JP4527020B2 - Generation method of water droplets or ice particles by ultraviolet laser - Google Patents

Generation method of water droplets or ice particles by ultraviolet laser Download PDF

Info

Publication number
JP4527020B2
JP4527020B2 JP2005210316A JP2005210316A JP4527020B2 JP 4527020 B2 JP4527020 B2 JP 4527020B2 JP 2005210316 A JP2005210316 A JP 2005210316A JP 2005210316 A JP2005210316 A JP 2005210316A JP 4527020 B2 JP4527020 B2 JP 4527020B2
Authority
JP
Japan
Prior art keywords
ultraviolet laser
water droplets
ice particles
target region
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005210316A
Other languages
Japanese (ja)
Other versions
JP2007020516A (en
Inventor
經太郎 吉原
Original Assignee
財団法人豊田理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人豊田理化学研究所 filed Critical 財団法人豊田理化学研究所
Priority to JP2005210316A priority Critical patent/JP4527020B2/en
Publication of JP2007020516A publication Critical patent/JP2007020516A/en
Application granted granted Critical
Publication of JP4527020B2 publication Critical patent/JP4527020B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、空気中において水滴又は氷粒を人工的に生成する方法に関する。   The present invention relates to a method for artificially generating water droplets or ice particles in air.

従来より、人工的に雨を降らす方法、あるいは、空気中に人工的に水滴を形成する方法についての研究がなされている。
従来の方法としては、例えば、ヨウ化銀、塩化カルシウム、カルシウムカーバイト、酸化カルシウム、食塩、尿素などの微粒子、又はドライアイス氷の微粒子を空気中に散布し、これらの微粒子を核とし、その核を中心にして空気中の水を凝集させる方法が提案されている。
Conventionally, research has been conducted on a method for artificially raining or a method for artificially forming water droplets in the air.
As a conventional method, for example, fine particles such as silver iodide, calcium chloride, calcium carbide, calcium oxide, salt, urea, or fine particles of dry ice ice are dispersed in the air, and these fine particles are used as nuclei. A method of aggregating water in the air around the nucleus has been proposed.

しかしながら、上記の核となる微粒子を大気中に散布する方法を実施すれば、上記微粒子よりなる異物によって大気環境に負荷がかかるおそれがある。
また、実際に上記方法を効果的に行うには、航空機又はロケットを使用して微粒子を高い高度の空中にまで運ぶ必要があり、コストが非常に高くなる。
However, if the above-described method of spraying fine particles serving as nuclei into the atmosphere is performed, there is a risk that a load on the atmospheric environment may be imposed by the foreign substances made of the fine particles.
Moreover, in order to actually carry out the above method effectively, it is necessary to carry fine particles to a high altitude air using an aircraft or a rocket, resulting in a very high cost.

また、特許文献1には、雲にレーザー光を照射する人工降雨方法が示されている。しかしながら、そこには、具体的にどのようなレーザー光をどのように照射するのか明確には示されておらず、実施可能なまでに十分な技術は記載されていない。
一方、レーザー光により降雨あるいは水滴の生成が可能となれば、非常に有効である。そのため、実際にレーザー光照射によって水滴を生成できる具体的方法についての開発が望まれていた。
Patent Document 1 discloses an artificial rain method in which a cloud is irradiated with laser light. However, it does not clearly show what kind of laser light is irradiated and how to apply it, and does not describe a technique sufficient to implement it.
On the other hand, if it is possible to generate rain or water droplets with laser light, it is very effective. Therefore, development of a specific method that can actually generate water droplets by laser light irradiation has been desired.

特開昭61−25425号公報JP-A 61-25425

本発明は、かかる従来の問題点に鑑みてなされたもので、レーザー光を照射することによって水滴を生成させることが可能な具体的な方法を提供しようとするものである。   The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a specific method capable of generating water droplets by irradiating a laser beam.

本発明は、水蒸気を含む空気よりなる対象領域に、波長が270nm〜180nmの紫外線レーザー光を照射することにより、上記対象領域内に水滴又は氷粒を生じさせることを特徴とする紫外線レーザーによる水滴又は氷粒の生成方法にある(請求項1)。   According to the present invention, water droplets or ice droplets are produced in the target region by irradiating the target region made of air containing water vapor with ultraviolet laser light having a wavelength of 270 nm to 180 nm. Or it exists in the production method of an ice grain (Claim 1).

本発明は、上記のごとく、照射するレーザー光として、波長が270nm〜180nmの紫外線レーザー光を用い、この特定の範囲の波長を有する紫外線レーザー光を上記対象領域に照射する。これにより、対象領域内の水蒸気を含む空気そのものを、化学反応によって核に変化させることができる。そして、この核を中心に水分子が凝集することにより、水滴又は氷粒が生成する。   As described above, the present invention uses ultraviolet laser light having a wavelength of 270 nm to 180 nm as the laser light to be irradiated, and irradiates the target region with the ultraviolet laser light having a wavelength in this specific range. Thereby, the air itself containing water vapor in the target region can be changed into a nucleus by a chemical reaction. Then, water droplets or ice particles are generated by aggregating water molecules around the nucleus.

このように、本発明の方法によれば、空気中に核となる微粒子等の異物を散布する必要が無く、水蒸気を含む空気そのものを光化学反応によって核に変化させることができる。そのため、環境に悪影響を与えることがない。
また、上記特定の波長の紫外線レーザー光を照射することにより生じる核は、反応性の高い、原子、分子、分子ラジカル等よりなる。すなわち、OHラジカル、HO2ラジカル、水イオンなど、酸素の光解離によって生ずる酸素ラジカル反応生成物としてのオゾン、過酸化水素などが上記核となる。そのため、これらの反応性の高い核は、高い反応性や強い分散力によって中性の水分子をその周りに凝集させることができる。
As described above, according to the method of the present invention, it is not necessary to scatter foreign matter such as fine particles serving as nuclei in the air, and the air itself containing water vapor can be changed into nuclei by a photochemical reaction. Therefore, there is no adverse effect on the environment.
Moreover, the nucleus produced | generated by irradiating the ultraviolet laser beam of the said specific wavelength consists of a highly reactive atom, molecule | numerator, molecular radical, etc. That is, ozone, hydrogen peroxide, etc. as oxygen radical reaction products generated by photodissociation of oxygen, such as OH radicals, HO 2 radicals, and water ions, serve as the nucleus. Therefore, these highly reactive nuclei can aggregate neutral water molecules around them with high reactivity and strong dispersion force.

ここで、上記のごとく、本発明では、レーザー光として、波長が270nm〜180nmの紫外線レーザー光を用いる。
上記紫外線レーザー光の波長が180nm未満の場合には、空気中において酸素、窒素等に吸収されやすく、目標とする上記対象領域にレーザー光を到達させることが難しくなる場合が生ずる。一方、上記紫外線レーザー光の波長が270nmを超える場合には、光が空気を構成する分子に吸収されず、したがって光反応も起こらないという問題がある。
そこで、本発明では、上記の270nm〜180nmという特定の範囲の波長に限定する。
Here, as described above, in the present invention, ultraviolet laser light having a wavelength of 270 nm to 180 nm is used as the laser light.
When the wavelength of the ultraviolet laser beam is less than 180 nm, it may be easily absorbed by oxygen, nitrogen, or the like in the air, and it may be difficult to make the laser beam reach the target region. On the other hand, when the wavelength of the ultraviolet laser beam exceeds 270 nm, there is a problem that the light is not absorbed by the molecules constituting the air and therefore no photoreaction occurs.
Therefore, in the present invention, the wavelength is limited to the specific range of 270 nm to 180 nm.

本発明においては、上記のごとく、水蒸気を含む空気よりなる対象領域に上記特定の紫外線レーザー光を照射する。上記対象領域としては、いわゆる大気中の特定の領域を選択することができる。なお、水蒸気の含有量、温度についての好ましい範囲については後述する。   In the present invention, as described above, the specific ultraviolet laser light is irradiated onto the target region made of air containing water vapor. A so-called specific area in the atmosphere can be selected as the target area. In addition, the preferable range about water content and temperature is mentioned later.

また、照射するレーザー光として、波長が270nm〜180nmの紫外線レーザー光を用いるが、具体的なレーザー光としては、例えばエキシマレーザを用いることができる。その中でも特に、上記紫外線レーザー光は、波長が193nmのアルゴン・フッ素レーザー光であることが好ましい(請求項2)。これにより、特に、空気中の酸素分子の光解離反応を誘起するという効果が得られる。   Moreover, although an ultraviolet laser beam having a wavelength of 270 nm to 180 nm is used as the laser beam to be irradiated, an excimer laser, for example, can be used as a specific laser beam. Among them, the ultraviolet laser beam is particularly preferably an argon / fluorine laser beam having a wavelength of 193 nm. Thereby, in particular, an effect of inducing a photodissociation reaction of oxygen molecules in the air can be obtained.

また、上記紫外線レーザー光は、波長が248nmのクリプトン・フッ素レーザー光であることも好ましい(請求項3)。これにより、空気中のより遠方へ光を到達させ、水滴を生成させることができるという効果が得られる。   The ultraviolet laser light is preferably krypton / fluorine laser light having a wavelength of 248 nm. Thereby, the effect that light can reach farther in the air and water droplets can be generated is obtained.

また、上記対象領域は、水蒸気の含有量が飽和水蒸気圧またはそれ以上であることが好ましい(請求項4)。この場合には、水滴又は氷粒の生成を効率よく行うことができる。水蒸気の含有量が飽和水蒸気圧未満の場合には、水分子の凝集が起こりにくく、水滴又は氷粒の生成効率が低くなるおそれがある。   Further, the target region preferably has a water vapor content of saturated water vapor pressure or higher (claim 4). In this case, water droplets or ice particles can be generated efficiently. When the water vapor content is less than the saturated water vapor pressure, water molecules are unlikely to aggregate and the generation efficiency of water droplets or ice particles may be reduced.

また、上記対象領域の温度は、3℃以下であることが好ましい(請求項5)。上記対象領域の温度が3℃〜0℃の場合には、水滴(雨あるいは霧)が生じ、0℃以下の場合には氷粒(雪)を生ずる。一方、上記対象領域の温度が3℃を超える場合には、水滴又は氷粒が生じにくくなるおそれがある。   Moreover, it is preferable that the temperature of the said target area | region is 3 degrees C or less (Claim 5). When the temperature of the target region is 3 ° C. to 0 ° C., water droplets (rain or fog) are generated, and when the temperature is 0 ° C. or lower, ice particles (snow) are generated. On the other hand, when the temperature of the target region exceeds 3 ° C., water droplets or ice particles may not be easily generated.

また、上記紫外線レーザー光の照射は、上記対象領域内における照射位置を変更しながら連続的に行うことが好ましい(請求項6)。この場合には、上記対象領域内に水分子凝集の核を多数形成することができ、水滴の生成を効率よく行うことができる。   Further, it is preferable that the irradiation with the ultraviolet laser light is continuously performed while changing the irradiation position in the target region. In this case, many water molecule aggregation nuclei can be formed in the target region, and water droplets can be generated efficiently.

本発明の実施例に係る水滴の生成方法につき、図1〜図3を用いて説明する。
本例では、水蒸気を含む空気よりなる対象領域を実験的に形成し、複数種類のレーザー光を照射して、水滴が生じるか否かを観察した。
実験を行った実験装置1は、図1に示すごとく、円筒状の石英管10と、その下端開口部を閉塞する底板部12と、その上端開口部を閉塞する上皿部11とを有している。底板部12は架台部13に支持されていると共に、裏面にヒータ14を備えている。また、底板部12の上面には、水を備蓄する水盤15が配設されている。
A method for generating water droplets according to an embodiment of the present invention will be described with reference to FIGS.
In this example, a target region made of air containing water vapor was experimentally formed, and a plurality of types of laser beams were irradiated to observe whether or not water droplets were generated.
As shown in FIG. 1, the experimental apparatus 1 that performed the experiment has a cylindrical quartz tube 10, a bottom plate portion 12 that closes the lower end opening thereof, and an upper dish portion 11 that closes the upper end opening thereof. ing. The bottom plate 12 is supported by the gantry 13 and has a heater 14 on the back surface. Further, a basin 15 for storing water is disposed on the upper surface of the bottom plate portion 12.

水盤15内には、水8をほぼ一杯に備蓄しており、これをヒータ14によって温度制御するようにしてある。また、上皿11内には、氷と水又はドライアイスとエタノールを入れることにより温度制御するようにしてある。これらの温度制御によって、石英円筒10内の温度、水蒸気含有量を制御し、図1に示した対象領域2の条件を調整する。   In the basin 15, the water 8 is stored almost fully, and the temperature of the water 8 is controlled by the heater 14. Further, the temperature is controlled by putting ice and water or dry ice and ethanol in the upper plate 11. With these temperature controls, the temperature in the quartz cylinder 10 and the water vapor content are controlled, and the conditions of the target region 2 shown in FIG. 1 are adjusted.

また、石英円筒10の外部には、対象領域2へのレーザー光3を照射するレーザー光照射手段30と、参照用可視光4を照射する可視光照射手段40が配設されている。レーザー光照射手段30は、レーザー光の種類により取り替えるようにしてあり、いずれも、照射位置を調整する集光レンズ等(図示略)を具備している。
また、対象領域2は、上限を示す波線S1と下限を示す波線S2に囲まれる領域に設けてあり、参照用可視光4を照射する領域は、上記の対象領域2よりも広い範囲の上限を示す波線S3と下限を示す波線S4に囲まれる領域29である。
In addition, a laser light irradiation means 30 for irradiating the target region 2 with the laser light 3 and a visible light irradiation means 40 for irradiating the reference visible light 4 are disposed outside the quartz cylinder 10. The laser light irradiation means 30 is replaced depending on the type of laser light, and each includes a condensing lens or the like (not shown) for adjusting the irradiation position.
The target region 2 is provided in a region surrounded by the wavy line S1 indicating the upper limit and the wavy line S2 indicating the lower limit, and the region irradiated with the reference visible light 4 has an upper limit in a wider range than the target region 2 described above. It is the area | region 29 enclosed by the broken line S3 which shows, and the broken line S4 which shows a minimum.

(実施例1)
実施例1では、レーザー光として、波長が193nmのアルゴン・フッ素レーザー光を採用した。レーザー光の照射条件は、出力100mJ/cm2、パス幅10ナノ秒、照射回数50回である。この照射条件は、他の実施例および比較例も同じにした。
Example 1
In Example 1, an argon / fluorine laser beam having a wavelength of 193 nm was employed as the laser beam. The laser light irradiation conditions are an output of 100 mJ / cm 2 , a pass width of 10 nanoseconds, and the number of irradiations of 50 times. The irradiation conditions were the same in other examples and comparative examples.

また、対象領域2の条件は、水蒸気含有量:飽和水蒸気圧、温度:0〜2℃という条件に設定した。これは、水盤15内の水8の温度を28℃、上皿11内の温度を0℃とすることにより実現した。
実験の結果、実施例1では、レーザー光の照射後、対象領域内に水滴(霧)が観察され、確実に水滴が生成したことが、レーザー光30の散乱光を観察することによりわかった。
本例における対象領域2の状態を撮影した写真を図2に示す。同図における白い部分が水滴(霧)である。
Moreover, the conditions of the object area | region 2 were set to the conditions of water vapor content: saturated water vapor pressure, temperature: 0-2 degreeC. This was realized by setting the temperature of the water 8 in the basin 15 to 28 ° C. and the temperature in the upper plate 11 to 0 ° C.
As a result of the experiment, in Example 1, it was found by observing the scattered light of the laser light 30 that water droplets (fog) were observed in the target region after the laser light irradiation, and the water droplets were reliably generated.
The photograph which image | photographed the state of the object area | region 2 in this example is shown in FIG. The white part in the figure is a water droplet (fog).

(実施例2)
実施例2では、対象領域2の温度を−3〜0℃に設定した以外は上記実施例1と同じ条件で実験を行った。なお、この温度の設定は、上皿11内の温度を−63℃、水盤15内の温度を20℃とすることにより実現した。
実験の結果、実施例2では、レーザー光の照射後、対象領域内に小さな氷となった氷粒(雪)が観察され、確実に氷粒が生成したことがわかった。
本例における対象領域2の状態を撮影した写真を図3に示す。同図における白い部分が氷粒(雪)である。
(Example 2)
In Example 2, the experiment was performed under the same conditions as in Example 1 except that the temperature of the target region 2 was set to −3 to 0 ° C. This temperature setting was realized by setting the temperature in the upper plate 11 to −63 ° C. and the temperature in the basin 15 to 20 ° C.
As a result of the experiment, in Example 2, ice particles (snow) that became small ice were observed in the target region after laser light irradiation, and it was found that the ice particles were reliably generated.
The photograph which image | photographed the state of the object area | region 2 in this example is shown in FIG. The white part in the figure is ice particles (snow).

(比較例1)
比較例1では、照射するレーザー光として、近赤外線レーザーである波長1064nmのネオジムYAGレーザーを用いたこと以外は、実施例1と同じ条件で実験を行った。
実験の結果、比較例1では、全く水滴が生じなかった。
(Comparative Example 1)
In Comparative Example 1, an experiment was performed under the same conditions as in Example 1 except that a neodymium YAG laser having a wavelength of 1064 nm, which is a near-infrared laser, was used as the laser light to be irradiated.
As a result of the experiment, in Comparative Example 1, no water droplets were generated.

(比較例2)
比較例2では、照射するレーザー光として、可視光線である波長523nm(上記比較例1の場合の2倍波)のネオジムYAGレーザーを用いたこと以外は、実施例1と同じ条件で実験を行った。
実験の結果、比較例2では、全く水滴が生じなかった。
(Comparative Example 2)
In Comparative Example 2, the experiment was performed under the same conditions as in Example 1 except that a neodymium YAG laser having a wavelength of 523 nm (double wave in the case of Comparative Example 1) was used as the laser light to be irradiated. It was.
As a result of the experiment, in Comparative Example 2, no water droplets were generated.

実施例における実験装置の構成を示す説明図。Explanatory drawing which shows the structure of the experimental apparatus in an Example. 実施例1における水滴の発生状態を示す図面代用写真。FIG. 3 is a drawing-substituting photograph showing a water droplet generation state in Example 1. FIG. 実施例2における氷粒の発生状態を示す図面代用写真。FIG. 3 is a drawing-substituting photograph showing the state of generation of ice particles in Example 2. FIG.

符号の説明Explanation of symbols

1 実験装置
2 対象領域
20 対象領域形成手段
3 レーザー光
30 レーザー光照射手段
DESCRIPTION OF SYMBOLS 1 Experimental apparatus 2 Target area | region 20 Target area | region formation means 3 Laser beam 30 Laser beam irradiation means

Claims (6)

水蒸気を含む空気よりなる対象領域に、波長が270nm〜180nmの紫外線レーザー光を照射することにより、上記対象領域内に水滴又は氷粒を生じさせることを特徴とする紫外線レーザーによる水滴又は氷粒の生成方法。   By irradiating a target region made of air containing water vapor with ultraviolet laser light having a wavelength of 270 nm to 180 nm, water droplets or ice particles are generated in the target region. Generation method. 請求項1において、上記紫外線レーザー光は、波長が193nmのアルゴン・フッ素レーザー光であることを特徴とする紫外線レーザーによる水滴又は氷粒の生成方法。   2. The method of generating water droplets or ice particles by an ultraviolet laser according to claim 1, wherein the ultraviolet laser beam is an argon / fluorine laser beam having a wavelength of 193 nm. 請求項1において、上記紫外線レーザー光は、波長が248nmのクリプトン・フッ素レーザー光であることを特徴とする紫外線レーザーによる水滴又は氷粒の生成方法。   2. The method of generating water droplets or ice particles using an ultraviolet laser according to claim 1, wherein the ultraviolet laser beam is a krypton / fluorine laser beam having a wavelength of 248 nm. 請求項1〜3のいずれか1項において、上記対象領域は、水蒸気の含有量が飽和水蒸気圧またはそれ以上であることを特徴とする紫外線レーザーによる水滴又は氷粒の生成方法。   4. The method of generating water droplets or ice particles by using an ultraviolet laser according to claim 1, wherein the target region has a water vapor content equal to or higher than a saturated water vapor pressure. 請求項1〜4のいずれか1項において、上記対象領域の温度は、3℃以下であることを特徴とする紫外線レーザーによる水滴又は氷粒の生成方法。   5. The method of generating water droplets or ice particles by using an ultraviolet laser according to claim 1, wherein the temperature of the target region is 3 ° C. or lower. 請求項1〜5のいずれか1項において、上記紫外線レーザー光の照射は、上記対象領域内における照射位置を変更しながら連続的に行うことを特徴とする紫外線レーザーによる水滴又は氷粒の生成方法。   6. The method of generating water droplets or ice particles using an ultraviolet laser according to claim 1, wherein the irradiation with the ultraviolet laser light is continuously performed while changing the irradiation position in the target region. .
JP2005210316A 2005-07-20 2005-07-20 Generation method of water droplets or ice particles by ultraviolet laser Expired - Fee Related JP4527020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005210316A JP4527020B2 (en) 2005-07-20 2005-07-20 Generation method of water droplets or ice particles by ultraviolet laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005210316A JP4527020B2 (en) 2005-07-20 2005-07-20 Generation method of water droplets or ice particles by ultraviolet laser

Publications (2)

Publication Number Publication Date
JP2007020516A JP2007020516A (en) 2007-02-01
JP4527020B2 true JP4527020B2 (en) 2010-08-18

Family

ID=37782106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005210316A Expired - Fee Related JP4527020B2 (en) 2005-07-20 2005-07-20 Generation method of water droplets or ice particles by ultraviolet laser

Country Status (1)

Country Link
JP (1) JP4527020B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062441A2 (en) * 2006-09-10 2008-05-29 Shivshankar Kanhuji Chopkar Artificial rainmaking systems
RU2373693C1 (en) * 2008-04-10 2009-11-27 Сергей Владимирович Бологуров Method of local impact on atmosphere and device for its implementation
KR101348115B1 (en) 2013-02-15 2014-01-08 (주)지비엠 아이엔씨 Hygroscopic flare composition for weather modification, and cold cloud dissipation method using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925624A (en) * 1981-02-14 1984-02-09 柴谷 鶴一 Prevention of snow damage and cold-weather damage
JPH09233957A (en) * 1996-03-04 1997-09-09 Shigeru Kimura Rainfall bar instrument by laser beam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925624A (en) * 1981-02-14 1984-02-09 柴谷 鶴一 Prevention of snow damage and cold-weather damage
JPH09233957A (en) * 1996-03-04 1997-09-09 Shigeru Kimura Rainfall bar instrument by laser beam

Also Published As

Publication number Publication date
JP2007020516A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
US10741399B2 (en) Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
JP4786205B2 (en) Carbon nanotube processing method and processing apparatus
Elsayed et al. Effect of focusing conditions and laser parameters on the fabrication of gold nanoparticles via laser ablation in liquid
US10421060B2 (en) Device, system, and method for producing advanced oxidation products
JP2014129608A5 (en)
US9335637B2 (en) Laser-produced plasma EUV source with reduced debris generation utilizing predetermined non-thermal laser ablation
JP4527020B2 (en) Generation method of water droplets or ice particles by ultraviolet laser
JP2007045674A5 (en) Method for producing fullerene dispersion
KR102182028B1 (en) Method for treating substrates with aqueous liquid media exposed to UV radiation
Hamaguchi et al. Synthesis of hydrophilic and hydrophobic carbon nanoparticles from benzene/water bilayer solution with femtosecond laser generated plasma filaments in water
EP1115467B1 (en) Foam control
JP2004006703A5 (en)
JP4911915B2 (en) Target decomposition method and decomposition apparatus
JP2007151466A (en) Method for producing drop of water or ice particle
Bäuerle et al. Nanosecond-laser ablation
Kim et al. Effects of temperature, target/substrate distance, and background pressure on growth of ZnO nanorods by pulsed laser deposition
Golovlyov et al. Laser ablation of absorbing liquids: acoustical microfragmentation mechanism
Vogel et al. Low-density plasmas below the optical breakdown threshold: potential hazard for multiphoton microscopy, and a tool for the manipulation of intracellular events
JP3059285B2 (en) Method and apparatus for removing organic polymer material using laser light
KR20220162266A (en) Apparatus and method for hydrogen production using laser filamentation
Lasagni et al. Direct fabrication of surface architectures on polymers and copolymers using laser interference patterning
JP2009119340A (en) In-liquid laser ablation system
Alekseev et al. Asymmetric gratings on surfaces of glass waveguides
Gildenburg et al. Dynamics of discharge created by the Bessel laser beam in homogeneous medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees