JP4529745B2 - 画像形成方法及び画像形成装置 - Google Patents

画像形成方法及び画像形成装置 Download PDF

Info

Publication number
JP4529745B2
JP4529745B2 JP2005075013A JP2005075013A JP4529745B2 JP 4529745 B2 JP4529745 B2 JP 4529745B2 JP 2005075013 A JP2005075013 A JP 2005075013A JP 2005075013 A JP2005075013 A JP 2005075013A JP 4529745 B2 JP4529745 B2 JP 4529745B2
Authority
JP
Japan
Prior art keywords
toner
image
charge generation
particles
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005075013A
Other languages
English (en)
Other versions
JP2006259100A (ja
Inventor
重明 徳竹
嘉彦 江藤
真生 浅野
弘 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2005075013A priority Critical patent/JP4529745B2/ja
Publication of JP2006259100A publication Critical patent/JP2006259100A/ja
Application granted granted Critical
Publication of JP4529745B2 publication Critical patent/JP4529745B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

本発明は、電子写真方式の画像形成に用いる有機感光体、画像形成方法及び画像形成装置に関し、更に詳しくは、複写機やプリンターの分野で用いられる電子写真方式の画像形成に用いる画像形成方法及び画像形成装置に関するものである。
近年、印刷分野やカラー印刷の分野において、電子写真方式の複写機やプリンタを使用される機会が増加している。該印刷分野やカラー印刷の分野においては、高画質のデジタルのモノクロ画像或いはカラー画像を求める傾向が強い。このような要求に対し、像露光光源として短波長のレーザ光を用い、高精細のデジタル画像を形成することが提案されている(特許文献1)。しかしながら、該短波長レーザ光を用い、露光のドット径を絞り、電子写真感光体上に細密の静電潜像を形成しても、最終的に得られる電子写真画像は、十分な高画質を達成し得ていないのが現状である。
その原因は、電子写真感光体の感光特性や現像剤のトナーの帯電特性等が細密なドット潜像の形成やトナー画像の形成に必要な特性を十分に備えていないことによる。
即ち、従来の長波長レーザ用に開発された有機感光体(以後、単に感光体とも云う)では、電荷発生物質の顔料を分散させた電荷発生層で光感度を得ているが、顔料を十分に均一分散できていないため、短波長レーザ光を用いてドット径を絞った像露光を行なうと、ドット潜像が独立に形成されず、ドット画像にバラツキが発生したり、メモリー画像が発生したりしやすい。
例えば、結晶ヒドロキシガリウムフタロシアニンにより感光層を形成することが提案されており、そのような感光層を有する有機感光体によれば、高い感度特性が得られることが報告されている(特許文献2)。
しかしながら、上記結晶ヒドロキシガリウムフタロシアニンを用いた感光体に、短波長レーザ光源を用いて電子写真画像を作製すると、上記したドット画像にバラツキが発生したり、メモリー画像が発生したりしやすい。又、繰り返し使用における感度特性の低下が比較的大きく、且つ長期間にわたって十分な帯電電位安定性を得ることができない、という問題点があり、この為、画像形成の繰り返し動作において、画像濃度の低下やカラー画像の色再現性の劣化を起こしやすい。
又、静電潜像が高精細で形成されても、トナーの帯電量分布がブロードだと、トナー飛散が発生しやすく、高精細の静電潜像をトナー画像として再現できない。このため、粒度分布を狭くした重合トナーを現像手段に用いることが提案されている(特許文献3)。しかしながら、ここで提案された粒度分布のトナーでは、トナー飛散の発生を十分に抑制できず、高精細の静電潜像をトナー画像として再現できていないことが見いだされた。
上記のように、短波長レーザ光を用いて高精細のデジタル画像を作製するのに適した感光体と現像剤の組み合わせ技術が十分に開発できていないことから、短波長レーザ光の特性を生かした電子写真画像の技術の開発が求められている。
特開2000−250239号公報 特開平7−53892号公報 特開2002−244336号公報
本発明は、上記問題点を解決するためになされた。本発明の目的は、発振波長が350〜500nmの半導体レーザ又は発光ダイオードの像露光光源で形成された有機感光体上のドット潜像(ドット状の静電潜像のこと)を高細密に形成し、該高細密に形成されたドット潜像を忠実にドット画像(ドット状のトナー像)として再現し、印刷分野に適した高細密で、メモリー画像の発生や画像濃度の低下を防止したクリアな電子写真画像を形成できる画像形成方法及び画像形成装置を提供することであり、又、高画質のカラー画像を形成できる画像形成方法及び画像形成装置を提供することである。
我々は上記問題点について検討を重ねた結果、本発明の課題は、発振波長が350〜500nmの半導体レーザ又は発光ダイオードの像露光光源で形成される有機感光体上の静電潜像を高細密に形成でき、且つ該高細密に形成された静電潜像を忠実にトナー像として顕像化するためには、短波長のレーザ光の露光に対し、履歴メモリーが小さく、感度や帯電安定性が優れ、且つ分散性に優れた顔料の電荷発生物質を用いて感光体を作製することが重要であることを見いだし本発明を完成した。又、同時に、このような感光体と帯電の立ち上がりを良く、粒度分布がシャープなトナーを含有する現像剤を組み合わせることにより、ドット画像の再現性が良好で、高精細のトナー画像を形成できることを見いだし本発明を完成した。
即ち、本発明は以下のような構成を有することにより達成される。
(請求項1)
有機感光体上に発振波長が350〜500nmの半導体レーザ又は発光ダイオードを書込み光源として静電潜像を形成する像露光工程及び該静電潜像をトナー像に顕像化する現像工程を有する画像形成方法において、該有機感光体が、導電性支持体上に電荷発生物質を含有する電荷発生層と、これに積層された電荷輸送層とを有し、前記電荷発生層がガリウムフタロシアニン二量体を28〜98モル%及びヒドロキシガリウムフタロシアニンを2〜72モル%含有し、Cu−Kα特性X線の回折スペクトルにおいて、少なくともブラッグ角(2θ±0.2)が7.5°および28.3°の個所に高い回折ピークを有する電荷発生物質を含有することを特徴とする画像形成方法。
(請求項2)
前記書込み光源の主査方向の露光径が10〜50μmであることを特徴とする請求項1に記載の画像形成方法。
(請求項3)
前記現像工程に用いる現像剤が、トナー粒子の50%個数粒径をDp50とすると、粒径が0.7×(Dp50)以下のトナー粒子の含有量が8個数%以下であり且つ含水率が0.1〜2.0質量%(30℃、80%RH環境下)であるトナーを含有することを特徴とする請求項1又は2に記載の画像形成方法。
(請求項4)
有機感光体上に発振波長が350〜500nmの半導体レーザ又は発光ダイオードを書込み光源として静電潜像を形成する像露光手段及び該静電潜像をトナー像に顕像化する現像手段を有する画像形成装置において、該有機感光体が、導電性支持体上に電荷発生物質を含有する電荷発生層と、これに積層された電荷輸送層とを有し、前記電荷発生層がガリウムフタロシアニン二量体を28〜98モル%及びヒドロキシガリウムフタロシアニンを2〜72モル%含有し、Cu−Kα特性X線の回折スペクトルにおいて、少なくともブラッグ角(2θ±0.2)が7.5°および28.3°の個所に高い回折ピークを有する電荷発生物質を含有することを特徴とする画像形成装置。
本発明の画像形成方法及び画像形成装置を用いることにより、短波長レーザを用いた画像形成方法において、高細密のドット画像を形成することができ、履歴メモリーが小さく且つトナー飛散等の少ない、高画質の電子写真画像を形成することができる。又、カラー画像の作製においても、ドット再現性が良好で、色再現性が優れたカラー画像を作製することができる。
以下、本発明について、詳細に説明する。
本発明の画像形成方法は、有機感光体上に発振波長が350〜500nmの半導体レーザ又は発光ダイオードを書込み光源として静電潜像を形成する像露光工程及び該静電潜像をトナー像に顕像化する現像工程を有する画像形成方法であり、該有機感光体が、導電性支持体上に電荷発生物質を含有する電荷発生層と、これに積層された電荷輸送層とを有し、前記電荷発生層がガリウムフタロシアニン二量体を28〜98モル%及びヒドロキシガリウムフタロシアニンを2〜72モル%含有し、Cu−Kα特性X線の回折スペクトルにおいて、少なくともブラッグ角(2θ±0.2)が7.5°および28.3°の個所に高い回折ピークを有する電荷発生物質を含有することを特徴とする画像形成方法。これに積層された電荷輸送層とを有する有機感光体において、前記電荷発生物質としてガリウムフタロシアニン二量体を28〜98モル%及びヒドロキシガリウムフタロシアニンを2〜72モル%含有することを特徴とする。
本発明の画像形成方法は、上記の構成を有することにより、短波長レーザを用いた画像形成方法において、高細密のドット画像を形成することができ、履歴メモリーが小さく且つトナー飛散等の少ない、高画質の電子写真画像を形成することができる。又、カラー画像の作製においても、細線再現性が良好で、色再現性が優れたカラー画像を作製することができる。
以下、本発明の有機感光体の構成について説明する。
本発明に係わる有機感光体は、金属フタロシアニン二量体を電荷発生物質として用い、この電荷発生物質を含有してなる光導電性感光層を導電性基体上に形成する。
該金属フタロシアニン二量体としては、ガリウムフタロシアニン二量体が好ましい。更に、ガリウムフタロシアニン二量体と、ヒドロキシガリウムフタロシアニンとの両者を含んだものでがより好ましい。特に、ガリウムフタロシアニン二量体と、ヒドロキシガリウムフタロシアニンとの両者を含み、且つ、Cu−Kα特性X線の回折スペクトルにおいて、少なくともブラッグ角(2θ±0.2)が7.5°および28.3°の個所に高い回折ピークを有する結晶構造をもつものが好ましい。ここに、「高い回折ピーク」とは、当該回折スペクトルにおいて、回折ピークのうちの最大ピークの値を100としたときに相対ピーク値が40以上のピークをいう。
更に、当該電荷発生物質は、ガリウムフタロシアニン二量体と、ヒドロキシガリウムフタロシアニンとの両者を含み、且つ、Cu−Kα特性X線の回折スペクトルにおいて、ブラッグ角(2θ±0.2)が7.5°、9.9°、12.5°、16.3°、18.6°、25.1°および28.3°のすべての個所に特徴的な回折ピークを有するものであることが好ましい。ここに、「特徴的な回折ピーク」とは、当該回折スペクトルにおいて、回折ピークのうちの最大ピークの値を100としたときに相対ピーク値が20以上のピークをいう。
電荷発生物質におけるヒドロキシガリウムフタロシアニン(これは単量体であり、以下において「GaPhCモノマー」ともいう。)およびガリウムフタロシアニン二量体(以下において「GaPhCダイマー」ともいう。)は、例えば、次のような方法によって製造することができる。
例えば、1−クロロナフタレンやキノリンのような高沸点有機溶媒中において、フタロニトリルまたは1,3−ジイミノイソインドリンを塩化ガリウムと反応させてクロロガリウムフタロシアニンを生成させ、これを加水分解することによりGaPhCモノマーが得られる。そして、このGaPhCモノマーを、例えば、高沸点有機溶媒中において加熱脱水処理することにより、μ−オキソ−GaPhCダイマーが得られる。
本発明において、感光層を形成する電荷発生物質は、GaPhCダイマーとGaPhCモノマーとの両者を含有することが好ましく、GaPhCダイマーとGaPhCモノマーとの合計が電荷発生物質全体の90モル%以上であることが好ましい。特にGaPhCダイマーとGaPhCモノマーの混合物からなる電荷発生物質が好適に用いられる。
本発明に用いる電荷発生物質は、各々個別に合成されたGaPhCダイマーおよびGaPhCモノマーの純物質同士を混合することによって得ることができるが、例えば、GaPhCダイマーまたはGaPhCモノマーの製造工程において、合成条件などを適宜選定し、あるいは合成過程中に条件を適宜変更することにより、直接的にGaPhCダイマーとGaPhCモノマーの混合物を調製することも可能である。
そして、本発明においては、電荷発生物質において、GaPhCダイマーの含有割合は25〜99モル%、特に30〜98モル%であることが好ましく、GaPhCモノマーの含有割合は1〜75モル%、特に2〜70モル%であることが好ましい。
GaPhCダイマーとGaPhCモノマーの含有割合が上記の範囲で、電荷発生物質が均一に分散され、電位安定性、感度特性及び履歴メモリー特性が改善され、均一なドット画像が得られる。
本発明において、有機感光体とは電子写真感光体の構成に必要不可欠な電荷発生機能及び電荷輸送機能の少なくとも一方の機能を有機化合物に持たせて構成された電子写真感光体を意味し、公知の有機電荷発生物質又は有機電荷輸送物質から構成された感光体、電荷発生機能と電荷輸送機能を高分子錯体で構成した感光体等公知の有機電子写真感光体を全て含有する。
本発明の有機感光体は、例えば円筒状の導電性基体と、この導電性基体の外周面に形成された感光層とを具えてなり、感光層は、電荷発生層と、これに積層して電荷輸送層が形成された積層型感光層であることが好ましい。
感光層が積層型感光層である場合に、電荷発生層と電荷輸送層の積層の順序は種々の条件によって適宜に選ばれ、電荷発生層が導電性基体に近い下層とされる場合も、電荷輸送層が下層とされる場合もある。また、感光層は、電荷発生物質が含有されてなる単独の光導電層によって構成することも可能である。実際には、必要に応じて、導電性基体と感光層との間に適宜の中間層が設けられることがあり、また、感光層の表面に保護層などの表面層が設けられて電子写真用感光体が構成される。
以上において、導電性基体としては、一般に、例えばアルミニウム、ステンレス鋼などの金属製の円筒状の導電性基体が用いられ、この導電性基体の表面には導電層が形成されることがある。
本発明においては、上記の電荷発生物質と、バインダー樹脂と、溶剤とが、必要に応じて用いられる添加剤と共に分散処理されて電荷発生層形成用組成物である分散液が調製され、この分散液が塗布されて乾燥されることにより、当該電荷発生物質を含有する電荷発生層が形成され、この電荷発生層により感光層が構成される。
電荷発生層形成用組成物において、電荷発生物質であるGaPhCダイマーおよびGaPhCモノマーは、いずれも、その粒子径が一次粒子径で0.01〜0.5μmものものが好適である。
電荷発生層形成用組成物の成分であるバインダー樹脂は、特にその種類が限定されるものではなく、従来からこの種の用途に用いられている樹脂を用いることができる。その具体例としては、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ブチラールの一部がホルマールやアセトアセタールで変性された部分アセタール化ポリビニルアセタール樹脂などのポリビニルアセタール系樹脂、ポリアミド樹脂、ポリエステル樹脂、変性エーテル型ポリエステル樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリビニルアセテート樹脂、塩化ビニル−酢酸ビニル共重合体、シリコーン樹脂、フェノール樹脂、フェノキシ樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、ポリウレタン樹脂、ポリ−N−ビニルカルバゾール樹脂、ポリビニルアントラセン樹脂、ポリビニルピレン樹脂などを挙げることができる。これらの中では、特にポリビニルアセタール系樹脂、塩化ビニル−酢酸ビニル系共重合体、フェノキシ樹脂および変性エーテル型ポリエステル樹脂が好ましい。これらの樹脂によれば、上記電荷発生物質を十分に分散させることができ、顔料が凝集せずに長期にわたって分散液が安定であり、当該分散液を塗工液として用いることによって均一な皮膜が形成され、その結果、良好な電気特性が得られて画質欠陥の少ない画像を形成することができる。しかしながら、バインダー樹脂は、通常の状態で被膜を形成することのできる樹脂であればこれらに限定されるものではない。これらのバインダー樹脂は、単独であるいは2種以上を併用することができる。また、電荷発生物質とバインダー樹脂との配合比は、体積比で、5:1〜1:2の範囲とされることが好ましい。
電荷発生層形成用組成物の成分である溶剤は、分散液の液状分散媒体を形成するものであり、用いられるバインダー樹脂を溶解するものであればよい。その具体例としては、例えば、メタノール、エタノール、n−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、クロロベンゼン、酢酸メチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルムなどの通常使用される有機溶剤を単独あるいは2種以上混合して用いることができる。
上記の電荷発生物質、バインダー樹脂および溶剤並びに添加剤を、必要に応じて用いられる適宜の分散助剤(分散メディア)と共に、適宜の分散処理装置によって分散攪拌することにより、電荷発生層形成用組成物の分散液を調製することができる。
具体的な分散処理方法は特に限定されるものではないが、実際には、溶剤に対するバインダー樹脂の溶解とGaPhCモノマーの分散処理を先行して行い、その後にGaPhCダイマーを添加して分散処理することが好ましい。これにより、電荷発生物質の全体の分散処理を高い効率で行うことができる。
電荷発生層形成用組成物の分散液を塗布する方法は、従来知られている塗布方法を利用することができるが、実際上は、導電性基体として円筒状のものが用いられることから、浸漬による塗布方法が好ましく用いられる。
感光層が積層型感光層とされる場合において、電荷輸送層は、従来知られている構成とすることができ、また、中間層および表面層なども、従来知られている構成のものとすることができる。
以上のようにして、電荷発生物質が含有されてなる感光層が導電性基体の表面に形成されることによって電子写真用感光体が構成され、これが搭載されることによって画像形成装置が構成される。当該電子写真用感光体を、他の画像形成装置のための構成要素と共に共通の支持体に一体に装着することにより、いわゆる一体型プロセスカートリッジを構成することも可能である。
一方、本発明に係わる現像剤は、トナー粒子の50%個数粒径をDp50とすると、粒径が0.7×(Dp50)以下のトナー粒子の含有量が8個数%以下であり且つの含水率が0.1〜2.0質量%であるトナーを含有することが好ましい。
粒径0.7×(Dp50)以下のトナー粒子の含有量が8個数%を越えると小粒径成分の存在比率が増大し、弱帯電トナーの増加や逆極性のトナーの発生、あるいは過帯電トナーの発生などの原因となる。その結果、トナー飛散が発生したり、ドット画像が過大に、或いは過小になったりして、ドット再現性を劣化させ、更には、トナーの転写性、クリーニング性が低下し、益々ドット再現性を低下させ、鮮鋭性が低下した画像が発生しやすい。
又、トナーの含水率は、トナーの帯電性及び帯電保持性に強く関連し、本発明では、上記分布特性を有するトナーでは、含水率が0.1〜2.0質量%の範囲で、トナーの帯電立ち上がり及び帯電保持性が良好であることが見出された。含水量が0.1質量%未満では帯電立ち上がり特性が低下し、弱帯電トナーが発生しやすく、トナー飛散が発生し、ドット再現性を低下させやすい。一方、2.0質量%より大きいと、逆極性のトナーの発生や過帯電トナーの発生などの原因となり、トナー飛散の発生と同時に、トナーの転写性、クリーニング性が低下し、ドット再現性を低下させる。
更に、本発明に係わるトナーの粒度分布は、50%体積粒径(Dv50)と50%個数粒径(Dp50)の比(Dv50/Dp50)が1.0〜1.11が好ましく、より好ましくは1.0〜1.10がよい。
また、トナー粒子の大きい方からの累積75%体積粒径(Dv75)と累積75%個数粒径(Dp75)の比(Dv75/Dp75)が1.0〜1.10であることが好ましい。1.10を越える場合には小粒径成分の存在比率が増大し、弱帯電成分の増加や逆極性のトナーの発生、あるいは過帯電成分の発生などの原因となる。その結果、トナー飛散が発生したり、トナーの転写性、クリーニング性が低下し、ドット画像の再現性が低下しやすい。
なお、トナーの体積平均粒径、即ち、上記50%体積粒径(Dv50)は2.0〜9.0μm、より好ましくは3.0〜6.0μmであることが望ましい。この範囲とすることにより、解像度を高くすることができる。さらに上記の範囲と組み合わせることにより、小粒径トナーでありながら、微細な粒径のトナーの存在量を少なくすることができ、長期に亘ってドット画像の再現性が改善され、鮮鋭性の良好な、安定した画像を形成することができる。
本発明において、大きい方からの累積75%体積粒径(Dv75)或いは累積75%個数粒径(Dp75)とは、粒径の大きな方からの頻度を累積し、全体積の和或いは個数の和に対して、それぞれが75%を示す粒径分布部位の体積粒径或いは個数粒径で表す。
本発明において、粒度分布、50%体積粒径(Dv50)、50%個数粒径(Dp50)、累積75%体積粒径(Dv75)、累積75%個数粒径(Dp75)等は、シースフロー電気抵抗式粒度分布測定装置SD−2000を用いて測定することができる。通常アパーチャー径=100μmのアパーチャーを用いて2.0〜40μmの範囲における粒径分布を測定するが、更に小粒径の部分を測定する場合、30μmのアパーチャー径を用いる。
尚、静電潜像を乾式現像で顕像化する技術分野においては、少なくとも着色剤と樹脂よりなる着色粒子(トナー粒子の原型)に、外添剤等を加えたものをトナーとして用いている。しかし、特に問題がない限り着色粒子とトナーとをあまり区別せず、記載しているのが一般的である。本発明におけるその粒径および粒径分布においても、着色粒子とトナー粒子の何れを測定してもその測定値に変化はない。
また、外添剤等の径粒はnmオーダーであり(数平均1次粒子)、光散乱電気泳動粒径測定装置「ELS−800」(大塚電子工業株式会社製)で測定することが出来る。
以下、前記した粒度分布を示す本発明に用いられるトナーの構成及び製造方法について詳細に説明する。
〈トナー〉
本発明に用いるトナーは、粉砕トナーでも、重合トナーでも、本発明の前記範囲に作製されたトナーであればよいが、本発明に係わるトナーとしては、安定した粒度分布を得られる観点から、重合法で作製できる重合トナーが好ましい。
重合トナーとはトナー用バインダーの樹脂の生成とトナー形状がバインダー樹脂の原料モノマーの重合と、必要によりその後の化学的処理により形成されるトナーを意味する。より具体的には懸濁重合、乳化重合等の重合反応と、必要によりその後に行われる粒子同士の融着工程を経て形成されるトナーを意味する。
本発明では、トナーとして離型剤を含有する樹脂粒子と着色剤粒子とを塩析/融着させて得られた会合型トナーを使用することが好ましい。
この理由としては前記のような粒度分布を示すトナーを製造出来ることに加え会合型トナーはトナー粒子間の表面性が均質なものとなっており、転写性を損なうことなく、本発明の効果を発揮することができたものと推定される。
上記の「塩析/融着」とは、塩析(粒子の凝集)と融着(粒子間の界面消失)とが同時に起こること、または、塩析と融着とを同時に起こさせる行為をいう。塩析と融着とを同時に行わせるためには、樹脂粒子を構成する樹脂のガラス転移温度(Tg)以上の温度条件下において粒子(樹脂粒子、着色剤粒子)を凝集させる必要がある。
〈離型剤〉
本発明に係わるトナーを構成する離型剤としては、特に限定されるものではないが、下記一般式(1)で示される結晶性のエステル化合物(以下、「特定のエステル化合物」という。)からなるものであることが好ましい。
一般式(1):R1−(OCO−R2n
(式中、R1およびR2は、それぞれ、置換基を有していてもよい炭素数が1〜40の炭化水素基を示し、nは1〜4の整数である。)
〈特定のエステル化合物〉
特定のエステル化合物を示す一般式(1)において、R1およびR2は、それぞれ、置換基を有していてもよい炭化水素基を示す。
炭化水素基R1の炭素数は1〜40とされ、好ましくは1〜20、更に好ましくは2〜5とされる。
炭化水素基R2の炭素数は1〜40とされ、好ましくは16〜30、更に好ましくは18〜26とされる。
また、一般式(1)において、nは1〜4の整数とされ、好ましくは2〜4、さらに好ましくは3〜4、特に好ましくは4とされる。
特定のエステル化合物は、アルコールとカルボン酸との脱水縮合反応により好適に合成することができる。
最も好適な特定のエステル化合物としては、ペンタエリスリトールテトラベヘン酸エステルを挙げることができる。
特定のエステル化合物の具体例としては、下記式1)〜26)に示す化合物を例示することができる。
Figure 0004529745
Figure 0004529745
〈離型剤の含有割合〉
本発明に係わるトナーにおける離型剤の含有割合としては、通常1〜30質量%とされ、好ましくは2〜20質量%、更に好ましくは3〜15質量%とされる。
〈離型剤を含有する樹脂粒子〉
本発明において「離型剤を含有する樹脂粒子」は、結着樹脂を得るための単量体中に離型剤を溶解させ、得られる単量体溶液を水系媒体中に分散させ、この系を重合処理することにより、ラテックス粒子として得ることができる。
かかる樹脂粒子の重量平均粒径は50〜2000nmであることが好ましい。
結着樹脂中に離型剤を含有する樹脂粒子を得るための重合法としては、乳化重合法、懸濁重合法、シード重合法などの造粒重合法を挙げることができる。
離型剤を含有する樹脂粒子を得るための好ましい重合法としては、臨界ミセル濃度以下の濃度の界面活性剤を溶解してなる水系媒体中に、単量体中に離型剤を溶解してなる単量体溶液を、機械的エネルギーを利用して油滴分散させて分散液を調製し、得られた分散液に水溶性重合開始剤を添加して、ラジカル重合させる方法(以下、この明細書において「ミニエマルジョン法」という。)を挙げることができる。なお、水溶性重合開始剤を添加することに代えて、または、当該水溶性重合開始剤を添加するとともに、油溶性の重合開始剤を前記単量体溶液中に添加してもよい。
ここに、機械的エネルギーによる油滴分散を行うための分散機としては、特に限定されるものではないが、例えば、高速回転するローターを備えた攪拌装置「クレアミックス(CLEARMIX)」(エム−テクニック(株)社製)、超音波分散機、機械式ホモジナイザー、マントンゴーリンおよび圧力式ホモジナイザーなどを挙げることができる。また、分散粒子径としては、10〜1000nmとされ、好ましくは30〜300nmとされる。
〈結着樹脂〉
本発明に係わるトナーを構成する結着樹脂は、GPCにより測定される分子量分布で100,000〜1,000,000の領域にピークまたは肩を有する高分子量成分と、1,000〜20,000の領域にピークまたは肩を有する低分子量成分とを含有する樹脂であることが好ましい。
ここに、GPCによる樹脂の分子量の測定方法としては、測定試料0.5〜5.0mg(具体的には1mg)に対してTHFを1ml加え、マグネチックスターラーなどを用いて室温にて撹拌を行って十分に溶解させる。次いで、ポアサイズ0.45〜0.50μmのメンブランフィルターで処理した後にGPCへ注入する。
GPCの測定条件としては、40℃にてカラムを安定化させ、THFを毎分1mlの流速で流し、1mg/mlの濃度の試料を約100μl注入して測定する。カラムは、市販のポリスチレンジェルカラムを組み合わせて使用することが好ましい。例えば、昭和電工社製のShodex GPC KF−801,802,803,804,805,806,807の組合せや、東ソー社製のTSKgelG1000H、G2000H,G3000H,G4000H,G5000H,G6000H,G7000H,TSK guard columnの組合せなどを挙げることができる。また、検出器としては、屈折率検出器(IR検出器)またはUV検出器を用いるとよい。試料の分子量測定では、試料の有する分子量分布を単分散のポリスチレン標準粒子を用いて作製した検量線を用いて算出する。検量線作製用のポリスチレンとしては10点程度用いるとよい。
以下、樹脂粒子の構成材料および調製方法(重合方法)について説明する。
〔単量体〕
樹脂粒子を得るために使用する重合性単量体としては、ラジカル重合性単量体を必須の構成成分とし、必要に応じて架橋剤を使用することができる。また、以下の酸性基を有するラジカル重合性単量体または塩基性基を有するラジカル重合性単量体を少なくとも1種類含有させることが好ましい。
(1)ラジカル重合性単量体:
ラジカル重合性単量体としては、特に限定されるものではなく従来公知のラジカル重合性単量体を用いることができる。また、要求される特性を満たすように、1種または2種以上のものを組み合わせて用いることができる。
具体的には、芳香族系ビニル単量体、(メタ)アクリル酸エステル系単量体、ビニルエステル系単量体、ビニルエーテル系単量体、モノオレフィン系単量体、ジオレフィン系単量体、ハロゲン化オレフィン系単量体等を用いることができる。
芳香族系ビニル単量体としては、例えば、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−メトキシスチレン、p−フェニルスチレン、p−クロロスチレン、p−エチルスチレン、p−n−ブチルスチレン、p−tert−ブチルスチレン、p−n−ヘキシルスチレン、p−n−オクチルスチレン、p−n−ノニルスチレン、p−n−デシルスチレン、p−n−ドデシルスチレン、2,4−ジメチルスチレン、3,4−ジクロロスチレン等のスチレン系単量体およびその誘導体が挙げられる。
(メタ)アクリル酸エステル系単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸−2−エチルヘキシル、アクリル酸シクロヘキシル、アクリル酸フェニル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸ヘキシル、メタクリル酸−2−エチルヘキシル、β−ヒドロキシアクリル酸エチル、γ−アミノアクリル酸プロピル、メタクリル酸ステアリル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチル等が挙げられる。
ビニルエステル系単量体としては、酢酸ビニル、プロピオン酸ビニル、ベンゾエ酸ビニル等が挙げられる。
ビニルエーテル系単量体としては、ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテル、ビニルフェニルエーテル等が挙げられる。
モノオレフィン系単量体としては、エチレン、プロピレン、イソブチレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン等が挙げられる。
ジオレフィン系単量体としては、ブタジエン、イソプレン、クロロプレン等が挙げられる。
ハロゲン化オレフィン系単量体としては、塩化ビニル、塩化ビニリデン、臭化ビニル等が挙げられる。
(2)架橋剤:
架橋剤としては、トナーの特性を改良するためにラジカル重合性架橋剤を添加しても良い。ラジカル重合性架橋剤としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルエーテル、ジエチレングリコールメタクリレート、エチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、フタル酸ジアリル等の不飽和結合を2個以上有するものが挙げられる。
(3)酸性基または塩基性基を有するラジカル重合性単量体:
酸性基を有するラジカル重合性単量体または塩基性基を有するラジカル重合性単量体としては、例えば、カルボキシル基含有単量体、スルホン酸基含有単量体、第1級アミン、第2級アミン、第3級アミン、第4級アンモニウム塩等のアミン系の化合物を用いることができる。
酸性基を有するラジカル重合性単量体としては、カルボン酸基含有単量体として、アクリル酸、メタクリル酸、フマール酸、マレイン酸、イタコン酸、ケイ皮酸、マレイン酸モノブチルエステル、マレイン酸モノオクチルエステル等が挙げられる。
スルホン酸基含有単量体としては、スチレンスルホン酸、アリルスルホコハク酸、アリルスルホコハク酸オクチル等が挙げられる。
これらは、ナトリウムやカリウム等のアルカリ金属塩あるいはカルシウムなどのアルカリ土類金属塩の構造であってもよい。
塩基性基を有するラジカル重合性単量体としては、アミン系の化合物が挙げられ、ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレート、および上記4化合物の4級アンモニウム塩、3−ジメチルアミノフェニルアクリレート、2−ヒドロキシ−3−メタクリルオキシプロピルトリメチルアンモニウム塩、アクリルアミド、N−ブチルアクリルアミド、N,N−ジブチルアクリルアミド、ピペリジルアクリルアミド、メタクリルアミド、N−ブチルメタクリルアミド、N−オクタデシルアクリルアミド;ビニルピリジン、ビニルピロリドン;ビニルN−メチルピリジニウムクロリド、ビニルN−エチルピリジニウムクロリド、N,N−ジアリルメチルアンモニウムクロリド、N,N−ジアリルエチルアンモニウムクロリド等を挙げることができる。
本発明に用いられるラジカル重合性単量体としては、酸性基を有するラジカル重合性単量体または塩基性基を有するラジカル重合性単量体が単量体全体の0.1〜15質量%使用することが好ましく、ラジカル重合性架橋剤はその特性にもよるが、全ラジカル重合性単量体に対して0.1〜10質量%の範囲で使用することが好ましい。
〔連鎖移動剤〕
樹脂粒子の分子量を調整することを目的として、一般的に用いられる連鎖移動剤を用いることが可能である。
連鎖移動剤としては、特に限定されるものではなく例えばオクチルメルカプタン、ドデシルメルカプタン、tert−ドデシルメルカプタン等のメルカプタン、n−オクチル−3−メルカプトプロピオン酸エステル等のメルカプトプロピオン酸エステル類、四臭化炭素およびスチレンダイマー等が使用される。
〔重合開始剤〕
本発明に用いられるラジカル重合開始剤は水溶性であれば適宜使用が可能である。例えば過硫酸塩(過硫酸カリウム、過硫酸アンモニウム等)、アゾ系化合物(4,4′−アゾビス4−シアノ吉草酸及びその塩、2,2′−アゾビス(2−アミジノプロパン)塩等)、パーオキシド化合物等が挙げられる。
更に上記ラジカル性重合開始剤は、必要に応じて還元剤と組み合わせレドックス系開始剤とする事が可能である。レドックス系開始剤を用いる事で、重合活性が上昇し重合温度の低下が図れ、更に重合時間の短縮が期待できる。
重合温度は、重合開始剤の最低ラジカル生成温度以上であればどの温度を選択しても良いが例えば50℃から90℃の範囲が用いられる。但し、常温開始の重合開始剤、例えば過酸化水素−還元剤(アスコルビン酸等)の組み合わせを用いる事で、室温またはそれ以上の温度で重合する事も可能である。
〔界面活性剤〕
前述のラジカル重合性単量体を使用して重合を行うためには、界面活性剤を使用して水系媒体中に油滴分散を行う必要がある。この際に使用することのできる界面活性剤としては特に限定されるものでは無いが、下記のイオン性界面活性剤を好適なものの例として挙げることができる。
イオン性界面活性剤としては、スルホン酸塩(ドデシルベンゼンスルホン酸ナトリウム、アリールアルキルポリエーテルスルホン酸ナトリウム、3,3−ジスルホンジフェニル尿素−4,4−ジアゾ−ビス−アミノ−8−ナフトール−6−スルホン酸ナトリウム、オルト−カルボキシベンゼン−アゾ−ジメチルアニリン、2,2,5,5−テトラメチル−トリフェニルメタン−4,4−ジアゾ−ビス−β−ナフトール−6−スルホン酸ナトリウム等)、硫酸エステル塩(ドデシル硫酸ナトリウム、テトラデシル硫酸ナトリウム、ペンタデシル硫酸ナトリウム、オクチル硫酸ナトリウム等)、脂肪酸塩(オレイン酸ナトリウム、ラウリン酸ナトリウム、カプリン酸ナトリウム、カプリル酸ナトリウム、カプロン酸ナトリウム、ステアリン酸カリウム、オレイン酸カルシウム等)が挙げられる。
また、ノニオン性界面活性剤も使用することができる。具体的には、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリプロピレンオキサイドとポリエチレンオキサイドの組み合わせ、ポリエチレングリコールと高級脂肪酸とのエステル、アルキルフェノールポリエチレンオキサイド、高級脂肪酸とポリエチレングリコールのエステル、高級脂肪酸とポリプロピレンオキサイドのエステル、ソルビタンエステル等を挙げることができる。
〈着色剤〉
本発明に係わるトナーを構成する着色剤としては無機顔料、有機顔料、染料を挙げることができる。
無機顔料としては、従来公知のものを用いることができる。具体的な無機顔料を以下に例示する。
黒色の顔料としては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック、ランプブラック等のカーボンブラック、更にマグネタイト、フェライト等の磁性粉も用いられる。
これらの無機顔料は所望に応じて単独または複数を選択併用する事が可能である。また顔料の添加量は重合体に対して2〜20質量%であり、好ましくは3〜15質量%が選択される。
磁性トナーとして使用する際には、前述のマグネタイトを添加することができる。この場合には所定の磁気特性を付与する観点から、トナー中に20〜60質量%添加することが好ましい。
有機顔料及び染料としても従来公知のものを用いることができる。具体的な有機顔料及び染料を以下に例示する。
マゼンタまたはレッド用の顔料としては、C.I.ピグメントレッド2、C.I.ピグメントレッド3、C.I.ピグメントレッド5、C.I.ピグメントレッド6、C.I.ピグメントレッド7、C.I.ピグメントレッド15、C.I.ピグメントレッド16、C.I.ピグメントレッド48:1、C.I.ピグメントレッド53:1、C.I.ピグメントレッド57:1、C.I.ピグメントレッド122、C.I.ピグメントレッド123、C.I.ピグメントレッド139、C.I.ピグメントレッド144、C.I.ピグメントレッド149、C.I.ピグメントレッド166、C.I.ピグメントレッド177、C.I.ピグメントレッド178、C.I.ピグメントレッド222等が挙げられる。
オレンジまたはイエロー用の顔料としては、C.I.ピグメントオレンジ31、C.I.ピグメントオレンジ43、C.I.ピグメントイエロー12、C.I.ピグメントイエロー13、C.I.ピグメントイエロー14、C.I.ピグメントイエロー15、C.I.ピグメントイエロー17、C.I.ピグメントイエロー93、C.I.ピグメントイエロー94、C.I.ピグメントイエロー138、C.I.ピグメントイエロー180、C.I.ピグメントイエロー185、C.I.ピグメントイエロー155、C.I.ピグメントイエロー156等が挙げられる。
グリーンまたはシアン用の顔料としては、C.I.ピグメントブルー15、C.I.ピグメントブルー15:2、C.I.ピグメントブルー15:3、C.I.ピグメントブルー16、C.I.ピグメントブルー60、C.I.ピグメントグリーン7等が挙げられる。
また、染料としてはC.I.ソルベントレッド1、同49、同52、同58、同63、同111、同122、C.I.ソルベントイエロー19、同44、同77、同79、同81、同82、同93、同98、同103、同104、同112、同162、C.I.ソルベントブルー25、同36、同60、同70、同93、同95等を用いる事ができ、またこれらの混合物も用いる事ができる。
これらの有機顔料及び染料は所望に応じて単独または複数を選択併用する事が可能である。また顔料の添加量は重合体に対して2〜20質量%であり、好ましくは3〜15質量%が選択される。
着色剤は表面改質して使用することもできる。その表面改質剤としては、従来公知のものを使用することができ、具体的にはシランカップリング剤、チタンカップリング剤、アルミニウムカップリング剤等が好ましく用いることができる。
〈外添剤〉
本発明に係わるトナーには、流動性、帯電性の改良およびクリーニング性の向上などの目的で、いわゆる外添剤を添加して使用することができる。これら外添剤としては特に限定されるものでは無く、種々の無機微粒子、有機微粒子及び滑剤を使用することができる。
無機微粒子としては、従来公知のものを使用することができる。具体的には、シリカ、チタン、アルミナ微粒子等が好ましく用いることができる。これら無機微粒子としては疎水性のものが好ましい。具体的には、シリカ微粒子として、例えば日本アエロジル社製の市販品R805、R976、R974、R972、R812、R809、ヘキスト社製のHVK2150、H200、キャボット社製の市販品TS720、TS530、TS610、H5、MS5等が挙げられる。
チタン微粒子としては、例えば、日本アエロジル社製の市販品T−805、T−604、テイカ社製の市販品MT−100S、MT−100B、MT−500BS、MT−600、MT−600SS、JA−1、富士チタン社製の市販品TA−300SI、TA−500、TAF−130、TAF−510、TAF−510T、出光興産社製の市販品IT−S、IT−OA、IT−OB、IT−OC等が挙げられる。
アルミナ微粒子としては、例えば、日本アエロジル社製の市販品RFY−C、C−604、石原産業社製の市販品TTO−55等が挙げられる。
また、有機微粒子としては数平均一次粒子径が10〜2000nm程度の球形の有機微粒子を使用することができる。このものとしては、スチレンやメチルメタクリレートなどの単独重合体やこれらの共重合体を使用することができる。
滑剤には、例えばステアリン酸の亜鉛、アルミニウム、銅、マグネシウム、カルシウム等の塩、オレイン酸の亜鉛、マンガン、鉄、銅、マグネシウム等の塩、パルミチン酸の亜鉛、銅、マグネシウム、カルシウム等の塩、リノール酸の亜鉛、カルシウム等の塩、リシノール酸の亜鉛、カルシウムなどの塩等の高級脂肪酸の金属塩が挙げられる。
これら外添剤の添加量は、トナーに対して0.1〜5質量%が好ましい。
本発明に係わるトナーは、離型剤を含有する樹脂粒子と、着色剤粒子とを水系媒体中で塩析/融着させて得られる会合型のトナーであることが好ましい。このように、離型剤を含有する樹脂粒子を塩析/融着させることで、離型剤が微細に分散されたトナーを得ることができ、且つ、粒径分布の効果に加えて帯電性の安定化等の効果を発揮することができる。
そして、本発明に係わるトナーは、その製造時から表面に凹凸がある形状を有しており、さらに、樹脂粒子と着色剤粒子とを水系媒体中で融着して得られる会合型のトナーであるために、トナー粒子間における形状および表面性の差がきわめて小さく、結果として表面性が均一となりやすい。このためにトナー間での転写性、帯電性に差異を生じにくく、画像を良好に保つことができるものである。
〈トナーの製造工程〉
本発明に係わるトナーを製造する方法の一例としては、
(1)単量体に離型剤を溶解して単量体溶液を調製する溶解工程、
(2)得られる単量体溶液を水系媒体中に分散する分散工程、
(3)得られる単量体溶液の水系分散系を重合処理することにより、離型剤を含有する樹脂粒子の分散液(ラテックス)を調製する重合工程、
(4)得られる樹脂粒子と、前記着色剤粒子とを水系媒体中で塩析/融着させて会合粒子(トナー粒子)を得る塩析/融着工程、
(5)得られる会合粒子を水系媒体中より濾別し、当該会合粒子から界面活性剤などを洗浄除去する濾過・洗浄工程、
(6)洗浄処理された会合粒子の乾燥工程から構成され、
(7)乾燥処理された会合粒子に外添剤を添加する外添剤添加工程が含まれていてもよい。
〔溶解工程〕
単量体に離型剤を溶解する方法としては特に限定されるものではない。
単量体への離型剤の溶解量としては、最終的に得られるトナーにおける離型剤の含有割合が1〜30質量%、好ましくは2〜20質量%、更に好ましくは3〜15質量%となる量とされる。
なお、この単量体溶液中に、油溶性重合開始剤および他の油溶性の成分を添加することもできる。
〔分散工程〕
単量体溶液を水系媒体中に分散させる方法としては、特に限定されるものではないが、機械的エネルギーにより分散させる方法が好ましく、特に、臨界ミセル濃度以下の濃度の界面活性剤を溶解してなる水系媒体中に、機械的エネルギーを利用して単量体溶液を油滴分散させること(ミニエマルジョン法における必須の態様)が好ましい。
ここに、機械的エネルギーによる油滴分散を行うための分散機としては、特に限定されるものではないが、例えば「クレアミックス」、超音波分散機、機械式ホモジナイザー、マントンゴーリンおよび圧力式ホモジナイザーなどを挙げることができる。また、分散粒子径としては、10〜1000nmとされ、好ましくは30〜300nmとされる。
〔重合工程〕
重合工程においては、基本的には従来公知の重合法(乳化重合法、懸濁重合法、シード重合法などの造粒重合法)を採用することができる。
好ましい重合法の一例としては、ミニエマルジョン法、すなわち、臨界ミセル濃度以下の濃度の界面活性剤を溶解してなる水系媒体中に、機械的エネルギーを利用して単量体溶液を油滴分散させて得られる分散液に水溶性重合開始剤を添加して、ラジカル重合させる方法を挙げることができる。
〔塩析/融着工程〕
塩析/融着工程においては、上記の重合工程により得られる樹脂粒子の分散液に着色剤粒子の分散液を添加し、前記樹脂粒子と、前記着色剤粒子とを水系媒体中で塩析/融着させる。
また、当該塩析/融着工程においては、樹脂粒子および着色剤粒子とともに、荷電制御剤などの内添剤粒子なども融着させることもできる。
塩析/融着工程における「水系媒体」とは、主成分(50質量%以上)が水からなるものをいう。ここに、水以外の成分としては、水に溶解する有機溶媒を挙げることができ、例えばメタノール、エタノール、イソプロパノール、ブタノール、アセトン、メチルエチルケトン、テトラヒドロフランなどが挙げられる。これらのうち、樹脂を溶解しない有機溶媒であるメタノール、エタノール、イソプロパノール、ブタノールのようなアルコール系有機溶媒が特に好ましい。
塩析/融着工程に使用される着色剤粒子は、着色剤を水系媒体中に分散することにより調製することができる。着色剤の分散処理は、水中で界面活性剤濃度を臨界ミセル濃度(CMC)以上にした状態で行われる。
着色剤の分散処理に使用する分散機は特に限定されないが、好ましくは「クレアミックス」、超音波分散機、機械的ホモジナイザー、マントンゴーリンや圧力式ホモジナイザー等の加圧分散機、サンドグラインダー、ゲッツマンミルやダイヤモンドファインミル等の媒体型分散機が挙げられる。また、使用される界面活性剤としては、前述の界面活性剤と同様のものを挙げることができる。
なお、着色剤(粒子)は表面改質されていてもよい。着色剤の表面改質法は、溶媒中に着色剤を分散させ、その分散液中に表面改質剤を添加し、この系を昇温することにより反応させる。反応終了後、着色剤を濾別し、同一の溶媒で洗浄濾過を繰り返した後、乾燥することにより、表面改質剤で処理された着色剤(顔料)が得られる。
塩析/融着法は、樹脂粒子と着色剤粒子とが存在している水中に、アルカリ金属塩および/またはアルカリ土類金属塩等からなる塩析剤を臨界凝集濃度以上の凝集剤として添加し、次いで、前記樹脂粒子のガラス転移点以上に加熱することで塩析を進行させると同時に融着を行う工程である。この工程では、水に無限溶解する有機溶媒を添加してもよい。
ここで、塩析剤であるアルカリ金属塩及びアルカリ土類金属塩は、アルカリ金属として、リチウム、カリウム、ナトリウム等が挙げられ、アルカリ土類金属として、マグネシウム、カルシウム、ストロンチウム、バリウムなどが挙げられ、好ましくはカリウム、ナトリウム、マグネシウム、カルシウム、バリウムが挙げられる。また塩を構成するものとしては、塩素塩、臭素塩、沃素塩、炭酸塩、硫酸塩等が挙げられる。
さらに、前記水に無限溶解する有機溶媒としては、メタノール、エタノール、1−プロパノール、2−プロパノール、エチレングリコール、グリセリン、アセトン等があげられるが、炭素数が3以下のメタノール、エタノール、1−プロパノール、2−プロパノールのアルコールが好ましく、特に、2−プロパノールが好ましい。
塩析/融着工程においては、塩析剤を添加した後に放置する時間(加熱を開始するまでの時間)をできるだけ短くすることが好ましい。すなわち、塩析剤を添加した後、樹脂粒子および着色剤粒子の分散液の加熱をできるだけ速やかに開始し、樹脂粒子のガラス転移温度以上とすることが好ましい。
この理由としては明確ではないが、塩析した後の放置時間によって、粒子の凝集状態が変動し、粒径分布が不安定になったり、融着させたトナーの表面性が変動したりする問題が発生する。
加熱を開始するまでの時間(放置時間)は、通常30分以内とされ、好ましくは10分以内である。
塩析剤を添加する温度は特に限定されないが、樹脂粒子のガラス転移温度以下であることが好ましい。
また、塩析/融着工程においては、加熱により速やかに昇温させる必要があり、昇温速度としては、1℃/分以上とすることが好ましい。昇温速度の上限は、特に限定されないが、急速な塩析/融着の進行による粗大粒子の発生を抑制する観点から15℃/分以下とすることが好ましい。
さらに、樹脂粒子および着色剤粒子の分散液が前記ガラス転移温度以上の温度に到達した後、当該分散液の温度を一定時間保持することにより、塩析/融着を継続させることが肝要である。これにより、トナー粒子の成長(樹脂粒子および着色剤粒子の凝集)と、融着(粒子間の界面消失)とを効果的に進行させることができ、最終的に得られるトナーの耐久性を向上することができる。
また、会合粒子の成長を停止させた後に、加熱による融着を継続させてもよい。
〔濾過・洗浄工程〕
この濾過・洗浄工程では、上記の工程で得られたトナー粒子の分散液から当該トナー粒子を濾別する濾過処理と、濾別されたトナー粒子(ケーキ状の集合物)から界面活性剤や塩析剤などの付着物を除去する洗浄処理とが施される。
ここに、濾過処理方法としては、遠心分離法、ヌッチェ等を使用して行う減圧濾過法、フィルタープレス等を使用して行う濾過法など特に限定されるものではない。
〔乾燥工程〕
この工程は、洗浄処理されたトナー粒子を乾燥処理する工程である。
この工程で使用される乾燥機としては、スプレードライヤー、真空凍結乾燥機、減圧乾燥機などを挙げることができ、静置棚乾燥機、移動式棚乾燥機、流動層乾燥機、回転式乾燥機、攪拌式乾燥機などを使用することが好ましい。
乾燥処理されたトナー粒子の水分は、5質量%以下であることが好ましく、更に好ましくは2質量%以下とされる。
なお、乾燥処理されたトナー粒子同士が、弱い粒子間引力で凝集している場合には、当該凝集体を解砕処理してもよい。ここに、解砕処理装置としては、ジェットミル、ヘンシェルミキサー、コーヒーミル、フードプロセッサー等の機械式の解砕装置を使用することができる。
〔外添剤の添加工程〕
この工程は、乾燥処理されたトナー粒子に外添剤を添加する工程である。
外添剤を添加するために使用される装置としては、タービュラーミキサー、ヘンシエルミキサー、ナウターミキサー、V型混合機などの種々の公知の混合装置を挙げることができる。
さらに、本発明に係わるトナーは、0.7×(Dp50)以下の粒径のトナーが8個数%以下である。この範囲に粒径分布を調整するためには、塩析/融着段階での温度制御を狭くすることがよい。具体的にはできるだけすばやく昇温する、すなわち、昇温を速くすることである。この条件としては、前述の条件に示したものであり、昇温までの時間としては30分未満、好ましくは10分未満、さらに、昇温速度としては、1〜15℃/分が好ましい。
本発明に係わるトナーは、着色剤、離型剤以外にトナー用材料として種々の機能を付与することのできる材料を加えてもよい。具体的には荷電制御剤等が挙げられる。これらの成分は前述の塩析/融着段階で樹脂粒子と着色剤粒子と同時に添加し、トナー中に包含する方法、樹脂粒子自体に添加する方法等種々の方法で添加することができる。
荷電制御剤も同様に種々の公知のもので、且つ水中に分散することができるものを使用することができる。具体的には、ニグロシン系染料、ナフテン酸または高級脂肪酸の金属塩、アルコキシル化アミン、第4級アンモニウム塩化合物、アゾ系金属錯体、サリチル酸金属塩あるいはその金属錯体等が挙げられる。
本発明に係わるトナーの含水率は0.1〜2.0質量%である。トナーの含水量は以下のような方法により調整することができる。
具体的なトナー水分量調整方法;
1)トナー特にそのバインダー樹脂の疎水成分を増量する。バインダー樹脂の構成成分中、疎水性の強いスチレン成分を全モノマー中50質量%以上占めるようにする。特に好ましくは60%以上、更に、好ましくは70%以上がよい。
2)トナーの外添剤の含水率を下げる。それには後記するように外添剤の疎水化度を高くするのが効果的である。外添剤の疎水化度が60以上のものを使用するのが望ましい。
3)表面に存在する非極性の離型剤量を多くするのも有効な方法である。それには特にポリオレフィン系ワックスを使用すると好適であり、表面に存在するポリオレフィンの量を増加させるためには、機械式粉砕機を使用し、破砕時に摩擦熱を付与しトナー表面にブリードアウトさせる方法がある。
4)トナー表面のカルボン酸量を調整する。
水分量の範囲
本発明に係わるトナーは30℃、80%RH環境における含水率が0.1〜2.0質量%である。より好ましくは0.2〜1.8質量%である。
トナーの含水率の測定法
トナーをフィッシャーサンプル瓶に入れ開封したまま、30℃、80%RH環境に72時間放置する。放置後密栓をし、カールフィッシャー法により測定する。測定器は平沼式自動微量水分測定器AQS−724で、測定条件としては、気化温度を110℃、気化時間を25秒とする。
〈現像剤〉
本発明に係わるトナーは、一成分現像剤でも二成分現像剤として用いてもよい。
一成分現像剤として用いる場合は、非磁性一成分現像剤、あるいはトナー中に0.1〜0.5μm程度の磁性粒子を含有させ磁性一成分現像剤としたものがあげられ、いずれも使用することができる。
又、キャリアと混合して二成分現像剤として用いることができる。この場合は、キャリアの磁性粒子として、鉄、フェライト、マグネタイト等の金属、それらの金属とアルミニウム、鉛等の金属との合金等の従来から公知の材料を用いることが出来る。特にフェライト粒子が好ましい。上記磁性粒子は、その体積平均粒径としては15〜100μm、より好ましくは25〜80μmのものがよい。
キャリアの体積平均粒径の測定は、代表的には湿式分散機を備えたレーザ回折式粒度分布測定装置「ヘロス(HELOS)」(シンパティック(SYMPATEC)社製)により測定することができる。
キャリアは、磁性粒子が更に樹脂により被覆されているもの、あるいは樹脂中に磁性粒子を分散させたいわゆる樹脂分散型キャリアが好ましい。コーティング用の樹脂組成としては、特に限定は無いが、例えば、オレフィン系樹脂、スチレン系樹脂、スチレン−アクリル系樹脂、シリコーン系樹脂、エステル系樹脂或いはフッ素含有重合体系樹脂等が用いられる。また、樹脂分散型キャリアを構成するための樹脂としては、特に限定されず公知のものを使用することができ、例えば、スチレン−アクリル系樹脂、ポリエステル樹脂、フッ素系樹脂、フェノール樹脂等を使用することができる。
次に、本発明に係わる有機感光体を用いた画像形成装置について説明する。
図1に示す画像形成装置1は、デジタル方式による画像形成装置であって、画像読取り部A、画像処理部B、画像形成部C、転写紙搬送手段としての転写紙搬送部Dから構成されている。
画像読取り部Aの上部には原稿を自動搬送する自動原稿送り手段が設けられていて、原稿載置台11上に載置された原稿は原稿搬送ローラ12によって1枚宛分離搬送され読み取り位置13aにて画像の読み取りが行われる。原稿読み取りが終了した原稿は原稿搬送ローラ12によって原稿排紙皿14上に排出される。
一方、プラテンガラス13上に置かれた場合の原稿の画像は走査光学系を構成する照明ランプ及び第1ミラーから成る第1ミラーユニット15の速度vによる読み取り動作と、V字状に位置した第2ミラー及び第3ミラーから成る第2ミラーユニット16の同方向への速度v/2による移動によって読み取られる。
読み取られた画像は、投影レンズ17を通してラインセンサである撮像素子CCDの受光面に結像される。撮像素子CCD上に結像されたライン状の光学像は順次電気信号(輝度信号)に光電変換されたのちA/D変換を行い、画像処理部Bにおいて濃度変換、フィルタ処理などの処理が施された後、画像データは一旦メモリに記憶される。
画像形成部Cでは、画像形成ユニットとして、像担持体であるドラム状の感光体21と、その外周に、該感光体21を帯電させる帯電手段(帯電工程)22、帯電した感光体の表面電位を検出する電位検出手段220、現像手段(現像工程)23、転写手段(転写工程)である転写搬送ベルト装置45、前記感光体21のクリーニング装置(クリーニング工程)26及び光除電手段(光徐電工程)としてのPCL(プレチャージランプ)27が各々動作順に配置されている。また、現像手段23の下流側には感光体21上に現像されたパッチ像の反射濃度を測定する反射濃度検出手段222が設けられている。感光体21には、本発明に係わる有機感光体を使用し、図示の時計方向に駆動回転される。
回転する感光体21へは帯電手段22による一様帯電がなされた後、像露光手段(像露光工程)30としての露光光学系により画像処理部Bのメモリから呼び出された画像信号に基づいた像露光が行われる。書き込み手段である像露光手段30としての露光光学系は図示しないレーザダイオードを発光光源とし、回転するポリゴンミラー31、fθレンズ34、シリンドリカルレンズ35を経て反射ミラー32により光路が曲げられ主走査がなされるもので、感光体21に対してAoの位置において像露光が行われ、感光体21の回転(副走査)によって静電潜像が形成される。本実施の形態の一例では文字部に対して露光を行い静電潜像を形成する。
本発明の画像形成装置においては、感光体上に静電潜像を形成するに際し、発振波長が350〜500nmの半導体レーザ又は発光ダイオードを像露光光源として用いることを前提としている。これらの像露光光源を用いて、書込み光源の主査方向の露光径を10〜50μmに絞り込み、有機感光体上にデジタル露光を行うことにより、600dpi(dpi:2.54cm当たりのドット数)以上から2500dpiの高解像度の電子写真画像をうることができる。
前記露光径とは該露光ビームの強度がピーク強度の1/e2以上の領域の主走査方向にそった長さ(Ld)を云う。
用いられる光ビームとしては半導体レーザを用いた走査光学系及びLEDの固体スキャナー等があり、光強度分布についてもガウス分布及びローレンツ分布等があるがそれぞれのピーク強度の1/e2以上の領域を本発明に係わる露光径とする。
感光体21上の静電潜像は現像手段23によって反転現像が行われ、感光体21の表面に可視像のトナー像が形成される。本発明の画像形成方法では、該現像手段に用いられる現像剤には重合トナーを用いることが好ましい。形状や粒度分布が均一な重合トナーを本発明に係わる有機感光体と併用することにより、より鮮鋭性が良好な電子写真画像を得ることができる。
転写紙搬送部Dでは、画像形成ユニットの下方に異なるサイズの転写紙Pが収納された転写紙収納手段としての給紙ユニット41(A)、41(B)、41(C)が設けられ、また側方には手差し給紙を行う手差し給紙ユニット42が設けられていて、それらの何れかから選択された転写紙Pは案内ローラ43によって搬送路40に沿って給紙され、給紙される転写紙Pの傾きと偏りの修正を行う対の給紙レジストローラ44によって転写紙Pは一時停止を行ったのち再給紙が行われ、搬送路40、転写前ローラ43a、給紙経路46及び進入ガイド板47に案内され、感光体21上のトナー画像が転写位置Boにおいて転写極24及び分離極25によって転写搬送ベルト装置45の転写搬送ベルト454に載置搬送されながら転写紙Pに転写され、該転写紙Pは感光体21面より分離し、転写搬送ベルト装置45により定着手段50に搬送される。
定着手段50は定着ローラ51と加圧ローラ52とを有しており、転写紙Pを定着ローラ51と加圧ローラ52との間を通過させることにより、加熱、加圧によってトナーを定着させる。トナー画像の定着を終えた転写紙Pは排紙トレイ64上に排出される。
以上は転写紙の片側への画像形成を行う状態を説明したものであるが、両面複写の場合は排紙切換部材170が切り替わり、転写紙案内部177が開放され、転写紙Pは破線矢印の方向に搬送される。
更に、搬送機構178により転写紙Pは下方に搬送され、転写紙反転部179によりスイッチバックさせられ、転写紙Pの後端部は先端部となって両面複写用給紙ユニット130内に搬送される。
転写紙Pは両面複写用給紙ユニット130に設けられた搬送ガイド131を給紙方向に移動し、給紙ローラ132で転写紙Pを再給紙し、転写紙Pを搬送路40に案内する。
再び、上述したように感光体21方向に転写紙Pを搬送し、転写紙Pの裏面にトナー画像を転写し、定着手段50で定着した後、排紙トレイ64に排紙する。
本発明の画像形成装置としては、上述の感光体と、現像器、クリーニング器等の構成要素をプロセスカートリッジとして一体に結合して構成し、このユニットを装置本体に対して着脱自在に構成しても良い。又、帯電器、像露光器、現像器、転写又は分離器、及びクリーニング器の少なくとも1つを感光体とともに一体に支持してプロセスカートリッジを形成し、装置本体に着脱自在の単一ユニットとし、装置本体のレールなどの案内手段を用いて着脱自在の構成としても良い。
次に図2は本発明に係わる有機感光体を用いたカラー画像形成装置(少なくとも有機感光体の周辺に帯電手段、露光手段、複数の現像手段、転写手段、クリーニング手段及び中間転写体を有する複写機あるいはレーザービームプリンタ)の構成断面図である。ベルト状の中間転写体10は中程度の抵抗の弾性体を使用している。
21は像形成体として繰り返し使用される回転ドラム型の感光体であり、矢示の反時計方向に所定の周速度をもって回転駆動される。
感光体21は回転過程で、帯電手段22により所定の極性・電位に一様に帯電処理され、次いで不図示の像露光手段30により画像情報の時系列電気デジタル画素信号に対応して変調されたレーザービームによる走査露光光等による画像露光を受けることにより目的のカラー画像のイエロー(Y)の色成分像に対応した静電潜像が形成される。
次いで、その静電潜像がイエロー(Y)の現像手段(イエロー色現像器)23Yにより第1色であるイエロートナーにより現像される。この時第2〜第4の現像手段(マゼンタ色現像器、シアン色現像器、ブラック色現像器)23M、23C、23Bkの各現像器は作動オフになっていて感光体21には作用せず、上記第1色目のイエロートナー画像は上記第2〜第4の現像器により影響を受けない。
中間転写体70はローラ79a、79b、79c、79d、79eで張架されて時計方向に感光体21と同じ周速度をもって回転駆動されている。
感光体21上に形成担持された上記第1色目のイエロートナー画像が、感光体1と中間転写体70とのニップ部を通過する過程で、1次転写ローラ24aから中間転写体70に印加される1次転写バイアスにより形成される電界により、中間転写体70の外周面に順次中間転写(1次転写)されていく。
中間転写体70に対応する第1色のイエロートナー画像の転写を終えた感光体21の表面は、クリーニング装置26により清掃される。
以下、同様に第2色のマゼンタトナー画像、第3色のシアントナー画像、第4色のクロ(ブラック)トナー画像が順次中間転写体70上に重ね合わせて転写され、目的のカラー画像に対応した重ね合わせカラートナー画像が形成される。
2次転写ローラ24bで、2次転写対向ローラ79bに対応し平行に軸受させて中間転写体70の下面部に離間可能な状態に配設してある。
感光体21から中間転写体70への第1〜第4色のトナー画像の順次重畳転写のための1次転写バイアスはトナーとは逆極性で、バイアス電源から印加される。その印加電圧は、例えば+100V〜+2kVの範囲である。
感光体21から中間転写体70への第1〜第3色のトナー画像の1次転写工程において、2次転写ローラ24b及び中間転写体クリーニング手段26Aは中間転写体70から離間することも可能である。
ベルト状の中間転写体70上に転写された重ね合わせカラートナー画像の第2の画像担持体である転写材Pへの転写は、2次転写ローラ24bが中間転写体70のベルトに当接されると共に、対の給紙レジストローラ44から転写紙ガイドを通って、中間転写体70のベルトに2次転写ローラ24bとの当接ニップに所定のタイミングで転写材Pが給送される。2次転写バイアスがバイアス電源から2次転写ローラ24bに印加される。この2次転写バイアスにより中間転写体70から第2の画像担持体である転写材Pへ重ね合わせカラートナー画像が転写(2次転写)される。トナー画像の転写を受けた転写材Pは定着手段50へ導入され加熱定着される。
図3は、本発明の一実施の形態を示すカラー画像形成装置の断面構成図である。
このカラー画像形成装置は、タンデム型カラー画像形成装置と称せられるもので、複数組の画像形成部10Y,10M,10C,10Kと、無端ベルト状中間転写体ユニット7と、給紙搬送手段21及び定着手段(定着工程でもある)24とから成る。画像形成装置の本体Aの上部には、原稿画像読み取り装置SCが配置されている。
イエロー色の画像を形成する画像形成部10Yは、第1の像担持体としてのドラム状の感光体1Yの周囲に配置された帯電手段(帯電工程でもある)2Y、露光手段(露光工程でもある)3Y、現像手段(現像工程でもある)4Y、一次転写手段(一次転写工程でもある)としての一次転写ローラ5Y、クリーニング手段(クリーニング工程でもある)6Yを有する。マゼンタ色の画像を形成する画像形成部10Mは、第1の像担持体としてのドラム状の感光体1M、帯電手段2M、露光手段3M、現像手段4M、一次転写手段としての一次転写ローラ5M、クリーニング手段6Mを有する。シアン色の画像を形成する画像形成部10Cは、第1の像担持体としてのドラム状の感光体1C、帯電手段2C、露光手段3C、現像手段4C、一次転写手段としての一次転写ローラ5C、クリーニング手段6Cを有する。黒色画像を形成する画像形成部10Kは、第1の像担持体としてのドラム状の感光体1K、帯電手段2K、露光手段3K、現像手段4K、一次転写手段としての一次転写ローラ5K、クリーニング手段6Kを有する。
無端ベルト状中間転写体ユニット7は、複数のローラにより巻回され、回動可能に支持された半導電性エンドレスベルト状の第2の像担持体としての無端ベルト状中間転写体70を有する。
画像形成部10Y,10M,10C,10Kより形成された各色の画像は、一次転写手段としての一次転写ローラ5Y,5M,5C,5Kにより、回動する無端ベルト状中間転写体70上に逐次転写されて、合成されたカラー画像が形成される。給紙カセット20内に収容された記録媒体としての転写材Pは、給紙手段21により給紙され、複数の中間ローラ22A,22B,22C,22D、レジストローラ23を経て、二次転写手段(二次転写工程でもある)としての二次転写ローラ5Aに搬送され、転写材P上に二次転写してカラー画像が一括転写される。カラー画像が転写された転写材Pは、定着手段24により定着処理され、排紙ローラ25に挟持されて機外の排紙トレイ26上に載置される。
一方、二次転写手段としての二次転写ローラ5Aにより転写材Pにカラー画像を転写した後、転写材Pを曲率分離した無端ベルト状中間転写体70は、クリーニング手段6Aにより残留トナーが除去される。
画像形成処理中、一次転写ローラ5Kは常時、感光体1Kに圧接している。他の一次転写ローラ5Y,5M,5Cはカラー画像形成時にのみ、それぞれ対応する感光体1Y,1M,1Cに圧接する。
二次転写ローラ5Aは、ここを転写材Pが通過して二次転写が行われる時にのみ、無端ベルト状中間転写体70に圧接する。
また、装置本体Aから筐体8を支持レール82L,82Rを介して引き出し可能にしてある。
筐体8は、画像形成部10Y,10M,10C,10Kと、無端ベルト状中間転写体ユニット7とから成る。
画像形成部10Y,10M,10C,10Kは、垂直方向に縦列配置されている。感光体1Y,1M,1C,1Kの図示左側方には無端ベルト状中間転写体ユニット7が配置されている。無端ベルト状中間転写体ユニット7は、ローラ71,72,73,74を巻回して回動可能な無端ベルト状中間転写体70、一次転写ローラ5Y,5M,5C,5K、及びクリーニング手段6Aとから成る。
本発明の画像形成方法及び画像形成装置は電子写真複写機、レーザプリンター、LEDプリンター及び液晶シャッター式プリンター等の電子写真装置一般に適応するが、更に、電子写真技術を応用したディスプレー、記録、軽印刷、製版及びファクシミリ等の装置にも幅広く適用することができる。
以下、本発明の実施例について説明するが、本発明はこれらによって限定されるものではない。以下において、「部」は質量部を示し、「X線の回折スペクトル」はCu−Kα特性X線の回折スペクトルを意味する。
合成例1(μ−オキソ−ガリウムフタロシアニン二量体の合成)
(1)クロロガリウムフタロシアニンの合成
攪拌器、塩化カルシウム管などの必要器具を備えた1000mlのガラス製4口フラスコに、フタロニトリル177.2g、1−クロロナフタレン820mlおよび塩化ガリウム50.0gを仕込み、10時間還流下攪拌した。その後、還流を停止し、200℃程度まで放冷した後熱時濾過して、熱ジメチルホルムアミド3500mlおよびジメチルホルムアミド3000mlを用いて振りかけ洗浄した。得られたウエットケーキをジメチルホルムアミド800mlに分散し、5時間攪拌還流した後、熱時濾別し、更に熱ジメチルホルムアミド2500mlおよびジメチルホルムアミド2000mlを用いて振りかけ洗浄し、ジメチルホルムアミドをメタノールで置換した後乾燥することにより、青色固体のクロロガリウムフタロシアニン125.0g(収率73.5%)を得た。
(2)A型ダイマーの合成
上記のようにして得られたクロロガリウムフタロシアニン10.0gを濃硫酸300gに温度を0〜5℃に保ちながら徐々に溶解させ、この温度で1時間攪拌した。これをガラスフィルターで濾過して不溶解物を除去し、濾液を、1500mlの氷水に、温度が5℃を越えないように攪拌しながら注加し、注加終了後さらに2時間攪拌した。そして、濾別し、水洗後、1500mlのイオン交換水に分散し、濾別した。水洗後、ウエットケーキを4%アンモニア水600mlに分散し、68時間還流下に攪拌し、濾別した後、得られたケーキをイオン交換水で十分に洗浄した後、減圧下50℃で乾燥し、粉砕することにより、8.72g(収率89.8%)の青色固体を得た。
次いで、得られた青色固体7.7gをキノリン160mlに加え、190〜200℃で攪拌した。予め付属させたエステル管を使用し、生成する水を反応系内より除去しながら3時間還流下、攪拌した。熱時濾過し、DMFによる振りかけ洗浄に引続き、メタノールによってケーキ中のDMFを置換した後、乾燥し粉砕することにより、A型結晶変態を有するμ−オキソ−ガリウムフタロシアニン二量体7.1g(収率93.6%)を得た。
(3)アモルファス型二量体の合成
上記のようにして得られたA型μ−オキソ−ガリウムフタロシアニン二量体70gを、ベッセル壁部材としてシリコンカーバイドを使用したサンドグラインダーに仕込み、粉砕メディアとして粒子径が3mmのジルコニアセラミックスを用い、20時間乾式粉砕を行った。この過程でアモルファス型に変換された。その後粉砕メディアを分離し、15gのアモルファス型μ−オキソ−ガリウムフタロシアニン二量体を青色固体として得た。
(4)μ−オキソ−ガリウムフタロシアニン二量体の合成
上記のようにして得られたアモルファス型μ−オキソ−ガリウムフタロシアニン二量体10gにジメチルホルムアミド300mlを加え、室温下で15時間攪拌し分散した。この分散体から固形物を濾取し、ジメチルホルムアミドを酢酸エチルで置換した後、減圧乾燥することにより、青色個体のμ−オキソ−ガリウムフタロシアニン二量体7.9gを得た。
この物質は、X線の回折スペクトルにおいて、ブラッグ角度(2θ±0.2°)が7.5°、9.9°、12.5°、16.3°、18.6°、25.1°、28.3°の個所に特徴的な回折ピークを示すものであった。
フタロシアニン二量体化合物の検出方法としては、マトリックス支援レーザー脱離イオン化飛行時間型質量分析法(以下、「MSLDI−TOF−MS法」、あるいは単に「TOF−MS法」と略称することがある。)、電界放射型質量分析法、高速原子衝撃質量分析法、電子衝撃イオン化質量分析法などを用いることができる。
MALDI−TOF−MS法を用いる場合には、微粉末の状態、微粉末のみを有機溶媒に分散または溶解させた後に適当な方法で乾固した状態、微粉末および各種の樹脂結着剤を有機溶媒に分散または溶解させた後に適当な方法で乾固した状態のいずれの試料形態についても測定でき、マトリックス化合物を添加することにより定量できる。
これらの測定により、上記の方法で得られたμ−オキソ−ガリウムフタロシアニン二量体は、100%の純物質であることが確認された。
合成例2(ヒドロキシガリウムフタロシアニン(1)の合成)
α−クロロナフタレン100mlに、3塩化ガリウム10部およびオルトフタロニトリル29.1部を加え、窒素気流下200℃で24時間反応させた後、生成したクロロガリウムフタロシアニン結晶を濾別した。このウエットケーキをジメチルホルムアミド100mlに分散させ、150℃で30分間加熱攪拌し、濾別後、メタノールで十分洗浄し、乾燥して28.9部(82.5%)のクロロガリウムフタロシアニン結晶を得た。得られたクロロガリウムフタロシアニン2部を濃硫酸50部に溶解し、2時間攪拌した後、氷冷した蒸留水75ml、濃アンモニア水75mlおよびジクロロメタン450mlの混合液に滴下して結晶を析出させた。析出した結晶を蒸留水で充分に洗浄し、乾燥することによりヒドロキシガリウムフタロシアニンの結晶1.8部を得た。この結晶は、X線の回折スペクトルにおいて、ブラッグ角度(2θ±0.2°)が7.0°、13.4°、16.6°、26.0°および26.7°の個所に特徴的な回折ピークを有していた。
合成例3(ヒドロキシガリウムフタロシアニン(2)の合成)
上記合成例2で得られたヒドロキシガリウムフタロシアニン(1)の結晶1部を、N,N−ジメチルホルムアミド15部および直径1mmのガラスビーズ30部と共に24時間ミリングした後、結晶を分離し、酢酸n−ブチルで洗浄し、乾燥することにより、ヒドロキシガリウムフタロシアニン(2)の結晶0.9部を得た。この結晶は、X線の回折スペクトルにおいて、ブラッグ角度(2θ±0.2°)が7.5°、9.9°、12.5°、16.3°、18.6°、25.1°および28.3°の個所に特徴的な回折ピークを有し、そのうち7.5°および28.3°の個所のピークは高い回折ピークであった。
電荷発生物質の調製
〔電荷発生物質a〕
上記合成例1で得られたμ−オキソ−ガリウムフタロシアニン二量体をそのまま電荷発生物質aとした。この電荷発生物質aは、GaPhCダイマーの含有割合が100モル%、GaPhCモノマーの含有割合が0モル%のものである。
〔電荷発生物質b〕
上記合成例3で得られたヒドロキシガリウムフタロシアニン(2)をそのまま電荷発生物質bとした。この電荷発生物質bは、GaPhCダイマーの含有割合が0モル%、GaPhCモノマーの含有割合が100モル%のものである。
〔電荷発生物質c〕
上記合成例3で得られたヒドロキシガリウムフタロシアニン(2)の72ミリモルをN,N−ジメチルホルムアミド50mlに加え、室温で2時間攪拌分散した後、上記合成例1で得られたμ−オキソ−ガリウムフタロシアニン二量体の28ミリモルを分散しながら徐々に加え、更に3時間攪拌分散した。この混合物を濾取し、N,N−ジメチルホルムアミドを酢酸エチルで置換した後、減圧下で乾燥することにより、青色固体のGaPhCダイマー含有混合物を得た。これを電荷発生物質cとする。この電荷発生物質cは、GaPhCダイマーの含有割合が28モル%、GaPhCモノマーの含有割合が72モル%のものである。
〔電荷発生物質d〕
上記合成例3で得られたヒドロキシガリウムフタロシアニン(2)の67ミリモルと、上記合成例1で得られたμ−オキソ−ガリウムフタロシアニン二量体の33ミリモルとを用いた他は、電荷発生物質cと同様にして、GaPhCダイマーの含有割合が33モル%、GaPhCモノマーの含有割合が67モル%の青色固体であるGaPhCダイマー含有混合物を得た。これを電荷発生物質dとする。
〔電荷発生物質e〕
上記合成例3で得られたヒドロキシガリウムフタロシアニン(2)の50ミリモルと、上記合成例1で得られたμ−オキソ−ガリウムフタロシアニン二量体の50ミリモルとを用いた他は、電荷発生物質cと同様にして、GaPhCダイマーの含有割合が50モル%、GaPhCモノマーの含有割合が50モル%の青色固体であるGaPhCダイマー含有混合物を得た。これを電荷発生物質eとする。
〔電荷発生物質f〕
上記合成例3で得られたヒドロキシガリウムフタロシアニン(2)の5ミリモルと、上記合成例1で得られたμ−オキソ−ガリウムフタロシアニン二量体の95ミリモルとを用いた他は、電荷発生物質cと同様にして、GaPhCダイマーの含有割合が95モル%、GaPhCモノマーの含有割合が5モル%の青色固体であるGaPhCダイマー含有混合物を得た。これを電荷発生物質fとする。
〔電荷発生物質g〕
上記合成例3で得られたヒドロキシガリウムフタロシアニン(2)の2ミリモルと、上記合成例1で得られたμ−オキソ−ガリウムフタロシアニン二量体の98ミリモルとを用いた他は、電荷発生物質cと同様にして、GaPhCダイマーの含有割合が98モル%、GaPhCモノマーの含有割合が2モル%の青色固体であるGaPhCダイマー含有混合物を得た。これを電荷発生物質gとする。
〔電荷発生物質h〕
上記合成例2で得られたヒドロキシガリウムフタロシアニン(1)をそのまま電荷発生物質hとした。この電荷発生物質hは、GaPhCダイマーの含有割合が0モル%、GaPhCモノマーの含有割合が100モル%のものであり、そのX線の回折スペクトルは本発明の条件を満たさないものである。
以上の電荷発生物質a〜hの各々について、MALDI−TOF−MS法にて分析し、検量線を作成し、GaPhCダイマーとGaPhCモノマーの含有割合の確定に用いた。なお、上記の分散攪拌条件では、GaPhCダイマーおよびGaPhCモノマーの組成変動は見られなかった。
図4は、上記の電荷発生物質cについてのX線の回折スペクトルであり、電荷発生物質d〜gについても、同様のX線の回折スペクトルが得られた。
また、後述するところに従って、上記の電荷発生物質を用いて作製された電子写真用感光体から、当該電荷発生物質を含有する電荷発生層を剥離して電荷発生物質を回収し、上述した方法によって分析を行ったところ、いずれの電荷発生物質においても、GaPhCダイマーとGaPhCモノマーとの含有割合の値に変化はみられず、X線の回折スペクトルも同一のピーク値を有するものであった。
<感光体1の製造>
(1)中間層の形成
円筒状のアルミニウム製導電性基体上に、中間層形成用組成物(UCL−1)を浸漬法によって塗布し、150℃において10分間加熱乾燥して膜厚0.2μmの中間層を形成した。
中間層形成用組成物(UCL−1)は、ジルコニウム化合物(商品名:オルガチックスZC540、マツモト製薬社製)10部と、シラン化合物(商品名:A1110、日本ユンカー社製)1部と、イソプロパノール40部と、ブタノール20部とよりなる組成物である。
(2)電荷発生層の形成
上記電荷発生物質aの1部と、バインダー樹脂であるポリビニルブチラール(商品名:エスレックBM−S、積水化学社製)1部と、溶剤である酢酸n−ブチル100部とを、ガラスビーズと共にペイントシェーカーで1時間分散処理することにより、電荷発生層形成用分散液(CGL−a)を調製した。
この電荷発生層形成用分散液(CGL−a)を上記中間層の上に浸漬法により塗布し、100℃において10分間加熱乾燥して膜厚約0.2μmの電荷発生層を形成した。
(3)電荷輸送層の形成
N,N−ビス(3,4−ジメチルフェニル)ビフェニル−4−アミン2部と、N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−1,1′−ビフェニル−4,4′−ジアミン2部と、ビスフェノールZ型ポリカーボネート(粘度平均分子量4万)6部と、テトラヒドロフラン80部と、2,6−ジ−t−ブチル−4−メチルフェノール0.2部とを混合して、電荷輸送層形成用分散液(CTL−1)を調製した。
この電荷輸送層形成用分散液(CTL−1)を上記電荷発生層の上に浸漬法により塗布し、120℃で1時間加熱乾燥して膜厚20μmの電荷輸送層を形成し、もって感光体1を製造した。
<感光体2〜8の製造>
上記感光体1の製造において、電荷発生物質aの代わりに、電荷発生物質b〜hの各々を用いて電荷発生層形成用分散液(CGL−b)〜(CGL−h)を調製し、その各々を用いて電荷発生層を形成した他は、同様にして感光体2〜8を製造した。
以上の感光体1〜8において、感光体1及び3〜7が本発明のものであり、感光体2および感光体8は比較用感光体である。感光体1〜8の処方を下記表1にまとめて記載した。又、表1中には、各感光体の電位安定性の評価及びX線回折スペクトルの評価結果を記載した。
Figure 0004529745
表1中、
「D/M」は、GaPhCダイマーとGaPhCモノマーのモル%の値による比率を示す。また「ブラッグ角」の欄の「(i)」は、X線回折スペクトルのブラッグ角が7.5°、9.9°、12.5°、16.3°、18.6°、25.1°および28.3°の個所に特徴的なピークを有することを表し、「(ii)」は、同じく7.0°、13.4°、16.6°、26.0°および26.7°の個所に特徴的なピークを有することを表す。
電位安定性(初期電位変動ΔV1.2
市販のカラープリンターmagicolor2200DeskLaser(ミノルタQMS社製:像露光光源として405nmの短波長レーザ光源を用いた)を用いて、連続複写操作を行ない、第1回目の画像形成プロセスにおける感光体未露光部(白ベタ画像部)の帯電電位の値と、これに続く第2回目の同じ部分の帯電電位の値を現像位置において測定し、それらの電位の値の差を絶対値(単位:V)で求めた。この初期電位変動ΔV1.2の値は、それが小さいほど帯電電位が安定していることを示す。表1の結果より、GaPhCダイマーを用いた感光体、No.1、2〜7はGaPhCモノマーのみを含有した感光体No.2及びNo.8に比し、電位安定性が優れている。
本発明に用いるトナー及び該トナーを用いた現像剤を作製した。
次に、下記のごとくしてトナーを作製した。
*トナー1−Bkの作製
スチレン:ブチルアクリレート:ブチルメタクリレート=80:10:10の質量比からなるスチレン−アクリル樹脂100部、カーボンブラック10部、低分子量ポリプロピレン(数平均分子量=3500)5部とを溶融、混練した後、機械式粉砕機を使用し、微粉砕を行い、風力分級機により念入りな分級をして、50%体積粒径(Dv50)が3.8μmの着色粒子を得た。この着色粒子に対して疎水性シリカ(疎水化度=80/数平均一次粒子径=12nm)を1.2質量%添加しトナーを得た。これを「トナー1−Bk」とする。
*トナー2−Bkの作製
スチレン:ブチルアクリレート:ブチルメタクリレート:アクリル酸=75:18:5:2の質量比からなるスチレン−アクリル樹脂100部、カーボンブラック10部、低分子量ポリプロピレン(数平均分子量=3500)5部とを溶融、混練した後、機械式粉砕機を使用し、微粉砕を行い、風力分級機により念入りな分級をして50%体積粒径(Dv50)が8.1μmの着色粒子を得た。この着色粒子に対して疎水性シリカ(疎水化度=80/数平均一次粒子径=12nm)を1.2質量%添加しトナーを得た。これを「トナー2−Bk」とする。
*トナー3−Bkの作製
スチレン:ブチルアクリレート:メタクリル酸=70:20:10の質量比からなるスチレン−アクリル樹脂100部、カーボンブラック10部、低分子量ポリプロピレン(数平均分子量=3500)4部とを溶融、混練した後、機械式粉砕機を使用し、微粉砕を行い、風力分級機により念入りな分級をして50%体積粒径(Dv50)が5.8μmの着色粒子を得た。この着色粒子に対して疎水性シリカ(疎水化度=75/数平均一次粒子径=12nm)を1.2質量%添加しトナーを得た。これを「トナー3−Bk」とする。
*トナー4−Bk、トナー4−Y、トナー4−M、トナー4−Cの作製
n−ドデシル硫酸ナトリウム=0.90kgと純水10.0Lを入れ撹拌溶解する。この液に、撹拌下、リーガル330R(キャボット社製カーボンブラック)1.20kgを徐々に加え、ついで、サンドグラインダー(媒体型分散機)を用いて、20時間連続分散した。分散後、大塚電子社製・電気泳動光散乱光度計ELS−800を用いて、上記分散液の粒径を測定した結果、重量平均粒径で122nmであった。また、静置乾燥による質量法で測定した上記分散液の固形分濃度は16.6質量%であった。この分散液を「着色剤分散液1」とする。
ドデシルベンゼンスルホン酸ナトリウム0.055kgをイオン交換水4.0Lに混合し、室温下撹拌溶解する。これを、アニオン界面活性剤溶液Aとする。
ノニルフェニルアルキルエーテル0.014kgをイオン交換水4.0Lに混合し、室温下撹拌溶解する。これを、ノニオン界面活性剤溶液Aとする。
過硫酸カリウム=223.8gをイオン交換水12.0Lに混合し、室温下撹拌溶解する。これを、開始剤溶液Aと呼ぶ。
温度センサー、冷却管、窒素導入装置を付けた100Lの反応釜に、数平均分子量(Mn)が3500のポリプロピレンエマルジョン3.41kgとアニオン界面活性剤溶液Aとノニオン界面活性剤溶液Aとを入れ、撹拌を開始する。次いで、イオン交換水44.0Lを加える。
加熱を開始し、液温度が75℃になったところで、開始剤溶液Aを全量添加する。その後、液温度を75℃±1℃に制御しながら、スチレン14.3kgとアクリル酸n−ブチル2.88kgとメタクリル酸0.8kgとt−ドデシルメルカプタン548gとを投入する。
さらに、液温度を80℃±1℃に上げて、6時間加熱撹拌を行った。液温度を40℃以下に冷却し撹拌を停止する。ポールフィルターで濾過し、これをラテックスA1とした。
なお、ラテックスA1中の樹脂粒子のガラス転移温度は59℃、軟化点は116℃、分子量分布は、重量平均分子量=1.34万、重量平均粒径は125nmであった。
過硫酸カリウム=200.7gをイオン交換水12.0Lに混合し、室温下撹拌溶解する。これを、開始剤溶液Bとする。
温度センサー、冷却管、窒素導入装置、櫛形バッフルを付けた100Lの反応釜に、ノニオン界面活性剤溶液Aを入れ、撹拌を開始する。次いで、イオン交換水44.0Lを投入する。
加熱を開始し、液温度が70℃になったところで、開始剤溶液Bを添加する。この時、スチレン11.0kgとアクリル酸n−ブチル4.00kgとメタクリル酸1.04kgとt−ドデシルメルカプタン9.02gとをあらかじめ混合した溶液を投入する。
その後、液温度を72℃±2℃に制御して、6時間加熱撹拌を行った。さらに、液温度を80℃±2℃に上げて、12時間加熱撹拌を行った。
液温度を40℃以下に冷却し撹拌を停止する。ポールフィルターで濾過し、この濾液をラテックスB1とした。
なお、ラテックスB1中の樹脂粒子のガラス転移温度は58℃、軟化点は132℃、分子量分布は、重量平均分子量=24.5万、重量平均粒径は110nmであった。
塩析剤としての塩化ナトリウム=5.36kgとイオン交換水20.0Lを入れ、撹拌溶解する。これを、塩化ナトリウム溶液Aとする。
温度センサー、冷却管、窒素導入装置、櫛形バッフルを付けた100LのSUS反応釜(撹拌翼はアンカー翼)に、上記で作製したラテックスA1=20.0kgとラテックスB1=5.2kgと着色剤分散液1=0.4kgとイオン交換水20.0kgとを入れ撹拌する。ついで、35℃に加温し、塩化ナトリウム溶液Aを添加する。その後、5分間放置した後に、昇温を開始し、液温度85℃まで5分で昇温する(昇温速度=10℃/分)。液温度85℃±2℃にて、6時間加熱撹拌し、塩析/融着させる。その後、30℃以下に冷却し撹拌を停止する。目開き45μmの篩いで濾過し、この濾液を会合液とする。ついで、遠心分離機を使用し、会合液よりウェットケーキ状の非球形状粒子を濾取した。その後、イオン交換水により洗浄した。
上記で洗浄を完了したウェットケーキ状の着色粒子を、40℃の温風で乾燥し、着色粒子を得た。更に風力分級機により念入りな分級をして50%体積粒径(Dv50)が4.2μmの着色粒子を得た。さらに、この着色粒子に疎水性シリカ(疎水化度=70、数平均一次粒子径=12nm)を1.0質量%添加し、「トナー4−Bk」を得た。
トナー4−Bkの製造において、カーボンブラック10部の代わりにC.I.ピグメントイエロー185を8部使用した以外同様にして「トナー4−Y」を得た。
トナー4−Bkの製造において、カーボンブラック10部の代わりにC.I.ピグメントレッド122を10部使用した以外同様にして「トナー4−M」を得た。
トナー4−Bkの製造において、カーボンブラック10部の代わりにC.I.ピグメントブルー15:3を5部使用した以外同様にして「トナー4−C」を得た。
*トナー5−Bk、トナー5−Y、トナー5−M、トナー5−Cの作製
トナー4−Bkの融着条件を変更して粒径を変化させた着色粒子を調製した。更に風力分級機により念入りな分級をして50%体積粒径(Dv50)が5.0μmの着色粒子を得た。この着色粒子に疎水性シリカ(疎水化度=75、数平均一次粒径=12nm)を1.0質量%添加し、「トナー5−Bk」を得た。
トナー5−Bkの製造において、カーボンブラック10部の代わりにC.I.ピグメントイエロー185を8部使用した以外同様にして「トナー5−Y」を得た。
トナー5−Bkの製造において、カーボンブラック10部の代わりにC.I.ピグメントレッド122を10部使用した以外同様にして「トナー5−M」を得た。
トナー5−Bkの製造において、カーボンブラック10部の代わりにC.I.ピグメントブルー15:3を5部使用した以外同様にして「トナー5−C」を得た。
上記各トナーの粒径、粒度分布の測定結果を表2に記載する。
現像剤の作製
上記の各トナー、即ちトナー1−Bk〜トナー5−C(全部で11のトナー)に、シリコーン樹脂を被覆した50%体積粒径(Dv50)が45μmのフェライトキャリアを混合し、トナー濃度6%の現像剤をそれぞれ調製し、評価に供した。これらの現像剤24種ををトナーに対応してそれぞれ現像剤1−Bk〜現像剤5−Cとする。
キャリアの50%体積粒径(Dv50)の測定は、代表的には湿式分散機を備えたレーザ回折式粒度分布測定装置「ヘロス(HELOS)」(シンパティック(SYMPATEC)社製)により測定することができる。
Figure 0004529745
《評価1》
得られた感光体及び現像剤を表3のように組み合わせ、市販のカラープリンターmagicolor2200DeskLaser(ミノルタQMS社製)書き込みドット径可変改造機に搭載し、像露光光源として405nmの短波長レーザ光源を用いた。感光体のスポット露光が感光体面上で0.5mWになるように設定した。
ドット再現性
評価スタート時に、レーザビームの書き込みの主査方向の露光径を15、30及び50μmに変化させ、ハーフトーン画像を作製し、1万枚の印刷を通して、評価した。
◎:600dpi〜2400dpi迄、各dpiのハーフトーン画像が明瞭に(各ドットが独立して)再現されている(高画質特性が非常に良好)。
○:600dpi〜1200dpi迄、各dpiのハーフトーン画像が明瞭に再現されているが、2400dpiのハーフトーン画像は明瞭さ(各ドットの独立性)が不十分(高画質特性が良好)。
△:600dpiのハーフトーン画像が明瞭に再現されているが、1200及び2400dpiのハーフトーン画像は明瞭さが不十分(高画質特性がやや不十分)。
×:600dpiのハーフトーン画像でも明瞭さ(各ドットの独立性)が不十分(高画質特性が全く不十分)
画像濃度
評価スタート時に、レーザビームの書き込みの主査方向の露光径が30μmを用い、1万枚の印刷を通して評価した。オリジナルのべた黒画像をプリンター用紙(中性紙)に印刷し、画像濃度の再現性を評価した。画像濃度は濃度計「RD−918」(マクベス社製)を使用し、プリンター用紙の濃度を0.0とした相対濃度で測定した。
◎:1万枚の印刷を通して1.3以上/良好
○:1万枚の印刷を通して1.0以上〜1.3未満/実用上問題ないレベル
×:1万枚の印刷の中で1.0未満の印刷が発生/実用上問題あり
履歴メモリーの評価
前記カラープリンターmagicolor2200DeskLaserを高温高湿環境下(HH:30℃、80%RH)に24hr放置後、低温低湿環境下(LL:10℃、20RH%)に置き、30分後、コピーした。文字画像とハーフトーン画像のオリジナル画像をコピーし、発生した残像や黒帯状の画像の濃度差(ΔHD=最大濃度−最小濃度)で判定
◎:残像や黒帯状の画像の濃度差ΔHDが0.02未満(良好)
○:残像や黒帯状の画像の濃度差ΔHDが0.02〜0.04(実用上問題なし)
△:残像や黒帯状の画像の濃度差ΔHDが0.05〜0.06(実用性再検討要のレベル)
×:残像や黒帯状の画像の濃度差ΔHDが0.07以上(実用上問題あり)
トナー飛散
ドット再現性の評価試料を用いて、評価した。
◎:トナー飛散が非常に少ない(良好)
○:微かにトナー飛散があるが、注視しなければ気づかない程度(実用可)
×:トナー飛散が多く、ドット画像の形状が崩れている(実用不可)
上記カラープリンターのプロセス条件は下記の条件で実施した。
帯電器:鋸歯電極
露光器:半導体レーザ(発振波長;405nm)
現像:表3に記載の1−Bk〜5−Bkのブラックトナー、反転現像法
転写:中間転写ベルト使用
クリーニング:クリーニングブレード
定着:加熱定着
プロセススピード:100mm/sec
評価結果を下記の表3に示した。
Figure 0004529745
表3より明らかなように、電荷発生物質として本願発明に係わる金属フタロシアニン二量体を含有する電荷発生物質の有機感光体を用いた組み合わせNo.1〜5及びNo.8〜11は、短波長レーザ露光での小さいドットの再現性が安定しており、ドット再現性、画像濃度、履歴メモリー及びトナー飛散の各評価において良好な結果を得ているのに対し、モノマーのヒドロキシガリウムフタロシアニンを用いた組み合わせNo.7はドット再現性、画像濃度が劣化しており、組み合わせNo.12ではドット再現性及び履歴メモリーの評価が劣化している。
《評価2》
表4のように感光体及びトナーを組み合わせ、市販のカラープリンターmagicolor2200DeskLaser(ミノルタQMS社製)改造機に搭載し、像露光光源として405nmの短波長レーザ光源を用い、カラー画像の評価を行なった。評価項目は《評価1》の評価項目の他に、色再現性の評価を追加した。
色再現性
評価スタート時に、レーザビームの露光径を変化させ、書き込みの主査方向の露光径を15μm、30μm、50μmを用い、1枚目の画像および100枚目の画像のY、M、C各トナーにおける二次色(レッド、ブルー、グリーン)のソリッド画像部の色を「MacbethColor−Eye7000」により測定し、CMC(2:1)色差式を用いて各ソリッド画像の1枚目と100枚目の色差を算出した。
◎:露光径が15μm、30μm及び50μmの全てのドット画像において色差が3以下(良好)
○:露光径が30μm及び50μmのドット画像において色差が3以下(実用可)
△:露光径が50μmのドット画像のみ色差が3以下(再検討要)
×:全ての露光径で色差が3より大の場合/実用上問題あり(実用不可)
結果を表4に示す。
Figure 0004529745
表4より明らかなように、本発明の金属フタロシアニン二量体を含有する有機感光体を用いた組み合わせNo.13〜17はカラー画像の色再現性も含めた評価項目全てにおいて、良好な評価結果を得ている。
《評価3》
前記評価2の評価条件で、露光器の半導体レーザを発光ダイオード(発振波長:380nm)に変更した以外は評価2と同様にして評価した。発光ダイオードを像露光光源として用いても、評価結果はほぼ評価2と同様であった。
《評価4》
評価2の組み合わせを基本的に図3の市販のタンデム型フルカラー複合機8050(コニカミノルタビジネステクノロジーズ(株)社製)改造機を用いて、カラー画像の評価を行った。評価項目も評価2の評価項目と同じにした。
前記評価2の評価条件で、露光器の半導体レーザの発振波長を(発振波長:480nm)に変更し、画像形成のライン速度L/Sを、220mm/sの条件で評価した。その結果、評価結果はほぼ評価2と同様であった。
本発明の画像形成装置の機能が組み込まれた概略図である。 本発明の有機感光体を用いたカラー画像形成装置の構成断面図である。 本発明の一実施の形態を示すカラー画像形成装置の断面構成図である。 電荷発生物質cについてのX線回折スペクトルである。
符号の説明
1 画像形成装置
21 感光体
22 帯電手段
23 現像手段
24 転写極
25 分離極
26 クリーニング装置
30 露光光学系
45 転写搬送ベルト装置
50 定着手段
250 分離爪ユニット

Claims (4)

  1. 有機感光体上に発振波長が350〜500nmの半導体レーザ又は発光ダイオードを書込み光源として静電潜像を形成する像露光工程及び該静電潜像をトナー像に顕像化する現像工程を有する画像形成方法において、該有機感光体が、導電性支持体上に電荷発生物質を含有する電荷発生層と、これに積層された電荷輸送層とを有し、前記電荷発生層がガリウムフタロシアニン二量体を28〜98モル%及びヒドロキシガリウムフタロシアニンを2〜72モル%含有し、Cu−Kα特性X線の回折スペクトルにおいて、少なくともブラッグ角(2θ±0.2)が7.5°および28.3°の個所に高い回折ピークを有する電荷発生物質を含有することを特徴とする画像形成方法。
  2. 前記書込み光源の主査方向の露光径が10〜50μmであることを特徴とする請求項1に記載の画像形成方法。
  3. 前記現像工程に用いる現像剤が、トナー粒子の50%個数粒径をDp50とすると、粒径が0.7×(Dp50)以下のトナー粒子の含有量が8個数%以下であり且つ含水率が0.1〜2.0質量%(30℃、80%RH環境下)であるトナーを含有することを特徴とする請求項1又は2に記載の画像形成方法。
  4. 有機感光体上に発振波長が350〜500nmの半導体レーザ又は発光ダイオードを書込み光源として静電潜像を形成する像露光手段及び該静電潜像をトナー像に顕像化する現像手段を有する画像形成装置において、該有機感光体が、導電性支持体上に電荷発生物質を含有する電荷発生層と、これに積層された電荷輸送層とを有し、前記電荷発生層がガリウムフタロシアニン二量体を28〜98モル%及びヒドロキシガリウムフタロシアニンを2〜72モル%含有し、Cu−Kα特性X線の回折スペクトルにおいて、少なくともブラッグ角(2θ±0.2)が7.5°および28.3°の個所に高い回折ピークを有する電荷発生物質を含有することを特徴とする画像形成装置。
JP2005075013A 2005-03-16 2005-03-16 画像形成方法及び画像形成装置 Expired - Fee Related JP4529745B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005075013A JP4529745B2 (ja) 2005-03-16 2005-03-16 画像形成方法及び画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005075013A JP4529745B2 (ja) 2005-03-16 2005-03-16 画像形成方法及び画像形成装置

Publications (2)

Publication Number Publication Date
JP2006259100A JP2006259100A (ja) 2006-09-28
JP4529745B2 true JP4529745B2 (ja) 2010-08-25

Family

ID=37098460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005075013A Expired - Fee Related JP4529745B2 (ja) 2005-03-16 2005-03-16 画像形成方法及び画像形成装置

Country Status (1)

Country Link
JP (1) JP4529745B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4779037B2 (ja) * 2009-06-08 2011-09-21 シャープ株式会社 電子写真感光体およびそれを備えた画像形成装置
JP5957888B2 (ja) * 2012-01-10 2016-07-27 株式会社リコー 新規な結晶型を有するガリウムフタロシアニンダイマー結晶及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088023A (ja) * 1996-09-13 1998-04-07 Orient Chem Ind Ltd 新規な結晶変態を有するμ−オキソ−ガリウムフタロシアニンダイマー及びこれを用いた電子写真感光体
JP2000105479A (ja) * 1998-07-31 2000-04-11 Canon Inc 電子写真感光体、プロセスカ―トリッジ及び電子写真装置
JP2001154386A (ja) * 1999-11-30 2001-06-08 Ricoh Co Ltd 電子写真感光体
JP2004151321A (ja) * 2002-10-30 2004-05-27 Konica Minolta Holdings Inc 画像形成方法及び画像形成装置
JP2004177463A (ja) * 2002-11-25 2004-06-24 Konica Minolta Holdings Inc 画像形成方法及び画像形成装置
JP4114634B2 (ja) * 2004-05-14 2008-07-09 コニカミノルタビジネステクノロジーズ株式会社 電子写真用感光体、その製造方法、これを用いる画像形成方法、画像形成装置および画像形成用プロセスカートリッジ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088023A (ja) * 1996-09-13 1998-04-07 Orient Chem Ind Ltd 新規な結晶変態を有するμ−オキソ−ガリウムフタロシアニンダイマー及びこれを用いた電子写真感光体
JP2000105479A (ja) * 1998-07-31 2000-04-11 Canon Inc 電子写真感光体、プロセスカ―トリッジ及び電子写真装置
JP2001154386A (ja) * 1999-11-30 2001-06-08 Ricoh Co Ltd 電子写真感光体
JP2004151321A (ja) * 2002-10-30 2004-05-27 Konica Minolta Holdings Inc 画像形成方法及び画像形成装置
JP2004177463A (ja) * 2002-11-25 2004-06-24 Konica Minolta Holdings Inc 画像形成方法及び画像形成装置
JP4114634B2 (ja) * 2004-05-14 2008-07-09 コニカミノルタビジネステクノロジーズ株式会社 電子写真用感光体、その製造方法、これを用いる画像形成方法、画像形成装置および画像形成用プロセスカートリッジ

Also Published As

Publication number Publication date
JP2006259100A (ja) 2006-09-28

Similar Documents

Publication Publication Date Title
US20050175924A1 (en) Toner and image forming method using the toner
JP2006126246A (ja) 画像形成方法及び画像形成装置
JP4687368B2 (ja) 画像形成方法及び画像形成装置
JP4201007B2 (ja) 有機感光体、画像形成装置、画像形成方法及びプロセスカートリッジ
JP2007011115A (ja) 画像形成方法及び画像形成装置
JP4529745B2 (ja) 画像形成方法及び画像形成装置
JP2007011116A (ja) 画像形成方法及び画像形成装置
JP2006126327A (ja) 画像形成方法及び画像形成装置
JP3888201B2 (ja) 静電潜像現像用トナーとその製造方法及び画像形成方法
JP2009192984A (ja) 電子写真用トナー、電子写真用現像剤、電子写真用トナーの製造方法、画像形成方法
JP4380627B2 (ja) 画像形成方法及び画像形成装置
JP2009180781A (ja) 電子写真用トナー、電子写真用現像剤、電子写真用トナーの製造方法、及び画像形成方法
US6994943B2 (en) Toner for developing static latent image, producing method thereof and image forming method
JP2006227483A (ja) 画像形成方法、画像形成装置及びプロセスカートリッジ
US5631729A (en) Image forming apparatus
JP4200927B2 (ja) 画像形成方法、画像形成装置、プロセスカートリッジ、電子写真感光体
JP2007003675A (ja) 画像形成方法及び画像形成装置、有機感光体及びプロセスカートリッジ
JP4135662B2 (ja) 電子写真感光体、電子写真感光体の製造方法、画像形成装置、プロセスカートリッジ
JP2003186235A (ja) 画像形成方法及び画像形成装置
JP2003241412A (ja) 画像形成方法及び画像形成装置
JP2006178411A (ja) 画像形成方法及び画像形成装置
JP2006301400A (ja) 画像形成方法、画像形成装置及び該画像形成方法に用いる有機感光体
JP2006234932A (ja) 画像形成方法、画像形成装置及び該画像形成方法に用いる有機感光体
JP4089502B2 (ja) 静電潜像現像用トナー及び画像形成方法
JP2009175215A (ja) 電子写真用トナー、電子写真用現像剤、電子写真用トナーの製造方法、及び、画像形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees