JP4523579B2 - Manufacturing method of wire for cold forging - Google Patents

Manufacturing method of wire for cold forging Download PDF

Info

Publication number
JP4523579B2
JP4523579B2 JP2006338791A JP2006338791A JP4523579B2 JP 4523579 B2 JP4523579 B2 JP 4523579B2 JP 2006338791 A JP2006338791 A JP 2006338791A JP 2006338791 A JP2006338791 A JP 2006338791A JP 4523579 B2 JP4523579 B2 JP 4523579B2
Authority
JP
Japan
Prior art keywords
wire
less
manufacturing
cold forging
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006338791A
Other languages
Japanese (ja)
Other versions
JP2008149340A (en
Inventor
真一 安木
武司 辻
茂広 森
隆之 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006338791A priority Critical patent/JP4523579B2/en
Publication of JP2008149340A publication Critical patent/JP2008149340A/en
Application granted granted Critical
Publication of JP4523579B2 publication Critical patent/JP4523579B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本発明は、機械構造用鋼部品の製造に用いられる冷間鍛造用線材の製造方法に関し、特に冷間加工時に割れが発生しない冷間鍛造用線材の製造方法に関する。   The present invention relates to a method for manufacturing a wire for cold forging used for manufacturing a steel part for machine structure, and more particularly to a method for manufacturing a wire for cold forging in which cracking does not occur during cold working.

機械構造用部品、例えばボルトは熱間圧延された線材(圧延材)を酸洗、皮膜処理、伸線後、冷間圧造にて製造されている。圧延材に焼鈍または球状化焼鈍を施した後に冷間圧造にて製造されている場合もある。また、最近では、歯車も生産性向上の観点から冷間鍛造にて製造されている。ところが、熱間圧延後の線材(圧延材)の表面や内部に疵が存在すると冷間圧造時や冷間鍛造時に割れが発生しやすくなるため、疵のない線材(圧延材)が求められている。   Machine structural parts, such as bolts, are manufactured by cold forging after pickling, film treatment, and wire drawing of a hot-rolled wire (rolled material). It may be manufactured by cold forging after annealing or spheroidizing the rolled material. Recently, gears are also manufactured by cold forging from the viewpoint of improving productivity. However, if there are defects on the surface or inside of the wire rod (rolled material) after hot rolling, cracks are likely to occur during cold forging or cold forging, so a wire rod (rolled material) free from defects is required. Yes.

ところが、線材に加工された後はその全長が長いため線材全体を検査することは事実上不可能なため、通常、熱間圧延後の検査は線材の両端近傍での検査(端末検査)に留どめ、熱間圧延前(すなわち、線材に加工する前)の鋼片段階(素材段階)で検査を行い、この段階で発見した表面疵のみを除去し、内部疵(内部欠陥)を発見した場合は、その鋼片を廃棄することが行われている。   However, since it is virtually impossible to inspect the entire wire after it has been processed into a wire, inspection after hot rolling is usually limited to inspection (terminal inspection) in the vicinity of both ends of the wire. Inspected at the billet stage (material stage) before hot rolling (ie before processing into wire rods), only the surface defects found at this stage were removed, and internal defects (internal defects) were found. If that is the case, the piece of steel is being discarded.

表面疵については、例えば、磁粉探傷法による自動検査装置にて自動検査して比較的大きな疵を検出し、これをグラインディング等にて自動的に除去した後、再度磁粉探傷法を用いて目視にて小さな疵を発見し除去することが行われている(例えば、特許文献1、2参照)。   For surface wrinkles, for example, a relatively large wrinkle is detected by automatic inspection with an automatic inspection device using a magnetic particle inspection method, and after this is automatically removed by grinding or the like, it is visually checked again using a magnetic particle inspection method. A small wrinkle is found and removed at (see, for example, Patent Documents 1 and 2).

一方、内部疵(内部欠陥)については、超音波探傷装置を用いて検出するのが一般的であり、鋼片の中心部および中間部に存在する内部疵に対しては垂直探傷法が用いられ、鋼片の皮下部に多く存在する介在物に起因する疵に対しては斜角探傷法が用いられている(例えば、特許文献3参照)。   On the other hand, internal flaws (internal defects) are generally detected using an ultrasonic flaw detector, and the vertical flaw detection method is used for internal flaws present at the center and middle of a steel piece. An oblique flaw detection method is used for wrinkles caused by inclusions present in the subcutaneous part of a steel piece (see, for example, Patent Document 3).

そして、上記複数の探傷法を組み合わせることにより、鋼片(素材)段階で表面および内部に存在する疵を効率的に、かつ、できるだけ精度良く発見し事前に除去することが行われている。   Then, by combining the plurality of flaw detection methods, it is possible to efficiently detect and remove in advance as much as possible the flaws existing on the surface and inside at the steel piece (material) stage.

上述したように、超音波斜角探傷法は、鋼片の皮下部に多く存在する介在物に起因する疵の検出に非常に有効な手段であり、当該方法を他の探傷法と併用することで、製品である線材の品質向上に大いに寄与してきたものであるが、近年、鋼片検査の前段階である製鋼、鋳造段階における鋼の清浄化技術が急速に進歩したことにより、鋼片中の介在物は小型化し介在物に起因する欠陥(疵)は大幅に低減されてきている。それにもかかわらず、製品である線材には、部品に冷間加工する際に割れが発生するものが一定割合で存在しており、線材品質のさらなる改善が求められていた。
特開2003−136135号公報 特開2005−138168号公報 特開昭59−148860号公報
As described above, the ultrasonic oblique angle flaw detection method is a very effective means for detecting wrinkles caused by inclusions existing in the subcutaneous part of a steel piece, and this method should be used in combination with other flaw detection methods. However, in recent years, rapid progress has been made in steelmaking and casting processes, which are the pre-stages of steel slab inspection. Inclusions have been reduced in size, and defects (wrinkles) resulting from the inclusions have been greatly reduced. Nevertheless, there is a certain percentage of the wire that is a product that cracks when cold-worked into parts, and further improvements in wire quality have been sought.
JP 2003-136135 A JP 2005-138168 A JP 59-148860 A

そこで本発明の目的は、冷間加工時に割れが発生しない冷間鍛造用線材の製造方法を提供することにある。 Therefore, an object of the present invention is to provide a method for producing a wire for cold forging in which cracking does not occur during cold working.

本発明者らは、鋼片内部に存在する疵のうち、従来の超音波探傷にては十分に検出されない疵があるものと考え、先ず、鋼片の断面を目視および顕微鏡にて観察することにより鋼片内部の疵発生の状況を調査した。その結果、鋼片の皮下部に図4に示すような、介在物に起因する疵とは異なる圧着状の疵(以下、「圧着状疵」という。)が発生しているものが多数認められた。この圧着状疵は、鋳片(ブルーム)の連続鋳造時に発生した熱応力割れが分塊圧延時に圧着されて皮下部に線状に形成されたものと想定される。この圧着状疵は、鋼片の表面には開口していないため、磁粉探傷にては検出できず、また、超音波探傷にては、その発生箇所が皮下部であることからして斜角探傷法にて検出されるべきものであるが、従来は介在物に起因する疵に注目してエコー高さの閾値を設定しており、圧着状疵を検出するのには適切な閾値となっていなかったものと考えられる。   The present inventors consider that, among the wrinkles present inside the steel slab, there are wrinkles that are not sufficiently detected by conventional ultrasonic flaw detection, and first, observe the cross section of the steel slab visually and with a microscope. The situation of flaws in the steel slab was investigated. As a result, a number of crimped wrinkles (hereinafter referred to as “crimped wrinkles”) different from wrinkles caused by inclusions as shown in FIG. It was. This crimped wrinkle is assumed to be formed in a linear shape in the subcutaneous part, with the thermal stress cracks generated during continuous casting of the slab (bloom) being crimped during the partial rolling. Since this crimped wrinkle does not open on the surface of the steel slab, it cannot be detected by magnetic particle flaw detection. Although it should be detected by the flaw detection method, the threshold for echo height has been set by paying attention to wrinkles caused by inclusions, and it is an appropriate threshold for detecting crimped wrinkles. It is thought that it was not.

そこで、発明者らは、超音波斜角探傷法においてエコー高さの閾値を適正に設定することで、介在物に起因する疵だけでなく圧着状疵をも感度良く検出し、介在物に起因する疵ないし圧着状疵(以下、「圧着状疵等」と総称する。)が検出された場合は、当該鋼片を廃棄するか、あるいは、可能ならば圧着状疵等を除去することにより、熱間圧延後の線材中に疵が残存することをより確実に防止しうると考え、さらに検討を進め、以下の発明を完成するに至った。   Therefore, the inventors have appropriately set not only the wrinkles caused by inclusions but also crimped wrinkles by appropriately setting the echo height threshold value in the ultrasonic oblique flaw detection method, and are caused by the inclusions. If a spear or a crimp-shaped scissors (hereinafter collectively referred to as “crimp-shaped scissors”) is detected, the steel piece is discarded, or if possible, by removing the crimp-shaped scissors, We thought that it would be possible to more reliably prevent wrinkles from remaining in the wire rod after hot rolling, and further investigations were made, leading to the completion of the following invention.

請求項1に記載の発明は、(1)鋳片を分塊圧延して鋼片とする分塊工程と、(2)分塊圧延された鋼片を検査し疵取りを行う鋼片検査工程と、(3)疵取り後の鋼片を熱間圧延して線材に加工する線材圧延工程と、を備えた線材の製造方法であって、上記(2)の鋼片検査工程が、(2A)分塊圧延された鋼片をショットブラストにて表面の酸化スケールを除去するデスケーリング工程と、(2B)前記スケール除去後の鋼片を表面自動検査装置にて自動検査する表面自動検査工程と、(2C)引き続き、超音波探傷装置にて鋼片内部の疵を自動検査する内部自動検査工程と、(2D)上記(2B)の表面自動検査工程で検出された表面疵を自動疵取装置にて自動疵取りを行う自動疵取り工程と、(2E)引き続き、磁粉探傷装置により鋼片表面を目視検査する表面目視検査工程と、(2F)上記(2E)の表面目視検査工程で検出された表面疵を手作業にて疵取りを行う手動疵取り工程と、を有し、さらに、上記(2C)の内部自動検査工程において、超音波探傷装置にて超音波斜角探傷法により、15dB以上のエコー高さのものを、鋼片の皮下部に存在する介在物に起因する疵および圧着状疵(以下、「圧着状疵等」と総称する。)として検出し、圧着状疵等が検出された場合は当該鋼片を廃棄するか、上記(2D)の自動疵取り工程で表面疵とともに上記圧着状疵等を除去することを特徴とする冷間鍛造用線材の製造方法である。 The invention described in claim 1 includes (1) a bundling process in which a slab is rolled into a steel slab, and (2) a steel slab inspection process for inspecting and scraping the slab that has been subjected to the batch rolling. And (3) a wire rod rolling step that hot-rolls the steel slab after cutting into a wire rod, and the wire slab inspecting step (2A) includes: ) A descaling process for removing the oxide scale on the surface of the rolled steel pieces by shot blasting; and (2B) an automatic surface inspection process for automatically inspecting the steel pieces after the scale removal by a surface automatic inspection device. (2C) Subsequently, an internal automatic inspection process for automatically inspecting defects inside the steel slab with an ultrasonic flaw detector, and (2D) an automatic scraping apparatus for surface defects detected in the surface automatic inspection process of (2B) above Automatic scraping process that performs automatic scraping at (2E), and then using a magnetic particle flaw detector A surface visual inspection step for visually inspecting the surface; and (2F) a manual scoring step for manually scoring the surface flaws detected in the surface visual inspection step of (2E) above, and In the internal automatic inspection process of (2C) above, flaws caused by inclusions existing in the subcutaneous part of the steel slab with an echo height of 15 dB or more by an ultrasonic oblique angle flaw detection method using an ultrasonic flaw detector Detected as a crimped scissors (hereinafter collectively referred to as “crimped scissors etc.”) , and when the crimped scissors etc. are detected, the steel piece is discarded or the surface is removed by the automatic scraping process of (2D) above. A method for producing a wire material for cold forging, wherein the crimped ridge and the like are removed together with the ridge.

請求項に記載の発明は、上記(2F)の手動疵取り工程を複数回繰り返す請求項1に記載の冷間鍛造用線材の製造方法である。 Invention of Claim 2 is a manufacturing method of the wire material for cold forging of Claim 1 which repeats the manual winding process of said (2F) in multiple times.

請求項に記載の発明は、上記(3)の線材圧延工程後の線材の両端末を検査して端末疵の深さが0.02mm以下のもののみを製品線材とする請求項1または2に記載の冷間鍛造用線材の製造方法である。 The invention according to claim 3 is the product wire according to claim 1 or 2 , wherein both ends of the wire rod after the wire rod rolling step (3) above are inspected, and only the wire rod having a depth of 0.02 mm or less is used as the product wire rod. It is a manufacturing method of the wire for cold forging as described in above.

請求項に記載の発明は、請求項1〜のいずれか1項に記載の製造方法にて製造された線材の両端末にキャップを装着した冷間鍛造用線材の製造方法であるThe invention of claim 4 is the claim 1-3 any one PREPARATION method of cold forging for wire mounting the cap on both ends of the manufactured wire in according to the.

請求項に記載の発明は、請求項1〜のいずれか1項に記載の製造方法にて製造された線材をコイル状に巻き上げ、そのコイルの両端面に当て物を装着した冷間鍛造用線材の製造方法である。 Invention of Claim 5 is for the cold forging which wound up the wire manufactured by the manufacturing method of any one of Claims 1-4 in the shape of a coil, and mounted | wore with the both ends of the coil . It is a manufacturing method of a wire.

請求項に記載の発明は、請求項1〜のいずれか1項に記載の製造方法にて製造された線材をコイル状に巻き上げ、そのコイルを梱包した冷間鍛造用線材の製造方法である。 Invention of Claim 6 is a manufacturing method of the wire for cold forging which wound up the wire manufactured by the manufacturing method of any one of Claims 1-4 in the shape of a coil, and packed the coil. is there.

請求項に記載の発明は、前記鋳片の化学成分が、質量%で、C:1.5%以下、Si:3.0%以下、Mn:0.2〜3.0%、P:0.025%以下、S:0.030%以下である請求項1〜6のいずれか1項に記載の冷間鍛造用線材の製造方法である。 In the invention according to claim 7 , the chemical composition of the slab is, by mass, C: 1.5% or less, Si: 3.0% or less, Mn: 0.2 to 3.0%, P: It is 0.025% or less and S: 0.030% or less, It is a manufacturing method of the wire for cold forging of any one of Claims 1-6 .

請求項に記載の発明は、前記鋳片の化学成分が、さらに、Al:0.001〜0.10%、Nb:0.001〜0.05%、Ti:0.001〜0.20%、V:0.01〜0.35%、N:0.001〜0.025%のうち1種以上を含む請求項に記載の冷間鍛造用線材の製造方法である。 In the invention according to claim 8 , chemical components of the slab are further Al: 0.001 to 0.10%, Nb: 0.001 to 0.05%, Ti: 0.001 to 0.20. It is a manufacturing method of the wire for cold forging of Claim 7 containing 1 or more types among%, V: 0.01-0.35% and N: 0.001-0.025%.

請求項に記載の発明は、前記鋳片の化学成分が、さらに、O:0.0020%以下を含む請求項またはに記載の冷間鍛造用線材の製造方法である。 The invention according to claim 9 is the method for producing a wire for cold forging according to claim 7 or 8 , wherein the chemical component of the slab further includes O: 0.0020% or less.

請求項10に記載の発明は、前記鋳片の化学成分が、さらに、Cu:2.5%以下、Ni:2.5%以下、Cr:3.0%以下、Mo:1.0%以下のうち1種以上を含む請求項のいずれか1項に記載の冷間鍛造用線材の製造方法である。 In the invention according to claim 10 , the chemical composition of the slab is further Cu: 2.5% or less, Ni: 2.5% or less, Cr: 3.0% or less, Mo: 1.0% or less. it is a manufacturing method of a cold forging wire according to any one of claims 7-9 comprising one or more of.

請求項11に記載の発明は、前記鋳片の化学成分が、さらに、B:0.001〜0.03%を含む請求項10のいずれか1項に記載の冷間鍛造用線材の製造方法である。 The invention according to claim 11 is the wire for cold forging according to any one of claims 7 to 10 , wherein the chemical component of the slab further includes B: 0.001 to 0.03%. It is a manufacturing method.

請求項12に記載の発明は、前記鋳片の化学成分が、さらに、Ca:0.02%以下、Mg:0.050%以下、Bi:0.10%以下、Li:0.10%以下のうち1種以上を含む請求項11のいずれか1項に記載の冷間鍛造用線材の製造方法である。 In the twelfth aspect of the present invention, the chemical composition of the slab further includes Ca: 0.02% or less, Mg: 0.050% or less, Bi: 0.10% or less, Li: 0.10% or less. it is a manufacturing method of a cold forging wire according to any one of claims 7 to 11 comprising one or more of.

本発明の製造方法によれば、超音波斜角探傷法にて鋼片の皮下部に存在する介在物に起因する疵だけでなく圧着状疵をも感度良く検出し、事前に当該鋼片の廃棄ないし圧着状疵等の除去を行うことで、熱間加工後の線材への圧着状疵等の持ち込みがより確実に防止できるようになった。この結果、冷間加工時に線材に割れが発生することがさらに抑制され、冷間加工性に優れた冷間鍛造用線材を提供することが可能になった。 According to the manufacturing method of the present invention, not only wrinkles caused by inclusions existing in the subcutaneous part of a steel piece but also crimped wrinkles are detected with high sensitivity by an ultrasonic oblique flaw detection method. By discarding or removing crimped wrinkles and the like, it has become possible to more reliably prevent the crimped wrinkles and the like from being brought into the wire after hot working. As a result, the occurrence of cracks in the wire during cold working is further suppressed, and a cold forging wire excellent in cold workability can be provided.

〔実施形態〕
図1は、本発明の一実施形態に係る、鋳片から鋼片を経て線材を製造するまでの工程を示すフロー図である。以下、各工程をそのフローに沿って詳細に説明する。
Embodiment
FIG. 1 is a flowchart showing steps from manufacturing a slab through a steel slab to manufacturing a wire according to an embodiment of the present invention. Hereinafter, each process is demonstrated in detail along the flow.

〔製造工程〕
(1)分塊工程
成分調整された溶鋼から連続鋳造機または造塊鋳型にて鋳造された鋳片(ブルームまたはインゴット)を、次工程で使用できる形状まで圧延して鋼片(ビレット)を作製する。
〔Manufacturing process〕
(1) Bundling process A slab (bloom or ingot) cast from a component-adjusted molten steel with a continuous casting machine or ingot casting mold is rolled into a shape that can be used in the next process to produce a billet. To do.

(2)鋼片加工工程
次いで、分塊圧延された鋼片(ビレット)を、下記の(2A)〜(2F)の工程で、検査し疵取り(手入れ)を行う。
(2) Billet processing step Next, the billet (billet) that has been rolled in pieces is inspected and scraped (care) in the following steps (2A) to (2F).

(2A)デスケーリング工程
先ず、表面の疵を検出しやすくするため、分塊圧延された鋼片をショットブラストにて表面の酸化スケールを除去しておく。
(2A) Descaling step First, in order to make it easier to detect surface wrinkles, the surface of the steel pieces that have been rolled in pieces is removed from the surface by shot blasting.

(2B)表面自動検査工程
そして、スケール除去後の鋼片を表面自動検査装置にて自動検査する。具体的には、スケール除去後の鋼片を磁化し、その表面に蛍光磁粉を振り掛け、鋼片表面の磁粉模様をカメラで撮影し画像解析することで、鋳造時の粒界割れに起因して生成した開口疵、分塊圧延時に発生したヘゲ疵など、例えば深さ0.3mm以上、長さ50mm以上の表面疵を自動的に検出することができる。
(2B) Surface automatic inspection process And the steel piece after scale removal is automatically inspected with a surface automatic inspection device. Specifically, the steel piece after scale removal is magnetized, and the surface is sprinkled with fluorescent magnetic powder, and the magnetic powder pattern on the surface of the steel piece is photographed with a camera and analyzed for images, resulting in grain boundary cracking during casting. For example, surface flaws having a depth of 0.3 mm or more and a length of 50 mm or more can be automatically detected, such as the generated flaws and the bald wrinkles generated during the batch rolling.

(2C)内部自動検査工程
引き続き、超音波探傷装置にて鋼片内部の疵を自動検査する。具体的には、超音波探傷装置は、垂直探傷法と斜角探傷法とを組み合わせ、前者で鋼片の中心部および中間部を、後者で鋼片の皮下部を、それぞれ検査するように構成することで、鋼片の内部全体を漏れなく検査することができる。そして、垂直探傷法においては、有害な例えば500μm以上の疵を検出できるようにエコー高さの閾値を調整しておく。一方、斜角探傷法では、圧着状疵を感度良く検出できるように、エコー高さの閾値を例えば15dBとし、15dB以上のエコーを圧着状疵等とするとよい(後記実施例、図3参照)。圧着状疵等が検出された場合は、原則当該鋼片を廃棄処分とするが、除去可能であれば、下記(2D)の自動疵取り工程で表面疵とともに圧着状疵等を除去してもよい。
(2C) Internal automatic inspection process Subsequently, the flaw inside the steel slab is automatically inspected by an ultrasonic flaw detector. Specifically, the ultrasonic flaw detector is configured to combine the vertical flaw detection method and the oblique flaw flaw detection method, and inspect the central part and the middle part of the steel piece in the former and the subcutaneous part of the steel piece in the latter, respectively. By doing, the whole inside of a steel piece can be test | inspected without a leak. In the vertical flaw detection method, the echo height threshold is adjusted so that a harmful wrinkle of, for example, 500 μm or more can be detected. On the other hand, in the oblique flaw detection method, the threshold of the echo height is set to 15 dB, for example, so that the crimped wrinkle can be detected with high sensitivity, and an echo of 15 dB or more may be used as the crimped wrinkle or the like (see an example described later, FIG. 3) . If a crimped wrinkle etc. is detected, the steel slab will be disposed of in principle, but if it can be removed, it can be removed along with the surface flaw in the automatic scraping process (2D) below. Good.

(2D)自動疵取り工程
上記(2B)の表面自動検査工程で検出された表面疵を自動疵取装置にて自動疵取りを行う。この際、除去可能であれば、上記(2C)の内部自動検査工程の斜角探傷法にて検出された圧着状疵等も一緒に疵取りしてもよい。自動疵取装置としては、フライスカッタやグラインダを用いればよい。
(2D) Automatic scraping process The surface scraping detected in the surface automatic inspection process of the above (2B) is automatically scraped by an automatic scraping device. At this time, if it can be removed, the crimped wrinkles and the like detected by the oblique flaw detection method in the internal automatic inspection step (2C) may be scraped together. A milling cutter or a grinder may be used as the automatic harvesting device.

(2E)表面目視検査工程
上記(2B)の表面自動検査工程の表面自動検査装置にては検出できない、浅く短い表面疵は、別の磁粉探傷装置を用いて鋼片表面を目視検査し検出を行う。具体的には、鋼片を磁化した後、その表面に蛍光磁粉を振り掛け、暗室内で磁粉模様を目視観察し、検出された表面疵にマーキングを施しておく。
(2E) Surface visual inspection process Shallow and short surface defects that cannot be detected by the automatic surface inspection apparatus in the automatic surface inspection process of (2B) above are detected by visually inspecting the surface of the steel slab using another magnetic particle flaw detector. Do. Specifically, after magnetizing a steel piece, fluorescent magnetic powder is sprinkled on the surface, the magnetic powder pattern is visually observed in a dark room, and the detected surface defects are marked.

(2F)手動疵取り工程
そして、上記(2E)の表面目視検査工程で検出された表面疵を手作業、すなわち、例えばチッピング、グラインダ、ホットスカーフィング等にて疵取りを行う。
(2F) Manual scoring step Then, the surface scissors detected in the surface visual inspection step (2E) are scored manually, for example, by chipping, grinder, hot scarfing or the like.

(3)線材圧延工程
上記のようにして疵取りされた後の鋼片を熱間圧延して線材に加工する。具体的には、鋼片は加熱炉で所定温度に加熱した後、複数段の圧延機列にて順次圧下して所定径まで減面することで、目的とする線材に加工される。このようにして製造された線材は、熱間圧延前に鋼片から予め表面疵および内部疵(圧着状疵を含めて)が十分に除去されているので、冷間加工時に割れが発生することを効果的に抑止でき、高歩留にて冷間加工性に優れた冷間鍛造用線材を製造できることとなる。
(3) Wire rod rolling step The steel piece after being scraped as described above is hot-rolled and processed into a wire rod. Specifically, after the steel slab is heated to a predetermined temperature in a heating furnace, the steel slab is processed into a target wire by sequentially reducing the surface to a predetermined diameter by a plurality of rolling mill rows. Since the wire rod manufactured in this way has sufficiently removed the surface defects and internal defects (including crimped defects) from the steel slab in advance before hot rolling, cracks may occur during cold working. Therefore, it is possible to manufacture a wire for cold forging excellent in cold workability at a high yield.

(変形例)
上記実施形態では、上記(2E)および(2F)の工程は、1回だけ行う例を示したが、表面疵をより完全に除去するため、必要に応じて複数回繰り返してもよい。なお、上記(2E)および(2F)の工程を繰り返す場合は、必要に応じてその前段にて酸化スケール除去のためにショットブラストを行うようにしてもよい。
(Modification)
In the said embodiment, although the process of said (2E) and (2F) showed the example performed only once, in order to remove a surface flaw more completely, you may repeat several times as needed. When the steps (2E) and (2F) are repeated, shot blasting may be performed at the preceding stage for removing the oxide scale as necessary.

さらに、熱間圧延時に発生するかき疵、しわ疵、折り込み疵等による線材の冷間加工割れを防止するために、上記(3)の線材圧延工程にて熱間圧延された後の線材を端末検査し、端末疵の深さが例えば0.02mm以下のもののみを製品線材とするのが推奨される(後記実施例2参照)。   Further, in order to prevent cold working cracks of the wire due to oysters, wrinkles, folded wrinkles, etc. generated during hot rolling, the wire after being hot-rolled in the wire-rolling step of (3) above is terminated. It is recommended that only product having a terminal rod depth of 0.02 mm or less be used as a product wire (see Example 2 below).

さらに、搬送時に製品線材に生じたすり疵等による冷間加工割れを防止するために、線材の両端末にキャップを装着すること、線材コイルの両端面に当て物を装着すること、線材コイルを梱包することが有効であり、これらの手段をそれぞれ単独で、または、いずれか2手段もしくは3手段全部を組み合わせて行うのが推奨される(後記実施例3参照)。   In addition, in order to prevent cold working cracks due to scum generated on the product wire during transportation, caps are attached to both ends of the wire, pads are attached to both ends of the wire coil, and the wire coil is packed It is recommended that each of these means be used alone, or any two means or a combination of all three means be performed (see Example 3 below).

〔線材の成分組成〕
上記方法で製造された線材の成分組成は以下のものが推奨される。
[Component composition of wire]
The following composition is recommended for the wire composition produced by the above method.

C:1.5%以下
Cは機械構造用部品としての硬さを確保するのに必要な元素であるが、多すぎると靭性が低下するので、1.5%以下に抑えるのが好ましい。
C: 1.5% or less C is an element necessary for ensuring the hardness as a machine structural part, but if it is too much, the toughness decreases, so it is preferable to suppress it to 1.5% or less.

Si:3.0%以下
Siは鋼の溶製時に脱酸性元素として有効に作用する他、耐磨耗性、耐チッピング性にも有効に作用するが、多すぎると冷間鍛造時の変形抵抗を高め、金型寿命を低下させるので、3.0%以下に抑えるのが好ましい。
Si: 3.0% or less Si acts effectively as a deoxidizing element when steel is melted, and also acts effectively on wear resistance and chipping resistance, but if it is too much, deformation resistance during cold forging Is increased and the life of the mold is shortened, so it is preferable to keep it at 3.0% or less.

Mn:0.2〜3.0%
Mnは脱酸・脱硫剤および焼入れ性向上元素として働くため0.2%以上含有させるとよいが、多すぎると冷間鍛造時の変形抵抗を高め、金型寿命を低下させるので、3.0%以下に抑えるのが好ましい。
Mn: 0.2 to 3.0%
Since Mn works as a deoxidizing / desulfurizing agent and a hardenability improving element, it should be contained in an amount of 0.2% or more. However, if it is too much, the deformation resistance during cold forging is increased and the die life is reduced. % Or less is preferable.

P:0.025%以下
Pは粒界偏析や中心偏析を起こし、靭性を低下させるので、0.025%以下に抑えるのが好ましい。
P: 0.025% or less Since P causes grain boundary segregation or center segregation and lowers toughness, it is preferable to suppress it to 0.025% or less.

S:0.030%以下
Sは被削性を向上させる元素であり添加してもよいが、過剰な添加ではMnと反応して形成されるMnS介在物が増加して靭性が低下するので、0.030%以下に抑えるのが好ましい。
S: 0.030% or less S is an element that improves machinability, but may be added, but if added excessively, MnS inclusions formed by reaction with Mn increase and toughness decreases, It is preferable to suppress it to 0.030% or less.

Al:0.001〜0.10%、Nb:0.001〜0.05%、Ti:0.001〜0.20%、V:0.01〜0.35%、N:0.001〜0.025%のうち1種以上
Al、Nb、Ti、Vは微細な窒化物を形成し結晶粒を微細化する効果があるため添加してもよいが、少ない添加では効果が得られず、過剰な添加では窒化物が粗大化するので、それぞれ上下限の範囲内の添加量とするのが好ましい。
Al: 0.001 to 0.10%, Nb: 0.001 to 0.05%, Ti: 0.001 to 0.20%, V: 0.01 to 0.35%, N: 0.001 One or more of 0.025% Al, Nb, Ti, and V may be added because they have the effect of forming fine nitrides and miniaturizing crystal grains, but if added in a small amount, the effect cannot be obtained. Since excessive addition causes the nitride to become coarse, the addition amount is preferably within the range of the upper and lower limits.

O:0.00020%以下
OはAlと反応してAl介在物を形成し靭性を低下させるので、0.00020%以下に抑えるのが好ましい。
O: 0.00020% or less Since O reacts with Al to form Al 2 O 3 inclusions and lowers toughness, it is preferably suppressed to 0.00020% or less.

Cu:2.5%以下、Ni:2.5%以下、Cr:3.0%以下、Mo:1.0%以下のうち1種以上
Cu、Ni、Cr、Moは機械構造用部品である例えばボルトでの遅れ破壊特性の向上効果や歯車での強度の向上効果があるため添加してもよいが、過剰な添加では介在物が多量に生成し靭性が低下するので、それぞれ上限以下に抑えるのが好ましい。
One or more of Cu: 2.5% or less, Ni: 2.5% or less, Cr: 3.0% or less, Mo: 1.0% or less Cu, Ni, Cr, and Mo are parts for machine structure For example, it may be added because it has an effect of improving delayed fracture characteristics with bolts and an effect of improving strength with gears. However, excessive addition generates a large amount of inclusions and decreases toughness. Is preferred.

B:0.001〜0.03%
Bは、上記Cu、Ni、Cr、Moと同様、機械構造用部品である例えばボルトでの遅れ破壊特性の向上効果や歯車での強度の向上効果があるため0.001%以上添加するとよいが、過剰な添加では介在物が多量に生成し靭性が低下するので、0.03%以下に抑えるのが好ましい。
B: 0.001 to 0.03%
B, like Cu, Ni, Cr, and Mo, may be added to 0.001% or more because it has an effect of improving delayed fracture characteristics of mechanical structural parts such as bolts and an effect of improving strength of gears. In addition, excessive addition generates a large amount of inclusions and lowers the toughness, so it is preferable to keep the content to 0.03% or less.

Ca:0.02%以下、Mg:0.050%以下、Bi:0.10%以下、Li:0.10%以下
Ca、Mg、Bi、Liは被削性を向上させる元素であるので添加してもよいが、過剰な添加では介在物が多量に生成し靭性が低下するので、それぞれ上限以下に抑えるのが好ましい。
Ca: 0.02% or less, Mg: 0.050% or less, Bi: 0.10% or less, Li: 0.10% or less Ca, Mg, Bi, and Li are added because they are elements that improve machinability. However, if it is excessively added, a large amount of inclusions are formed and the toughness is lowered.

本発明の効果を確証するため、以下の実証試験を実施した。   In order to confirm the effect of the present invention, the following verification test was conducted.

表1に示す成分組成の鋼種A〜Fをそれぞれブルーム連続鋳造機で断面340mm×400mmの鋳片を鋳造した後、分塊圧延により断面155mm角の鋼片を各40本作製した。そして、各鋼種ごとに、上記(2)の鋼片検査工程において、超音波斜角探傷を実施する場合、実施しない場合のそれぞれについて熱間圧延を行い、7.5mm径の線材を製造した。また、超音波斜角探傷を実施する場合には、上記(2E)の表面目視検査工程+(2F)の手動疵取り工程の組み合わせの繰り返し回数を順次増加した場合についても鋼線の製造試験を行った。

Figure 0004523579
Each steel type A to F having the component composition shown in Table 1 was cast on a slab having a cross section of 340 mm × 400 mm by a Bloom continuous casting machine, and 40 steel slabs having a cross section of 155 mm square were produced by split rolling. Then, for each steel type, in the steel piece inspection step (2) above, when ultrasonic oblique flaw detection was performed, hot rolling was performed for each of the cases where it was not performed, and a 7.5 mm diameter wire was manufactured. In addition, when ultrasonic oblique flaw detection is carried out, a steel wire production test is also performed in the case where the number of repetitions of the combination of the surface visual inspection process (2E) + the manual scraping process (2F) is sequentially increased. went.
Figure 0004523579

ここで、超音波斜角探傷の条件としては、先ずG型標準試験片を用いて2mm径の欠陥のエコー高さを30dBに較正しておき、その後、各鋼片について測定を行い、エコー高さの閾値を15dBとし、15dB以上のエコー高さが発生した部位を圧着状疵等と判定し、その鋼片は原則廃却処分とし、可能な場合のみ次工程である(2D)の自動疵取り工程にて疵取りを行った。   Here, as a condition for ultrasonic oblique angle flaw detection, first, the echo height of a defect having a diameter of 2 mm was calibrated to 30 dB using a G-type standard test piece, and then each steel piece was measured, The threshold value is 15 dB, and the part where the echo height of 15 dB or more is generated is determined as a crimped scissors or the like, and the steel slab is basically disposed of. The wrinkle was removed in the removing process.

なお、鋼種A、B、D、Fについては熱処理せずに、鋼種C、Eについては熱処理後に、それぞれ線径7.06mmまで伸線して鋼線とした。そして、各鋼線より図2に示す加工工程で圧造してM8用フランジボルトをそれぞれ30000個製造し、フランジ部の割れの有無を調査し、割れのあるものを不良品としてカウントし、不良率(不良品数/全数×100%)を求めた。   Steel types A, B, D, and F were not heat-treated, and steel types C and E were each heat-treated to a steel wire diameter of 7.06 mm after heat treatment. Then, 30000 flange bolts for M8 are manufactured by forging from each steel wire in the processing step shown in FIG. 2, the presence or absence of cracks in the flange portion is investigated, and those with cracks are counted as defective products. (Number of defective products / total number × 100%) was determined.

試験条件および調査結果を表2に示す。なお、同表においては、ショットブラストについての記載を省略したが、表面自動検査の前、ならびに2回目および3回目の表面目視検査の前にはショットブラストを行った。

Figure 0004523579
Test conditions and survey results are shown in Table 2. In the table, description of shot blasting was omitted, but shot blasting was performed before the surface automatic inspection and before the second and third surface visual inspections.
Figure 0004523579

試験No.1〜3、6〜8、11〜13、16〜18、21、23、24は、本発明(請求項1に係る発明)の要件を満足しており、圧造時の不良率はいずれも5%未満となった。また、表面目視検査工程+手動疵取り工程の繰り返し数を増加させるほど不良率は低下し、2回の繰り返しで不良率は0.5%未満、3回の繰り返しで不良率は0%に到達することが分かった(試験No.1→2→3、試験No.6→7→8、試験No.16→17→18)。   Test No. 1-3, 6-8, 11-13, 16-18, 21, 23, 24 satisfy the requirements of the present invention (the invention according to claim 1), and the defect rate during forging is 5 %. In addition, as the number of repetitions of the visual surface inspection process + manual scraping process is increased, the defect rate decreases, and the defect rate is less than 0.5% after two iterations, and the defect rate reaches 0% after three iterations. (Test No. 1 → 2 → 3, Test No. 6 → 7 → 8, Test No. 16 → 17 → 18).

これに対し、試験No.4、5、9、10、14、15、19、20、22、25は、超音波斜角探傷を実施していないため、圧着状疵等に起因する圧造割れが認められ、不良率はいずれも5%以上となった。   In contrast, test no. 4, 5, 9, 10, 14, 15, 19, 20, 22, and 25 have not been subjected to ultrasonic oblique flaw detection, so forging cracks due to crimped flaws and the like are observed, and the defect rate is Was also over 5%.

上記実施例1の鋼種D〜Fにおいて、鋼片を線材まで熱間圧延する際に、線材に圧延ガイドを故意に接触させて線材に意図的にかき疵を付け、圧延後の線材を端末検査し、端末疵(圧延疵)の深さが上限疵深さを超えるものについては廃棄処分とし、上限疵深さ以下のもののみについてフランジボルトを製造し、上記実施例1と同様にして不良率を求めた。なお、上限疵深さは、各鋼種ごとに2水準に変更して試験を実施した。   In the steel types D to F of Example 1 above, when the steel slab is hot-rolled to the wire rod, the wire guide is intentionally brought into contact with the wire rod, and the wire rod is intentionally scratched, and the wire rod after rolling is subjected to terminal inspection. In the case where the depth of the terminal ridge (rolled ridge) exceeds the upper limit ridge depth, it is disposed of, and the flange bolt is manufactured only for those having an upper limit ridge depth or less. Asked. In addition, the upper limit depth was changed to 2 levels for each steel type, and the test was conducted.

試験条件および調査結果を表3に示す。

Figure 0004523579
Test conditions and survey results are shown in Table 3.
Figure 0004523579

上記表3に示す結果から、端末検査における端末疵の深さが0.02mm以下のもののみを製品線材とすることで、さらに冷間圧造時の不良率を低減できることが分かった。   From the results shown in Table 3 above, it was found that the defect rate during cold forging can be further reduced by using only the product wire having a depth of 0.02 mm or less in the terminal inspection in the terminal inspection.

上記実施例1の鋼種A〜Cにおいて、熱間圧延された線材に搬送時疵対策として、端末へのキャップ装着、線材コイルの端面への当て物装着、線材コイルの梱包の3手段を種々組み合わせて施し、それぞれ5回ずつ配置換え(場所換え)を行った後、上記実施例1と同様の工程でM8用フランジボルトを製造し、その不良率を調査した。   In steel types A to C of Example 1 described above, various measures were taken in combination with three means of cap mounting to the terminal, padding to the end face of the wire coil, and packaging of the wire rod coil as a countermeasure against wrinkling during hot rolling of the wire rod. Then, after rearranging (replacement) 5 times each, M8 flange bolts were manufactured in the same process as in Example 1, and the defect rate was investigated.

試験条件および調査結果を表4に示す。

Figure 0004523579
Table 4 shows test conditions and survey results.
Figure 0004523579

上記表4に示す結果から、熱間圧延後の線材に搬送時疵対策として、端末へのキャップ装着、線材コイルの端面への当て物装着、線材コイルの梱包の3手段をそれぞれ単独で、またはいずれか2手段もしくは3手段全部を組み合わせて施すことで、冷間圧造時の不良率をさらに低減できることが分かった。   From the results shown in Table 4 above, each of the three means of cap mounting to the terminal, padding to the end face of the wire rod coil, and packaging of the wire rod coil can be used alone or as a countermeasure against wrinkles at the time of conveyance to the wire rod after hot rolling. It has been found that the defective rate during cold forging can be further reduced by combining two or all three means.

ここで、上記実施例1〜3において、超音波斜角探傷によりエコー高さが30dB以上の欠陥を発見し廃棄処分とした鋼片全数について、各欠陥部位を断面観察して圧着状疵であるか、介在物に起因する疵であるかを特定し、欠陥エコー高さと各疵の発生頻度との関係を図3に示した。   Here, in Examples 1 to 3, the defect height of the echo height of 30 dB or more was detected by ultrasonic oblique flaw detection, and the total number of steel slabs that were disposed of was subjected to cross-sectional observation of each defect site to form a crimped scissors. FIG. 3 shows the relationship between the height of defect echoes and the frequency of occurrence of each wrinkle.

同図から明らかなように、エコー高さ31dB以上で介在物に起因する疵が1例だけ発見されたが、その他の20例はいずれも圧着状疵であり、エコー高さの閾値を15dBとし、15dB以上のものを廃棄ないし手入れすることで、圧着状疵に起因する線材の冷間加工時の割れを効果的に防止できることが確認できた。   As can be seen from the figure, only one wrinkle caused by inclusions was found at an echo height of 31 dB or more, but the other 20 cases were crimped wrinkles, and the echo height threshold was set to 15 dB. It was confirmed that the cracks during cold working of the wire rod caused by the crimped wrinkles can be effectively prevented by discarding or caring for those of 15 dB or more.

本発明の一実施形態に係る、鋳片から鋼片を経て線材を製造するまでの工程を示すフロー図である。It is a flowchart which shows the process until it manufactures a wire from a cast piece through a steel piece based on one Embodiment of this invention. 鋼線からフランジボルトを製造する加工工程を示す図である。It is a figure which shows the manufacturing process which manufactures a flange bolt from a steel wire. 超音波斜角探傷における、欠陥エコー高さと疵の発生頻度との関係を示すグラフ図である。It is a graph which shows the relationship between the defect echo height and the frequency of wrinkles in ultrasonic oblique angle flaw detection. 鋼片の皮下部に存在する圧着状疵の様子を示す断面図である。It is sectional drawing which shows the mode of the crimp-shaped wrinkle which exists in the subcutaneous part of a steel piece.

Claims (12)

(1)鋳片を分塊圧延して鋼片とする分塊工程と、
(2)分塊圧延された鋼片を検査し疵取りを行う鋼片検査工程と、
(3)疵取り後の鋼片を熱間圧延して線材に加工する線材圧延工程と、
を備えた線材の製造方法であって、
上記(2)の鋼片検査工程が、
(2A)分塊圧延された鋼片をショットブラストにて表面の酸化スケールを除去するデスケーリング工程と、
(2B)前記スケール除去後の鋼片を表面自動検査装置にて自動検査する表面自動検査工程と、
(2C)引き続き、超音波探傷装置にて鋼片内部の疵を自動検査する内部自動検査工程と、
(2D)上記(2B)の表面自動検査工程で検出された表面疵を自動疵取装置にて自動
疵取りを行う自動疵取り工程と、
(2E)引き続き、磁粉探傷装置により鋼片表面を目視検査する表面目視検査工程と、
(2F)上記(2E)の表面目視検査工程で検出された表面疵を手作業にて疵取りを行う手動疵取り工程と、
を有し、
さらに、上記(2C)の内部自動検査工程において、超音波探傷装置にて超音波斜角探傷法により、15dB以上のエコー高さのものを、鋼片の皮下部に存在する介在物に起因する疵および圧着状疵(以下、「圧着状疵等」と総称する。)として検出し、圧着状疵等が検出された場合は当該鋼片を廃棄するか、上記(2D)の自動疵取り工程で表面疵とともに上記圧着状疵等を除去することを特徴とする冷間鍛造用線材の製造方法。
(1) A bundling process in which the slab is rolled into a steel piece;
(2) A steel piece inspection process for inspecting and scraping the rolled steel pieces.
(3) A wire rod rolling step for hot rolling the steel pieces after cutting into a wire rod;
A method of manufacturing a wire rod comprising:
The billet inspection process of (2) above
(2A) a de-scaling step of removing the oxide scale on the surface of the slab that has been rolled in pieces by shot blasting;
(2B) a surface automatic inspection step of automatically inspecting the steel piece after the scale removal by a surface automatic inspection device;
(2C) Subsequently, an internal automatic inspection process for automatically inspecting the flaws inside the steel slab with an ultrasonic flaw detector,
(2D) an automatic picking process for automatically picking up surface wrinkles detected in the surface automatic inspection process of (2B) above with an automatic picking device;
(2E) Subsequently, a surface visual inspection step of visually inspecting the surface of the steel slab with a magnetic particle flaw detector,
(2F) a manual scraping step for manually scraping the surface defects detected in the surface visual inspection step of (2E) above;
Have
Further, in the internal automatic inspection process of (2C) above, an echo height of 15 dB or more is caused by inclusions present in the subcutaneous part of the steel piece by an ultrasonic oblique angle flaw detection method using an ultrasonic flaw detector. Detected as scissors and crimp-shaped scissors (hereinafter collectively referred to as “crimp-shaped scissors etc.”) , and when the scissors-shaped scissors are detected, the steel piece is discarded or the automatic scraping process of (2D) above A method for producing a wire material for cold forging, wherein the crimped wrinkles and the like are removed together with the surface wrinkles.
上記(2F)の手動疵取り工程を複数回繰り返す請求項1に記載の冷間鍛造用線材の製造方法。 The manufacturing method of the wire for cold forging of Claim 1 which repeats the manual picking process of said (2F) in multiple times. 上記(3)の線材圧延工程後の線材の両端末を検査して端末疵の深さが0.02mm以下のもののみを製品線材とする請求項1または2に記載の冷間鍛造用線材の製造方法。 The cold forging wire rod according to claim 1 or 2 , wherein both ends of the wire rod after the wire rod rolling step (3) are inspected and only the one having a depth of 0.02 mm or less is used as the product wire rod. Production method. 請求項1〜のいずれか1項に記載の製造方法にて製造された線材の両端末にキャップを装着した冷間鍛造用線材の製造方法。 The manufacturing method of the wire for cold forging which attached the cap to the both ends of the wire manufactured with the manufacturing method of any one of Claims 1-3 . 請求項1〜のいずれか1項に記載の製造方法にて製造された線材をコイル状に巻き上げ、そのコイルの両端面に当て物を装着した冷間鍛造用線材の製造方法。 The manufacturing method of the wire for cold forging which wound up the wire manufactured by the manufacturing method of any one of Claims 1-4 in the shape of a coil, and mounted | worn the both ends of the coil with the pad . 請求項1〜のいずれか1項に記載の製造方法にて製造された線材をコイル状に巻き上げ、そのコイルを梱包した冷間鍛造用線材の製造方法。 The manufacturing method of the wire for cold forging which wound up the wire manufactured by the manufacturing method of any one of Claims 1-4 in the shape of a coil, and packed the coil. 前記鋳片の化学成分が、質量%で、C:1.5%以下、Si:3.0%以下、Mn:0.2〜3.0%、P:0.025%以下、S:0.030%以下である請求項1〜6のいずれか1項に記載の冷間鍛造用線材の製造方法。 The chemical composition of the slab is, by mass, C: 1.5% or less, Si: 3.0% or less, Mn: 0.2 to 3.0%, P: 0.025% or less, S: 0 It is 0.030% or less, The manufacturing method of the wire for cold forging of any one of Claims 1-6 . 前記鋳片の化学成分が、さらに、Al:0.001〜0.10%、Nb:0.001〜0.05%、Ti:0.001〜0.20%、V:0.01〜0.35%、N:0.001〜0.025%のうち1種以上を含む請求項に記載の冷間鍛造用線材の製造方法。 The chemical composition of the slab is further Al: 0.001-0.10%, Nb: 0.001-0.05%, Ti: 0.001-0.20%, V: 0.01-0. The manufacturing method of the wire for cold forging of Claim 7 containing 1 or more types among 0.35% and N: 0.001-0.025%. 前記鋳片の化学成分が、さらに、O:0.0020%以下を含む請求項またはに記載の冷間鍛造用線材の製造方法。 The manufacturing method of the wire for cold forging according to claim 7 or 8 , wherein the chemical component of the slab further includes O: 0.0020% or less. 前記鋳片の化学成分が、さらに、Cu:2.5%以下、Ni:2.5%以下、Cr:3.0%以下、Mo:1.0%以下のうち1種以上を含む請求項のいずれか1項に記載の冷間鍛造用線材の製造方法。 The chemical composition of the slab further includes one or more of Cu: 2.5% or less, Ni: 2.5% or less, Cr: 3.0% or less, Mo: 1.0% or less. manufacturing method of a cold forging wire according to any one of 7-9. 前記鋳片の化学成分が、さらに、B:0.001〜0.03%を含む請求項10のいずれか1項に記載の冷間鍛造用線材の製造方法。 Chemical composition of the slab is further, B: claim containing from 0.001 to 0.03 percent 7-10 any one method of manufacturing a cold forging wire according to the. 前記鋳片の化学成分が、さらに、Ca:0.02%以下、Mg:0.050%以下、Bi:0.10%以下、Li:0.10%以下のうち1種以上を含む請求項11のいずれか1項に記載の冷間鍛造用線材の製造方法。 The chemical component of the slab further includes one or more of Ca: 0.02% or less, Mg: 0.050% or less, Bi: 0.10% or less, Li: 0.10% or less. manufacturing method of a cold forging wire according to any one of 7-11.
JP2006338791A 2006-12-15 2006-12-15 Manufacturing method of wire for cold forging Expired - Fee Related JP4523579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006338791A JP4523579B2 (en) 2006-12-15 2006-12-15 Manufacturing method of wire for cold forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006338791A JP4523579B2 (en) 2006-12-15 2006-12-15 Manufacturing method of wire for cold forging

Publications (2)

Publication Number Publication Date
JP2008149340A JP2008149340A (en) 2008-07-03
JP4523579B2 true JP4523579B2 (en) 2010-08-11

Family

ID=39652105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006338791A Expired - Fee Related JP4523579B2 (en) 2006-12-15 2006-12-15 Manufacturing method of wire for cold forging

Country Status (1)

Country Link
JP (1) JP4523579B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5794478B2 (en) * 2011-12-07 2015-10-14 新日鐵住金株式会社 Steel care support device
CN103983689A (en) * 2014-05-15 2014-08-13 太原理工大学 Ultrasonic-magnetic memory detection sensor of steel rope core conveyer belt
CN104294164B (en) * 2014-09-30 2018-08-07 合肥市伟远金属材料有限公司 A kind of high-carbon chromium steel
CN105886899A (en) * 2016-05-18 2016-08-24 安徽合矿机械股份有限公司 Low-temperature-resistant anti-crack alloy steel material for automobiles
CN105886925A (en) * 2016-05-18 2016-08-24 安徽合矿机械股份有限公司 Acid-corrosion-resistant alloy steel material for automobiles
CN114082795B (en) * 2021-11-18 2024-01-26 马鞍山钢铁股份有限公司 Heavy special-shaped continuous casting billet descaling system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148860A (en) * 1983-02-14 1984-08-25 Kobe Steel Ltd Ultrasonic oblique flaw detecting method of square steel piece
JPH05126808A (en) * 1991-11-08 1993-05-21 Sumitomo Metal Ind Ltd Ultrasonic flaw detecting method
JP2002122575A (en) * 2000-10-16 2002-04-26 Daido Steel Co Ltd Method and apparatus for angle beam method
JP2003053420A (en) * 2001-08-10 2003-02-26 Sumitomo Metals (Kokura) Ltd Manufacturing method of steel wire, intermediate working equipment train for wire rod and machine structural parts
JP2003136135A (en) * 2001-10-29 2003-05-14 Sumitomo Metals (Kokura) Ltd Method for inspecting and maintaining billet
JP2006028619A (en) * 2004-07-21 2006-02-02 Sumitomo Metal Ind Ltd High strength low alloy steel wire rod

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148860A (en) * 1983-02-14 1984-08-25 Kobe Steel Ltd Ultrasonic oblique flaw detecting method of square steel piece
JPH05126808A (en) * 1991-11-08 1993-05-21 Sumitomo Metal Ind Ltd Ultrasonic flaw detecting method
JP2002122575A (en) * 2000-10-16 2002-04-26 Daido Steel Co Ltd Method and apparatus for angle beam method
JP2003053420A (en) * 2001-08-10 2003-02-26 Sumitomo Metals (Kokura) Ltd Manufacturing method of steel wire, intermediate working equipment train for wire rod and machine structural parts
JP2003136135A (en) * 2001-10-29 2003-05-14 Sumitomo Metals (Kokura) Ltd Method for inspecting and maintaining billet
JP2006028619A (en) * 2004-07-21 2006-02-02 Sumitomo Metal Ind Ltd High strength low alloy steel wire rod

Also Published As

Publication number Publication date
JP2008149340A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
JP4523579B2 (en) Manufacturing method of wire for cold forging
JP6572802B2 (en) Precipitation hardening type martensitic stainless steel sheet for steel belt and manufacturing method
JP2014233753A (en) Industrial pure titanium ingot excellent in surface properties after hot rolling even if blooming process or fine arrangement process is omitted and method for manufacturing the same
KR20180090884A (en) Steel wire and non-corrugated machine parts for non-corrugated machine parts
JP4556952B2 (en) Martensitic stainless steel pipe for oil well
CN114096692A (en) Seamless steel pipe having excellent sulfuric acid dew point corrosion resistance and method for producing same
JP5368830B2 (en) Steel for machine structure, manufacturing method thereof and machine structure parts
JP2009074123A (en) METHOD FOR MANUFACTURING Ni-CONTAINING STEEL HAVING EXCELLENT SURFACE QUALITY
JP4514137B2 (en) Method for preventing rolling surface flaw of Ni-containing steel
EP1990107A1 (en) PROCESS FOR PRODUCING HIGH-Cr SEAMLESS PIPE
JP5084206B2 (en) Manufacturing method of steel wire with excellent drawability
KR101965082B1 (en) Steel wire for bearing with excellent wire drawability and coil formability after wiredrawing
JP5206239B2 (en) Continuous casting method of high N content duplex stainless steel
JP2008188637A (en) Method of manufacturing steel bar excellent in forgeability
JP6954514B1 (en) Continuous casting method
CN110014041B (en) Cold rolling method of ferrite stainless steel strip
JP6263924B2 (en) Manufacturing method of wire for cold forging
JP2006206949A (en) METHOD FOR MANUFACTURING Ni ALLOY
JP4770274B2 (en) Thick steel plate shearing method
JP7320936B2 (en) bar steel
JP4301389B2 (en) Method for producing slab of carburizing steel with small variation in heat treatment strain and slab
JP3895121B2 (en) Manufacturing method for austenitic free-cutting stainless steel products
WO2021256243A1 (en) Continuous casting method
JPH08174034A (en) Manufacture of cr stainless steel sheet
JP2007105781A (en) METHOD FOR PRODUCING Cr-Ni BASED STAINLESS STEEL STRIP

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees