JP4529407B2 - Refractive index distribution control optical element - Google Patents

Refractive index distribution control optical element Download PDF

Info

Publication number
JP4529407B2
JP4529407B2 JP2003347816A JP2003347816A JP4529407B2 JP 4529407 B2 JP4529407 B2 JP 4529407B2 JP 2003347816 A JP2003347816 A JP 2003347816A JP 2003347816 A JP2003347816 A JP 2003347816A JP 4529407 B2 JP4529407 B2 JP 4529407B2
Authority
JP
Japan
Prior art keywords
electrode group
refractive index
transparent
transparent electrode
index distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003347816A
Other languages
Japanese (ja)
Other versions
JP2005114946A (en
Inventor
真弘 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2003347816A priority Critical patent/JP4529407B2/en
Publication of JP2005114946A publication Critical patent/JP2005114946A/en
Application granted granted Critical
Publication of JP4529407B2 publication Critical patent/JP4529407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Description

本発明は、屈折率分布制御光学素子に関するものである。 The present invention relates to a refractive index distribution control optical element.

従来、光学素子内部の屈折率分布を動的に制御するために、液晶が使われてきた。しかしながら、液晶の複屈折による偏光依存性が大きいため、素子に入射する偏光を揃える必要があった。このような液晶素子は、たとえば、光記録媒体に情報の記録・再生を行う光ヘッド装置において、光波の波面収差補正に利用されている(たとえば、特許文献1参照)。この場合、光源から光記録媒体への光路中に液晶素子が配設されており、光源からの光波を直線偏光として維持する必要がある。また、液晶素子の他に、4分の1波長板などの光波の偏光状態を変える素子を使うためには、液晶素子を2つ使うといった提案もされているが、光学系が複雑かつ大型になるという欠点があった。   Conventionally, liquid crystals have been used to dynamically control the refractive index distribution inside an optical element. However, since the polarization dependence due to the birefringence of the liquid crystal is large, it is necessary to align the polarized light incident on the element. Such a liquid crystal element is used for wavefront aberration correction of a light wave, for example, in an optical head device that records and reproduces information on an optical recording medium (see, for example, Patent Document 1). In this case, a liquid crystal element is disposed in the optical path from the light source to the optical recording medium, and it is necessary to maintain the light wave from the light source as linearly polarized light. In addition to liquid crystal elements, proposals have been made to use two liquid crystal elements in order to use elements that change the polarization state of light waves, such as quarter-wave plates, but the optical system is complicated and large. There was a drawback of becoming.

そこで、光学系の簡素化、小型化のためには、偏光に依存せずに、素子内部の屈折率分布を動的に変調する素子が望まれている。   Therefore, in order to simplify and reduce the size of the optical system, an element that dynamically modulates the refractive index distribution inside the element without depending on polarization is desired.

一方、液体中に分散した帯電微粒子が電気的に動く現象、すなわち電気泳動を使った表示装置が提案されている(たとえば、特許文献2または特許文献3参照)。電気泳動表示装置は、1対の電極間に満たされた液体中に帯電微粒子が分散しており、その帯電微粒子を電気的に動かして密集状態を作り出し、密集した帯電微粒子による外光の反射を利用した表示装置である。
特開2001−273663号公報 特開平9−185087号公報 特開平11−219135号公報
On the other hand, a display device using a phenomenon in which charged fine particles dispersed in a liquid electrically move, that is, electrophoresis has been proposed (see, for example, Patent Document 2 or Patent Document 3). In the electrophoretic display device, charged fine particles are dispersed in a liquid filled between a pair of electrodes, the charged fine particles are electrically moved to create a dense state, and reflection of external light by the dense charged fine particles is reflected. It is a display device used.
JP 2001-273663 A JP-A-9-185087 JP-A-11-219135

しかしながら、電気泳動表示装置用に開発されてきた帯電微粒子は、反射光を利用するため、帯電微粒子の大きさが200nm程度あり、光散乱による光損失が大きくて透過型のデバイスに応用するには不向きであった。   However, the charged fine particles that have been developed for electrophoretic display devices use reflected light, so that the size of the charged fine particles is about 200 nm, and the light loss due to light scattering is large. It was unsuitable.

昨今、帯電微粒子の大きさが数nm〜数十nmという、とくに可視光の波長に対して10分の1以下の微粒子が作られるようになっており、透過型の光学素子として、帯電微粒子の電気泳動を利用しても光散乱による光損失が少ない光学素子が期待できる。また、電気泳動を利用するので、偏光に依存しない光学素子としても期待できるが、このような光学素子は提案されていないのが現状であった。   Recently, fine particles having a charged particle size of several nanometers to several tens of nanometers, in particular, one-tenth or less of the wavelength of visible light are produced. Even when electrophoresis is used, an optical element with little light loss due to light scattering can be expected. Moreover, since electrophoresis is used, it can be expected as an optical element that does not depend on polarization, but such an optical element has not been proposed at present.

