JP4523765B2 - Rotor position detection method and position detection apparatus for permanent magnet synchronous motor - Google Patents

Rotor position detection method and position detection apparatus for permanent magnet synchronous motor Download PDF

Info

Publication number
JP4523765B2
JP4523765B2 JP2003207378A JP2003207378A JP4523765B2 JP 4523765 B2 JP4523765 B2 JP 4523765B2 JP 2003207378 A JP2003207378 A JP 2003207378A JP 2003207378 A JP2003207378 A JP 2003207378A JP 4523765 B2 JP4523765 B2 JP 4523765B2
Authority
JP
Japan
Prior art keywords
voltage
phase
rotor
permanent magnet
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003207378A
Other languages
Japanese (ja)
Other versions
JP2005065361A (en
Inventor
正司 西方
Original Assignee
特殊電装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 特殊電装株式会社 filed Critical 特殊電装株式会社
Priority to JP2003207378A priority Critical patent/JP4523765B2/en
Publication of JP2005065361A publication Critical patent/JP2005065361A/en
Application granted granted Critical
Publication of JP4523765B2 publication Critical patent/JP4523765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、永久磁石同期電動機において、起動前に回転子の位置を検出するのに用いる位置検出方法及び位置検出装置に関するものである。
【0002】
【従来の技術】
永久磁石同期電動機は、高効率であることから産業界において広く用いられている。この電動機は、例えば、永久磁石を設けた回転子と、三相巻線を有する固定子を備えており、起動時の同期外れを防ぐために回転子の位置に同期した電圧を固定子の三相巻線に印加する必要があるので、起動前に回転子の位置を検出する必要がある。そして、このような永久磁石同期電動機において、回転子の位置検出を行う手段としては、固定子にホール素子を設け、このホール素子で回転子の永久磁石の極性を検出して回転子の位置を検出するものが周知である。
【0003】
【発明が解決しようとする課題】
ところが、上記したような永久磁石同期電動機における回転子の位置検出にあっては、信頼性の向上や実装環境の制約などの観点からセンサを用いない方が望ましく、このような背景から、センサを用いずに回転子の位置を検出する研究が盛んに行われていたが、いずれの場合も装置が複雑になるという問題点があり、このような問題点を解決することが課題であった。
【0004】
【発明の目的】
本発明は、上記従来の課題に着目して成されたもので、センサを用いずに、装置を複雑化させることなく回転子の位置を検出することができる永久磁石同期電動機における回転子の位置検出方法及び位置検出装置を提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明に係わる永久磁石同期電動機における回転子の位置検出方法は、永久磁石同期電動機において起動前の回転子の位置を検出する方法であって、固定子の三相巻線の一相に電圧を印加し、電圧を印加しない他の二相である非励磁相に発生した電圧波形を検出して、回転子の所定の回転角度毎における両非励磁相の電圧波形の最大値の大小関係と、同じく回転子の所定の回転角度毎における電圧最大値が小さい方の非励磁相の電圧波形の正負の傾きの大小関係とに基づいて、回転子の位置を検出する構成とし、より好ましい実施の形態として、固定子の三相巻線の各相について、一相への電圧の印加と、他の二相である非励磁相に発生した電圧波形の最大値の比較及び電圧最大値が小さい方の非励磁相の電圧波形の正負の傾きの比較を行う構成としており、上記構成をもって従来の課題を解決するための手段としている。
【0006】
また、本発明に係わる永久磁石同期電動機における回転子の位置検出装置は、永久磁石同期電動機において起動前の回転子の位置を検出する装置であって、固定子の三相巻線から選択した一相に電圧を印加するための励磁相選択回路と、電圧を印加しない他の二相である非励磁相に発生した電圧波形を取り込むための電圧比較相選択回路と、電圧比較相選択回路から入力した二相の電圧波形の最大値を比較する電圧最大値比較回路と、電圧比較相選択回路から入力した二相の電圧波形の正負の傾きを比較する電圧波形傾き比較回路を備え、電圧最大値比較回路が、回転子の所定の回転角度毎における両非励磁相の電圧波形の最大値の大小関係を比較し、電圧波形傾き比較回路が、回転子の所定の回転角度毎における電圧最大値が小さい方の非励磁相の電圧波形の正負の傾きの大小関係を比較することを特徴としている。
【0007】
【発明の効果】
本発明の請求項1に係わる永久磁石同期電動機における回転子の位置検出方法によれば、センサを用いることなく、簡単な回路を用いて回転子の位置を検出することができ、永久磁石同期電動機の良好な起動に貢献し得るものとなる。
【0008】
本発明の請求項2に係わる永久磁石同期電動機における回転子の位置検出方法によれば、請求項1と同様の効果を得ることができるうえに、回転子の位置検出精度をより高めることができる。
【0009】
本発明の請求項3に係わる永久磁石同期電動機における回転子の位置検出装置によれば、センサを用いることなく、簡単な回路構成で回転子の位置を検出することができる。また、動作の信頼性が高く、実装環境に好適なものになると共に、永久磁石同期電動機の良好な起動を実現することができる。
【0010】
【発明の実施の形態】
以下、図面に基づいて、本発明に係わる永久磁石同期電動機における回転子の位置検出方法及び位置検出装置の一実施形態を説明する。
【0011】
図1(a)に示す永久磁石同期電動機(以下、『電動機』とする)PMは、スター結線されたU相、V相及びW相の三相巻線を有する固定子Sと、永久磁石M1,M2を有する回転子Rを備えており、図1(b)に示すように、インバータIvを介して直流電源Vに接続してある。なお、図1では二極機を例示しているが、これに限定されることはない。
【0012】
上記の電動機PMを駆動するための駆動装置は、デジタル制御装置1と、起動前の回転子Rの位置を検出する位置検出装置2と、回転子Rの位置検出を行う際に固定子Sの一相に電圧を印加するためのスライダック3を備えている。デジタル制御回路1は、デジタルシグナルプロセッサDSPと、インバータ制御回路4を備えている。
【0013】
位置検出装置2は、固定子Rの三相巻線(U相、V相及びW相)から選択した一相に電圧を印加するための励磁相選択回路5と、他の二相で発生した電圧波形を取り込むための電圧比較相選択回路6と、電圧比較相選択回路6から入力した二相の電圧波形の最大値を比較する電圧最大値比較回路7と、電圧比較相選択回路6から入力した二相の電圧波形の正負の傾きを比較する電圧波形傾き比較回路8を備えている。
【0014】
上記の駆動装置は、デジタルシグナルプロセッサDSPにおいて電圧を印加する一相(励磁相)を決定し、その指令信号を励磁相選択回路5に送ることで、選択された一相にスライダック3から電圧を印加する。また、これと同時に、デジタルシグナルプロセッサDSPにおいて電圧を印加しない二相(非励磁相)を決定し、その指令信号を電圧比較相選択回路6に送ることで、他の二相で発生した電圧波形を取り込み、同電圧波形を電圧最大値比較回路7及び電圧波形傾き比較回路8に入力する。
【0015】
電圧最大値比較回路7は、図2(a)に示すように、二相に対応する入力1及び2に対して、夫々の増幅回路9A,9B及びピークホールド回路10A,10Bと、比較器11を備えており、入力1のピークホールド回路10Aから得られた電圧波形の最大値が、入力2のピークホールド回路10Bから得られた電圧波形の最大値よりも大きい場合(入力1>入力2)に、比較器11から『High』を出力し、その逆の場合には『Low』を出力する。
【0016】
電圧波形傾き比較回路8は、図2(b)に示すように、二相に対応する入力に対して、ローパスフィルタ12と、微分器13と、反転器14と、夫々のピークホールド回路15A,15Bと、比較器16を備えている。この電圧波形傾き比較回路8は、ローパスフィルタ12を経た電圧波形を微分器13に入力して、元の波形における正の傾き(波形の上昇部分の傾き)の大きさを正の最大値に置き換えると共に、元の波形における負の傾き(波形の下降部分の傾き)の大きさを負の最大値に置き換える。
【0017】
次に、一方のピークホールド回路15Aには、微分器13を通したままの波形を入力し、他方のピークホールド回路15Bには、反転器14で反転させた波形を入力し、比較器16においては、元の波形の正の傾きと負の傾きの大きさを比較して、正の傾きの最大値が負の傾きの最大値よりも小さい場合(正の傾き<負の傾き)に『High』を出力し、その逆の場合には『Low』を出力する。なお、この電圧波形傾き比較回路8に入力する電圧は、二相(非励磁相)のうち最大値が小さい方の相を選択する。
【0018】
そして、本発明の回転子の位置検出方法では、上記構成を備えた位置検出装置2を用いて、固定子Sの三相巻線のいずれか一相に電圧を印加し、このとき他の二相に発生した電圧波形の最大値の比較結果と、同電圧波形の正負の傾きの比較結果、すなわち電圧最大値比較回路7からの『High』及び『Low』の信号、並びに電圧波形傾き比較回路8からの『High』及び『Low』の信号に基づいて回転子Rの位置を検出する。
【0019】
ここで、二つの非励磁相に生じた電圧波形の最大値及び正負の傾きの各比較結果に基づいて回転子Rの位置を検出する原理をより詳細に説明する。
【0020】
電動機PMでは、図1(a)に示すように、三相巻線のうちのU相の巻線軸とN極の中心が一致している状態を0度とし、この状態でU相に単相交流電圧を印加すると、同図中に矢印で示すように、永久磁石のN極から発生した磁束がV相及びW相に均等に分かれてS極に達する。このとき、U相の電流の極性により永久磁石との合成磁束は増減し、励磁相であるU相巻線に負の電流が流れるときは鉄心の磁束が増加するので、非励磁相であるV相及びW相の鉄心は飽和状態になる。これらの結果、非励磁相であるV相及びW相には図3(a)に示す電圧が生じる。そして、図1(a)に示す状態から、回転子Rを反時計方向に回転させて30度毎にU相に電圧を印加すると、回転子Rの位置によってU相巻線に錯交する磁束数が変化するので、巻線内の磁束の総量が変化し、図3(a)〜(h)及び図4(a)〜(e)に示すように、V相及びW相に生じる電圧波形が変化する。
【0021】
上記の電圧波形の調波解析を行うと、波形は第二次高調波を含むもので、両電圧波形の最大値は、図5に示すようにほぼ90度毎で入れ替わり、両電圧波形の第二次高調波の位相は、図6に示すように0度又は180度で各相について半周期毎に入れ替わる。また、両電圧波形は、図3(a)に示す0度の状態では正の傾き(上昇部分の傾き)が大きく、回転角度が進むにつれて傾きが変化し、図3(g)に示す180度の状態では正の傾きが小さくなる。さらに、両電圧波形の第二次高調波の含有率は、図7に示すように、誘起電圧の最大値が小さい方の相で第二次高調波成分が大きくなる。
【0022】
表1には、回転子Rの回転角度と、二つの非励磁相(V相及びW相)に生じた電圧波形の最大値の比較結果を示し、表2には、回転子Rの回転角度と、二つの非励磁相に生じた電圧波形の正負の傾きの比較結果を示す。また、表3には、両比較結果のまとめとして、回転子Rの回転角度と、電圧波形の最大値の大小関係と、電圧波形の正負の傾きの大小関係を示す。なお、電圧波形の正負の傾きの大小関係の比較には、二つの非励磁相のうちの電圧最大値が小さい方の非励磁相の電圧波形を用いる。
【0023】
【表1】

Figure 0004523765
【0024】
【表2】
Figure 0004523765
【0025】
【表3】
Figure 0004523765
【0026】
表3に示すように、二つの非励磁相に生じた電圧波形は、最大値の大小関係や正負の傾きの大小関係が、回転子Rの回転位置に関する情報に成り得ることが明らかである。
【0027】
そして、上記の電圧に関する大小関係の比較は、先述した位置検出装置2を含む駆動装置で行うことができ、表3に示した非励磁相の電圧波形の特性は、図8に示すように、電圧最大値比較回路7及び電圧波形傾き比較回路8の各々の比較結果、すなわち回転角度に応じた『High』及び『Low』の信号とで表され、90度毎に『High』と『Low』を組み合わせた四個の基準データが得られる。換言すれば、双方の比較結果の組み合わせ(『High』と『Low』の組み合わせ)から回転子Rの回転角度が求められる。
【0028】
したがって、位置検出装置2を含む駆動装置では、上記の基準データを取得しておき、起動前に回転子Rの位置検出を行う際に、選択した一相に電圧を印加し、これにより他の二相に発生した電圧波形について、最大値の比較と正負の傾きの比較を行う。その結果、例えば、電圧最大値比較回路7から『Low』が出力され、電圧波形傾き比較回路8から『High』が出力された場合には、図8を参照すると、回転子Rが90〜180度の回転角度にあることがわかる。
【0029】
また、本発明の回転子の位置検出方法では、回転子Rの位置検出精度をより高めるために、固定子Sの三相巻線の各相について、一相への電圧の印加と、他の二相に発生した電圧波形の最大値の比較及び正負の傾きの比較を行う。
【0030】
この場合には、U相、V相及びW相が120度間隔で配置してあることから、図9に示すように、U相を励磁相としたときのV相及びW相の電圧波形の比較結果(上段)に対して、V相を励磁相としたときのU相及びW相の電圧波形の比較結果(中段)が120度ずれたものとなり、これに対して、W相を励磁相としたときのU相及びV相の電圧波形の比較結果(下段)がさらに120度ずれたものとなる。したがって、この場合には、先の電圧に関する大小関係の比較によって30度毎に12個の基準データが得られることとなり、回転子Rの位置検出精度がより高められることが明らかである。
【0031】
以上のように得られた回転子Rの位置検出結果は、図1に示す駆動装置において、インバータIvの制御に用いる。駆動装置は、回転子Rの位置検出が終了すると、位置検出装置2を遮断すると共に、デジタルシグナルプロセッサDSPからインバータ制御回路4に位置検出信号を入力し、位置検出した回転子Rの磁石M1,M2に対向する各相の鉄心頭部にN極又はS極が発生するようにインバータIvを制御する。
【0032】
このとき、実際には、図8及び図9に示す基準パターンに対応して、予めインバータIvの制御パターン(励磁相を選択するパターン)を設定しておけばよく、これにより回転子Rの位置検出からインバータ制御に速やかに移行して、電動機PMを円滑に起動させることができる。
【図面の簡単な説明】
【図1】永久磁石同期電動機を説明する断面図(a)及び位置検出装置を含む駆動装置を説明するブロック図(b)である。
【図2】電圧最大値比較回路を説明するブロック図(a)及び電圧波形傾き比較回路を説明するブロック図(b)である。
【図3】非励磁相に発生した電圧波形を30度毎に示すグラフ(a)〜(h)である。
【図4】図3に続いて非励磁相に発生した電圧波形を30毎に示すグラフ(a)〜(e)である。
【図5】回転子の回転角度と非励磁相に発生した電圧波形の最大値との関係を示すグラフである。
【図6】回転子の回転角度と非励磁相に発生した電圧波形の第二次高調波の位相との関係を示すグラフである。
【図7】回転子の回転角度と第二次高調波の含有率との関係を示すグラフである。
【図8】U相を励磁相として、回転子の回転角度に対する電圧最大値比較回路及び電圧波形傾き比較回路の出力信号を示す説明図である。
【図9】各相を順に励磁相として、回転子の回転角度に対する電圧最大値比較回路及び電圧波形傾き比較回路の出力信号を示す説明図である。
【符号の説明】
PM 永久磁石同期電動機
R 回転子
S 固定子
5 励磁相選択回路
6 電圧比較相選択回路
7 電圧最大値比較回路
8 電圧波形傾き比較回路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a position detection method and a position detection device used for detecting the position of a rotor before starting in a permanent magnet synchronous motor.
[0002]
[Prior art]
Permanent magnet synchronous motors are widely used in the industry because of their high efficiency. This electric motor includes, for example, a rotor provided with a permanent magnet and a stator having a three-phase winding, and a voltage synchronized with the position of the rotor is applied to the stator in order to prevent loss of synchronization at the time of startup. Since it is necessary to apply to the winding, it is necessary to detect the position of the rotor before starting. In such a permanent magnet synchronous motor, as a means for detecting the position of the rotor, a Hall element is provided in the stator, and the polarity of the permanent magnet of the rotor is detected by this Hall element to determine the position of the rotor. What is detected is well known.
[0003]
[Problems to be solved by the invention]
However, in detecting the position of the rotor in the permanent magnet synchronous motor as described above, it is desirable not to use a sensor from the viewpoint of improvement in reliability or restrictions on the mounting environment. There have been many studies to detect the position of the rotor without using it, but in each case, there is a problem that the apparatus becomes complicated, and it has been a problem to solve such a problem.
[0004]
OBJECT OF THE INVENTION
The present invention has been made paying attention to the above-described conventional problems, and the position of the rotor in the permanent magnet synchronous motor that can detect the position of the rotor without using a sensor and without complicating the apparatus. An object of the present invention is to provide a detection method and a position detection device.
[0005]
[Means for Solving the Problems]
The method for detecting the position of the rotor in the permanent magnet synchronous motor according to the present invention is a method for detecting the position of the rotor before starting in the permanent magnet synchronous motor, and applying a voltage to one phase of the three-phase winding of the stator. Detecting the voltage waveform generated in the non-excitation phase, which is the other two phases that are applied and not applying voltage, and the magnitude relationship between the maximum values of the voltage waveforms of both non-excitation phases for each predetermined rotation angle of the rotor, Similarly , the rotor position is detected based on the magnitude relationship between the positive and negative slopes of the voltage waveform of the non-excitation phase with the smaller voltage maximum value for each predetermined rotation angle of the rotor, and a more preferred embodiment As for each phase of the three-phase winding of the stator, the voltage applied to one phase and the maximum value of the voltage waveform generated in the other two-phase non-excited phase and the smaller voltage maximum value and it compares the positive and negative slope of the voltage waveform of the non-excitation phase It has a formation, and a means for solving the conventional problems with the above configuration.
[0006]
The rotor position detecting device in the permanent magnet synchronous motor according to the present invention is a device for detecting the position of the rotor before starting in the permanent magnet synchronous motor, and is selected from three-phase windings of the stator. Input from excitation phase selection circuit for applying voltage to phase, voltage comparison phase selection circuit for capturing voltage waveform generated in non-excitation phase, which is the other two phases not applying voltage, and voltage comparison phase selection circuit comprising a voltage maximum value comparing circuit for comparing the maximum value of the two-phase voltage waveform, the voltage waveform gradient comparator circuit for comparing the positive and negative slope of the voltage waveform of two phases input from the voltage comparator phase selection circuit, a voltage maximum value The comparison circuit compares the magnitude relationship between the maximum values of the voltage waveforms of the two non-excitation phases at each predetermined rotation angle of the rotor, and the voltage waveform inclination comparison circuit calculates the maximum voltage value at each predetermined rotation angle of the rotor. The smaller non It is characterized by comparing the magnitude of the positive and negative slope of磁相voltage waveform.
[0007]
【The invention's effect】
According to the rotor position detecting method in the permanent magnet synchronous motor according to claim 1 of the present invention, the position of the rotor can be detected using a simple circuit without using a sensor. Can contribute to a good start-up.
[0008]
According to the rotor position detecting method in the permanent magnet synchronous motor according to claim 2 of the present invention, the same effect as in claim 1 can be obtained, and the rotor position detection accuracy can be further improved. .
[0009]
According to the rotor position detecting device in the permanent magnet synchronous motor according to claim 3 of the present invention, the position of the rotor can be detected with a simple circuit configuration without using a sensor. Further, the reliability of the operation is high and it is suitable for the mounting environment, and the permanent magnet synchronous motor can be favorably started.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a rotor position detection method and a position detection apparatus in a permanent magnet synchronous motor according to the present invention will be described with reference to the drawings.
[0011]
A permanent magnet synchronous motor (hereinafter referred to as “motor”) PM shown in FIG. 1A includes a star-connected stator S having U-phase, V-phase and W-phase three-phase windings, and a permanent magnet M1. , M2 and is connected to a DC power source V via an inverter Iv as shown in FIG. In addition, although the bipolar machine is illustrated in FIG. 1, it is not limited to this.
[0012]
The driving device for driving the electric motor PM includes a digital control device 1, a position detection device 2 for detecting the position of the rotor R before activation, and the stator S when detecting the position of the rotor R. A slidac 3 for applying a voltage to one phase is provided. The digital control circuit 1 includes a digital signal processor DSP and an inverter control circuit 4.
[0013]
The position detection device 2 is generated by an excitation phase selection circuit 5 for applying a voltage to one phase selected from the three-phase windings (U phase, V phase and W phase) of the stator R, and the other two phases. The voltage comparison phase selection circuit 6 for taking in the voltage waveform, the voltage maximum value comparison circuit 7 for comparing the maximum values of the two-phase voltage waveforms input from the voltage comparison phase selection circuit 6, and the input from the voltage comparison phase selection circuit 6 A voltage waveform slope comparison circuit 8 for comparing the positive and negative slopes of the two-phase voltage waveforms is provided.
[0014]
The above driving device determines one phase (excitation phase) to which a voltage is applied in the digital signal processor DSP, and sends the command signal to the excitation phase selection circuit 5 so that the voltage from the slidac 3 is applied to the selected one phase. Apply. At the same time, the digital signal processor DSP determines two phases (non-excited phases) to which no voltage is applied, and sends the command signal to the voltage comparison phase selection circuit 6 to generate voltage waveforms generated in the other two phases. And the same voltage waveform is input to the voltage maximum value comparison circuit 7 and the voltage waveform slope comparison circuit 8.
[0015]
As shown in FIG. 2 (a), the voltage maximum value comparison circuit 7 has an amplifier circuit 9A, 9B and peak hold circuits 10A, 10B, and a comparator 11 for inputs 1 and 2 corresponding to two phases. When the maximum value of the voltage waveform obtained from the peak hold circuit 10A of the input 1 is larger than the maximum value of the voltage waveform obtained from the peak hold circuit 10B of the input 2 (input 1> input 2) On the other hand, “High” is output from the comparator 11, and “Low” is output in the opposite case.
[0016]
As shown in FIG. 2 (b), the voltage waveform slope comparison circuit 8 has a low-pass filter 12, a differentiator 13, an inverter 14 and respective peak hold circuits 15A, 15A, 15B and a comparator 16 are provided. The voltage waveform slope comparison circuit 8 inputs the voltage waveform that has passed through the low-pass filter 12 to the differentiator 13 and replaces the magnitude of the positive slope (the slope of the rising part of the waveform) in the original waveform with a positive maximum value. At the same time, the magnitude of the negative slope in the original waveform (the slope of the falling part of the waveform) is replaced with the negative maximum value.
[0017]
Next, the waveform that has passed through the differentiator 13 is input to one peak hold circuit 15A, and the waveform inverted by the inverter 14 is input to the other peak hold circuit 15B. Compares the magnitudes of the positive and negative slopes of the original waveform, and when the maximum value of the positive slope is smaller than the maximum value of the negative slope (positive slope <negative slope), “High ”Is output, and in the opposite case,“ Low ”is output. As the voltage input to the voltage waveform inclination comparison circuit 8, the phase having the smaller maximum value is selected from the two phases (non-excitation phase).
[0018]
In the rotor position detection method of the present invention, a voltage is applied to any one of the three-phase windings of the stator S using the position detection device 2 having the above-described configuration. The comparison result of the maximum value of the voltage waveform generated in the phase and the comparison result of the positive and negative slopes of the voltage waveform, that is, the “High” and “Low” signals from the voltage maximum value comparison circuit 7 and the voltage waveform slope comparison circuit The position of the rotor R is detected based on the “High” and “Low” signals from 8.
[0019]
Here, the principle of detecting the position of the rotor R based on the comparison results of the maximum value of the voltage waveform generated in the two non-excitation phases and the positive / negative slope will be described in more detail.
[0020]
In the electric motor PM, as shown in FIG. 1A, the state in which the U-phase winding axis of the three-phase windings and the center of the N pole coincide with each other is set to 0 degree, and in this state, the single phase is set to the U phase. When an AC voltage is applied, the magnetic flux generated from the N pole of the permanent magnet is equally divided into the V phase and the W phase and reaches the S pole as indicated by arrows in the figure. At this time, the combined magnetic flux with the permanent magnet increases or decreases depending on the polarity of the U-phase current, and the magnetic flux in the iron core increases when a negative current flows through the U-phase winding that is the excitation phase. Phase and W phase iron cores are saturated. As a result, the voltages shown in FIG. 3A are generated in the non-excited phase V and W. Then, when the rotor R is rotated counterclockwise from the state shown in FIG. 1A and a voltage is applied to the U phase every 30 degrees, the magnetic flux that interlaces with the U phase winding depending on the position of the rotor R. Since the number changes, the total amount of magnetic flux in the winding changes, and as shown in FIGS. 3A to 3H and FIGS. 4A to 4E, voltage waveforms generated in the V phase and the W phase. Changes.
[0021]
When the harmonic analysis of the voltage waveform is performed, the waveform includes the second harmonic, and the maximum value of both voltage waveforms is switched approximately every 90 degrees as shown in FIG. The phase of the second harmonic is 0 degree or 180 degrees as shown in FIG. 6 and is switched every half cycle for each phase. Further, both voltage waveforms have a large positive inclination (inclination of the rising portion) in the state of 0 degree shown in FIG. 3A, and the inclination changes as the rotation angle advances, and 180 degrees shown in FIG. 3G. In this state, the positive slope becomes smaller. Furthermore, as shown in FIG. 7, the second harmonic component of the content ratio of the second harmonic of both voltage waveforms increases in the phase with the smaller maximum value of the induced voltage.
[0022]
Table 1 shows a comparison result between the rotation angle of the rotor R and the maximum value of the voltage waveform generated in the two non-excitation phases (V phase and W phase), and Table 2 shows the rotation angle of the rotor R. And the comparison result of the positive / negative inclination of the voltage waveform which arose in two non-excitation phases is shown. Table 3 shows a summary of both comparison results, which shows the relationship between the rotation angle of the rotor R, the maximum value of the voltage waveform, and the size of the positive and negative slopes of the voltage waveform. Note that the voltage waveform of the non-excited phase having the smaller voltage maximum value of the two non-excited phases is used for comparison of the magnitude relationship between the positive and negative slopes of the voltage waveform.
[0023]
[Table 1]
Figure 0004523765
[0024]
[Table 2]
Figure 0004523765
[0025]
[Table 3]
Figure 0004523765
[0026]
As shown in Table 3, in the voltage waveforms generated in the two non-excited phases, it is clear that the magnitude relationship between the maximum values and the magnitude relationship between the positive and negative slopes can be information on the rotational position of the rotor R.
[0027]
And the comparison of the magnitude relationship regarding said voltage can be performed with the drive device containing the position detection apparatus 2 mentioned above, and the characteristic of the voltage waveform of the non-excitation phase shown in Table 3 is as shown in FIG. Each comparison result of the voltage maximum value comparison circuit 7 and the voltage waveform inclination comparison circuit 8, ie, “High” and “Low” signals corresponding to the rotation angle, is expressed by “High” and “Low” every 90 degrees. Four pieces of reference data obtained by combining are obtained. In other words, the rotation angle of the rotor R is obtained from a combination of both comparison results (a combination of “High” and “Low”).
[0028]
Therefore, in the driving device including the position detection device 2, the above-described reference data is acquired, and when the position of the rotor R is detected before starting, a voltage is applied to the selected one phase. For voltage waveforms generated in two phases, the maximum value is compared with the positive and negative slopes. As a result, for example, when “Low” is output from the voltage maximum value comparison circuit 7 and “High” is output from the voltage waveform slope comparison circuit 8, referring to FIG. It can be seen that the rotation angle is in degrees.
[0029]
Further, in the rotor position detection method of the present invention, in order to further improve the position detection accuracy of the rotor R, for each phase of the three-phase winding of the stator S, voltage application to one phase and other A comparison of maximum values of voltage waveforms generated in two phases and a comparison of positive and negative slopes are performed.
[0030]
In this case, since the U phase, the V phase, and the W phase are arranged at intervals of 120 degrees, as shown in FIG. 9, the voltage waveforms of the V phase and the W phase when the U phase is the excitation phase are shown. Compared to the comparison result (upper stage), the comparison result (middle stage) of the U-phase and W-phase voltage waveforms when the V-phase is the excitation phase is shifted by 120 degrees. The comparison result of the U-phase and V-phase voltage waveforms (lower stage) is further shifted by 120 degrees. Therefore, in this case, 12 reference data are obtained every 30 degrees by comparing the magnitude relations of the previous voltages, and it is clear that the position detection accuracy of the rotor R is further improved.
[0031]
The position detection result of the rotor R obtained as described above is used for controlling the inverter Iv in the drive device shown in FIG. When the position detection of the rotor R is completed, the driving device shuts off the position detection device 2 and inputs a position detection signal from the digital signal processor DSP to the inverter control circuit 4 to detect the position of the magnet M1, the rotor R. The inverter Iv is controlled so that an N pole or an S pole is generated at the iron core head of each phase facing M2.
[0032]
At this time, in practice, a control pattern (pattern for selecting an excitation phase) of the inverter Iv may be set in advance corresponding to the reference pattern shown in FIGS. It is possible to promptly shift from the detection to the inverter control and start the motor PM smoothly.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view (a) illustrating a permanent magnet synchronous motor and a block diagram (b) illustrating a driving device including a position detection device.
FIG. 2A is a block diagram for explaining a voltage maximum value comparison circuit, and FIG. 2B is a block diagram for explaining a voltage waveform inclination comparison circuit.
FIG. 3 is graphs (a) to (h) showing voltage waveforms generated in a non-excitation phase every 30 degrees.
4 is graphs (a) to (e) showing voltage waveforms generated in a non-excited phase every 30 after FIG. 3. FIG.
FIG. 5 is a graph showing a relationship between a rotation angle of a rotor and a maximum value of a voltage waveform generated in a non-excitation phase.
FIG. 6 is a graph showing the relationship between the rotation angle of the rotor and the phase of the second harmonic of the voltage waveform generated in the non-excitation phase.
FIG. 7 is a graph showing the relationship between the rotation angle of the rotor and the content ratio of the second harmonic.
FIG. 8 is an explanatory diagram showing output signals of a voltage maximum value comparison circuit and a voltage waveform inclination comparison circuit with respect to the rotation angle of the rotor using the U phase as an excitation phase.
FIG. 9 is an explanatory diagram showing output signals of a voltage maximum value comparison circuit and a voltage waveform inclination comparison circuit with respect to the rotation angle of the rotor, with each phase as an excitation phase in order.
[Explanation of symbols]
PM Permanent magnet synchronous motor R Rotor S Stator 5 Excitation phase selection circuit 6 Voltage comparison phase selection circuit 7 Voltage maximum value comparison circuit 8 Voltage waveform slope comparison circuit

Claims (3)

永久磁石同期電動機において起動前の回転子の位置を検出する方法であって、固定子の三相巻線の一相に電圧を印加し、電圧を印加しない他の二相である非励磁相に発生した電圧波形を検出して、回転子の所定の回転角度毎における両非励磁相の電圧波形の最大値の大小関係と、同じく回転子の所定の回転角度毎における電圧最大値が小さい方の非励磁相の電圧波形の正負の傾きの大小関係とに基づいて、回転子の位置を検出することを特徴とする永久磁石同期電動機における回転子の位置検出方法。A method for detecting the position of a rotor before starting in a permanent magnet synchronous motor, in which a voltage is applied to one phase of a three-phase winding of a stator and a non-excited phase that is the other two phases without applying a voltage. The generated voltage waveform is detected, and the relationship between the maximum values of the voltage waveforms of both non-excitation phases at each predetermined rotation angle of the rotor and the smaller voltage maximum value at each predetermined rotation angle of the rotor A rotor position detection method in a permanent magnet synchronous motor, wherein the rotor position is detected based on a magnitude relationship between positive and negative slopes of a voltage waveform of a non-excitation phase . 固定子の三相巻線の各相について、一相への電圧の印加と、他の二相である非励磁相に発生した電圧波形の最大値の比較及び電圧最大値が小さい方の非励磁相の電圧波形の正負の傾きの比較を行うことを特徴とする請求項1に記載の永久磁石同期電動機における回転子の位置検出方法。For each phase of the three-phase winding of the stator, apply a voltage to one phase, compare the maximum value of the voltage waveform generated in the other two non-excitation phases , and de-excitation with the smaller voltage maximum value The rotor position detection method in a permanent magnet synchronous motor according to claim 1, wherein the positive and negative slopes of the phase voltage waveforms are compared. 永久磁石同期電動機において起動前の回転子の位置を検出する装置であって、固定子の三相巻線から選択した一相に電圧を印加するための励磁相選択回路と、電圧を印加しない他の二相である非励磁相に発生した電圧波形を取り込むための電圧比較相選択回路と、電圧比較相選択回路から入力した二相の電圧波形の最大値を比較する電圧最大値比較回路と、電圧比較相選択回路から入力した二相の電圧波形の正負の傾きを比較する電圧波形傾き比較回路を備え
電圧最大値比較回路が、回転子の所定の回転角度毎における両非励磁相の電圧波形の最大値の大小関係を比較し、
電圧波形傾き比較回路が、回転子の所定の回転角度毎における電圧最大値が小さい方の非励磁相の電圧波形の正負の傾きの大小関係を比較することを特徴とする永久磁石同期電動機における回転子の位置検出装置。
A device for detecting the position of a rotor before starting in a permanent magnet synchronous motor, an excitation phase selection circuit for applying a voltage to one phase selected from a three-phase winding of a stator, and other than applying a voltage A voltage comparison phase selection circuit for capturing a voltage waveform generated in a non-excitation phase that is a two-phase voltage, a voltage maximum value comparison circuit for comparing the maximum values of the two-phase voltage waveforms input from the voltage comparison phase selection circuit, A voltage waveform slope comparison circuit that compares the positive and negative slopes of the two-phase voltage waveforms input from the voltage comparison phase selection circuit ,
The voltage maximum value comparison circuit compares the magnitude relationship between the maximum values of the voltage waveforms of both non-excitation phases at each predetermined rotation angle of the rotor,
Rotation in a permanent magnet synchronous motor characterized in that the voltage waveform slope comparison circuit compares the magnitude relationship between the positive and negative slopes of the voltage waveform of the non-excitation phase with the smaller maximum voltage value for each predetermined rotation angle of the rotor Child position detection device.
JP2003207378A 2003-08-12 2003-08-12 Rotor position detection method and position detection apparatus for permanent magnet synchronous motor Expired - Fee Related JP4523765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003207378A JP4523765B2 (en) 2003-08-12 2003-08-12 Rotor position detection method and position detection apparatus for permanent magnet synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003207378A JP4523765B2 (en) 2003-08-12 2003-08-12 Rotor position detection method and position detection apparatus for permanent magnet synchronous motor

Publications (2)

Publication Number Publication Date
JP2005065361A JP2005065361A (en) 2005-03-10
JP4523765B2 true JP4523765B2 (en) 2010-08-11

Family

ID=34363877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003207378A Expired - Fee Related JP4523765B2 (en) 2003-08-12 2003-08-12 Rotor position detection method and position detection apparatus for permanent magnet synchronous motor

Country Status (1)

Country Link
JP (1) JP4523765B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG196731A1 (en) 2012-07-16 2014-02-13 Agency Science Tech & Res Method and system for controlling a motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0232790A (en) * 1988-07-20 1990-02-02 Hitachi Ltd Phase commutation timing decision for brushless motor
JP2001275387A (en) * 2000-03-29 2001-10-05 Hitachi Ltd Semiconductor integrated circuit for brushless motor drive control, and brushless motor drive control deice

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0232790A (en) * 1988-07-20 1990-02-02 Hitachi Ltd Phase commutation timing decision for brushless motor
JP2001275387A (en) * 2000-03-29 2001-10-05 Hitachi Ltd Semiconductor integrated circuit for brushless motor drive control, and brushless motor drive control deice

Also Published As

Publication number Publication date
JP2005065361A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
JP3204644B2 (en) Driving device and driving method for electric motor
JP4026889B2 (en) Motor drive signal synchronization method and BEFM signal regeneration circuit
Sundeep et al. Robust position sensorless technique for a PMBLDC motor
KR20070000946A (en) Three phase bldc motor controller and control method thereof
JPH06351280A (en) Phase current detector for motor
JPH09294390A (en) Step-out detecting device in centerless synchronous motor
JP2005245058A (en) Parallel drive method of dc brushless motor
JP2005065415A (en) Magnetic pole position detector for permanent-magnet synchronous motor
JP5405224B2 (en) Motor driving device and method for determining relative position of rotor provided in motor
JP4523765B2 (en) Rotor position detection method and position detection apparatus for permanent magnet synchronous motor
Ahfock et al. Sensorless commutation of printed circuit brushless direct current motors
JP3586593B2 (en) Motor control device
JP3577245B2 (en) Motor start control device
JP2016103912A (en) Power conversion device
JP2017022867A (en) Motor driving method
Yoon et al. New approach to rotor position detection and precision speed control of the BLDC motor
JP2017034767A (en) Sensorless drive method for three-phase brushless motor
JP3393367B2 (en) Device and method for detecting rotor position of sensorless motor
JPH04312390A (en) Starter for brushless motor
JP2008295249A (en) Drive arrangement of brushless motor
JP3807507B2 (en) Sensorless synchronous motor drive device
JP7267487B1 (en) Control device for rotating electrical machine and method for controlling rotating electrical machine
Su et al. Development of a sensor-less speed control inverter for an automotive accessory permanent magnet motor
JP2002218782A (en) Motor driver
JPH04197099A (en) Step motor driving system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4523765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160604

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees