JP4526473B2 - 嵌入式マイクロタッチユニット及びその製造法 - Google Patents

嵌入式マイクロタッチユニット及びその製造法 Download PDF

Info

Publication number
JP4526473B2
JP4526473B2 JP2005368415A JP2005368415A JP4526473B2 JP 4526473 B2 JP4526473 B2 JP 4526473B2 JP 2005368415 A JP2005368415 A JP 2005368415A JP 2005368415 A JP2005368415 A JP 2005368415A JP 4526473 B2 JP4526473 B2 JP 4526473B2
Authority
JP
Japan
Prior art keywords
touch unit
shielding layer
insertion type
type micro
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005368415A
Other languages
English (en)
Other versions
JP2006215022A (ja
Inventor
志忠 陳
Original Assignee
旺▲夕▼科技股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺▲夕▼科技股▲分▼有限公司 filed Critical 旺▲夕▼科技股▲分▼有限公司
Publication of JP2006215022A publication Critical patent/JP2006215022A/ja
Application granted granted Critical
Publication of JP4526473B2 publication Critical patent/JP4526473B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06727Cantilever beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07342Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being at an angle other than perpendicular to test object, e.g. probe card
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4092Integral conductive tabs, i.e. conductive parts partly detached from the substrate

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Description

本発明はマイクロタッチユニット、詳しく言えば嵌入式マイクロタッチユニット及びその製造法に関するものである。
高密度或いは高速電気装置(例えばLSIまたはVLSI回路)をテストするには、大量のマイクロタッチユニット(プローブ)を有するプローブカード(Probe Card)を使用し、かつねじれ性と電気的に接続可能な導電性とを有するマイクロタッチユニットを、テスト対象物の間の電気伝導のユニット例えばLSIとVLSIチップ、半導体ウェハ、チップ予備焼結、パッケジングの半導体装置、及びプリント回路板などのタッチテストユニットにする必要がある。かつマイクロタッチユニットをICパッケジングのIC引線にすることも可能である。後続の説明の便を図るためにマイクロタッチユニットについてプローブカードのプローブとして説明する。
一般的なマイクロタッチユニットは需要によって態様が異なる。そのうちの一つは懸垂式マイクロタッチユニットであり、懸垂式マイクロタッチユニットは弾力性が比較的高いため、外物との接触を許容可能であるだけでなく、偏移が生じても接続状態を保持可能である。
プローブについて、例えば、特許文献1では、図1に示すように、マイクロ機電技術により金属蒸着の方法でプローブの構造を堆積するか、別々に金属蒸着の方法でそれぞれのユニットを製作し、そののち接合方法により組み立てる。しかし、接合及び組立工程による精度はフォトマスキング工程による精度より低い。何回か接合するのに伴い位置を狙う誤差が累積するため、プローブ尖端1の位置偏差が大きくなるか或いはアーム2と支柱3の接合点に誤差が生じるだけでなく、プローブ尖端の探知位置がはずれ、プローブの機能の一貫性を低下させるという欠点が生じる。
また、特許文献2では、同様にマイクロ機電技術により金属蒸着の方法でプローブの構造を造成し、そのプローブ尖端が熔接方法で接合され、その支柱(プローブの底部)の構造がワイヤボンディング方法により外部で金属をメッキされ、強化されるものである。ワイヤボンディング方法による支柱の生産は量産スピードが非常に遅く、製造過程が複雑で、正確な精度で制御することが必要であるため、製造が困難になる。
また、特許文献3では、マイクロ機電技術により金属蒸着の方法でプローブの構造を造成し、そのプローブ尖端が熔接方法でプローブの一端と接合され、プローブの他端が基板の表面に貼り付けられるが、安定性があまりよくなく、繰り返して使用するのに伴い材料が疲労現象を生じ、基板と分離する事態が発生し、かつプローブ尖端を非常に正確な方法で熔接する必要がある。このため熔接位置の偏移が発生する場合、プローブの接触力は均質でなくなる。
また、特許文献4では、マイクロ機電技術によりシリコン基材をエッチングする方法でプローブを製造し、プローブの外部に導電薄膜をコーディングし、その後それと基板とを接合するが、プローブの大部分はシリコン基材から構成され、導電薄膜は厚さが非常に薄く、かつシリコン基材から構成されるプローブ構造の表面のみに塗布されるため、電流の耐受性があまり高くない。したがって、高流量の需要を満足させることはできない。またプローブのうちのねじれる構造は主に単結晶シリコンを材料にするため、割れ易く、修復できないという欠点がある。
また、特許文献5、特許文献6、及び特許文献7などでは、直接シリコン基板をエッチングする方法により単結晶シリコン材質でプローブを製作し、そののちシリコン基板から製作されたプローブの外に導電薄膜をコーティングすることで電気的な接続を提供する。しかし、導電薄膜は高電流の需要に応えられず、プローブの材料は主に単結晶シリコンであるため、割れ易く、修復できないという欠点がある。
また、特許文献8は、平面式調整機構であって、組み立てる際に平面において若干の微調整をすることで水平調整を進め、かつ調整する際にすべての回路を良好な接続状態に維持するためにプローブと電子基板の間に複数層の弾性的なプローブを増設する必要がある。しかし、このような構造はあまりにも複雑で、回路の伝送経路が比較的長いため、高周波数の伝送に適用しない。
アメリカ合衆国特許US6268915号 アメリカ合衆国公開特許US20010012739号 アメリカ合衆国特許US6399900号 アメリカ合衆国特許US6414501号 アメリカ合衆国特許US4961052号 アメリカ合衆国特許US5172050号 アメリカ合衆国特許US5723894号 アメリカ合衆国特許US5974662号
上述の問題点に鑑みて、本発明の主な目的は、プローブ尖端の位置と接合部位の定位基準を一致させ、単次接合方法により全体の組立精度を高め、全体機能の一貫性を向上させることが可能である嵌入式マイクロタッチユニット及びその製造法を提供することである。
本発明のもう一つの目的はマイクロタッチユニットが一体成型された精度が高い嵌入式マイクロタッチユニット及びその製造法を提供することである。
本発明のさらにもう一つの目的はマイクロタッチユニットが基板の中に嵌め込まれることで良好な支持力と定位補助効果を提供可能である嵌入式マイクロタッチユニット及びその製造法を提供することである。
本発明のさらにもう一つの目的はマイクロタッチユニットの電流の耐受性が比較的大きい嵌入式マイクロタッチユニット及びその製造法を提供することである。
本発明のさらにもう一つの目的はプローブが高導電性と抗疲労性を有するマイクロタッチユニット及びその製造法を提供することである。
本発明のさらにもう一つの目的はマイクロタッチユニットの信号伝送が比較的短いと限定されることで高周波の伝送に便利な嵌入式マイクロタッチユニット及びその製造法を提供することである。
上述の目的を達成するために、本発明による嵌入式マイクロタッチユニットは、マイクロ機電工程により製作され、かつアームとプローブ尖端部と嵌入部とを備える。そのうちアームは第一長辺と、第一長辺に背中合わせに位置する第二長辺とを区分し、プローブ尖端部は第一長辺の一端に連接され、かつアームに垂直である方向に沿い延伸されて形成され、嵌入部は第二長辺に垂直であるように上向きに延伸されて形成される。
以下、本発明の特徴と目的を実施例と図面に基づいて説明する。まず図面の説明は次の通りである。
図2aから図2ffは本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。
図3aから図3kは本発明の第二実施例による嵌入式マイクロタッチユニット基座の製造過程を示す模式図である。
図4は本発明の第二実施例による嵌入式マイクロタッチユニット基座の斜視図である。
図5は本発明の第二実施例による嵌入式マイクロタッチユニット基座のもう一つの実施様態の斜視図である。
図6と図7は本発明の第三実施例による嵌入式マイクロタッチユニットと嵌入式マイクロタッチユニット基座の組立過程を示す模式図である。
図8は本発明の第四実施例による嵌入式マイクロタッチユニットと嵌入式マイクロタッチユニット基座を示す模式図である。
図9は本発明の第五実施例による嵌入式マイクロタッチユニットと嵌入式マイクロタッチユニット基座を示す模式図である。
図10は本発明の第一実施例による嵌入式マイクロタッチユニットを示す模式図である。
図11から図13は本発明の第一実施例による嵌入式マイクロタッチユニットの異なる実施様態を示す模式図である。
図14は本発明の第三実施例による嵌入式マイクロタッチユニットと嵌入式マイクロタッチユニット基座を示す模式図である。
図15から図17は本発明の第三実施例による嵌入式マイクロタッチユニットの異なる実施様態を示す模式図である。
図2aから図2ffに示すように、本発明による嵌入式マイクロタッチユニットの製造法は次のステップを含む。
(A):図2aに示すように、基板11を取る。基板11は単シリコン結晶板である。
(B):図2bに示すように、基板11に誘電薄膜12を蒸着する。誘電薄膜12は窒化シリコン材質から形成され、かつ低圧化学気相蒸着(LPCVD)法によりコーティングされる薄膜である。
(C):図2cに示すように、誘電薄膜12に第一遮蔽層13をコーティングし、第一遮蔽層13に開口を形成する、即ちマイクロエッチング工程(半導体製造のうちのフォトマスキング工程)を行う。
(D):図2dに示すように、開口の中の誘電薄膜12を除去する。その除去方法は活性イオンエッチング(RIE)を利用することが可能である。
(E):図2eに示すように、第一遮蔽層13を除去し、非等方性エッチングを行い、例えば水酸化カリウム(KOH)により基板11のうち誘導薄膜12が被覆していない部位をエッチング加工することで、基板11に逆ピラミッド型の欠け口111を形成する。
(F):図2fに示すように、誘電薄膜12を除去する。熱リン酸エッチング工程または活性イオンエッチング(RIE)により誘電薄膜12を除去することが可能である。エッチング材料と条件はあらかじめ適切に選択され、基板に何も影響を与えることはない。
(G):図2gに示すように、基板11の表面層に導電薄膜14をコーティングする。導電薄膜の材料はチタン金属にすることが可能である。導電薄膜14をコーティングする方法はスパッタリング、蒸着、めっきなどの沈積方法により完成することが可能である。
(H):図2hに示すように、導電薄膜14の表面層に第二遮蔽層15をコーティングし、第二遮蔽層15に基板11の欠け口111に対応する開口を形成する。
(I):図2iに示すように、第二遮蔽層15と欠け口111中に位置する導電薄膜14に単層またはそれ以上の強化薄膜16をコーティングする。強化薄膜16は抗磨耗性、低付着性、良好な導電性などを有するロジウムなど金属である。
(J):図2jに示すように、第二遮蔽層15を除去する。第二遮蔽層15はエッチング法により除去することが可能である。第二遮蔽層15にコーティングされた強化薄膜16は一緒に除去される。
(K):図2kに示すように、導電薄膜14の局部位置に第三遮蔽層17を形成する。第三遮蔽層17は欠け口111の上と同じ側の二つの局部位置に形成される。
(L):図2lに示すように、導電薄膜14の上に第一支持材料18を沈積する。第一支持材料18は銅金属または高分子材料である。沈積方法はスパッタリング法、蒸着法、電鋳法、コーティング法などのいずれか一つである。
(M):図2mに示すように、第三遮蔽層17を除去し、第三遮蔽層17が除去された後の第一支持材料18に窪み口19を形成する。
(N):図2nに示すように、第一支持材料18の窪み口19に第一電鋳材料21を沈積する。第一電鋳材料21はニッケル金属にすることが可能である。
(O):図2oに示すように、第一電鋳材料21と第一支持材料18の表面層を同時に平坦化する。
(P):図2pに示すように、欠け口111上方の第一電鋳材料21に第四遮蔽層22をコーティングし、かつ周知のマイクロエッチング工程によりパターン化した第四遮蔽層22を形成する。
(Q):図2qに示すように、沈積方法により最上層に犠牲層23を設ける。犠牲層23はチタン金属にすることが可能であり、沈積方法はスパッタリング法、蒸着法、めっき法などのいずれか一つである。
(R):図2rに示すように、第四遮蔽層22を除去することで欠け口111中の第一電鋳材料21上方のみ犠牲層23が形成されない。
(S):図2sに示すように、第一電鋳材料21上方に連続しかつ開口部を有する第五遮蔽層24をコーティングする。
(T):図2tに示すように、最上層において電鋳法により第五遮蔽層24の開口部の中に第二支持材料25を形成する。
(U):図2uに示すように、第五遮蔽層24を除去する。
(V):図2vに示すように、第五遮蔽層24が除去された後形成された凹槽に第二電鋳材料26を沈積し、第二電鋳材料26と第二支持材料25を平坦に研磨する。
(W):図2wに示すように、最上層に第六遮蔽層27を形成し、かつ第六遮蔽層27の第二位置と第三位置とに対応するところに開口部を形成する。
(X):図2xに示すように、第六遮蔽槽27の開口部に金属接合層28を沈積する。金属接合層28は一種または数種の良好な付着性を有する金属材質から構成される。また金属接合層28は単層または多層の材質から構成される。金属接合層28の沈積方法は蒸着、スパッタリング法、めっき法などのいずれか一つである。
(Y):図2yに示すように、第六遮蔽層27を除去する。
(Z):図2zに示すように、第二位置の金属接合層28と第三位置の金属接合層28との間に第七遮蔽層29を形成し、かつそれぞれの金属接合層28の端縁部に第七遮蔽層29がやや被さるようにする。
(AA):図2aaに示すように、第三支持材料31を沈積する。
(BB):図2bbに示すように、第七遮蔽層29を除去する。
(CC):図2ccに示すように、第七遮蔽層29が除去された後、第三支持材料31中に形成された凹孔に第三電鋳材料32を沈積し、第三支持材料31と第三電鋳材料32の表面を平坦に研磨する。
(DD):図2ddに示すように、電鋳材料の高さが所定の高さに累積するようになるまでステップ(Z)からステップ(CC)の工程を数回繰り返す。
(EE):図2eeに示すように、それぞれの支持材料を除去すると嵌入式マイクとタッチユニットが完成する。図2ffに示すのは形成された後の嵌入式マイクロタッチユニットの立体図である。導電薄膜14をエッチングすることで形成された後の嵌入式マイクロタッチユニットは基板と分離させることが可能である。
ここで特に説明するのは上述の第一遮蔽層から第七遮蔽層をフォトレジスト材料から形成可能なことである。
図2ffに示すように、嵌入式マイクロタッチユニット100は、アーム41、プローブ基座42、プローブ尖端部43、二つの接合補助部44、嵌入部45、及び二つの接合部46を備える。そのうちアーム41は電鋳材料から形成され、第一長辺411と、第一長辺411に背中あわせに位置する第二長辺412とを区分する。プローブ基座42はアーム41の第一長辺411の一端に連接され、かつアーム41に垂直な方向に沿い延伸される。プローブ尖端部43はプローブ基座41の自由端に形成され、かつ錘状を呈する。二つの接合補助部44はプローブ43と同じ方向に沿い延伸され、第一長辺411の他端に位置付けられる。嵌入部45は第二長辺412から上向きに延伸され、二つの接合補助部44の間の延伸線に位置付けられる。二つの接合部46は嵌入部45の両側辺に形成される。
またアーム41は多層の金属層から構成することが可能である。これにより、金属アームは良好な導電性と抗機械疲労性を同時に有することが可能になる。
またアームを製作する過程では、プラズマを加え化学気相蒸着(PECVD)を増強する方法により沈積される多結晶シリコン材質を使用するか、あるいは添加することが可能である。多結晶シリコン材質は良好な抗機械疲労性を有するため、一般の良好な導電性がある金属の欠点を補うことが可能である。
またアームの外層に金属と誘電材料を重ねることで信号を伝送する外層に単層以上の絶縁遮蔽層とアースの導電層を形成することが可能である。またアームは高分子材料から構成することも可能である。
図3aから図3kに示すように、本発明の第二実施例による嵌入式マイクロタッチユニット基座200の製造法は次のステップを含む。
(A):図3aに示すように、シリコン基板51を取る。シリコン基板51は内部に沈積法により形成された二酸化シリコン層(SiO2)56を有する。続いてシリコン基板51の頂面と底面に第一サブ遮蔽層52を設ける。第一サブ遮蔽層52は、二酸化シリコン、フォトレジスト材料、窒化シリコン、アルミリウム金属などの材料から構成することが可能である。また第一サブ遮蔽層52は、半導体製造のうちのフォトマスキング工程により配置することが可能である。また二酸化シリコン層56を有するシリコン基板51は二酸化シリコン層を介して二つの単結晶のシリコンウェハを相互接合して形成される。
(B):図3bに示すように、シリコン基板51頂面の第一サブ遮蔽層52にパターン化した開口部を有する第二サブ遮蔽層53を配置する。第二サブ遮蔽層53はフォトレジスト材料にすることが可能である。
(C):図3cに示すように、頂面の第一サブ遮蔽層52を活性イオンエッチング(RIE)する。このとき第二サブ遮蔽層53の開口部に位置する第一サブ遮蔽層52はエッチングされてしまう。続いてエッチング後、第二サブ遮蔽層53を除去する。
(D):図3dに示すように、シリコン基板51にパターン化した第三サブ遮蔽層54を配置する。パターン化した第三サブ遮蔽層を配置するステップは、シリコン基板51頂面に二酸化シリコン、フォトレジスト材料、窒化シリコン、アルミニウム金属材料などから構成される原始連続層をコーティングし、続いて原始連続層内の残したい部位に対応する所定の位置にマスク層を配置し、活性エッチングを行い、マスク層から被覆されていない原始連続層を除去し、そののちマスク層を除去するとシリコン基板の所定の位置に配置された原始連続層のみが残り、それがパターン化した開口部を有する第三サブ遮蔽層となる。(パターン化した第三サブ遮蔽層の製造は周知の技術であるため、説明を簡略した)
(E):図3eに示すように、パターン化したシリコン基板51底面の第一サブ遮蔽層52、即ちシリコン基板51底面の第一サブ遮蔽層52に欠け口を形成する。
(F):図3fに示すように、シリコン基板51頂面に第四サブ遮蔽層55を配置する。第四サブ遮蔽層55は第三サブ遮蔽層54の間の開口部に対応する開口部を有する。つまり第四サブ遮蔽層55の開口部は直接シリコン基板51に繋がる。また第四サブ遮蔽層は半導体製造のうちのフォトマスキング工程により配置することが可能である。
(G):図3gに示すように、二酸化シリコン層56を露出させるようになるまで反応接続プラズマイオンにより第四サブ遮蔽層55から被覆されていないシリコン基板51をエッチングすることでシリコン基板51頂面に嵌入槽511を形成する。
(H):図3hに示すように、活性イオンにより嵌入槽511中の二酸化シリコン層56をエッチングし、第四サブ遮蔽層55を除去する。
(I):図3iに示すように、シリコン基板51の嵌入槽511の深さが所定の深さになるまで反応式プラズマイオンにより基板51をエッチングし、かつ二酸化シリコン層56を露出させるようになるまでシリコン基板51頂面の第一サブ遮蔽層52と第三サブ遮蔽層54が被覆していない部位をエッチングすることでシリコン基板51頂面に設置槽512を形成する。
(J):図3jに示すように、活性イオンにより第三サブ遮蔽層54と先ほど露出した二酸化シリコン層56を除去する。
(K):図3kに示すように、反応式プラズマイオンによりシリコン基板51をエッチングすることで嵌入槽511の最上縁辺に接合槽513を形成すると同時に、嵌入槽511と設置槽512の深さを深くする。このとき嵌入槽511はエッチングによりシリコン基板51の頂面から底面を貫通する。
上述のステップにより嵌入式マイクロタッチユニット基座200の製造工程が完成する。図4に示すのは基座200の斜視図である。
また図5に示すように、基座200は周知のセラミックス基板技術と有機材料基板を採用し、機械加工技術により回路配線が完成した基板の上に組立のための溝槽を形成することが可能であるため、基座200は表面に組立に応じる溝槽を有する回路板になる。また半導体技術を採用し、セラミックス基板または有機材料基板の上方に表面が誘電特性である定位構造61を堆積し、更にセラミックス基板または有機材料基板の中に回路配線62を配置することも可能である。
図6と図7に示すのは本発明の第三実施例による嵌入式マイクロタッチユニット100と嵌入式マイクロタッチユニット基座200との結合方法である。図6に示すように、まず嵌入式マイクロタッチユニット100の嵌入部45を嵌入式マイクロタッチユニット基座200の接合槽513から嵌入槽511に挿入すると同時に、金属接合層28と嵌入式マイクロタッチユニット基座200を溶接法で接合し、そして金属接合層28を介して嵌入式マイクロタッチユニット100と嵌入式マイクロタッチユニット基座200とを電気的に接続させる。続いて図7に示すように、エッチングにより嵌入式マイクロタッチユニット100の犠牲層23を除去することで基板11と接合補助部44をアーム41とプローブ尖端部43とから分離させることが可能である。
これにより嵌入式マイクロタッチユニット100を嵌入式マイクロタッチユニット基座200に部分的に嵌め込めば、嵌入式マイクロタッチユニット基座200と確かに結合させることが可能となる。
したがって、本発明の実施例による嵌入式マイクロタッチユニットはプローブ尖端部と嵌入式マイクロタッチユニット基座との間の接合部位を定位する精度が比較的高いという長所を有するだけでなく、主な接点が最上層に近く、プローブのボディーが表面層に隠れているため、プローブの維持及び修理の作業をする際にプローブのボディーを壊してしまうことなく維持及び修理の作業を容易にするという長所を有する。同時に本発明の実施例による嵌入式マイクロタッチユニットのアームとプローブ尖端部は導電体から構成されるため、電流の耐受性が良好である。
図8に示すように、嵌入式マイクロタッチユニットの嵌入部45の長さが足りず嵌入式マイクロタッチユニット基座200の凹槽511を貫通することができない場合、嵌入式マイクロタッチユニット100と外部回路70とを接続させる媒介として嵌入式マイクロタッチユニット基座200の嵌入槽511に導電材料63を充填することが可能である。
図9に示すように、嵌入式マイクロタッチユニット基座200の内部に既に回路配線64が配置されている場合、嵌入式マイクロタッチユニット100の金属接合層28と回路配線64とを接続させることで、外部回路70と伝導することが可能である。このとき嵌入槽511の深さで嵌入部45を十分に収納しさえすれば、シリコン基板51の底面を貫通しない構造を選択することも可能である。
図10から図13に示すように、本発明の第一実施例による嵌入式マイクロタッチユニット100の嵌入部45(図10参照)は弾性を有する弾性構造45’、45’’、45’’’(図11から図13参照)を採用することが可能である。この場合、その弾性変形方向は基板の平面に垂直である。弾性構造を製造する際、図2に示すような第一実施例に似ている製造工程を採用し、かつ多層の電鋳と平坦化などのステップにより堆積して構造を形成することが可能である。また弾性構造45’、45’’、45’’’は接触または接合方法により外部の回路と電気的に接続することも可能である。
図14から図17に示すように、本発明の第三実施例による嵌入式マイクロタッチユニット100のアーム41は剛性を有する矩形体をアームの剛性を調整可能な中段を有する回転枢軸構造41’、41’’、41’’’(図15から図17参照)に変更することが可能である。使用したい設計面積が小さすぎるか或いは厚さが限定され、かつプローブ尖端部の形を変更する量を大きくしたい場合、プローブ尖端部の接触力を小さくする情況を許容可能であれば回転枢軸構造を有するアームによりこの目的を達成することが可能である。また回転枢軸構造によりアーム構造全体の剛性を減少させることで、サイズが異なる嵌入式マイクロタッチユニットの剛性を一致させるように調整することが可能である。
周知のプローブの構造を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの製造過程を示す模式図である。 本発明の第二実施例による嵌入式マイクロタッチユニット基座の製造過程を示す模式図である。 本発明の第二実施例による嵌入式マイクロタッチユニット基座の製造過程を示す模式図である。 本発明の第二実施例による嵌入式マイクロタッチユニット基座の製造過程を示す模式図である。 本発明の第二実施例による嵌入式マイクロタッチユニット基座の製造過程を示す模式図である。 本発明の第二実施例による嵌入式マイクロタッチユニット基座の製造過程を示す模式図である。 本発明の第二実施例による嵌入式マイクロタッチユニット基座の製造過程を示す模式図である。 本発明の第二実施例による嵌入式マイクロタッチユニット基座の製造過程を示す模式図である。 本発明の第二実施例による嵌入式マイクロタッチユニット基座の製造過程を示す模式図である。 本発明の第二実施例による嵌入式マイクロタッチユニット基座の製造過程を示す模式図である。 本発明の第二実施例による嵌入式マイクロタッチユニット基座の製造過程を示す模式図である。 本発明の第二実施例による嵌入式マイクロタッチユニット基座の製造過程を示す模式図である。 本発明の第二実施例による嵌入式マイクロタッチユニット基座の斜視図である。 本発明の第二実施例による嵌入式マイクロタッチユニット基座のもう一つの実施様態の斜視図である。 本発明の第三実施例による嵌入式マイクロタッチユニットと嵌入式マイクロタッチユニット基座の組立過程を示す模式図である。 本発明の第三実施例による嵌入式マイクロタッチユニットと嵌入式マイクロタッチユニット基座の組立過程を示す模式図である。 本発明の第四実施例による嵌入式マイクロタッチユニットと嵌入式マイクロタッチユニット基座を示す模式図である。 本発明の第五実施例による嵌入式マイクロタッチユニットと嵌入式マイクロタッチユニット基座を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットを示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの異なる実施様態を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの異なる実施様態を示す模式図である。 本発明の第一実施例による嵌入式マイクロタッチユニットの異なる実施様態を示す模式図である。 本発明の第三実施例による嵌入式マイクロタッチユニットと嵌入式マイクロタッチユニット基座を示す模式図である。 本発明の第三実施例による嵌入式マイクロタッチユニットの異なる実施様態を示す模式図である。 本発明の第三実施例による嵌入式マイクロタッチユニットの異なる実施様態を示す模式図である。 本発明の第三実施例による嵌入式マイクロタッチユニットの異なる実施様態を示す模式図である。
符号の説明
100 嵌入式マイクロタッチユニット、11 基板、111 欠け口、12 誘電薄膜、13 第一遮蔽層、14 導電薄膜、15 第二遮蔽層、16 強化薄膜、17 第三遮蔽層、18 第一支持材料、19 窪み口、21 第一電鋳材料、22 第四遮蔽層、23 犠牲層、24 第五遮蔽層、25 第二支持材料、26 第二電鋳材料、27 第六遮蔽層、28 金属接合層、29 第七遮蔽層、31 第三支持材料、32 第三電鋳材料、41 アーム、411 第一長辺、412 第二長辺、42 プローブ尖端の基座、44 接合補助部、45 嵌入部、46接合部、200 嵌入式マイクロタッチユニット基座、51 シリコン基板、511 嵌入槽、512 設置槽、513 接合槽、52 第一サブ遮蔽層、53 第二サブ遮蔽層、54 第三サブ遮蔽層、55 第四サブ遮蔽層、56 二酸化シリコン層、61 定位構造、62 回路配線、63 導電材料、70 外部回路、45´、45´´、45´´´ 弾性構造、41´、41´´、41´´´ 回転枢軸構造

Claims (59)

  1. 基板を取り、基板に誘電薄膜を沈積するステップと
    誘電薄膜に開口部を有する第一遮蔽層を形成するステップと、
    開口部の中の誘電薄膜を除去するステップと、
    第一遮蔽層を除去するステップと、
    誘導薄膜が被覆していない基板の部位に対し、非等方性エッチングを行うことで基板に欠け口を形成するステップと、
    誘電薄膜を除去するステップと、
    基板の表面層に導電薄膜をコーティングするステップと、
    導電薄膜の表面層に第二遮蔽層をコーティングし、第二遮蔽層に基板の欠け口に対応する開口部を形成するステップと、
    欠け口に位置する導電薄膜に強化薄膜をコーティングするステップと、
    第二遮蔽層を除去するステップと、
    導電薄膜の局部位置にパターン化した第三遮蔽層を形成するステップと、
    導電薄膜に第一支持材料をコーティングするステップと、
    第三遮蔽層を除去することで第一支持材料に若干の窪み口を形成するステップと、
    第一支持材料の窪み口に第一電鋳材料を沈積し、同時に第一電鋳材料と第一支持材料とを平坦に研磨するステップと、
    基板の欠け口の上方に位置する第一電鋳材料に第四遮蔽層をコーティングするステップと、
    犠牲層を沈積するステップと、
    第四遮蔽層を除去することで欠け口に位置する第一電鋳材料の上方のみ犠牲層を形成しないステップと、
    第一電鋳材料の上方に開口部を有する第五遮蔽層をコーティングするステップと、
    電鋳法により第五遮蔽層の開口部の中に第二支持材料を形成するステップと、
    第五遮蔽層を除去するステップと、
    第五遮蔽層が除去された後、第二支持材料の中に形成された凹槽に第二電鋳材料を沈積し、同時に第二電鋳材料と第二支持材料とを平坦に研磨するステップと、
    パターン化した開口部を有する第六遮蔽層を形成するステップと、
    第六遮蔽槽の開口部に金属接合層を沈積するステップと、
    第六遮蔽層を除去するステップと、
    パターン化した第七遮蔽層を形成し、かつ金属接合層の端縁部に第七遮蔽層がやや被さるようにするステップと、
    第三支持材料を沈積するステップと、
    第七遮蔽層を除去するステップと、
    第七遮蔽層が除去された後、第三支持材料の中に形成された凹孔に第三電鋳材料を沈積し、第三支持材料と第三電鋳材料の表面とを平坦に研磨するステップと、
    同時に第一支持材料、第二支持材料、及び第三支持材料を除去するステップと、
    導電薄膜を除去するステップと、
    を含むことを特徴とする嵌入式マイクロタッチユニットの製造法。
  2. 誘電薄膜は窒化シリコンであることを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  3. 第一遮蔽層から第七遮蔽層はフォトレジスト材料であることを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  4. 第一遮蔽層から第七遮蔽層にパターン化した開口部を形成する方法は、半導体製造のうちの周知のフォトマスキング工程にすることが可能であることを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  5. 導電薄膜はチタン金属であることを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  6. 第一支持材料から第三支持材料は銅金属であることを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  7. 第一支持材料から第三支持材料は高分子材料を含むことを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  8. 第一支持材料から第三支持材料はスパッタリング法により形成されることを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  9. 第一支持材料から第三支持材料は蒸着法により形成されることを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  10. 第一支持材料から第三支持材料は電鋳法により形成されることを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  11. 第一支持材料から第三支持材料はコーティング法により形成されることを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  12. 犠牲層はチタン金属であることを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  13. 犠牲層を沈積する方法はスパッタリング法であることを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  14. 犠牲層を沈積する方法は蒸着法であることを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  15. 犠牲層を沈積する方法はめっき法であることを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  16. 金属接合層は一種または数種の良好な付着性を有する金属材質を含むことを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  17. 金属接合層は単層または多層の材質から構成されることを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  18. 金属接合層を沈積する方法は、蒸着法であることを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  19. 金属接合層を沈積する方法はスパッタリング法であることを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  20. 金属接合層を沈積する方法はめっき法であることを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  21. 基板は単結晶シリコンであることを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  22. 誘電薄膜は低圧化学気相蒸着(LPCVD)法により基板の上に沈積されることを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  23. 誘電薄膜を除去する方法は活性イオンエッチング(RIE)を採用することであることを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  24. 強化薄膜は、抗磨耗性、低付着性、良好な導電性を有することを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  25. 強化薄膜はロジウム金属であることを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  26. 第一電鋳材料から第三電鋳材料はニッケル金属であることを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  27. 第一電鋳材料から第三電鋳材料はニッケル金属であることを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造法。
  28. 第一長辺と、第一長辺に背中合わせに位置する第二長辺とを区分し、第二電鋳材料から形成されるアームと、
    第一長辺の一端に連接され、かつアームに垂直である方向に沿い延伸され、第一電鋳材料から形成されるプローブ尖端部と、
    第二長辺に垂直であるように上向きに延伸され、第三電鋳材料から形成される嵌入部と、
    を備えることを特徴とする請求項1記載の製造方法によって形成された嵌入式マイクロタッチユニット。
  29. アームは多結晶シリコン材質から構成されることを特徴とする請求項28に記載の嵌入式マイクロタッチユニット。
  30. アームは単結晶シリコン材質から構成されることを特徴とする請求項28に記載の嵌入式マイクロタッチユニット。
  31. アームは誘電材質から構成されることを特徴とする請求項28に記載の嵌入式マイクロタッチユニット。
  32. アームは高分子材料から構成されることを特徴とする請求項28に記載の嵌入式マイクロタッチユニット。
  33. アームは良好な導電性を有する材料と良好な抗疲労性を有する材料とから構成することが可能であることを特徴とする請求項28に記載の嵌入式マイクロタッチユニット。
  34. アームは数種の材質が異なる構造を堆積して形成することが可能であることを特徴とする請求項28に記載の嵌入式マイクロタッチユニット。
  35. アームは外部が絶縁遮蔽層とアースの導電層により被覆されることで良好な信号遮蔽効果を提供し、アーム内部の材質を介して伝送される信号の品質を高めることが可能であることを特徴とする請求項28に記載の嵌入式マイクロタッチユニット。
  36. プローブ尖端部は錐状を呈し、かつ一体成型されたプローブ基座によりアームに連接することを特徴とする請求項28に記載の嵌入式マイクロタッチユニット。
  37. 嵌入部の両辺の上から延伸して形成される接合部を有することを特徴とする請求項28に記載の嵌入式マイクロタッチユニット。
  38. 嵌入部は弾性を有する弾性体であることを特徴とする請求項28に記載の嵌入式マイクロタッチユニット。
  39. アームの中段はアームの剛性を調整可能な回転枢軸構造を備えることを特徴とする請求項28に記載の嵌入式マイクロタッチユニット。
  40. 導電薄膜を除去するステップは、第三電鋳材料を基座内に嵌め込み、金属接合層と基座とを電気的に連接して犠牲層を取り除くことを特徴とする請求項1に記載の嵌入式マイクロタッチユニットの製造方法。
  41. 基座の製造方法は、
    二酸化シリコン層を備えるシリコン基板の頂面と底面とに第一サブ遮蔽層を配置するステップと、
    シリコン基板の頂面の第一サブ遮蔽層にパターン化した開口部を有する第二サブ遮蔽層を配置するステップと、
    第二サブ遮蔽層の開口部に位置する第一サブ遮蔽層をエッチングするステップと、
    第二サブ遮蔽層を除去するステップと、
    シリコン基板の頂面にパターン化した第三サブ遮蔽層を配置するステップと、
    シリコン基板の底面の第一サブ遮蔽層をパターン化するステップと、
    シリコン基板の頂面に第四サブ遮蔽層を配置し、かつ第四サブ遮蔽層に第三サブ遮蔽層の開口部に対応する開口部を形成するステップと、
    二酸化シリコン層を露出させるまで第四サブ遮蔽層から被覆されていないシリコン基板をエッチングすることでシリコン基板の頂面に嵌入槽を形成するステップと、
    第四サブ遮蔽層を除去し、嵌入槽に位置する二酸化シリコン層をエッチングするステップと、
    嵌入槽の深さが深くなるようにシリコン基板をエッチングし、かつ二酸化シリコン層を露出させるようになるまでシリコン基板の頂面の第一サブ遮蔽層と第三サブ遮蔽層とが被覆していない部位をエッチングすることでシリコン基板の頂面に設置槽を形成するステップと、
    第三サブ遮蔽層および先ほど露出した二酸化シリコン層を除去するステップと、
    シリコン基板の頂面をエッチングすることで凹槽の最上縁辺に接合槽を形成すると同時に、嵌入槽と設置槽の深さを深くするステップと、
    を含むことを特徴とする請求項40に記載の嵌入式マイクロタッチユニットの製造法。
  42. 二酸化シリコン層を備えるシリコン基板は、二酸化シリコン層を介して二つの単結晶のシリコンウェハを相互接合して形成されることを特徴とする請求項41に記載の嵌入式マイクロタッチユニットの製造法。
  43. 第一サブ遮蔽層は二酸化シリコン材質であることを特徴とする請求項41に記載の嵌入式マイクロタッチユニットの製造法。
  44. 第一サブ遮蔽層はフォトレジスト材料であることを特徴とする請求項41に記載の嵌入式マイクロタッチユニットの製造法。
  45. 第一サブ遮蔽層は窒化シリコン材質であることを特徴とする請求項41に記載の嵌入式マイクロタッチユニットの製造法。
  46. 第一サブ遮蔽層はアルミニウム金属材料であることを特徴とする請求項41に記載の嵌入式マイクロタッチユニットの製造法。
  47. 第二サブ遮蔽層はフォトレジスト材料であることを特徴とする請求項41に記載の嵌入式マイクロタッチユニットの製造法。
  48. 第三サブ遮蔽層は二酸化シリコン材質であることを特徴とする請求項41に記載の嵌入式マイクロタッチユニットの製造法。
  49. 第三サブ遮蔽層はフォトレジスト材料であることを特徴とする請求項41に記載の嵌入式マイクロタッチユニットの製造法。
  50. 第三サブ遮蔽層は窒化シリコン材質であることを特徴とする請求項41に記載の嵌入式マイクロタッチユニットの製造法。
  51. 第三サブ遮蔽層はアルミニウム金属材料であることを特徴とする請求項41に記載の嵌入式マイクロタッチユニットの製造法。
  52. 第三サブ遮蔽層は第一サブ遮蔽層と異なる材質であることを特徴とする請求項41に記載の嵌入式マイクロタッチユニットの製造法。
  53. 第一サブ遮蔽層と第四サブ遮蔽層を配置する方法はフォトマスキング工程を採用することを特徴とする請求項41に記載の嵌入式マイクロタッチユニットの製造法。
  54. 嵌入槽はシリコン基板の頂面からシリコン基板の底面を貫通するようにエッチングされることを特徴とする請求項41に記載の嵌入式マイクロタッチユニットの製造法。
  55. 基座はシリコン基板、嵌入槽、設置槽、及び接合槽を備え、設置槽はシリコン基板の頂面のある部位から一定の幅と距離で下向きに延伸して形成され、接合槽はシリコン基板の頂面の他部位から下向きに延伸して形成され、嵌入槽は接合槽の底部から下向きに延伸して形成されることにより、嵌入式マイクロタッチユニットの第三電鋳材料を嵌入槽に嵌め込むことが可能であり、また嵌入式マイクロタッチユニットの第二電鋳材料は一部分が接合槽に収納されることで接合槽に収納されていない第二電鋳材料の他の部分が設置槽から宙吊りになることを特徴とする請求項40に記載の嵌入式マイクロタッチユニットの製造方法
  56. 嵌入式マイクロタッチユニットと外部回路とを接続させる媒介として基座の嵌入槽に導電材料を充填し、嵌入式マイクロタッチユニットの金属接合層と電気的に連接することが可能であることを特徴とする請求項55に記載の嵌入式マイクロタッチユニットの製造方法
  57. 嵌入式マイクロタッチユニットと基座は、導電材料を介して外部回路を有するユニットに安定可能であることを特徴とする請求項56に記載の嵌入式マイクロタッチユニットの製造方法
  58. 基座は、内部に若干の回路配線を有し、嵌入式マイクロタッチユニットの金属接合層と電気的に連接することで嵌入式マイクロタッチユニットを回路配線に接続させ、外部の回路に導通させることが可能であることを特徴とする請求項55に記載の嵌入式マイクロタッチユニットの製造方法
  59. 基座は、表面に組立のための溝槽を有する回路板であることを特徴とする請求項58に記載の嵌入式マイクロタッチユニットの製造方法
JP2005368415A 2005-02-03 2005-12-21 嵌入式マイクロタッチユニット及びその製造法 Expired - Fee Related JP4526473B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW094103472A TWI268350B (en) 2005-02-03 2005-02-03 Embedded light-touching component and manufacturing method hereof embedded light-touching component made by a micro-electromechanical process

Publications (2)

Publication Number Publication Date
JP2006215022A JP2006215022A (ja) 2006-08-17
JP4526473B2 true JP4526473B2 (ja) 2010-08-18

Family

ID=36757174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005368415A Expired - Fee Related JP4526473B2 (ja) 2005-02-03 2005-12-21 嵌入式マイクロタッチユニット及びその製造法

Country Status (3)

Country Link
US (1) US7267557B2 (ja)
JP (1) JP4526473B2 (ja)
TW (1) TWI268350B (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI274161B (en) * 2005-08-29 2007-02-21 Mjc Probe Inc Electrical contact device of probe card
KR101273970B1 (ko) 2006-12-11 2013-06-12 (주) 미코에스앤피 프로브의 탐침 및 프로브의 제조방법
JP2008151573A (ja) * 2006-12-15 2008-07-03 Micronics Japan Co Ltd 電気的接続装置およびその製造方法
JP5123533B2 (ja) * 2007-02-01 2013-01-23 株式会社日本マイクロニクス 通電試験用プローブおよびその製造方法
US20090144970A1 (en) * 2007-12-06 2009-06-11 Winmems Technologies Holdings Co., Ltd. Fabricating an array of mems parts on a substrate
EP2141503A1 (en) * 2008-06-30 2010-01-06 Capres A/S A multi-point probe for testing electrical properties and a method of producing a multi-point probe
US20110285416A1 (en) * 2008-06-30 2011-11-24 Petersen Dirch H Multi-point probe for testing electrical properties and a method of producing a multi-point probe
US8089294B2 (en) 2008-08-05 2012-01-03 WinMENS Technologies Co., Ltd. MEMS probe fabrication on a reusable substrate for probe card application
KR101934386B1 (ko) * 2011-09-06 2019-01-03 삼성전자주식회사 인쇄회로 기판용 접촉 단자
TWI454706B (zh) * 2012-09-07 2014-10-01 Mpi Corp Probe structure of power test and its manufacturing method
JP2016050860A (ja) * 2014-08-29 2016-04-11 オムロン株式会社 検査端子ユニットおよびプローブカードおよび検査端子ユニットの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346878A (ja) * 1999-04-30 2000-12-15 Advantest Corp 微細化工程により形成するコンタクトストラクチャ
US6414501B2 (en) * 1998-10-01 2002-07-02 Amst Co., Ltd. Micro cantilever style contact pin structure for wafer probing
JP2002531915A (ja) * 1998-12-02 2002-09-24 フォームファクター,インコーポレイテッド リソグラフィ接触要素
JP2003227849A (ja) * 2002-02-04 2003-08-15 Micronics Japan Co Ltd プローブ要素及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5974662A (en) 1993-11-16 1999-11-02 Formfactor, Inc. Method of planarizing tips of probe elements of a probe card assembly
US7063541B2 (en) 1997-03-17 2006-06-20 Formfactor, Inc. Composite microelectronic spring structure and method for making same
US6807734B2 (en) * 1998-02-13 2004-10-26 Formfactor, Inc. Microelectronic contact structures, and methods of making same
US6268015B1 (en) 1998-12-02 2001-07-31 Formfactor Method of making and using lithographic contact springs
DE19859808A1 (de) * 1998-12-23 2000-06-29 Henkel Kgaa Mehrphasiges Reinigungsmittel mit Ligninsulfonat
US6692145B2 (en) * 2001-10-31 2004-02-17 Wisconsin Alumni Research Foundation Micromachined scanning thermal probe method and apparatus
US7047638B2 (en) * 2002-07-24 2006-05-23 Formfactor, Inc Method of making microelectronic spring contact array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6414501B2 (en) * 1998-10-01 2002-07-02 Amst Co., Ltd. Micro cantilever style contact pin structure for wafer probing
JP2002531915A (ja) * 1998-12-02 2002-09-24 フォームファクター,インコーポレイテッド リソグラフィ接触要素
JP2000346878A (ja) * 1999-04-30 2000-12-15 Advantest Corp 微細化工程により形成するコンタクトストラクチャ
JP2003227849A (ja) * 2002-02-04 2003-08-15 Micronics Japan Co Ltd プローブ要素及びその製造方法

Also Published As

Publication number Publication date
US7267557B2 (en) 2007-09-11
JP2006215022A (ja) 2006-08-17
US20060172568A1 (en) 2006-08-03
TW200628799A (en) 2006-08-16
TWI268350B (en) 2006-12-11

Similar Documents

Publication Publication Date Title
JP4526473B2 (ja) 嵌入式マイクロタッチユニット及びその製造法
KR100809674B1 (ko) 박막 센서를 제조하는 방법
KR100744736B1 (ko) 탐침 카드의 탐침 및 그 제조 방법
JP4726489B2 (ja) 集積構造体の製造方法
TWI261672B (en) Elastic micro probe and method of making same
TWI301392B (ja)
KR101766261B1 (ko) 프로브 핀 및 그의 제조 방법
CN103412164B (zh) 基于弹性基底和背面引线的微机电***探针卡和制备方法
JP2014207452A (ja) ガラス貫通ビアを製造する方法
KR20090006775A (ko) 전자 부품 및 그 제조 방법
CN101461050A (zh) 制造悬臂式探针的方法和使用该悬臂式探针制造探针卡的方法
KR100523745B1 (ko) 전자소자 검사용 마이크로 프로브 및 그 제조 방법
CN1821788B (zh) 嵌入式微接触元件及其制造方法
TW408417B (en) Planar-shape thin probe having electrostatic actuator manufactured by using sacrificed layer technology and its manufacturing method
US20080278185A1 (en) Electrical contact device and its manufacturing process
CN100516886C (zh) 探针卡的探针及其制法
JP2006245122A (ja) 配線部材および配線部材の製造方法
TW200912338A (en) CMOS process compatible MEMS probe card
WO2008153342A2 (en) Probe substrate assembly
KR100823311B1 (ko) 프로브 카드 제조 방법 및 이에 의해 제조된 프로브 카드
KR101724636B1 (ko) 플레이트부의 제조 방법 및 프로브 카드
KR100840765B1 (ko) 캔틸레버 타입의 프로브 제조 방법
CN101835076A (zh) 电容式感测装置及其制作方法
KR100963369B1 (ko) 통전핀, 그의 통전핀 제조방법
KR101334458B1 (ko) 프로브 구조물과 형성 방법

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100402

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees