JP4521551B2 - In-vehicle optical device direction adjustment method - Google Patents

In-vehicle optical device direction adjustment method Download PDF

Info

Publication number
JP4521551B2
JP4521551B2 JP2005128357A JP2005128357A JP4521551B2 JP 4521551 B2 JP4521551 B2 JP 4521551B2 JP 2005128357 A JP2005128357 A JP 2005128357A JP 2005128357 A JP2005128357 A JP 2005128357A JP 4521551 B2 JP4521551 B2 JP 4521551B2
Authority
JP
Japan
Prior art keywords
vehicle
camera
virtual axis
respect
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005128357A
Other languages
Japanese (ja)
Other versions
JP2006306162A (en
Inventor
俊成 近藤
和嗣 吹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Auto Body Co Ltd
Toyota Motor Corp
Original Assignee
Toyota Auto Body Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Auto Body Co Ltd, Toyota Motor Corp filed Critical Toyota Auto Body Co Ltd
Priority to JP2005128357A priority Critical patent/JP4521551B2/en
Publication of JP2006306162A publication Critical patent/JP2006306162A/en
Application granted granted Critical
Publication of JP4521551B2 publication Critical patent/JP4521551B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Closed-Circuit Television Systems (AREA)

Description

本発明は、車両の進行方向に向けて光学装置の向きを調整する、車載光学装置の方向調整方法に関する。   The present invention relates to a direction adjustment method for an in-vehicle optical device that adjusts the direction of the optical device toward the traveling direction of the vehicle.

車載光学装置の方向調整方法に関する従来技術として、以下に説明するものがあった(例えば、特許文献1参照)。これは、まず、後方視認用の車載カメラを搭載した車両を検査場に入庫させ、後方を撮影した車載カメラの画像をディスプレイ上に表示させる。カメラ画像には、検査場の床面に固定された校正指標を含むように表示するとともに、この校正指標を含むことのできるウィンドウを表示させる。次に、ウィンドウの位置を調整して、ウィンドウ内に校正指標が略一致した状態で収まったときの各数値を、カメラパラメータとして固定して校正を行っている。このように、当該従来技術によるものは、ディスプレイのカメラ画像のウィンドウ位置を調整するのみで、車載カメラの方向の校正を行うことができ、車載光学装置の方向調整方法に関する従来技術として、有用な方法であった。
特開2001−245326公報(第6図)
As a conventional technique related to the direction adjustment method of the in-vehicle optical device, there is one described below (for example, see Patent Document 1). First, a vehicle equipped with an in-vehicle camera for visually recognizing the rear is placed in the inspection site, and an image of the in-vehicle camera that captures the rear is displayed on the display. The camera image is displayed so as to include a calibration index fixed on the floor of the inspection site, and a window that can include the calibration index is displayed. Next, calibration is performed by adjusting the position of the window and fixing each numerical value when the calibration index is substantially matched in the window as a camera parameter. As described above, according to the related art, it is possible to calibrate the direction of the in-vehicle camera only by adjusting the window position of the camera image of the display, which is useful as the conventional technique regarding the direction adjustment method of the in-vehicle optical device. Was the way.
JP 2001-245326 A (FIG. 6)

しかしながら、この従来技術による車載カメラの方向調整方法は、車輪(特に後輪)のトーによる、実際の車両の進行方向を考慮したものではなかった。従って、上述した従来技術に関するものにおいては、車両の部品の製造誤差等によって発生する、車両組立時の左右の後輪の向きによっては、調整後の車載カメラの向きと、車両の進行方向とが一致せず、その画像を見る車両運転者が、違和感を感ずることもあった。また、車載カメラによる画像を車両の走行制御等に使用した場合、その制御精度が低下する場合があった。
車両のサスペンションの方式によっては、後輪のトー調整を行うことにより、その不一致を解消することもできるが、トー調整が不可能な車両においては、上述したような車載カメラの向きと、車両の実際の進行方向軸との間の不一致に対して、成すすべがなかった。本発明は上記のような事情に基づいて完成されたものであって、車載光学装置の向きを、車両の進行方向と一致させることのできる車載光学装置の方向調整方法を提供することを目的とする。
However, the method of adjusting the direction of the vehicle-mounted camera according to this conventional technique does not consider the actual traveling direction of the vehicle due to the toe of the wheels (particularly the rear wheels). Therefore, in the related art described above, depending on the orientation of the left and right rear wheels at the time of assembling the vehicle, which occurs due to manufacturing errors of the vehicle parts, the orientation of the in-vehicle camera after adjustment and the traveling direction of the vehicle are different. The vehicle driver who does not agree and sees the image may feel uncomfortable. In addition, when an image from a vehicle-mounted camera is used for vehicle travel control or the like, the control accuracy may be reduced.
Depending on the suspension system of the vehicle, the toe adjustment of the rear wheel can be performed to eliminate the inconsistency. However, in a vehicle where toe adjustment is impossible, the orientation of the on-vehicle camera as described above, There was nothing to do with the discrepancy between the actual axis of travel. The present invention has been completed based on the above circumstances, and an object thereof is to provide a method for adjusting the direction of an in-vehicle optical device that can match the direction of the in-vehicle optical device with the traveling direction of the vehicle. To do.

上記の目的を達成するための手段として、請求項1の発明は、その調整時に、車両の前後方向に延びる仮想軸を設定し、この仮想軸を基準に、前記車両の向きを固定する車両正対工程と、左右の後輪のトー値から、前記仮想軸に対して、前記車両の進行方向が成す角度を計測する進行角度計測工程と、前記仮想軸に対して、車載光学装置の向きが成す角度を計測する光学方向測定工程と、前記進行角度計測工程によって測定した、前記仮想軸に対する前記車両の進行方向が成す角度と、前記光学方向測定工程によって測定した、前記仮想軸に対する前記車載光学装置の向きが成す角度との和によって、前記車載光学装置の向きを調整する方向調整工程とを備えたことを特徴とする車載光学装置の方向調整方法とした。   As a means for achieving the above object, the invention according to claim 1 is directed to a vehicle corrector for setting a virtual axis extending in the front-rear direction of the vehicle at the time of the adjustment and fixing the vehicle orientation with reference to the virtual axis. A step of measuring the angle formed by the traveling direction of the vehicle with respect to the virtual axis from the toe values of the left and right rear wheels, and the direction of the in-vehicle optical device with respect to the virtual axis. An optical direction measuring step for measuring an angle formed; an angle formed by the traveling direction of the vehicle with respect to the virtual axis measured by the traveling angle measuring step; and the in-vehicle optical with respect to the virtual axis measured by the optical direction measuring step A direction adjustment method for adjusting the direction of the in-vehicle optical device according to the sum of the angles formed by the directions of the device is provided.

請求項2の発明は、前記車載光学装置は車載カメラであって、前記光学方向測定工程は、前記車載カメラから所定距離離れて設置されたスクリーンを、前記車載カメラによって撮影し、撮影された前記スクリーン上における、前記車載カメラの画像中心と前記仮想軸との車両横方向のずれと、前記スクリーンの前記車載カメラからの距離に基づいて、前記仮想軸に対して、前記車載カメラの向きが成す角度を求めることを特徴とする請求項1記載の車載光学装置の方向調整方法とした。   According to a second aspect of the present invention, the in-vehicle optical device is an in-vehicle camera, and the optical direction measurement step is performed by photographing the screen installed at a predetermined distance from the in-vehicle camera with the in-vehicle camera. The orientation of the in-vehicle camera is made with respect to the virtual axis based on the lateral displacement of the vehicle between the image center of the in-vehicle camera on the screen and the virtual axis, and the distance of the screen from the in-vehicle camera. An angle is calculated | required, It was set as the direction adjustment method of the vehicle-mounted optical apparatus of Claim 1 characterized by the above-mentioned.

請求項3の発明は、前記車載カメラは、検出した画像データを制御装置に向けて送信するものであって、前記方向調整工程は、前記画像データに関して、前記車載カメラの向きについての、前記制御装置の制御パラメータを修正することを特徴とする請求項2記載の車載光学装置の方向調整方法とした。   According to a third aspect of the present invention, the in-vehicle camera transmits the detected image data to a control device, and the direction adjustment step is configured to control the direction of the in-vehicle camera with respect to the image data. The method for adjusting the direction of an in-vehicle optical device according to claim 2, wherein a control parameter of the device is corrected.

<請求項1の発明>
その調整時に、車両の前後方向に延びる仮想軸を設定し、この仮想軸を基準に、車両の向きを固定する車両正対工程と、左右の後輪のトー値から、仮想軸に対して、車両の進行方向が成す角度を計測する進行角度計測工程と、仮想軸に対して、車載光学装置の向きが成す角度を計測する光学方向測定工程と、進行角度計測工程によって測定した、仮想軸に対する車両の進行方向が成す角度と、光学方向測定工程によって測定した、仮想軸に対する車載光学装置の向きが成す角度との和によって、車載光学装置の向きを調整する方向調整工程とを備えたことにより、車載光学装置の方向と車両の実際の進行方向とを一致させることができ、車載光学装置を利用する運転者に、違和感を与えることがない。また、車載光学装置の検出したデータを、車両の走行制御等に使用した場合、その制御精度を向上させることができる。
<Invention of Claim 1>
At the time of the adjustment, a virtual axis extending in the front-rear direction of the vehicle is set, and based on this virtual axis, the vehicle facing process for fixing the vehicle direction, and the toe value of the left and right rear wheels, from the virtual axis, Advancing angle measurement process for measuring the angle formed by the traveling direction of the vehicle, an optical direction measuring process for measuring the angle formed by the orientation of the in-vehicle optical device with respect to the virtual axis, and a virtual axis measured by the traveling angle measurement process. By providing a direction adjusting step for adjusting the orientation of the in-vehicle optical device by the sum of the angle formed by the traveling direction of the vehicle and the angle formed by the orientation of the in-vehicle optical device with respect to the virtual axis, measured by the optical direction measuring step. Thus, the direction of the in-vehicle optical device and the actual traveling direction of the vehicle can be matched, so that the driver using the in-vehicle optical device does not feel uncomfortable. Moreover, when the data detected by the in-vehicle optical device is used for vehicle travel control or the like, the control accuracy can be improved.

<請求項2の発明>
車載光学装置は車載カメラであって、光学方向測定工程は、車載カメラから所定距離離れて設置されたスクリーンを、車載カメラによって撮影し、撮影されたスクリーン上における、車載カメラの画像中心と仮想軸との車両横方向のずれと、スクリーンの車載カメラからの距離に基づいて、仮想軸に対して、車載カメラの向きが成す角度を求めることにより、その測定を短時間で容易に行うことが可能である。
<Invention of Claim 2>
The in-vehicle optical device is an in-vehicle camera, and in the optical direction measurement step, a screen installed at a predetermined distance from the in-vehicle camera is photographed by the in-vehicle camera, and the image center and virtual axis of the in-vehicle camera on the photographed screen. By measuring the angle formed by the orientation of the in-vehicle camera with respect to the virtual axis based on the lateral displacement of the vehicle and the distance of the screen from the in-vehicle camera, the measurement can be performed easily in a short time. It is.

<請求項3の発明>
車載カメラは、検出した画像データを制御装置に向けて送信するものであって、方向調整工程は、画像データに関して、車載カメラの向きについての、制御装置の制御パラメータを修正することにより、特に、車載カメラの取付向きを調整することなく、その方向調整が行えるため、調整の作業性がよく、調整作業に要する時間も短縮することが可能である。
<Invention of Claim 3>
The in-vehicle camera is to transmit the detected image data to the control device, and the direction adjustment step is particularly performed by correcting the control parameters of the control device for the orientation of the in-vehicle camera with respect to the image data. Since the direction adjustment can be performed without adjusting the mounting direction of the in-vehicle camera, the adjustment workability is good and the time required for the adjustment work can be shortened.

本発明の実施形態を図1乃至図4によって説明する。説明中において、図1の左方を前方とする。図1は、調整場に車載カメラ2の視向軸(車載カメラ2の向きと合致している)調整のために、調整用車両1が入庫したところを上方から見た図である。車両1のルームミラー(図示せず)には、車両1の走行アシスト制御のための、前方撮影用の車載カメラ2(本発明の車載光学装置に該当する)が固定されており、車載カメラ2の撮影によって検出された画像データが、図示しない車載コントローラ(本発明の制御装置に該当する)へと送信され、走行アシスト制御に利用される。   An embodiment of the present invention will be described with reference to FIGS. In the description, the left side of FIG. FIG. 1 is a view of the adjustment vehicle 1 as viewed from above for adjustment of the viewing axis of the in-vehicle camera 2 (which matches the direction of the in-vehicle camera 2) in the adjustment field. An in-vehicle camera 2 (corresponding to the in-vehicle optical device of the present invention) for front photographing for driving assist control of the vehicle 1 is fixed to a rear mirror (not shown) of the vehicle 1. The image data detected by shooting is transmitted to a vehicle-mounted controller (corresponding to the control device of the present invention) (not shown) and used for driving assist control.

調整場の床面UKには、視向軸調整のための基準軸とするために、車両1の前後方向に延びる仮想軸FAが敷設されている。また、床面UKには、前輪用タイヤ正対装置11、後輪用タイヤ正対装置12が、車両1の下方に位置するように設置されている。前輪用タイヤ正対装置11、後輪用タイヤ正対装置12は、それぞれ前後左右輪FR、FL、RR、RLの中央に位置するように設置されたアクチュエータ11a、12aと、これと連結された左右一対のタイヤ押圧部11b、12bとを備えており、アクチュエータ11a、12aを作動させることにより、タイヤ押圧部11b、12bによって車輪FR、FL、RR、RLの接地位置(下端中央部)付近を、それぞれ車両1の内方(図1において矢印FGで示す)に押圧する。   A virtual axis FA extending in the front-rear direction of the vehicle 1 is laid on the floor UK of the adjustment field to serve as a reference axis for adjusting the viewing axis. A front wheel tire facing device 11 and a rear wheel tire facing device 12 are installed on the floor surface UK so as to be positioned below the vehicle 1. The front wheel tire facing device 11 and the rear wheel tire facing device 12 are connected to actuators 11a and 12a, which are installed so as to be located at the centers of the front, rear, left and right wheels FR, FL, RR, and RL, respectively. A pair of left and right tire pressing portions 11b and 12b are provided. By actuating the actuators 11a and 12a, the tire pressing portions 11b and 12b allow the wheels FR, FL, RR, and RL to contact the vicinity of the ground contact position (lower end center portion). , Respectively, to the inside of the vehicle 1 (indicated by an arrow FG in FIG. 1).

また、左右一対のアライメントテスター13は、それぞれ車両1の左右後輪RR、RLの側方に位置するように床面UKに固定されている。図3に示すように、各々のアライメントテスター13は、床面UKに立設された略三角形状のブラケット13aを有しており、ブラケットの下端には、その前後端に、トー測定用の一対のレーザーセンサ13bが、互いに距離LSだけ離れた状態で取り付けられており、ブラケット13aの頂部には、キャンバー測定用のレーザーセンサ13cが取り付けられている。   Further, the pair of left and right alignment testers 13 are fixed to the floor surface UK so as to be positioned on the sides of the left and right rear wheels RR and RL of the vehicle 1, respectively. As shown in FIG. 3, each alignment tester 13 has a substantially triangular bracket 13 a erected on the floor surface UK, and a pair of toe measurement is provided at the front and rear ends of the bracket at the lower end. The laser sensors 13b are attached with a distance LS away from each other, and a camber measurement laser sensor 13c is attached to the top of the bracket 13a.

また、床面UKからは、一対のタイヤランナウト用の駆動ローラー14が突出しており、この上に各輪RR、RLを載置した後、駆動ローラー14によって後輪RR、RLを回転させながら、タイヤの前後部のレーザーセンサ13bからの距離(図1においてD1、D2にて示す)を測定する。尚、トー測定用のレーザーセンサ13bおよびキャンバー測定用のレーザーセンサ13cは、赤外線センサ等の非接触式の距離センサでもよいし、その他の接触式の距離センサでもよい。   In addition, a pair of tire runout drive rollers 14 protrudes from the floor surface UK, and after the wheels RR and RL are placed thereon, the drive rollers 14 rotate the rear wheels RR and RL. The distance (indicated by D1 and D2 in FIG. 1) from the laser sensor 13b at the front and rear portions of the tire is measured. The toe measurement laser sensor 13b and the camber measurement laser sensor 13c may be non-contact distance sensors such as an infrared sensor or other contact distance sensors.

また、車両1の前方には、認識スクリーン15が、車載カメラ2からLCだけ離れるとともに、仮想軸FAと垂直となるように立設されている。認識スクリーン15には、図4に示したように、車両1側から見て、3つのターゲットパターンTP1、TP2、TP3が、水平方向に並ぶように形成されている。中央のターゲットパターンTP1は、その中心が仮想軸FAの延長上にあり、左右のターゲットパターンTP2、TP3は中央のものから等間隔の位置に形成されている。更に、検査場には、認識スクリーン15の上方に、CCDカメラ16が固定され、車両1の前方部を撮影しており、その画像により、車載カメラ2の仮想軸FAに対する車両横方向の距離Wを測定している。   In addition, a recognition screen 15 is erected in front of the vehicle 1 so as to be separated from the vehicle-mounted camera 2 by LC and to be perpendicular to the virtual axis FA. As shown in FIG. 4, three target patterns TP <b> 1, TP <b> 2, TP <b> 3 are formed on the recognition screen 15 so as to be aligned in the horizontal direction when viewed from the vehicle 1 side. The center target pattern TP1 has its center on the extension of the virtual axis FA, and the left and right target patterns TP2 and TP3 are formed at equal intervals from the center. Further, a CCD camera 16 is fixed above the recognition screen 15 in the inspection area, and the front portion of the vehicle 1 is photographed. The image shows the distance W in the lateral direction of the vehicle with respect to the virtual axis FA of the in-vehicle camera 2. Is measuring.

次に、本実施形態による、車載カメラの視向軸調整の方法について説明する。車両1が調整場に入庫すると、最初に、前輪用タイヤ正対装置11、後輪用タイヤ正対装置12によって、前後左右輪FR、FL、RR、RLをそれぞれ車両1の内方へと押圧し、車輪FR、FL、RR、RLの位置に基づいて、車両1の前後方向を、床面UKの仮想軸FAと合致させるように、車両1の位置を調整し正対させる(本発明の車両正対工程に該当し、図2に21にて示す)。車両1を正対させる場合、上述したように、前輪用タイヤ正対装置11、後輪用タイヤ正対装置12を使用せずに、前もって、床面UKに形成されたタイヤ溝に、車輪FR、FL、RR、RLを嵌め込むことによって行ってもよい。   Next, a method for adjusting the viewing axis of the in-vehicle camera according to the present embodiment will be described. When the vehicle 1 enters the adjustment hall, first, the front and rear left and right wheels FR, FL, RR, and RL are pressed inwardly of the vehicle 1 by the front wheel tire facing device 11 and the rear wheel tire facing device 12, respectively. Then, based on the positions of the wheels FR, FL, RR, and RL, the position of the vehicle 1 is adjusted so that the front-rear direction of the vehicle 1 coincides with the virtual axis FA of the floor surface UK (of the present invention). This corresponds to the vehicle facing process and is indicated by 21 in FIG. 2). When the vehicle 1 is directly opposed, as described above, the wheel FR is formed in the tire groove formed on the floor surface UK in advance without using the front wheel tire facing device 11 and the rear wheel tire facing device 12. , FL, RR, RL may be inserted.

次に、トー測定用のレーザーセンサ13bによって測定した、後輪RR、RLからの距離D1、D2から、後輪RR、RLの各トー値αR、αL(水平面内における、後輪RR、RLの仮想軸FAに対する角度)を求める(図2に22にて示す)。トー値αR、αLは、左後輪RLを例に説明すれば、レーザーセンサ13bによって測定した後輪RLとの距離D1、D2の差と、レーザーセンサ13b間の距離LSとから、式:tanαL=(D1−D2)/LSによって求めることができる。このようにして求めた後輪RR、RLのトー値αR,αLから、α=(αR+αL)/2の式により、車両進行軸角α(車両1の進行方向を示す車両進行軸GAと仮想軸FAとの成す角度)を求める(本発明の進行角度計測工程に該当し、図2に23にて示す)。   Next, from the distances D1 and D2 from the rear wheels RR and RL measured by the toe measurement laser sensor 13b, the toe values αR and αL of the rear wheels RR and RL (in the horizontal plane, the rear wheels RR and RL An angle with respect to the virtual axis FA is obtained (indicated by 22 in FIG. 2). Toe values αR and αL are described by taking the left rear wheel RL as an example, from the difference between the distances D1 and D2 from the rear wheel RL measured by the laser sensor 13b and the distance LS between the laser sensors 13b. = (D1-D2) / LS. From the toe values αR, αL of the rear wheels RR, RL thus obtained, α = (αR + αL) / 2 is used to determine the vehicle traveling axis angle α (the vehicle traveling axis GA indicating the traveling direction of the vehicle 1 and the virtual axis). (An angle formed with the FA) is obtained (corresponding to the progress angle measurement step of the present invention, indicated by 23 in FIG. 2).

上述した、トー値αR、αL測定22および車両進行軸角α算出23と同時に、カメラ視向軸角β(車載カメラ2の視向軸CAと仮想軸FAとの成す角度)測定24を行う(本発明の光学方向測定工程に該当する)。これは、認識スクリーン15を車載カメラ2によって撮影し、図4に示すように、撮影された認識スクリーン15上の、車載カメラ2の画像中心CSと、仮想軸FAとの車両横方向のずれdS、CCDカメラ16による画像から求めた車載カメラ2の仮想軸FAに対する車両横方向の距離W、および車載カメラ2と認識スクリーン15との間の距離LCから、式:tanβ=(dS+W)/LCによって求めることができる。   Simultaneously with the above-described toe value αR, αL measurement 22 and vehicle traveling axis angle α calculation 23, a camera viewing axis angle β (an angle formed between the viewing axis CA and the virtual axis FA of the in-vehicle camera 2) is measured 24 ( This corresponds to the optical direction measuring step of the present invention). This is because the recognition screen 15 is photographed by the in-vehicle camera 2 and, as shown in FIG. 4, the vehicle lateral displacement dS between the image center CS of the in-vehicle camera 2 and the virtual axis FA on the photographed recognition screen 15. From the distance W in the lateral direction of the vehicle with respect to the virtual axis FA of the in-vehicle camera 2 obtained from the image by the CCD camera 16 and the distance LC between the in-vehicle camera 2 and the recognition screen 15, the equation: tan β = (dS + W) / LC Can be sought.

次に、これらから、式:γ=α+βによって、カメラ調整角γを算出し(図2に25にて示す)、車載カメラ2の送信する画像データに関して、車載カメラ2の方向について、車載コントローラの制御パラメータを変更し、その認識している視向軸CAの向きをγだけ修正して、視向軸調整を完了する(本発明の方向調整工程に該当し、図2に26にて示す)。   Next, from these, the camera adjustment angle γ is calculated by the formula: γ = α + β (indicated by 25 in FIG. 2), and with respect to the image data transmitted by the in-vehicle camera 2, the direction of the in-vehicle camera 2 is The control parameter is changed, the direction of the recognized viewing axis CA is corrected by γ, and the viewing axis adjustment is completed (corresponding to the direction adjusting process of the present invention, indicated by 26 in FIG. 2). .

本実施形態によれば、仮想軸FAを基準に車両を正対し、左右の後輪RR、RLのトー値αR、αLから、仮想軸FAに対して、車両進行軸GAが成す角度αを計測するとともに、仮想軸FAに対して、車載カメラ2の視向軸CAが成す角度βを計測し、仮想軸FAに対する車両進行軸GAが成す角度αと、仮想軸FAに対する車載カメラ2の視向軸CAが成す角度βとの和によって、車載カメラ2の向きを調整することにより、車載カメラ2の向きと車両1の実際の進行方向とを一致させることができ、トー調整のできない車両においても、車載カメラ2を利用する運転者に違和感を与えることがない。また、車載カメラ2の検出した画像データを、車両の走行アシスト制御等に使用した場合、その制御精度を向上させることができる。   According to the present embodiment, the vehicle is directly opposed with the virtual axis FA as a reference, and the angle α formed by the vehicle travel axis GA with respect to the virtual axis FA is measured from the toe values αR and αL of the left and right rear wheels RR and RL. In addition, the angle β formed by the viewing axis CA of the in-vehicle camera 2 with respect to the virtual axis FA is measured, and the angle α formed by the vehicle traveling axis GA with respect to the virtual axis FA and the viewing direction of the in-vehicle camera 2 with respect to the virtual axis FA. By adjusting the direction of the in-vehicle camera 2 with the sum of the angle β formed by the axis CA, the direction of the in-vehicle camera 2 and the actual traveling direction of the vehicle 1 can be matched, and even in a vehicle where toe adjustment is not possible The driver using the in-vehicle camera 2 does not feel uncomfortable. Further, when the image data detected by the in-vehicle camera 2 is used for vehicle driving assist control or the like, the control accuracy can be improved.

また、車載カメラ2の視向軸角βは、車載カメラ2から距離LCだけ離れて設置された認識スクリーン15を車載カメラ2によって撮影し、撮影された認識スクリーン15上における、車載カメラ2の画像中心CSと仮想軸FAとの車両横方向のずれdSと、CCDカメラ16による画像から求めた車載カメラ2の仮想軸FAに対する車両横方向の距離Wと、認識スクリーン15の車載カメラ2からの距離LCに基づいて求められることにより、短時間で容易に測定することができる。また、車載カメラ2は、検出した画像データを車載コントローラに向けて送信するものであって、車載コントローラにおいて、画像データに関する車載カメラ2の向きについて、制御パラメータを変更し、その視向軸CAの向きについての認識を修正することにより、特に、車載カメラ2の取付向きを調整することなく、その方向調整が行えるため、調整の作業性がよく、調整作業に要する時間も短縮することが可能である。   Further, the viewing axis angle β of the in-vehicle camera 2 is obtained by photographing the recognition screen 15 installed at a distance LC from the in-vehicle camera 2 by the in-vehicle camera 2, and the image of the in-vehicle camera 2 on the photographed recognition screen 15. The lateral displacement dS between the center CS and the virtual axis FA, the distance W in the lateral direction of the vehicle with respect to the virtual axis FA of the vehicle-mounted camera 2 obtained from the image by the CCD camera 16, and the distance of the recognition screen 15 from the vehicle-mounted camera 2 By being calculated based on LC, it can be easily measured in a short time. The in-vehicle camera 2 transmits the detected image data to the in-vehicle controller. In the in-vehicle controller, the control parameter is changed with respect to the orientation of the in-vehicle camera 2 with respect to the image data. By correcting the recognition of the orientation, the orientation can be adjusted without adjusting the mounting direction of the in-vehicle camera 2 in particular, so that the adjustment workability is good and the time required for the adjustment work can be shortened. is there.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)本発明によって調整することが可能なものは、車載カメラの視向軸以外に、車載レーダー装置の向き、車両前照灯の光軸方向等がある。
(2)車両を正対した後、車両のサスペンションを調整して、仮想軸に対する車両進行軸が成す角度を略零とした後に、カメラ視向軸角βのみに基づいて、車載カメラの視向軸を調整してもよい。
(3)車載カメラの取り付け向きを、実際にカメラ調整角γだけ修正することにより、視向軸の向きを調整してもよい。
(4)本発明は、車両後方を撮影する車載カメラの向きの調整にも適用可能である。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and further, within the scope not departing from the gist of the invention other than the following. Various modifications can be made.
(1) What can be adjusted by the present invention includes the orientation of the on-vehicle radar device, the optical axis direction of the vehicle headlamp, etc., in addition to the viewing direction axis of the on-vehicle camera.
(2) After facing the vehicle, the suspension of the vehicle is adjusted so that the angle formed by the vehicle traveling axis with respect to the virtual axis is substantially zero, and then the viewing direction of the in-vehicle camera is based only on the camera viewing axis angle β. The axis may be adjusted.
(3) The orientation of the viewing axis may be adjusted by actually correcting the mounting direction of the in-vehicle camera by the camera adjustment angle γ.
(4) The present invention can also be applied to the adjustment of the direction of the in-vehicle camera that captures the rear of the vehicle.

本実施形態において、車載カメラの視向軸調整を説明するための上方から見た図である。In this embodiment, it is the figure seen from the top for demonstrating the view axis adjustment of a vehicle-mounted camera. 車載カメラの視向軸調整の工程を示すブロック図である。It is a block diagram which shows the process of a viewing axis adjustment of a vehicle-mounted camera. アライメントテスターの正面図である。It is a front view of an alignment tester. 車載カメラによって撮影された画像を示す図である。It is a figure which shows the image image | photographed with the vehicle-mounted camera.

符号の説明Explanation of symbols

1…車両
2…車載カメラ
21…車両正対
23…車両進行軸角α算出
24…カメラ視向軸角β測定
25…カメラ調整角γ算出
26…カメラ視向軸調整
RR、RL…後輪
FA…仮想軸
GA…車両進行軸
CA…車載カメラの視向軸
αR、αL…トー値
α…車両進行軸角
β…カメラ視向軸角
DESCRIPTION OF SYMBOLS 1 ... Vehicle 2 ... Car-mounted camera 21 ... Vehicle facing 23 ... Vehicle advancing axis angle (alpha) calculation 24 ... Camera viewing direction angle (beta) measurement 25 ... Camera adjustment angle (gamma) calculation 26 ... Camera viewing direction axis adjustment RR, RL ... Rear wheel FA ... Virtual axis GA ... Vehicle traveling axis CA ... On-vehicle camera viewing axis αR, αL ... Toe value α ... Vehicle traveling axis angle β ... Camera viewing axis angle

Claims (3)

その調整時に、車両の前後方向に延びる仮想軸を設定し、この仮想軸を基準に、前記車両の向きを固定する車両正対工程と、
左右の後輪のトー値から、前記仮想軸に対して、前記車両の進行方向が成す角度を計測する進行角度計測工程と、
前記仮想軸に対して、車載光学装置の向きが成す角度を計測する光学方向測定工程と、
前記進行角度計測工程によって測定した、前記仮想軸に対する前記車両の進行方向が成す角度と、前記光学方向測定工程によって測定した、前記仮想軸に対する前記車載光学装置の向きが成す角度との和によって、前記車載光学装置の向きを調整する方向調整工程とを備えたことを特徴とする車載光学装置の方向調整方法。
At the time of the adjustment, a virtual axis extending in the front-rear direction of the vehicle is set, and a vehicle facing process for fixing the direction of the vehicle on the basis of the virtual axis;
A traveling angle measuring step of measuring an angle formed by a traveling direction of the vehicle with respect to the virtual axis from toe values of left and right rear wheels;
An optical direction measuring step for measuring an angle formed by the orientation of the in-vehicle optical device with respect to the virtual axis;
The sum of the angle formed by the traveling direction of the vehicle with respect to the virtual axis and the angle formed by the direction of the in-vehicle optical device with respect to the virtual axis, measured by the optical direction measuring step, measured by the traveling angle measurement step, A direction adjustment step of adjusting the direction of the in-vehicle optical device.
前記車載光学装置は車載カメラであって、前記光学方向測定工程は、前記車載カメラから所定距離離れて設置されたスクリーンを、前記車載カメラによって撮影し、撮影された前記スクリーン上における、前記車載カメラの画像中心と前記仮想軸との車両横方向のずれと、前記スクリーンの前記車載カメラからの距離に基づいて、前記仮想軸に対して、前記車載カメラの向きが成す角度を求めることを特徴とする請求項1記載の車載光学装置の方向調整方法。 The in-vehicle optical device is an in-vehicle camera, and in the optical direction measurement step, the in-vehicle camera captures a screen installed at a predetermined distance from the in-vehicle camera by the in-vehicle camera, and the image is taken on the screen. An angle formed by the orientation of the in-vehicle camera with respect to the virtual axis is obtained based on a lateral displacement of the vehicle between the image center and the virtual axis and a distance of the screen from the in-vehicle camera. The method for adjusting the direction of an in-vehicle optical device according to claim 1. 前記車載カメラは、検出した画像データを制御装置に向けて送信するものであって、前記方向調整工程は、前記画像データに関して、前記車載カメラの向きについての、前記制御装置の制御パラメータを修正することを特徴とする請求項2記載の車載光学装置の方向調整方法。 The vehicle-mounted camera transmits detected image data to a control device, and the direction adjustment step corrects a control parameter of the control device with respect to the orientation of the vehicle-mounted camera with respect to the image data. The method for adjusting the direction of an in-vehicle optical device according to claim 2.
JP2005128357A 2005-04-26 2005-04-26 In-vehicle optical device direction adjustment method Active JP4521551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005128357A JP4521551B2 (en) 2005-04-26 2005-04-26 In-vehicle optical device direction adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005128357A JP4521551B2 (en) 2005-04-26 2005-04-26 In-vehicle optical device direction adjustment method

Publications (2)

Publication Number Publication Date
JP2006306162A JP2006306162A (en) 2006-11-09
JP4521551B2 true JP4521551B2 (en) 2010-08-11

Family

ID=37473553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005128357A Active JP4521551B2 (en) 2005-04-26 2005-04-26 In-vehicle optical device direction adjustment method

Country Status (1)

Country Link
JP (1) JP4521551B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4636346B2 (en) * 2009-03-31 2011-02-23 アイシン精機株式会社 Car camera calibration apparatus, method, and program
JP5240527B2 (en) * 2010-11-25 2013-07-17 アイシン精機株式会社 Car camera calibration apparatus, method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08276787A (en) * 1995-04-03 1996-10-22 Suzuki Motor Corp On-vehicle image processing device and image display system
JP2000209577A (en) * 1999-01-18 2000-07-28 Yazaki Corp Surrounding supervisory device for vehicle and method for adjusting parameter of the surrounding supervisory device for vehicle
JP2001187552A (en) * 1999-10-19 2001-07-10 Toyota Autom Loom Works Ltd Image position relationship correction device, steering support system provided with it and image position relationship correction method
JP2003312376A (en) * 2002-04-22 2003-11-06 Fujitsu Ten Ltd Installation adjusting method for onboard periphery monitoring sensor
JP2004032793A (en) * 2003-07-02 2004-01-29 Fuji Heavy Ind Ltd Mounting structure of in-vehicle camera

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08276787A (en) * 1995-04-03 1996-10-22 Suzuki Motor Corp On-vehicle image processing device and image display system
JP2000209577A (en) * 1999-01-18 2000-07-28 Yazaki Corp Surrounding supervisory device for vehicle and method for adjusting parameter of the surrounding supervisory device for vehicle
JP2001187552A (en) * 1999-10-19 2001-07-10 Toyota Autom Loom Works Ltd Image position relationship correction device, steering support system provided with it and image position relationship correction method
JP2003312376A (en) * 2002-04-22 2003-11-06 Fujitsu Ten Ltd Installation adjusting method for onboard periphery monitoring sensor
JP2004032793A (en) * 2003-07-02 2004-01-29 Fuji Heavy Ind Ltd Mounting structure of in-vehicle camera

Also Published As

Publication number Publication date
JP2006306162A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP3551920B2 (en) In-vehicle camera calibration device and calibration method
US7746221B2 (en) Method for preventing lane departure for use with vehicle
CN103250069B (en) For correcting the method and apparatus with reconditioner motor-car environmental sensor
JP4751939B2 (en) Car camera calibration system
JP6565769B2 (en) In-vehicle camera mounting angle detection device, mounting angle calibration device, mounting angle detection method, mounting angle calibration method, and computer program
JP6602982B2 (en) In-vehicle camera, in-vehicle camera adjustment method, in-vehicle camera system
KR20160003329A (en) Method for supporting a driver of a vehicle while parking in a parking space
CN104641394A (en) Image processing device and storage medium
JP5811327B2 (en) Camera calibration device
JP2008304248A (en) Method for calibrating on-board stereo camera, on-board distance image generating apparatus, and program
KR102227850B1 (en) Method for adjusting output video of rear camera for vehicles
WO2018173907A1 (en) Vehicle control device
KR20220075353A (en) A device for controlling the steering angle of an autonomous vehicle
JP4521551B2 (en) In-vehicle optical device direction adjustment method
KR20160128077A (en) Auto calibration apparatus for vihicle sensor and method thereof
JP6322023B2 (en) Measuring device and failure diagnosis device using the same
KR20140090388A (en) Calibration indicator used for calibration of onboard camera using variable ellipse pattern and calibration method of onboard camera using calibration indicator
JP4622637B2 (en) In-vehicle camera attitude correction device and in-vehicle camera attitude correction method
JP2006335139A (en) Method and device for adjusting vehicular wheel alignment
CN112020735A (en) Driving support device and traffic system
JP2018047896A (en) Steering device
US20220327671A1 (en) Error-Robust Capture of Vehicle Surroundings
KR20050011054A (en) Locomotion methode of mobile robot using floor image informations
JPH11337310A (en) Device for detecting position for vehicle
KR101449174B1 (en) System for calculating parking trace and method for calculating parking trace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070625

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100107

TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100409

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100409

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

R150 Certificate of patent or registration of utility model

Ref document number: 4521551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140604

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250