本発明は、斯かる実情に鑑み、素子に入射する偏光に依存することなく、素子内部の屈折率分布を動的に制御でき、応用範囲が広い屈折率分布制御光学素子を提供するものである。 In view of such circumstances, the present invention provides a refractive index distribution control optical element that can dynamically control the refractive index distribution inside the element without depending on the polarized light incident on the element and has a wide application range. .

本発明は、第1透明電極群を有する第1透明基板と、第2透明電極群を有する第2透明基板と、第1透明電極群内、または第2透明電極群内、または第1透明電極群と第2透明電極群間を移動する帯電微粒子と、第1透明基板と第2透明基板の間に満たされ、かつ前記帯電微粒子を保持する透明絶縁性液体とを備え、帯電微粒子と透明絶縁性液体の屈折率の差により、透過する可視光に対し屈折率の分布を動的に制御するセル構造の屈折率分布制御光学素子であって、
前記帯電微粒子の平均粒径が該素子を透過する可視光の波長(360〜830nm)の10分の1以下であることを特徴とする屈折率分布制御光学素子を提供する。
The present invention relates to a first transparent substrate having a first transparent electrode group, a second transparent substrate having a second transparent electrode group, a first transparent electrode group, a second transparent electrode group, or a first transparent electrode. A charged fine particle that moves between the group and the second transparent electrode group, and a transparent insulating liquid that is filled between the first transparent substrate and the second transparent substrate and holds the charged fine particle. A refractive index distribution control optical element having a cell structure that dynamically controls the distribution of the refractive index with respect to visible light transmitted by the difference in refractive index of the conductive liquid ,
Provided is a refractive index distribution control optical element, wherein the charged fine particles have an average particle size of 1/10 or less of a wavelength of visible light (360 to 830 nm) transmitted through the element.

また、前記第1透明電極群、および/または前記第2透明電極群がほぼ同心円状の平面パターンを有している上記の屈折率分布制御光学素子を提供する。 In addition, the refractive index distribution control optical element is provided in which the first transparent electrode group and / or the second transparent electrode group has a substantially concentric plane pattern.

さらにまた、前記第1透明電極群が、フラットで一様な透明導電膜、絶縁性保護膜、パターニングされた透明導電膜を順に積層した構造を有している上記の屈折率分布制御光学素子を提供する。 Furthermore, the refractive index distribution control optical element, wherein the first transparent electrode group has a structure in which a flat and uniform transparent conductive film, an insulating protective film, and a patterned transparent conductive film are sequentially laminated. provide.

本発明の屈折率分布制御光学素子によれば、素子に入射する偏光に依存することなく、素子内部の屈折率分布を動的に制御でき、応用範囲が広いという優れた効果を奏し得る。 According to the refractive index distribution control optical element of the present invention, the refractive index distribution inside the element can be dynamically controlled without depending on the polarized light incident on the element, and an excellent effect that the application range is wide can be obtained.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

[第1実施形態]
図1は、本発明の第1実施形態となる屈折率分布制御光学素子の概念的断面図であり、表面に第1透明電極群11と絶縁性保護膜5と電極引き出し部8とが形成された第1透明基板1と、表面に第2透明電極群21と絶縁性保護膜6が成膜された第2透明基板2とを、絶縁性保護膜5と絶縁性保護膜6が所要間隔をあけて対向するよう、隔壁7により支持してセルが形成されており、該セル内部には、帯電微粒子3と、該帯電微粒子3を保持する透明絶縁性液体(以下、分散媒と表記する)4とが充填されている。
[First Embodiment]
FIG. 1 is a conceptual cross-sectional view of a refractive index distribution control optical element according to a first embodiment of the present invention, in which a first transparent electrode group 11, an insulating protective film 5, and an electrode lead portion 8 are formed on the surface. The first transparent substrate 1, the second transparent substrate 2 having the second transparent electrode group 21 and the insulating protective film 6 formed on the surface thereof, and the insulating protective film 5 and the insulating protective film 6 are spaced apart from each other. A cell is formed by being supported by the partition wall 7 so as to be opposed to each other, and inside the cell, charged fine particles 3 and a transparent insulating liquid holding the charged fine particles 3 (hereinafter referred to as a dispersion medium). 4 is filled.

第1透明基板1および第2透明基板2としては、ガラスや石英ガラスなどの光学的に等方である透明な平行基板を用いることができる。また、可撓性を得るためにポリエステルやポリオレフィンなどのプラスチックフィルムを用いても良い。   As the 1st transparent substrate 1 and the 2nd transparent substrate 2, the transparent parallel substrate which is optically isotropic, such as glass and quartz glass, can be used. In order to obtain flexibility, a plastic film such as polyester or polyolefin may be used.

帯電微粒子3としては、酸化チタン、酸化亜鉛、酸化アルミニウム、石英などの微粒子を使うことができ、その粒径を透過する光波の波長の10分の1以下にすることで、光の散乱による損失を減らすことができる。また、帯電微粒子3の帯電量の指標であるゼータ電位は、大きい方が好ましい。   As the charged fine particles 3, fine particles such as titanium oxide, zinc oxide, aluminum oxide, and quartz can be used, and the loss due to light scattering can be achieved by setting the particle size to one tenth or less of the wavelength of light waves that pass through. Can be reduced. The zeta potential, which is an index of the charge amount of the charged fine particles 3, is preferably larger.

分散媒4としては、シリコーンオイル、流動パラフィン、キシレン、トルエンなどの液体を用いることができる。また、分散媒4の粘度は小さい方が好ましく、揮発性の少ない方が好ましい。   As the dispersion medium 4, liquids such as silicone oil, liquid paraffin, xylene, and toluene can be used. Further, the viscosity of the dispersion medium 4 is preferably small, and preferably less volatile.

また、帯電微粒子3と分散媒4は、おのおのの屈折率の差が大きくなるように選定するのが好ましい。   The charged fine particles 3 and the dispersion medium 4 are preferably selected so that the difference in refractive index between the charged fine particles 3 and the dispersion medium 4 increases.

第1透明電極群11(第2透明電極群21)としては、前記第1透明基板1(第2透明基板2)に、ITO、酸化亜鉛、酸化スズなどの透明導電膜を、スパッタリングや真空蒸着によって成膜したものを用いることができる。   As the first transparent electrode group 11 (second transparent electrode group 21), a transparent conductive film such as ITO, zinc oxide or tin oxide is sputtered or vacuum deposited on the first transparent substrate 1 (second transparent substrate 2). What was formed into a film by can be used.

図2は、第1透明電極群11の平面パターンの1例を示す図である。   FIG. 2 is a diagram illustrating an example of a planar pattern of the first transparent electrode group 11.

第1透明電極群11は、図2に示すように、同心円状の電極(図中では、4つの輪帯で描画)と、最外周部の電極と、電極引き出し部8とからなる。最外周部の電極は、第2透明基板2上の第2透明電極群21と結線するためにある。   As shown in FIG. 2, the first transparent electrode group 11 includes concentric electrodes (drawn with four ring zones in the figure), an outermost peripheral electrode, and an electrode lead-out portion 8. The outermost peripheral electrode is for connecting with the second transparent electrode group 21 on the second transparent substrate 2.

第2透明電極群21は、第1透明電極群11と同様の構造を取っても良いが、1層のフラットで一様な低抵抗の透明導電膜からなる電極の構造を取るほうが、単純かつセル化時の位置合わせが必要無いので好ましい。   The second transparent electrode group 21 may have the same structure as that of the first transparent electrode group 11, but it is simpler to take the structure of an electrode composed of a flat, uniform, low-resistance transparent conductive film. This is preferable because alignment at the time of cell formation is not necessary.

また、図1の絶縁性保護膜5および絶縁性保護膜6は、帯電微粒子3の電極への固着を防ぐためにあり、石英などの低屈折率材料からなる薄膜である。   Further, the insulating protective film 5 and the insulating protective film 6 in FIG. 1 are thin films made of a low refractive index material such as quartz in order to prevent the charged fine particles 3 from sticking to the electrodes.

隔壁7としては、第1透明電極群11の最外周部の電極と、第2透明電極群21を結線するために導電性ビーズを含ませた熱硬化型の接着剤を用いることができる。   As the partition wall 7, a thermosetting adhesive containing conductive beads for connecting the outermost peripheral electrode of the first transparent electrode group 11 and the second transparent electrode group 21 can be used.

つぎに、第1実施形態の屈折率分布制御光学素子の作製方法を説明する。 Next, a manufacturing method of the refractive index distribution control optical element of the first embodiment will be described.

まず、第1透明基板1、第2透明基板2の空気側の表面に、真空蒸着などで反射防止膜を成膜する。つぎに、第1透明基板1のセル内側の表面に透明導電膜を成膜して、その上にフォトレジストを塗布し、フォトリソグラフィの技術で図2のようなパターンになるように露光する。さらに、フォトレジストが除去された部分の前記透明導電膜をウエットエッチング処理し、フォトレジストのパターンを転写する。残ったフォトレジストをリフトオフして、第1透明電極群11を形成する。さらに、第1透明電極群11の表面を保護するために絶縁性保護膜5を、電極引き出し部8および、第1透明電極群11の最外周部の電極と、第2透明電極群21を結線するための部分以外に成膜する。   First, an antireflection film is formed on the air-side surfaces of the first transparent substrate 1 and the second transparent substrate 2 by vacuum deposition or the like. Next, a transparent conductive film is formed on the inner surface of the cell of the first transparent substrate 1, a photoresist is applied thereon, and exposure is performed to form a pattern as shown in FIG. 2 by photolithography. Further, the portion of the transparent conductive film from which the photoresist has been removed is wet-etched to transfer the photoresist pattern. The remaining photoresist is lifted off to form the first transparent electrode group 11. Further, in order to protect the surface of the first transparent electrode group 11, the insulating protective film 5 is connected to the electrode lead-out portion 8, the outermost peripheral electrode of the first transparent electrode group 11, and the second transparent electrode group 21. A film is formed in a portion other than the portion to be used.

一方、第2透明基板2のセル内側の表面には、1層のフラットで一様な透明導電膜を成膜して第2透明電極群21とし、該第2透明電極群21の表面を保護するために絶縁性保護膜6を、第1透明電極群11の最外周部の電極と、第2透明電極群21を結線するための部分以外に成膜する。   On the other hand, a flat and uniform transparent conductive film is formed on the inner surface of the cell of the second transparent substrate 2 to form the second transparent electrode group 21, and the surface of the second transparent electrode group 21 is protected. In order to do this, the insulating protective film 6 is formed on the outermost peripheral part of the first transparent electrode group 11 and the part other than the part for connecting the second transparent electrode group 21.

つぎに、第1透明基板1と第2透明基板2が、平行にかつ一定のギャップをもつように、シール材からなる隔壁7を設けてセル化する。さらに、前記セルのギャップ間に、帯電微粒子3を分散させた分散媒4を、真空注入などで充填したのち、注入口を接着剤で封止する。   Next, the first transparent substrate 1 and the second transparent substrate 2 are formed into cells by providing partition walls 7 made of a sealing material so that the first transparent substrate 1 and the second transparent substrate 2 have a certain gap in parallel. Furthermore, after filling the dispersion medium 4 in which the charged fine particles 3 are dispersed between the gaps of the cells by vacuum injection or the like, the injection port is sealed with an adhesive.

上述のように作製される第1実施形態の屈折率分布制御光学素子において、第1透明電極群11を陽極、第2透明電極群21を陰極(第1透明電極群11の最外周の電極も陰極)として用いた場合、帯電微粒子3が負に帯電している場合、帯電微粒子3は、その濃度が第1透明電極群11の同心円状の電極部分において密になるように移動する。したがって、該屈折率分布制御光学素子内部において帯電微粒子3の粗密ができるので、該屈折率分布制御光学素子内部に屈折率の分布が生じる。この場合、透過する光波に球面収差を付与できる。すなわち、透過する光波に、特定の球面収差が存在する場合、第1実施形態の屈折率分布制御光学素子を用いることで、該球面収差を動的に相殺できる。また、透過する光波の偏光に依存しないという利点もある。 In the refractive index distribution control optical element of the first embodiment manufactured as described above, the first transparent electrode group 11 is an anode, the second transparent electrode group 21 is a cathode (the outermost electrode of the first transparent electrode group 11 is also an electrode). When used as a cathode), when the charged fine particles 3 are negatively charged, the charged fine particles 3 move so as to be dense in the concentric electrode portions of the first transparent electrode group 11. Accordingly, since it is density of the charged particles 3 inside the refractive index distribution control optical element, the refractive index distribution control optical elements inside the refractive index distribution occurs. In this case, spherical aberration can be imparted to the transmitted light wave. That is, when a specific spherical aberration exists in the transmitted light wave, the spherical aberration can be dynamically canceled by using the refractive index distribution control optical element of the first embodiment. There is also an advantage that it does not depend on the polarization of the transmitted light wave.

[第2実施形態]
本発明の第2実施形態の屈折率分布制御光学素子は、第1透明電極群の構造を変えて、第1実施形態の屈折率分布制御光学素子にくらべ、帯電微粒子3の移動特性を高めたものである。図3に第2実施形態の屈折率分布制御光学素子の概念的断面図を示す(図中、図1と同じ要素のものには、同じ符号を付してある)。
[Second Embodiment]
The refractive index distribution control optical element according to the second embodiment of the present invention changes the structure of the first transparent electrode group to improve the movement characteristics of the charged fine particles 3 compared to the refractive index distribution control optical element according to the first embodiment. Is. FIG. 3 is a conceptual cross-sectional view of the refractive index distribution control optical element of the second embodiment (in the figure, the same elements as those in FIG. 1 are denoted by the same reference numerals).

第2実施形態の屈折率分布制御光学素子の特徴となる第1透明電極群31は、フラットで一様な透明導電膜32、絶縁性保護膜33、パターニングされた透明導電膜34が順に積層された構造を有している。 The first transparent electrode group 31, which is a feature of the refractive index distribution control optical element of the second embodiment, has a flat and uniform transparent conductive film 32, an insulating protective film 33, and a patterned transparent conductive film 34 laminated in order. Have a structure.

つぎに、第1透明電極群31の作製方法を説明する。   Next, a method for producing the first transparent electrode group 31 will be described.

第1透明基板1上に、透明導電膜32、絶縁性保護膜33、透明導電膜34を順に成膜したものに、フォトレジストを塗布し、フォトリソグラフィの技術でパターニングを施して、フォトレジストが除去された部分の透明導電膜34をエッチング処理にて除去する。このとき、透明導電膜34は、図2に示すように、同心円状にパターニングされる。残ったフォトレジストを除去して、第1透明電極群31は、透明導電膜32、絶縁性保護膜33、透明導電膜34が、第1透明基板1上に積層された構造として作製される。   On the first transparent substrate 1, a transparent conductive film 32, an insulating protective film 33, and a transparent conductive film 34 are sequentially formed. A photoresist is applied and patterned by a photolithography technique. The removed transparent conductive film 34 is removed by an etching process. At this time, the transparent conductive film 34 is patterned concentrically as shown in FIG. The remaining photoresist is removed, and the first transparent electrode group 31 is manufactured as a structure in which the transparent conductive film 32, the insulating protective film 33, and the transparent conductive film 34 are laminated on the first transparent substrate 1.

さらに、第1透明電極群31に絶縁性保護膜5を成膜した後、第1実施形態の屈折率分布制御光学素子と同様の方法で、セル化して、帯電微粒子3を分散させた分散媒4を充たして、第2実施形態の屈折率分布制御光学素子を作製する。 Further, after the insulating protective film 5 is formed on the first transparent electrode group 31, a dispersion medium in which the charged fine particles 3 are dispersed is formed into cells by the same method as the refractive index distribution control optical element of the first embodiment. 4 is satisfied, and the refractive index distribution control optical element of the second embodiment is manufactured.

上述のように作製される第2実施形態の屈折率分布制御光学素子において、第1透明電極群31の同心円状の電極(透明導電膜34)を陽極、透明導電膜32を陰極、第2透明電極群21を陰極(第1透明電極群31の透明導電膜34の最外周の電極も陰極)として用いて、かつ帯電微粒子3が負に帯電している場合は、帯電微粒子3が第1透明電極群31の同心円状の電極の部分に引力が、その他の部分に斥力が働き、帯電微粒子3は第1透明電極群31の同心円状の部分に集中する。すなわち、第1実施形態の屈折率分布制御光学素子に比べ帯電微粒子3を移動させるために働く力が増すことになる。 In the refractive index distribution control optical element according to the second embodiment manufactured as described above, the concentric electrode (transparent conductive film 34) of the first transparent electrode group 31 is the anode, the transparent conductive film 32 is the cathode, and the second transparent electrode. When the electrode group 21 is used as a cathode (the electrode on the outermost periphery of the transparent conductive film 34 of the first transparent electrode group 31 is also a cathode) and the charged fine particles 3 are negatively charged, the charged fine particles 3 are the first transparent An attractive force acts on the concentric electrode part of the electrode group 31 and a repulsive force acts on the other part, and the charged fine particles 3 concentrate on the concentric part of the first transparent electrode group 31. That is, the force that is used to move the charged fine particles 3 is increased as compared with the refractive index distribution control optical element of the first embodiment.

上述したように、第2実施形態の屈折率分布制御光学素子内部において、帯電微粒子3の濃度の粗密ができるので、該屈折率分布制御光学素子内部に実効的な屈折率の分布が生じる。この場合、第1実施形態の屈折率分布制御光学素子と同様に、透過する光波に球面収差を付与できる。また、透過する光波の偏光に依存しない利点もある。 As described above, in the internal refractive index distribution control optical element of the second embodiment, since it is density of the concentration of charged fine particles 3, the distribution of the effective refractive index inside said gradient index control optical element occurs. In this case, similarly to the refractive index distribution control optical element of the first embodiment, spherical aberration can be imparted to the transmitted light wave. There is also an advantage that does not depend on the polarization of the transmitted light wave.

本実施例は図1、図2に示す構造を持つ第1実施形態の屈折率分布制御光学素子の具体例であり、以下のように作製する。 This example is a specific example of the refractive index distribution control optical element according to the first embodiment having the structure shown in FIGS. 1 and 2, and is manufactured as follows.

まず、ガラス製の第1透明基板1、第2透明基板2の空気側の表面に、真空蒸着で可視光域用の反射防止膜を成膜した。つぎに、第1透明基板1のセル内側の表面に、第1透明電極群11となる透明導電膜として、シート抵抗値が100Ω/□、厚さが約10nmのITO膜をスパッタ成膜した。その上にポジ型のフォトレジストを塗布し、フォトリソグラフィの技術で、図2に示すような同心円状のパターニングを施して、感光した部分のフォトレジストを除去した。さらに、塩化第3鉄系のエッチング液で、フォトレジストが除去された部分の透明導電膜を除去した。残ったフォトレジストを除去して第1透明電極群31を作製した。さらに、石英を主成分とする絶縁性保護膜用のコート液をスピンコートで厚さが50nmになるように成膜し、熱焼成して絶縁性保護膜5とし、電極引き出し部8と、第1透明電極群11の最外周部の電極と、第2透明電極群21を結線するための部分の絶縁性保護膜をドライエッチングで除去した。   First, an antireflection film for a visible light region was formed on the air-side surfaces of the first transparent substrate 1 and the second transparent substrate 2 made of glass by vacuum deposition. Next, an ITO film having a sheet resistance value of 100Ω / □ and a thickness of about 10 nm was sputter-deposited as a transparent conductive film to be the first transparent electrode group 11 on the cell inner surface of the first transparent substrate 1. A positive type photoresist was applied thereon, and concentric patterning as shown in FIG. 2 was performed by a photolithography technique to remove the exposed portion of the photoresist. Further, the portion of the transparent conductive film from which the photoresist was removed was removed with a ferric chloride-based etchant. The remaining photoresist was removed to produce a first transparent electrode group 31. Further, a coating solution for an insulating protective film containing quartz as a main component is formed by spin coating so as to have a thickness of 50 nm, and is fired to form the insulating protective film 5. The insulating protective film in the portion for connecting the outermost peripheral electrode of the first transparent electrode group 11 and the second transparent electrode group 21 was removed by dry etching.

つぎに、第2透明基板2のセル内側の表面に、第2透明電極群21として、フラットで一様な、かつシート抵抗値が100Ω/□、厚さが約10nmのITO膜をスパッタ成膜した。さらに、石英を主成分とする絶縁性保護膜用のコート液をスピンコートで厚さが50nmになるように成膜し、熱焼成して絶縁性保護膜6とした。さらに、第1透明電極群11の最外周部の電極と、第2透明電極群21を結線するための部分の絶縁性保護膜をドライエッチングで除去した。   Next, a flat and uniform ITO film having a sheet resistance value of 100Ω / □ and a thickness of about 10 nm is formed as a second transparent electrode group 21 on the surface inside the cell of the second transparent substrate 2 by sputtering. did. Furthermore, a coating solution for an insulating protective film containing quartz as a main component was formed by spin coating so as to have a thickness of 50 nm, followed by thermal baking to form the insulating protective film 6. Further, the insulating protective film for connecting the outermost peripheral electrode of the first transparent electrode group 11 and the second transparent electrode group 21 was removed by dry etching.

つぎに、図1に示すごとく、セルギャップが一様に3μmになるよう、第2透明基板2に径が3μmの石英製の微小球を散布し、導電性ビーズを混合した熱硬化型の接着剤を用いて隔壁7として、熱圧着をしてセル化した。上述のセルギャップ間に、平均粒径が30nmの酸化亜鉛製の帯電微粒子3を分散させたキシレンからなる分散媒4を、毛細管現象を利用して注入したのち、注入口をエポキシ接着剤で封止して、本発明の屈折率分布制御光学素子を作製した。 Next, as shown in FIG. 1, a thermosetting adhesive in which quartz microspheres having a diameter of 3 μm are dispersed on the second transparent substrate 2 so that the cell gap is uniformly 3 μm, and conductive beads are mixed. The partition wall 7 was made into a cell by thermocompression bonding using an agent. After injecting a dispersion medium 4 made of xylene in which charged fine particles 3 made of zinc oxide having an average particle diameter of 30 nm are dispersed between the above-described cell gaps by utilizing capillary action, the injection port is sealed with an epoxy adhesive. Then, the refractive index distribution control optical element of the present invention was produced.

フレキシブル回路基板を電極引き出し部8に接着して、本発明の屈折率分布制御光学素子の動作を確認した。第1透明電極群11と第2透明電極群21に、±5V、10Hzの交流電圧を印加したところ、透過する光波に球面収差が加わり、波面の変化を確認した。なお、帯電微粒子3が各電極群への固着を防ぐことを主目的として交流電圧を印加した。本実施例では、電圧印加開始後約5分で変化が飽和した。変化が飽和するまでの速さ、すなわち応答速度は帯電微粒子3のゼータ電位の大きさ、および印加する電場の大きさに依存するので、より大きなゼータ電位をもつ帯電微粒子3を用いることと、電場の大きさを増すことで、高速化できる。なお、本実施例で用いた帯電微粒子3のゼータ電位は数mVであり、ゼータ電位の大きさとしては小さい部類に入る。 The operation of the refractive index distribution control optical element of the present invention was confirmed by bonding a flexible circuit board to the electrode lead-out portion 8. When an AC voltage of ± 5 V and 10 Hz was applied to the first transparent electrode group 11 and the second transparent electrode group 21, spherical aberration was added to the transmitted light wave, and the change of the wavefront was confirmed. An AC voltage was applied mainly for the purpose of preventing the charged fine particles 3 from sticking to each electrode group. In this example, the change was saturated about 5 minutes after the start of voltage application. Since the speed until the change is saturated, that is, the response speed depends on the magnitude of the zeta potential of the charged fine particles 3 and the magnitude of the applied electric field, use of the charged fine particles 3 having a larger zeta potential, The speed can be increased by increasing the size of. Note that the zeta potential of the charged fine particles 3 used in this example is several mV, and the magnitude of the zeta potential falls into a small category.

また、変化した波面の量は、約25nmであり、屈折率の変化量に換算すると約0.008であった。本実施例における変化した波面の量、屈折率の変化量を増すためには、セルギャップの間隔を拡げること、帯電微粒子3と分散媒4の材料を変えて屈折率差を拡げることで対応できる。   The amount of wavefront that changed was about 25 nm, which was about 0.008 when converted to the amount of change in refractive index. In order to increase the amount of the changed wavefront and the amount of change in the refractive index in this embodiment, it can be dealt with by widening the gap of the cell gap and changing the material of the charged fine particles 3 and the dispersion medium 4 to widen the refractive index difference. .

以上、本実施例によると、動的に素子内部の屈折率分布を制御することを確認できた。また、本発明の屈折率分布制御光学素子の原理上、透過する偏光に依存しないと考える。 As described above, according to this example, it was confirmed that the refractive index distribution inside the element was dynamically controlled. Further, the principle of the refractive index distribution control optical element of the present invention is considered not to depend on transmitted polarized light.

本発明の屈折率分布制御光学素子は、偏光に依存せずに素子内部の屈折率を制御できるので、カメラのように自然光を扱う分野、またはプロジェクタのように無偏光光源を扱う用途にも応用できる。 Since the refractive index distribution control optical element of the present invention can control the refractive index inside the element without depending on the polarization, it can be applied to the field of handling natural light like a camera or the use of unpolarized light source like a projector. it can.

本発明の第1実施形態の屈折率分布制御光学素子の断面を示す概念的断面図である。It is a conceptual sectional view showing a section of a refractive index distribution control optical element of a 1st embodiment of the present invention. 本発明の第1実施形態の屈折率分布制御光学素子の構成要素である第1透明電極群のパターンを示す平面図である。It is a top view which shows the pattern of the 1st transparent electrode group which is a component of the refractive index distribution control optical element of 1st Embodiment of this invention. 本発明の第2実施形態の屈折率分布制御光学素子の断面を示す概念的断面図である。It is a conceptual sectional view showing a section of a refractive index distribution control optical element of a second embodiment of the present invention.

1 第1透明基板
2 第2透明基板
3 帯電微粒子
4 分散媒(透明絶縁性液体)
5 絶縁性保護膜
6 絶縁性保護膜
7 隔壁
8 電極引き出し部
11 第1透明電極群
21 第2透明電極群
31 第1透明電極群
32 透明導電膜
33 絶縁性保護膜
34 透明導電膜
DESCRIPTION OF SYMBOLS 1 1st transparent substrate 2 2nd transparent substrate 3 Charged fine particle 4 Dispersion medium (transparent insulating liquid)
DESCRIPTION OF SYMBOLS 5 Insulating protective film 6 Insulating protective film 7 Partition 8 Electrode extraction part 11 1st transparent electrode group 21 2nd transparent electrode group 31 1st transparent electrode group 32 Transparent conductive film 33 Insulating protective film 34 Transparent conductive film

Claims (3)

第1透明電極群を有する第1透明基板と、第2透明電極群を有する第2透明基板と、第1透明電極群内、または第2透明電極群内、または第1透明電極群と第2透明電極群間を移動する帯電微粒子と、第1透明基板と第2透明基板の間に満たされ、かつ前記帯電微粒子を保持する透明絶縁性液体とを備え、帯電微粒子と透明絶縁性液体の屈折率の差により、透過する可視光に対し屈折率の分布を動的に制御するセル構造の屈折率分布制御光学素子であって、
前記帯電微粒子の平均粒径が該素子を透過する可視光の波長(360〜830nm)の10分の1以下であることを特徴とする屈折率分布制御光学素子。
The first transparent substrate having the first transparent electrode group, the second transparent substrate having the second transparent electrode group, the first transparent electrode group, or the second transparent electrode group, or the first transparent electrode group and the second A charged fine particle that moves between the transparent electrode groups, and a transparent insulating liquid that is filled between the first transparent substrate and the second transparent substrate and holds the charged fine particle, and the refraction of the charged fine particle and the transparent insulating liquid. A refractive index distribution control optical element having a cell structure that dynamically controls a refractive index distribution with respect to visible light transmitted by a difference in the refractive index ;
A refractive index distribution control optical element, wherein the charged fine particles have an average particle size of 1/10 or less of a wavelength of visible light (360 to 830 nm) transmitted through the element.
前記第1透明電極群、および/または前記第2透明電極群がほぼ同心円状の平面パターンを有している請求項1に記載の屈折率分布制御光学素子。 The refractive index distribution control optical element according to claim 1, wherein the first transparent electrode group and / or the second transparent electrode group has a substantially concentric plane pattern. 前記第1透明電極群が、フラットで一様な透明導電膜、絶縁性保護膜、パターニングされた透明導電膜を順に積層した構造を有している請求項1または2に記載の屈折率分布制御光学素子。 The refractive index distribution control according to claim 1 or 2, wherein the first transparent electrode group has a structure in which a flat and uniform transparent conductive film, an insulating protective film, and a patterned transparent conductive film are sequentially laminated. Optical element.
JP2003347816A 2003-10-07 2003-10-07 Refractive index distribution control optical element Expired - Fee Related JP4529407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003347816A JP4529407B2 (en) 2003-10-07 2003-10-07 Refractive index distribution control optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003347816A JP4529407B2 (en) 2003-10-07 2003-10-07 Refractive index distribution control optical element

Publications (2)

Publication Number Publication Date
JP2005114946A JP2005114946A (en) 2005-04-28
JP4529407B2 true JP4529407B2 (en) 2010-08-25

Family

ID=34540214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003347816A Expired - Fee Related JP4529407B2 (en) 2003-10-07 2003-10-07 Refractive index distribution control optical element

Country Status (1)

Country Link
JP (1) JP4529407B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101065360B1 (en) 2009-04-28 2011-09-16 청운대학교산학협력단 Method for expressing grey scale in electronic paper display panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141730A (en) * 1988-11-22 1990-05-31 Hitachi Chem Co Ltd Electrophoretic image display device
JP2003098556A (en) * 2001-09-21 2003-04-03 Stanley Electric Co Ltd Display device and manufacturing method therefor
JP2003186065A (en) * 2001-12-21 2003-07-03 Canon Inc Electrophoretic display device and its driving method
JP2003195364A (en) * 2001-12-26 2003-07-09 Shibuya Kogyo Co Ltd Optical component and optical switch using the same
JP2004522180A (en) * 2000-12-08 2004-07-22 イー−インク コーポレイション Electrophoretic display using nanoparticles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141730A (en) * 1988-11-22 1990-05-31 Hitachi Chem Co Ltd Electrophoretic image display device
JP2004522180A (en) * 2000-12-08 2004-07-22 イー−インク コーポレイション Electrophoretic display using nanoparticles
JP2003098556A (en) * 2001-09-21 2003-04-03 Stanley Electric Co Ltd Display device and manufacturing method therefor
JP2003186065A (en) * 2001-12-21 2003-07-03 Canon Inc Electrophoretic display device and its driving method
JP2003195364A (en) * 2001-12-26 2003-07-09 Shibuya Kogyo Co Ltd Optical component and optical switch using the same

Also Published As

Publication number Publication date
JP2005114946A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
US20140036183A1 (en) Tunable liquid crystal optical device
US20110090415A1 (en) Tunable liquid crystal optical device
US4116544A (en) Liquid crystal reflective display apparatus
JP2012068607A (en) Liquid crystal lens
JP2001356373A (en) Method for electrophoretic display and electrophoretic display device
JPH11211999A (en) Optical modulating element and display device
CN106773013B (en) A kind of electrowetting optical device and preparation method
US20180088429A1 (en) Color Electronic Paper and Manufacturing Method Thereof
TW200414088A (en) Transparent touch-sensitive switching system
JP2007057722A (en) Particle transfer type display apparatus and method of manufacturing same
TW201910872A (en) Flexible liquid crystal cells and lenses
JPS6273207A (en) Optical waveguide device
JP4529407B2 (en) Refractive index distribution control optical element
JP4419537B2 (en) Diffractive optical element
JP2001174853A (en) Electrophoretic display device
CN112379560A (en) Diaphragm and diaphragm module
JP7165556B2 (en) Liquid crystal optical modulators, liquid crystal display devices, and holographic devices
CN103270447A (en) Multiple-structure liquid crystal optical element and process for production thereof
JP6572505B2 (en) Optical element manufacturing method
US5572345A (en) Liquid crystal device for preventing short circuiting therein
CN101752387B (en) E-paper, E-paper thin film transistor (TFT) baseplate and fabrication method thereof
TW202043895A (en) Electrophoretic display assemblies and devices and methods of manufacture thereof
JP5320986B2 (en) Light transmission adjustment device
KR20030038042A (en) Electrophoretic display device
JP2006259456A (en) Particle displacement type display element, particle displacement type display device, and manufacturing method for particle displacement type display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees