場合に、適切な後処理工程を組み合わせることにより、簡便で高収率に4,4’−BPSを製造することを目的とする。
【0006】
【課題を解決するための手段】
この発明は、フェノール及び硫酸を、1種または2種以上の脂肪族飽和炭化水素を含む溶媒中で反応させた後、この反応液に炭素数1〜3のアルコールを加え、分液したアルコール層から4,4’−ビスフェノールスルホンを再結晶させる4,4’−ビスフェノールスルホンの製造方法である。前記溶媒が1種の脂肪族飽和炭化水素であってもよく、更に前記脂肪族飽和炭化水素の沸点が155〜175℃であることが好ましい。
この発明によれば、脂肪族飽和炭化水素溶媒を用いて4,4’−BPSを得た後、この反応液に直ちにアルコールを加えることにより、分液操作により生成物の溶解したアルコール溶液を得ることができ、効率よく再結晶工程に移行することが可能である。また、アルコール抽出操作後の脂肪族飽和炭化水素は容易に回収し再利用することができる。
【0007】
【発明の実施の形態】
本発明では、1種または2種以上の脂肪族飽和炭化水素を反応溶媒として用いる。この脂肪族飽和炭化水素系溶媒の沸点は155℃以上が好ましく、溶媒が脂肪族飽和炭化水素のみから成る場合は155℃〜175℃の範囲内であることがより好ましい。ここで、脂肪族飽和炭化水素が混合溶媒である場合は、混合溶媒の留出温度が155℃以上、または155〜175℃の範囲である。
【0008】
2,4’−異性体から4,4’−異性体への転移と温度の関係を図1に示す。ここでは2,4’−BPS及びフェノールスルホン酸の重量比20:1の混合物をアイソパー系溶媒に懸濁し、4,4’−異性体の生成比を各温度・時間毎に高速液体クロマトグラフィー(HPLC)で測定したものである。この図からもわかるように、150℃と160℃との間では転移速度が大きく異なり4,4’−異性体の生成が大きくなる。即ち、この温度以上の温度で反応を進めることにより4,4’−異性体の収率を上げることができる。このことから、溶媒の沸点はこの温度以上であることが好ましい。
一方、フェノールの沸点が182℃であるので、この温度以上の沸点を有する溶媒を用いると、この温度以上で反応を行う場合には、例えば、精留装置において溶媒が還流せずにフェノールが還流することになり適当ではない。
【0009】
本発明の溶媒は、1種または2種以上の脂肪族飽和炭化水素を含む溶媒であり、1種の脂肪族飽和炭化水素のみであってもよく、また2種以上の脂肪族飽和炭化水素の混合溶媒であってもよく、更に脂肪族飽和炭化水素に加えて芳香族炭化水素系溶媒等のほかの溶媒との混合溶媒であってもよい。
脂肪族飽和炭化水素系溶媒のみからなる溶媒を用いる場合は、脂肪族飽和炭化水素系溶媒としては、例えば、ノナン、デカン、ウンデカン、ドデカン、アイソパー(エクソン化学(株)の登録商標)G、アイソパーH、アイソパーL、アイソパーM、又はこれらの混合物を用いることができる。これらのうち1種のみの溶媒を用いることが好ましい。このアイソパー溶媒は混合溶媒であるが、一定組成を保つ限り再利用等の観点から単一溶媒と同様に扱えるため、本明細書中では単一種の溶媒として扱う。
更にこの溶媒の沸点は155℃以上、特に155〜175℃の範囲内にあることが好ましく、この沸点を有する溶媒としては、具体的には、ノナン、デカン、アイソパーG等が挙げられる。これらの中でアイソパーGが好ましい。この沸点を有する1種の溶媒を用いると、共沸剤を用いる必要がなく、また溶媒が単一組成であることから溶媒の再利用にとって有利である。
【0010】
一方、脂肪族飽和炭化水素と芳香族炭化水素系溶媒と溶媒との混合溶媒を用いる場合は、脂肪族飽和炭化水素の沸点は、これらの芳香族炭化水素系溶媒よりもが高いことが望ましい。また、一般的に芳香族炭化水素系溶媒が反応系内に残存していると転位反応が進行しないため、理論量の水が反応系内から除去されたことを確認した後、添加した芳香族炭化水素系溶媒をできるだけ留去させることが望ましい。この脂肪族飽和炭化水素系溶媒としては、ノナン、デカン、ウンデカン、ドデカン、アイソパーG、アイソパーH、アイソパーL、アイソパーMが挙げられ、芳香族炭化水素系溶媒としては、メシチレン、クロルベンゼン、ジクロルベンゼン、トリクロルベンゼン、クロルトルエン、ジエチルベンゼン、キシレン等が挙げられる。
本発明に用いる炭素数1〜3のアルコールとしては、メタノール、エタノール、プロパノール、イソプロパノールが挙げられ、特にメタノールが好ましい。このアルコールは純品でもよいし水溶液でもよい。
【0011】
この発明において4,4’−BPSの生成反応は一般的に以下のようにして行われる。
反応容器に反応溶媒である脂肪族飽和炭化水素を用意し、これにフェノール及び硫酸を徐々に添加する。この時フェノール及び硫酸を同時に添加してもよいしフェノールの必要量を添加後に硫酸を徐々に添加してもよい。フェノール及び硫酸のモル比は2〜3:1の範囲、好ましくはほぼ2:1になるようにする。
反応液中の反応溶媒の割合は、硫酸重量の1から2倍重量、特にほぼ1.5倍となるようにする。
反応は、約140から約175℃の範囲の温度で還流下で攪拌しながら行う。
この反応は脱水反応であり、その脱水方法としては本発明の範囲内であるならいかなる公知の方法を用いてもよい。脱水は反応中継続的に行う。具体的にはディーンスターク等の装置を用いて、共沸蒸留した水を分離除去するのが簡便である。
【0012】
脱水反応が終了した後は、転位反応を促進するために更に暫くの間脱水反応時の温度を保ったままでもよい。
以上の反応工程終了後、反応液を約80℃程度まで冷却する。この段階において、4,4’−BPSと2,4’−BPSとの混合物中の2,4’−BPSは約5%以下である。
次に、冷却した反応液に反応溶媒の0.5〜2倍の体積比のアルコール、好ましくはほぼ同量のアルコールを加え、約65℃程度で約1時間程かけて、生成物である4,4’−BPSと2,4’−BPSとの混合物を溶解させる。本発明の反応溶媒は、アルコールと相溶性が小さいため2層に分離する。生成物はアルコール層に溶解するので、この操作により生成物のアルコール溶液を容易に得ることができる。このアルコール溶液は再結晶工程に直ちに用いることができる。
用いるアルコールが純品の場合にはさらに水を加えてもよい。なお、抽出効率を考慮すると、アルコール水により分液することが好ましく、この段階でのアルコール水中のアルコール濃度は30〜70重量%程度が好ましい。
アルコール層には、不純物除去やpH調整のため、活性炭やカセイソーダ等を添加してもよい。
【0013】
分液したアルコール層に、必要に応じて更に水を添加するなどして、室温近くまで冷却し、BPSを再結晶・乾燥させて4,4’−BPSを得ることができる。
再結晶を行う時のアルコール水中のアルコール濃度は、10〜50重量%、好ましくは20〜40%であり、最終的にこの濃度のアルコール水になるよう、アルコールおよび水を加えることができる。2,4’−BPSは4,4’−BPSよりアルコールに溶けるため、結晶中の4,4’−BPSの割合は99%以上になる。
分液した脂肪族飽和炭化水素からなる溶媒層は生成物や不純物を含まないため再利用が容易である。
【0014】
【実施例】
実施例1
撹拌機、温度計、水分離管を備えた500mlの4口フラスコにフェノール98.7g(1.05モル)、アイソパーG 100mlを仕込み、その混合物に撹拌下95%硫酸51.6g(0.50モル)を50℃で滴下後昇温した。
144℃付近から反応液の留出が始まり、この留出物は凝縮され水分離管で上層は溶媒層、中間層は水層、下層はフェノール層の3層に分離される。上層の溶媒層は連続的に反応系に戻され、下層のフェノール層は15分毎に抜き取り反応系に戻された。昇温から約7時間で反応系の温度は167℃となり、水の生成が停止し、水分離管で分離された水量は21.2gで、反応系に戻したフェノールは合計で68.0gであった。この反応物の組成を高速液体クロマトグラフィー(HPLC)で分析した結果、相対面積比(測定波長:231nm)で、4,4’−BPS 94.0%、2,4’−BPS 3.1%、フェノールスルホン酸
1.6%であった。
この反応物にメタノール 132mlと水 103mlを加え加熱溶解し、分液によって溶媒層(アイソパーG)を分離した。メタノール溶解液は10%苛性ソーダ水溶液を加えてpH5とし、活性炭2.6gで脱色後、水103ml添加して結晶を析出させ、100.1g(収率:80.1%)の白色結晶を得た。
この結晶の組成を高速液体クロマトグラフィー(HPLC)で分析した結果、相対面積比(測定波長:231nm)で、4,4’−BPS 99.7%、2,4’−BPS 0.3%であった。
【0015】
実施例2
撹拌機、温度計、水分離管、ウィッドマー精留管を備えた500mlの4口フラスコにフェノール117.5g(1.25モル)、アイソパーG 100mlを仕込み、その混合物に撹拌下95%硫酸51.6g(0.50モル)を50℃で滴下後昇温した。
144℃付近から反応液の留出が始まり、この留出物は凝縮され水分離管で上層は溶媒層、中間層は水層、下層はフェノール層の3層に分離される。上層の溶媒層は連続的に反応系に戻され、下層のフェノール層は反応系に戻さずに反応を行った。昇温から約10時間で反応系の温度は167℃となり、水の生成が停止し、水分離管で分離された水量は20.5g、フェノール量は21.2gであった。この反応物の組成を高速液体クロマトグラフィー(HPLC)で分析した結果、相対面積比(測定波長:231nm)で、4,4’−BPS 95.5%、2,4’−BPS 3.0%、フェノールスルホン酸 0.7%であった。
この反応物を実施例1と同様に処理し、103.2g(収率:82.5%)の白色結晶を得た。この結晶の組成を高速液体クロマトグラフィー(HPLC)で分析した結果、相対面積比(測定波長:231nm)で、4,4’−BPS 99.6%、2,4’−BPS 0.4%であった。
【0016】
【発明の効果】
この発明によれば、溶媒を反応系から留去する必要なしに、扱いやすいスラリー状の4,4’−BPSを高収率で製造することができる。本発明の脂肪族飽和炭化水素溶媒はメタノールと不相溶であるため、反応液から生成物をメタノールにより効率よく抽出することができ、続くメタノール水からの再結晶工程に効率よく移行することが可能である。更に分液した溶媒層は再利用可能である。また、本発明の特定範囲の沸点の1種の溶媒を用いると、共沸剤を用いる必要がなく、溶媒の再利用も容易である。
【図面の簡単な説明】
【図1】2,4’−異性体から4,4’−異性体への転移と温度の関係を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing 4,4′-bisphenolsulfone (or 4,4′-dihydroxydiphenylsulfone, hereinafter referred to as 4,4′-BPS) by reacting phenol and sulfuric acid.
[0002]
[Prior art]
4,4′-BPS is a useful compound such as used as a raw material for engineering plastics such as polysulfone (PSF) and polyethersulfone (PES). A method of reacting phenol and sulfuric acid to produce this 4,4′-BPS has been well studied, but the technical problem is mainly how to efficiently remove water. And how to reduce the by-product isomer 2,4′-BPS to increase the yield of 4,4′-BPS. For example, JP-A-51-98239 discloses a reaction between phenol and sulfuric acid in a solvent that does not dissolve 4,4′-BPS rather than 2,4′-BPS. And 4,4′-BPS is finally produced by distilling off all of the solvent. In this method, it is necessary to distill off the solvent from the reaction system in order to proceed the isomerization reaction of 2,4′-BPS dissolved in the solvent to 4,4′-BPS. The reaction product obtained after distilling off was a problem that it became a solid lump that was difficult to handle industrially.
[0003]
In JP-A-3-206073, in order to improve this problem, mesitylene is used as a reaction solvent, and 2,4′-BPS and 4,4′-BPS are suspended in an acid catalyst and the solvent is distilled off. A method characterized by allowing the isomerization reaction to proceed is described. In this case, the obtained solid phase is not a lump and is in a smooth state, which makes it easy to handle. However, in order to proceed with isomerization, the solvent must also be distilled off. It is necessary to manage the reaction conditions to adjust the crystallization rate. Further, a decompression device is required to completely distill off the solvent, and further, the state in which the product is heated at a high temperature in the solid state after distilling off the solvent causes coloring and is not preferable.
In Japanese Patent Publication No. 4-74347, phenol and sulfuric acid are reacted in dichlorobenzene or trichlorobenzene to selectively crystallize 4,4′-BPS. Obtaining '-BPS and 2,4'-BPS in solution is described. In this case, since the solvent is not distilled off, no complicated reaction adjustment is required, but 2,4′-BPS in the solution state remains, and as a result, the yield of 4,4′-BPS decreases. There is a problem.
[0004]
Japanese Patent Application Laid-Open No. 64-9970 describes a method for producing 4,4′-BPS in which an aliphatic hydrocarbon is used as a solvent and phenol and sulfuric acid are reacted. The advantage of aliphatic hydrocarbons is that 4,4′-BPS and 2,4′-BPS are hardly soluble in this solvent. The rearrangement to 4′-BPS proceeds, and there is an advantage that an easy-to-handle slurry-like reaction product can be obtained. However, there was no advantageous method for the post-treatment operation after the reaction. Further, in the present invention, two kinds of solvents, a suspending agent (for example, Isopar (registered trademark of Exxon Chemical Co., Ltd.) H, initial boiling point 176 ° C.) and an azeotropic agent (for example, Isopar E, initial boiling point 115 ° C.) However, when solvents having different physical properties are used as described above, there are drawbacks such as difficulty in managing the boiling point when the solvent is reused, leading to an increase in production cost.
Japanese Patent Laid-Open No. 50-106937 discloses that a reaction product of phenol and concentrated sulfuric acid is dissolved in an aqueous methanol solution, and 4,4′-BPS is recrystallized in the aqueous methanol solution. Although a method for improving the separation efficiency of the above is disclosed, this is a production method in a solvent-free reaction system, and is characterized in that a methanol aqueous solution having a considerably low concentration is used.
[0005]
[Problems to be solved by the invention]
In order to solve such a conventional problem, the present invention combines a suitable post-treatment step when an advantageous solvent called an aliphatic hydrocarbon is used in the reaction of phenol and sulfuric acid. The object is to produce 4,4′-BPS in a yield.
[0006]
[Means for Solving the Problems]
In the present invention, phenol and sulfuric acid are reacted in a solvent containing one or two or more aliphatic saturated hydrocarbons, and then an alcohol layer having 1 to 3 carbon atoms is added to the reaction solution, followed by liquid separation. 4,4′-bisphenolsulfone is recrystallized from 4,4′-bisphenolsulfone. The solvent may be one kind of saturated aliphatic hydrocarbon, and the boiling point of the saturated aliphatic hydrocarbon is preferably 155 to 175 ° C.
According to the present invention, 4,4′-BPS is obtained using an aliphatic saturated hydrocarbon solvent, and alcohol is immediately added to the reaction solution to obtain an alcohol solution in which the product is dissolved by a liquid separation operation. It is possible to move to the recrystallization process efficiently. Further, the aliphatic saturated hydrocarbon after the alcohol extraction operation can be easily recovered and reused.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, one or two or more aliphatic saturated hydrocarbons are used as a reaction solvent. The boiling point of the aliphatic saturated hydrocarbon solvent is preferably 155 ° C. or higher, and more preferably in the range of 155 ° C. to 175 ° C. when the solvent consists of only aliphatic saturated hydrocarbons. Here, when the aliphatic saturated hydrocarbon is a mixed solvent, the distillation temperature of the mixed solvent is 155 ° C. or higher, or 155 to 175 ° C.
[0008]
The relationship between the transition from the 2,4′-isomer to the 4,4′-isomer and the temperature is shown in FIG. Here, a mixture of 2,4′-BPS and phenolsulfonic acid in a weight ratio of 20: 1 is suspended in an isopar solvent, and the production ratio of 4,4′-isomer is determined by high performance liquid chromatography at each temperature and time ( HPLC). As can be seen from this figure, the transition rate differs greatly between 150 ° C. and 160 ° C., and the production of 4,4′-isomer increases. That is, the yield of the 4,4′-isomer can be increased by proceeding the reaction at a temperature higher than this temperature. Therefore, the boiling point of the solvent is preferably higher than this temperature.
On the other hand, since the boiling point of phenol is 182 ° C., when a solvent having a boiling point higher than this temperature is used, when the reaction is carried out at this temperature or higher, for example, the phenol does not reflux in the rectification apparatus. Is not appropriate.
[0009]
The solvent of the present invention is a solvent containing one kind or two or more kinds of aliphatic saturated hydrocarbons, and may be only one kind of aliphatic saturated hydrocarbons, or two or more kinds of aliphatic saturated hydrocarbons. It may be a mixed solvent, or may be a mixed solvent with another solvent such as an aromatic hydrocarbon solvent in addition to the aliphatic saturated hydrocarbon.
When a solvent consisting only of an aliphatic saturated hydrocarbon solvent is used, examples of the aliphatic saturated hydrocarbon solvent include nonane, decane, undecane, dodecane, isopar (registered trademark of Exxon Chemical Co., Ltd.) G, and isopar. H, Isopar L, Isopar M, or a mixture thereof can be used. Of these, it is preferable to use only one solvent. Although this isopar solvent is a mixed solvent, it can be treated in the same manner as a single solvent from the viewpoint of reuse as long as it maintains a constant composition.
Further, the boiling point of this solvent is preferably 155 ° C. or more, and particularly preferably in the range of 155 to 175 ° C. Specific examples of the solvent having this boiling point include nonane, decane, and Isopar G. Of these, Isopar G is preferred. When one kind of solvent having this boiling point is used, it is not necessary to use an azeotropic agent, and since the solvent has a single composition, it is advantageous for reuse of the solvent.
[0010]
On the other hand, when a mixed solvent of an aliphatic saturated hydrocarbon, an aromatic hydrocarbon solvent and a solvent is used, it is desirable that the boiling point of the aliphatic saturated hydrocarbon is higher than those of the aromatic hydrocarbon solvents. In general, when the aromatic hydrocarbon solvent remains in the reaction system, the rearrangement reaction does not proceed. Therefore, after confirming that the theoretical amount of water has been removed from the reaction system, the added aromatics It is desirable to distill off the hydrocarbon solvent as much as possible. Examples of the aliphatic saturated hydrocarbon solvent include nonane, decane, undecane, dodecane, Isopar G, Isopar H, Isopar L, and Isopar M, and aromatic hydrocarbon solvents include mesitylene, chlorobenzene, and dichloro. Examples include benzene, trichlorobenzene, chlorotoluene, diethylbenzene, xylene and the like.
Examples of the alcohol having 1 to 3 carbon atoms used in the present invention include methanol, ethanol, propanol, and isopropanol, and methanol is particularly preferable. This alcohol may be a pure product or an aqueous solution.
[0011]
In this invention, the 4,4′-BPS production reaction is generally carried out as follows.
An aliphatic saturated hydrocarbon as a reaction solvent is prepared in a reaction vessel, and phenol and sulfuric acid are gradually added thereto. At this time, phenol and sulfuric acid may be added simultaneously, or sulfuric acid may be gradually added after the required amount of phenol is added. The molar ratio of phenol and sulfuric acid is in the range of 2-3: 1, preferably approximately 2: 1.
The ratio of the reaction solvent in the reaction solution should be 1 to 2 times the weight of sulfuric acid, particularly about 1.5 times.
The reaction is carried out with stirring at reflux at a temperature in the range of about 140 to about 175 ° C.
This reaction is a dehydration reaction, and any known method may be used as the dehydration method as long as it is within the scope of the present invention. Dehydration is performed continuously during the reaction. Specifically, it is easy to separate and remove azeotropically distilled water using an apparatus such as Dean Stark.
[0012]
After the dehydration reaction is completed, the temperature during the dehydration reaction may be maintained for a while to promote the rearrangement reaction.
After completion of the above reaction step, the reaction solution is cooled to about 80 ° C. At this stage, 2,4′-BPS in the mixture of 4,4′-BPS and 2,4′-BPS is about 5% or less.
Next, an alcohol having a volume ratio of 0.5 to 2 times that of the reaction solvent, preferably about the same amount of alcohol, is added to the cooled reaction solution, and the product 4 is obtained at about 65 ° C. over about 1 hour. , 4'-BPS and 2,4'-BPS are dissolved. Since the reaction solvent of the present invention has low compatibility with alcohol, it is separated into two layers. Since the product dissolves in the alcohol layer, an alcohol solution of the product can be easily obtained by this operation. This alcohol solution can be used immediately in the recrystallization process.
If the alcohol used is pure, water may be further added. In consideration of the extraction efficiency, it is preferable to separate with alcohol water, and the alcohol concentration in the alcohol water at this stage is preferably about 30 to 70% by weight.
Activated carbon, caustic soda, or the like may be added to the alcohol layer to remove impurities or adjust pH.
[0013]
It is possible to obtain 4,4′-BPS by cooling to near room temperature by adding water to the separated alcohol layer as necessary, and recrystallizing and drying BPS.
The alcohol concentration in the alcohol water at the time of recrystallization is 10 to 50% by weight, preferably 20 to 40%. Alcohol and water can be added so that the alcohol water finally has this concentration. Since 2,4′-BPS is more soluble in alcohol than 4,4′-BPS, the proportion of 4,4′-BPS in the crystal is 99% or more.
The solvent layer composed of the separated aliphatic saturated hydrocarbon does not contain a product or impurities and thus can be easily reused.
[0014]
【Example】
Example 1
A 500 ml four-necked flask equipped with a stirrer, thermometer and water separation tube was charged with 98.7 g (1.05 mol) of phenol and 100 ml of Isopar G, and 51.6 g (0.50) of 95% sulfuric acid was added to the mixture with stirring. Mol) was added dropwise at 50 ° C. and the temperature was raised.
Distillation of the reaction liquid starts from around 144 ° C., and this distillate is condensed and separated into three layers of a water separation tube, an upper layer is a solvent layer, an intermediate layer is an aqueous layer, and a lower layer is a phenol layer. The upper solvent layer was continuously returned to the reaction system, and the lower phenol layer was withdrawn every 15 minutes and returned to the reaction system. About 7 hours after the temperature rise, the temperature of the reaction system reached 167 ° C., the generation of water stopped, the amount of water separated by the water separation tube was 21.2 g, and the total amount of phenol returned to the reaction system was 68.0 g. there were. As a result of analyzing the composition of this reaction product by high performance liquid chromatography (HPLC), it was found that the relative area ratio (measurement wavelength: 231 nm) was 4,4′-BPS 94.0%, 2,4′-BPS 3.1%. Phenolsulfonic acid was 1.6%.
To this reaction product, 132 ml of methanol and 103 ml of water were added and dissolved by heating, and the solvent layer (Isopar G) was separated by liquid separation. The methanol solution was adjusted to pH 5 by adding a 10% aqueous sodium hydroxide solution, decolorized with 2.6 g of activated carbon, and then added with 103 ml of water to precipitate crystals to obtain 100.1 g (yield: 80.1%) of white crystals. .
As a result of analyzing the composition of this crystal by high performance liquid chromatography (HPLC), the relative area ratio (measurement wavelength: 231 nm) was 4,4′-BPS 99.7% and 2,4′-BPS 0.3%. there were.
[0015]
Example 2
A 500 ml four-necked flask equipped with a stirrer, thermometer, water separation tube and Widmer rectification tube was charged with 117.5 g (1.25 mol) of phenol and 100 ml of Isopar G, and the mixture was stirred with 95% sulfuric acid 51. 6g (0.50mol) was dripped at 50 degreeC, and it heated up.
Distillation of the reaction liquid starts from around 144 ° C., and this distillate is condensed and separated into three layers of a water separation tube, an upper layer is a solvent layer, an intermediate layer is an aqueous layer, and a lower layer is a phenol layer. The upper solvent layer was continuously returned to the reaction system, and the lower phenol layer was reacted without returning to the reaction system. About 10 hours after the temperature rise, the temperature of the reaction system reached 167 ° C., the generation of water was stopped, the amount of water separated by the water separation tube was 20.5 g, and the amount of phenol was 21.2 g. As a result of analyzing the composition of this reaction product by high performance liquid chromatography (HPLC), the relative area ratio (measurement wavelength: 231 nm) was 4,4′-BPS 95.5%, 2,4′-BPS 3.0%. Phenol sulfonic acid was 0.7%.
This reaction product was treated in the same manner as in Example 1 to obtain 103.2 g (yield: 82.5%) of white crystals. As a result of analyzing the composition of this crystal by high performance liquid chromatography (HPLC), the relative area ratio (measurement wavelength: 231 nm) was 4,4′-BPS 99.6%, 2,4′-BPS 0.4%. there were.
[0016]
【The invention's effect】
According to the present invention, easy-to-handle slurry-like 4,4′-BPS can be produced in high yield without having to distill off the solvent from the reaction system. Since the aliphatic saturated hydrocarbon solvent of the present invention is incompatible with methanol, the product can be efficiently extracted from the reaction solution with methanol, and can be efficiently transferred to the subsequent recrystallization step from methanol water. Is possible. Further, the separated solvent layer can be reused. In addition, when one kind of solvent having a boiling point in the specific range of the present invention is used, it is not necessary to use an azeotropic agent, and the reuse of the solvent is easy.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the transition from 2,4′-isomer to 4,4′-isomer and temperature.

Claims (4)

フェノール及び硫酸を、1種または2種以上の脂肪族飽和炭化水素を含む溶媒中で反応させた後、この反応液にアルコール水中のアルコール濃度が30〜70重量%になるように炭素数1〜3のアルコール及び水を加え、分液したアルコール層から4,4’−ビスフェノールスルホンを再結晶させる4,4’−ビスフェノールスルホンの製造方法。After reacting phenol and sulfuric acid in a solvent containing one or two or more aliphatic saturated hydrocarbons, the reaction solution is mixed with 1 to 1 carbon atoms such that the alcohol concentration in the alcoholic water is 30 to 70% by weight . A method for producing 4,4′-bisphenolsulfone, comprising adding alcohol 3 and water 3 and recrystallizing 4,4′-bisphenolsulfone from the separated alcohol layer. 前記溶媒が1種の脂肪族飽和炭化水素から成る請求項1に記載の製造方法。The production method according to claim 1, wherein the solvent comprises one kind of saturated aliphatic hydrocarbon. 前記脂肪族飽和炭化水素の沸点が155〜175℃である請求項1又は2に記載の製造方法。The manufacturing method according to claim 1 or 2, wherein the boiling point of the aliphatic saturated hydrocarbon is 155 to 175 ° C. 前記脂肪族飽和炭化水素がアイソパー(エクソン化学(株)の登録商標)Gである請求項3に記載の製造方法。The production method according to claim 3, wherein the aliphatic saturated hydrocarbon is Isopar (registered trademark of Exxon Chemical Co., Ltd.) G.
JP2000273084A 2000-09-08 2000-09-08 Method for producing 4,4'-bisphenolsulfone Expired - Lifetime JP4531226B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000273084A JP4531226B2 (en) 2000-09-08 2000-09-08 Method for producing 4,4'-bisphenolsulfone
PCT/JP2002/002702 WO2003078388A1 (en) 2000-09-08 2002-03-20 Process for producing 4,4'-bisphenol sulfone
CNB2006101678559A CN100567261C (en) 2000-09-08 2002-03-20 4,4 '-manufacture method of bisphenol sulphone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000273084A JP4531226B2 (en) 2000-09-08 2000-09-08 Method for producing 4,4'-bisphenolsulfone
PCT/JP2002/002702 WO2003078388A1 (en) 2000-09-08 2002-03-20 Process for producing 4,4'-bisphenol sulfone

Publications (2)

Publication Number Publication Date
JP2002088053A JP2002088053A (en) 2002-03-27
JP4531226B2 true JP4531226B2 (en) 2010-08-25

Family

ID=29718382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000273084A Expired - Lifetime JP4531226B2 (en) 2000-09-08 2000-09-08 Method for producing 4,4'-bisphenolsulfone

Country Status (2)

Country Link
JP (1) JP4531226B2 (en)
CN (1) CN100567261C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100436410C (en) * 2002-03-20 2008-11-26 日本曹达株式会社 Process for producing 4,4'-bisphenol sulfone
JP6941893B2 (en) 2020-03-16 2021-09-29 小西化学工業株式会社 Method for producing diphenylsulfone compound

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106937A (en) * 1974-02-02 1975-08-22

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0293037A1 (en) * 1987-05-26 1988-11-30 Akzo N.V. Preparation of 4,4'-dihydroxydiphenyl sulfone
JPH05500522A (en) * 1990-08-06 1993-02-04 アリステック ケミカル コーポレイション Preparation method of relatively pure P,P-bisphenol S
JPH082863B2 (en) * 1990-10-02 1996-01-17 小西化学工業株式会社 Method for producing high-purity 4,4'-dihydroxydiphenyl sulfone
JPH07119196B2 (en) * 1992-06-12 1995-12-20 日華化学株式会社 Method for producing high-purity 2,4'-dihydroxydiphenyl sulfones

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106937A (en) * 1974-02-02 1975-08-22

Also Published As

Publication number Publication date
CN100567261C (en) 2009-12-09
JP2002088053A (en) 2002-03-27
CN1982293A (en) 2007-06-20

Similar Documents

Publication Publication Date Title
CA2993607C (en) Process for preparing pridopidine
US10040771B2 (en) Method for preparing prostacyclin receptor agonist 4-[N-(5,6-diphenylpyrazin-2-yl)-N-isopropylamino]-1-butanol
CA2971093A1 (en) Process of making cenicriviroc and related analogs
JP4531226B2 (en) Method for producing 4,4'-bisphenolsulfone
JP2001322979A (en) Method for producing 3-bromoquinoline
JP4531241B2 (en) Method for producing 4,4'-bisphenolsulfone
JP4562888B2 (en) Method for producing 4,4'-bisphenolsulfone
JPH082861B2 (en) Method for producing high-purity 4,4'-dihydroxydiphenyl sulfone
CN112479967A (en) Biliverdin compound and preparation method and application thereof
JP4038657B2 (en) Method for producing adamantanone
WO2003078388A1 (en) Process for producing 4,4'-bisphenol sulfone
JP4496381B2 (en) Method for producing high-purity 4,4'-dihydroxydiphenylsulfone
CN108689914A (en) A method of chipal compounds are prepared using intermediate
KR890003596B1 (en) Purification process of 3,3-dinitrodiphenyl compounds
JP2815071B2 (en) Method for producing dichlorodiphenyl sulfone
JP2003531137A (en) Semi-continuous process for the preparation of 4,4'-dihydroxydiphenylsulfone
JP3927835B2 (en) Process for producing iodinated aromatic compound diacetate
JP4226258B2 (en) Method for producing 2,4'-dihydroxydiphenylsulfone
JP2917497B2 (en) Method for producing optically active 1,2-propanediamine
JP2917495B2 (en) Method for producing optically active 1,2-propanediamine
JP2000198779A (en) Purification of 3-alkylflavanol derivative
JP4114911B2 (en) Method for producing 4-hydroxybenzenesulfonanilide
JPWO2020050342A1 (en) Dicyclohexylamine salt of N, N'-dibenzylbiotin and its production method
JPS63225352A (en) Production of 2,7-naphthalenedisulfonic acid
JP2004115393A (en) Manufacturing method for 4-alkoxy-4'-hydroxydiphenyl sulfone

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040916

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040916

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100219

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100609

R150 Certificate of patent or registration of utility model

Ref document number: 4531226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

EXPY Cancellation because of completion of term