JP4519533B2 - Manufacturing method of motor - Google Patents

Manufacturing method of motor Download PDF

Info

Publication number
JP4519533B2
JP4519533B2 JP2004173984A JP2004173984A JP4519533B2 JP 4519533 B2 JP4519533 B2 JP 4519533B2 JP 2004173984 A JP2004173984 A JP 2004173984A JP 2004173984 A JP2004173984 A JP 2004173984A JP 4519533 B2 JP4519533 B2 JP 4519533B2
Authority
JP
Japan
Prior art keywords
stator
resin
winding
housing
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004173984A
Other languages
Japanese (ja)
Other versions
JP2005354821A (en
Inventor
明信 岩井
達也 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004173984A priority Critical patent/JP4519533B2/en
Publication of JP2005354821A publication Critical patent/JP2005354821A/en
Application granted granted Critical
Publication of JP4519533B2 publication Critical patent/JP4519533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Windings For Motors And Generators (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

本発明は、例えば永久磁石式等のモータの製造方法に関する。 The present invention relates to a method of manufacturing a motor of , for example, a permanent magnet type.

従来、例えば、固定子の固定子鉄心の外周に冷却液の通る冷却パイプを備えたモータ(例えば、特許文献1参照)が知られている。
また、従来、例えば、ポンプにより圧送した冷却油を固定子巻線に直接に接触させて冷却を行う冷却装置(例えば、特許文献2参照、特許文献3参照)が知られている。
また、例えば、コイルが巻回されたアウタロータを内部に収容するアウタロータカバーの内壁面上に形成された溝部を仕切り板により封止した状態で樹脂を注入し、コイルエンドを樹脂により被覆すると共に、仕切り板と溝部とにより形成された通路に冷却油を流通させるモータ(例えば、特許文献4参照)が知られている。
特開平9−93869号公報 実開平6−36363号公報 特開2003−224945号公報 特開平11−206063号公報
Conventionally, for example, a motor (see, for example, Patent Document 1) including a cooling pipe through which a coolant passes on the outer periphery of a stator core of a stator is known.
Conventionally, for example, a cooling device that performs cooling by directly contacting cooling oil pumped by a pump with a stator winding (see, for example, Patent Document 2 and Patent Document 3) is known.
In addition, for example, resin is injected in a state where a groove formed on the inner wall surface of the outer rotor cover that houses the outer rotor around which the coil is wound is sealed with a partition plate, and the coil end is covered with the resin, A motor (see, for example, Patent Document 4) that circulates cooling oil in a passage formed by a partition plate and a groove is known.
Japanese Patent Laid-Open No. 9-93869 Japanese Utility Model Publication No. 6-36363 JP 2003-224945 A JP-A-11-206063

しかしながら、上記従来技術の一例に係る固定子鉄心の外周に冷却パイプを備えたモータにおいては、固定子鉄心の外周部に冷却パイプを装着する溝を形成することから、固定子鉄心の径方向の厚さに対して、溝を形成するための厚みを確保する必要があり、モータの径方向寸法が増大してしまうという問題が生じる。しかも、発熱源である固定子巻線と冷却パイプとの間には、固定子鉄心および溝内に冷却パイプを固定する接着剤が介在することから、冷却効率が低下してしまう虞がある。
また、上記従来技術に係るポンプにより圧送した冷却油を固定子巻線に直接に接触させて冷却を行う冷却装置においては、例えば冷却油内に異物が混入した場合に、この異物によって巻線の絶縁被覆層が損傷してしまう虞がある。しかも、巻線に冷却油を噴射させたり、複数の巻線間を複雑な流通経路に沿って流通する冷却油に対して所望の流量を確保するためには、相対的に高出力かつ大型のポンプを備える必要があり、装置構成が大型化してしまうという問題が生じる。
However, in the motor provided with the cooling pipe on the outer periphery of the stator core according to the above prior art, a groove for mounting the cooling pipe is formed on the outer periphery of the stator core. It is necessary to secure a thickness for forming the groove with respect to the thickness, which causes a problem that the radial dimension of the motor increases. In addition, since the adhesive for fixing the cooling pipe is interposed in the stator core and the groove between the stator winding as a heat source and the cooling pipe, the cooling efficiency may be lowered.
Also, in a cooling device that performs cooling by directly contacting the cooling oil pumped by the pump according to the above-described prior art with the stator winding, for example, when foreign matter is mixed in the cooling oil, There is a possibility that the insulating coating layer may be damaged. Moreover, in order to inject cooling oil into the windings or to secure a desired flow rate for the cooling oil flowing along a complicated flow path between a plurality of windings, a relatively high output and large size It is necessary to provide a pump, which causes a problem that the apparatus configuration is increased in size.

また、上記従来技術の一例に係るアウタロータカバーの溝部と仕切り板とにより形成された通路に冷却油を流通させるモータにおいては、発熱源である固定子巻線と冷却油の流通路との間には、仕切り板が介在することから、冷却効率が低下してしまう虞がある。
本発明は上記事情に鑑みてなされたもので、モータが大型化することを抑制しつつ、冷却効率を向上させることが可能なモータの製造方法を提供することを目的とする。
Further, in the motor that circulates the cooling oil through the passage formed by the groove portion of the outer rotor cover and the partition plate according to the above-described prior art, between the stator winding that is a heat source and the cooling oil flow passage. Since the partition plate is interposed, there is a possibility that the cooling efficiency may be lowered.
This invention is made | formed in view of the said situation, and it aims at providing the manufacturing method of the motor which can improve cooling efficiency, suppressing that a motor enlarges.

上記課題を解決して係る目的を達成するために、請求項1に記載の発明のモータの製造方法は、回転子と、該回転子を回転させる回転磁界を発生する固定子と、前記固定子を固定するハウジングとを備え、前記固定子は、円環状のヨーク部(例えば、実施の形態でのバックヨーク31a,…,31a)と、該ヨーク部の内周部あるいは外周部に設けられた巻線装着部(例えば、実施の形態でのティース31b,…,31b、スロット)と、該巻線装着部に巻装される巻線(例えば、実施の形態での固定子巻線32,…,32)とを備え、前記巻線装着部は、鉄心部(例えば、実施の形態でのティース31b,…,31b)と、該鉄心部を軸方向に貫通する複数の貫通孔または前記鉄心部の径方向を深さ方向として軸方向に沿って延在する複数の溝部(例えば、実施の形態でのスロット)とを備え、前記巻線は、前記鉄心部の周方向に沿って所定間隔をおいた位置に配置される複数の前記貫通孔または前記溝部に装着されると共に、前記鉄心部の軸方向の端面上に沿って配設される巻線渡り部(例えば、実施の形態での巻線渡り部32a,…,32a)を備え、前記巻線渡り部を被覆し、周方向に沿って伸びる環状に形成されてなる樹脂部(例えば、実施の形態での樹脂モールド部41)と、前記樹脂部の外周面において、前記固定子の前記回転軸線方向の端面との接続部近傍に径方向に一段縮径するようにして、周方向に沿って伸びる環状の切欠部(例えば、実施の形態での切欠部42)と、前記樹脂部の外周面が前記ハウジングの内周面に当接して、前記樹脂部の前記切欠部の開口端が前記ハウジングの内周面により閉塞されることで、前記樹脂部の前記切欠部と、前記固定子の前記回転軸線方向の前記端面と、前記ハウジングの前記内周面とによって周囲を囲まれるようにして形成される円環状の冷媒流路(例えば、実施の形態での冷媒流路43)とを備えるモータの製造方法であって、前記樹脂部は、所定形状の円環状凹溝であって分割可能とされた成形型を用いて形成され、前記成形型は、前記固定子の外径と同等あるいは僅かに大きな径の外周側内壁面を有し、前記固定子の外周側端部を装着するためのステータ装着部と、前記ステータ装着部よりも小さな径を有し、前記巻線渡り部よりも外周側にずれた位置に配置される外周側内壁面を具備する切欠部生成部と、前記切欠部生成部よりも大きな径であって、前記ハウジングの内径と同等あるいは僅かに大きな径の外周側内壁面を有する拡径部とを備えて構成され、前記成形型の所定位置に、前記巻線が巻装された前記固定子を装着し、前記成形型の前記円環状凹溝内に前記巻線渡り部を挿入し、熱可塑性あるいは熱硬化性の所定量の溶融樹脂を前記成形型に流し込み、前記巻線渡り部および前記固定子の前記回転軸線方向の端部を前記溶融樹脂中に浸漬させた状態で冷却あるいは加熱して前記溶融樹脂を硬化させて前記樹脂部が形成され、前記成形型を分割して前記樹脂部を取り出し、前記ハウジングに前記固定子を挿入し、前記樹脂部の外周面が前記ハウジングの内周面に当接して、前記樹脂部の前記切欠部の前記開口端が前記ハウジングの前記内周面により閉塞されることで、前記樹脂部の前記切欠部と、前記固定子の前記回転軸線方向の前記端面と、前記ハウジングの前記内周面とによって周囲を囲まれるようにして前記円環状の前記冷媒流路が画成されることを特徴としている。 In order to solve the above-described problems and achieve the object, a method of manufacturing a motor according to claim 1 includes a rotor, a stator that generates a rotating magnetic field that rotates the rotor, and the stator. The stator is provided on an annular yoke portion (for example, the back yokes 31a, ..., 31a in the embodiment) and an inner peripheral portion or an outer peripheral portion of the yoke portion. Winding mounting portions (for example, teeth 31b,..., 31b, slots in the embodiment) and windings wound on the winding mounting portions (for example, stator windings 32 in the embodiment,... , 32), and the winding mounting portion includes an iron core portion (for example, teeth 31b,..., 31b in the embodiment) and a plurality of through holes penetrating the iron core portion in the axial direction or the iron core portion. A plurality extending along the axial direction with the radial direction of A groove portion (for example, a slot in the embodiment), and the winding is mounted in a plurality of the through holes or the groove portions arranged at predetermined intervals along the circumferential direction of the iron core portion. And a winding transition portion (for example, a winding transition portion 32a,..., 32a in the embodiment) disposed along the end surface in the axial direction of the iron core portion. The resin part (for example, resin mold part 41 in the embodiment) that is formed in an annular shape that covers and extends along the circumferential direction, and the end face of the stator in the rotational axis direction on the outer peripheral surface of the resin part An annular notch portion (for example, the notch portion 42 in the embodiment) extending along the circumferential direction so that the diameter thereof is reduced by one step in the radial direction in the vicinity of the connection portion with the outer peripheral surface of the resin portion. The notch of the resin part is opened. Since the end is closed by the inner peripheral surface of the housing, the periphery is surrounded by the notch portion of the resin portion, the end surface of the stator in the rotation axis direction, and the inner peripheral surface of the housing. In this way, the resin portion is an annular groove having a predetermined shape. The method of manufacturing a motor includes an annular refrigerant channel (for example, the refrigerant channel 43 in the embodiment) formed as described above. The molding die has an outer peripheral inner wall surface having a diameter equal to or slightly larger than the outer diameter of the stator, and the outer peripheral end of the stator is A stator mounting portion for mounting; and a notch portion generating portion having an outer peripheral side inner wall surface having a smaller diameter than the stator mounting portion and disposed at a position shifted to the outer peripheral side from the winding crossover portion; A diameter larger than that of the notch generating portion, The stator having the outer peripheral side inner wall surface having a diameter equal to or slightly larger than the inner diameter of the housing is provided, and the stator around which the winding is wound is mounted at a predetermined position of the molding die. The winding transition part is inserted into the annular concave groove of the molding die, and a predetermined amount of thermoplastic resin or thermosetting molten resin is poured into the molding die, and the winding transition part and the stator The resin part is formed by curing or melting the molten resin by cooling or heating with the end in the rotational axis direction immersed in the molten resin, and taking out the resin part by dividing the mold. The stator is inserted into the housing, the outer peripheral surface of the resin portion abuts on the inner peripheral surface of the housing, and the opening end of the cutout portion of the resin portion is blocked by the inner peripheral surface of the housing. The resin part As features and missing portion, and said end face of said rotational axis direction of the stator, said refrigerant passage of said annular so as to be surrounded by said inner peripheral surface of the housing is defined Yes.

上記のモータによれば、ハウジングの内部に収容される固定子において、固定子の巻線装着部に巻装される巻線は、鉄心部の貫通孔または溝部に装着される巻線本体部と、異なる巻線本体部同士を貫通孔または溝部の外部で接続する巻線渡り部とを備えて構成されている。そして、巻線渡り部が固定子の回転軸線方向における鉄心部の端部に配設され、巻線渡り部を被覆する樹脂部に直接に冷媒流路が形成されることで、例えば鉄心部の外周に冷却流路を形成する場合に比べて、モータの径方向寸法が増大してしまうことを防止することができる。しかも、発熱源である巻線と冷却媒体(冷媒)との間には樹脂部が介在するだけであるから、例えば熱伝導性の高い樹脂により樹脂部を形成することで、冷却効率を向上させることができる。
また、巻線の巻線渡り部を被覆する樹脂部に冷媒流路を形成したことにより、例えば樹脂部を備えていない状態で鉄心部の外部に露出する場合に比べて、樹脂部、冷媒流路、冷媒の順にスムースに放熱されるため、巻線渡り部の放熱性を向上させることができる。しかも、巻線渡り部を樹脂部によって鉄心部に固定することでモータの運転に伴う巻線渡り部の振動の発生を抑制することができる。
According to the above motor, in the stator housed in the housing, the winding wound around the winding mounting portion of the stator includes the winding main body portion mounted in the through hole or the groove portion of the iron core portion. And a winding crossover portion for connecting different winding main body portions to each other outside the through hole or the groove portion. Then, the winding transition portion is disposed at the end of the iron core portion in the rotation axis direction of the stator, and the refrigerant flow path is directly formed in the resin portion that covers the winding transition portion. Compared with the case where the cooling channel is formed on the outer periphery, it is possible to prevent the radial dimension of the motor from increasing. Moreover, since only the resin portion is interposed between the winding that is the heat generation source and the cooling medium (refrigerant), for example, the cooling efficiency is improved by forming the resin portion with a resin having high thermal conductivity. be able to.
In addition, since the refrigerant flow path is formed in the resin portion covering the winding crossing portion of the winding, for example, compared to the case where the resin portion is not provided and the resin portion, the refrigerant flow is not exposed to the outside of the iron core portion. Since the heat is smoothly radiated in the order of the path and the refrigerant, the heat dissipation of the winding crossing portion can be improved. In addition, by fixing the winding transition part to the iron core part by the resin part, it is possible to suppress the occurrence of vibration of the winding transition part accompanying the operation of the motor.

上記のモータによれば、巻線渡り部を被覆する樹脂部に設けた切欠部により冷却流路を形成することで、例えば鉄心部の外周に冷却流路を形成する場合に比べて、モータの径方向寸法が増大したり、ハウジングの径方向の厚さが増大してしまうことを防止することができる。しかも、樹脂部に切欠部を設けることで冷却流路内を流通する冷媒と樹脂部との接触面積を増大させ、樹脂部を介した巻線の放熱性を向上させることができる。   According to the above motor, by forming the cooling flow path by the notch provided in the resin part covering the winding transition part, for example, compared with the case where the cooling flow path is formed on the outer periphery of the iron core part, It is possible to prevent the radial dimension from increasing or the radial thickness of the housing from increasing. In addition, by providing the notch in the resin part, the contact area between the refrigerant flowing in the cooling flow path and the resin part can be increased, and the heat dissipation of the winding via the resin part can be improved.

上記のモータによれば、樹脂成形等によって樹脂部を形成する際に、例えば樹脂部および冷媒流路をそれぞれ個別に形成するなど、煩雑な手間がかかることを防止することができる。しかも、冷媒流路が複雑化することを防止しつつ、同一の冷媒を供用して複数の巻線渡り部を効率良く冷却することができる。   According to the above motor, when forming the resin portion by resin molding or the like, it is possible to prevent troublesome work such as forming the resin portion and the refrigerant flow path individually. In addition, it is possible to efficiently cool the plurality of winding crossing portions by using the same refrigerant while preventing the refrigerant flow path from becoming complicated.

上記のモータの製造方法によれば、例えば内部に冷媒を流通させる流通管等の新たな構成要素を付加する必要無しに、冷媒流路を容易に形成することができる According to the motor manufacturing method described above, the refrigerant flow path can be easily formed without the need to add a new component such as a flow pipe for circulating the refrigerant inside .

請求項1に記載の発明のモータの製造方法によれば、モータの径方向寸法が増大してしまうことを防止しつつ、冷却効率を向上させることができる。特に、巻線渡り部の放熱性を向上させることができると共に、モータの運転に伴う巻線渡り部の振動の発生を抑制することができる。
さらに、樹脂部に切欠部を設けることで冷却流路内を流通する冷媒と樹脂部との接触面積を増大させ、樹脂部を介した巻線の放熱性を向上させることができる。
According to the motor manufacturing method of the first aspect of the present invention, the cooling efficiency can be improved while preventing the radial dimension of the motor from increasing. In particular, it is possible to improve the heat dissipation of the winding transition part, and to suppress the occurrence of vibration of the winding transition part accompanying the operation of the motor.
Furthermore, by providing a notch in the resin part, the contact area between the refrigerant flowing through the cooling flow path and the resin part can be increased, and the heat dissipation of the winding via the resin part can be improved.

さらに、樹脂成形等によって樹脂部を形成する際に、例えば樹脂部および冷媒流路をそれぞれ個別に形成するなど、煩雑な手間がかかることを防止することができる。しかも、冷媒流路が複雑化することを防止しつつ、同一の冷媒を供用して複数の巻線渡り部を効率良く冷却することができる。
さらに、例えば内部に冷媒を流通させる流通管等の新たな構成要素を付加する必要無しに、冷媒流路を容易に形成することができる
Furthermore, when forming the resin part by resin molding or the like, it is possible to prevent troublesome work such as forming the resin part and the coolant channel individually. In addition, it is possible to efficiently cool the plurality of winding crossing portions by using the same refrigerant while preventing the refrigerant flow path from becoming complicated.
Furthermore, for example, without the need to add new components, such as flow tube for circulating a coolant therein, it is possible to easily form a coolant channel.

以下、本発明のモータの一実施形態について添付図面を参照しながら説明する。
本実施の形態に係るモータ1は、例えばハイブリッド車両や燃料電池車両等の車両の駆動源とされるブラシレスDCモータであって、図1および図2に示すように、回転軸線O周りに回転可能とされた略円柱状の回転子2と、この回転子2の外周部に対向する内周部を有する略円筒状の固定子3と、固定子3の外周面を覆うようにして固定子3および回転子2を内部に収容する円筒状のハウジング4とを備えて構成されている。
Hereinafter, an embodiment of a motor of the present invention will be described with reference to the accompanying drawings.
The motor 1 according to the present embodiment is a brushless DC motor that is used as a drive source of a vehicle such as a hybrid vehicle or a fuel cell vehicle, and can rotate around a rotation axis O as shown in FIGS. The substantially cylindrical rotor 2, the substantially cylindrical stator 3 having an inner peripheral portion facing the outer peripheral portion of the rotor 2, and the stator 3 so as to cover the outer peripheral surface of the stator 3. And the cylindrical housing 4 which accommodates the rotor 2 inside is comprised.

回転子2は、固定子3の内部に配置されて回転軸線O周りに回転可能とされ、例えば、略円柱状のロータシャフト10と、ロータシャフト10の外周面上に装着された積層コア11と、複数の永久磁石12,…,12とを備えて構成されている。
積層コア11は、例えば略円環状の珪素鋼板等の複数の電磁鋼板が回転軸線O方向に積層されて形成され、略円筒状のロータ鉄心21と、このロータ鉄心21の周方向の所定位置において外周面上から径方向外方に向かい断面視略矩形状に突出する複数の突極部22,…,22とを備え、周方向で隣り合う突極部22,22の間には、これらの突極部22,22によって両側から挟み込まれるようにして略長方形板状の永久磁石12が装着されている。
The rotor 2 is disposed inside the stator 3 and is rotatable around the rotation axis O. For example, the rotor shaft 10 having a substantially cylindrical shape, and the laminated core 11 mounted on the outer peripheral surface of the rotor shaft 10 are provided. The permanent magnets 12 are configured to include a plurality of permanent magnets 12.
The laminated core 11 is formed, for example, by laminating a plurality of electromagnetic steel plates such as a substantially annular silicon steel plate in the direction of the rotation axis O, and a substantially cylindrical rotor core 21 and a predetermined position in the circumferential direction of the rotor core 21. A plurality of salient pole portions 22,..., 22 projecting in a substantially rectangular shape in cross section from the outer peripheral surface to the outer side in the radial direction, and between these salient pole portions 22, 22 adjacent in the circumferential direction, A substantially rectangular plate-like permanent magnet 12 is mounted so as to be sandwiched between the salient pole portions 22 and 22 from both sides.

突極部22の外周側端部には周方向外方に向かい突出する2つの磁石保持爪部22a,22aが形成され、周方向で隣り合う突極部22,22から突出する互いの磁石保持爪部22a,22aは、これらの突極部22,22の間に装着された永久磁石12の外周面に当接して、永久磁石12が径方向外方に向かい移動することを規制している。つまり、このモータ1では、永久磁石12の外周面の一部が固定子3に向かって露出している。   Two magnet holding claws 22a and 22a projecting outward in the circumferential direction are formed on the outer peripheral side end of the salient pole part 22, and the magnets holding each other projecting from the salient pole parts 22 and 22 adjacent in the circumferential direction are formed. The claw portions 22a and 22a abut against the outer peripheral surface of the permanent magnet 12 mounted between the salient pole portions 22 and 22, and restrict the permanent magnet 12 from moving outward in the radial direction. . That is, in the motor 1, a part of the outer peripheral surface of the permanent magnet 12 is exposed toward the stator 3.

永久磁石12は、例えばフェライト磁石、あるいは、Nd−Fe−B系やSm−Co系の希土類磁石等であって、径方向に磁化されている。そして、周方向で隣り合う永久磁石12,12の磁化方向が互いに反対方向となるように、すなわち外周側がN極とされた永久磁石12には、外周側がS極とされた永久磁石12が隣り合うように配置されている。なお、複数の永久磁石12,…,12の個数は偶数個とされている。   The permanent magnet 12 is, for example, a ferrite magnet, or a Nd—Fe—B or Sm—Co rare earth magnet, and is magnetized in the radial direction. The permanent magnets 12 adjacent to each other in the circumferential direction are opposite to each other, that is, the permanent magnet 12 whose outer peripheral side is the north pole is adjacent to the permanent magnet 12 whose outer peripheral side is the south pole. It is arranged to fit. The number of the plurality of permanent magnets 12, ..., 12 is an even number.

略円筒状の固定子3は、例えば略円環状に配置された複数のステータ片31,…,31がハウジング4内に収容されて構成され、例えば略T字板状の珪素鋼板等の複数の電磁鋼板が回転軸線O方向に積層されて形成された各ステータ片31は、バックヨーク31aと、このバックヨーク31aから周方向内方に向かい延出するティース31bとを備えて構成され、各ティース31bには、回転子2を回転させる回転磁界を発生する複数相(例えば、U相,V相,W相からなる3相)の固定子巻線32,…,32が絶縁部材(図示略)を介して巻回されている。   The substantially cylindrical stator 3 is configured by, for example, a plurality of stator pieces 31,..., 31 arranged in a substantially annular shape being accommodated in a housing 4. Each stator piece 31 formed by laminating electromagnetic steel plates in the direction of the rotation axis O includes a back yoke 31a and teeth 31b extending inward in the circumferential direction from the back yoke 31a. 31 b includes a plurality of phases (for example, three phases including a U phase, a V phase, and a W phase) of stator windings 32,..., 32 that generate a rotating magnetic field that rotates the rotor 2. It is wound through.

なお、各ステータ片31のバックヨーク31aの周方向の両端部のうち、一方の端部には周方向に突出する凸部33が形成され、他方の端部には隣接するステータ片31の凸部33を嵌合可能な凹部34が形成されている。これにより、周方向で隣り合うステータ片31,31同士は、一方のステータ片31のバックヨーク31aの凸部33が、他方のステータ片31のバックヨーク31aの凹部34に嵌合することで、互いに所定の相対配置状態に位置決めされて接続固定されている。
また、各ステータ片31のティース31bの内周側端部には、周方向外方に向かい突出する2つの巻線保持爪31c,31cが形成され、各ティース31bに巻回された固定子巻線32が周方向内方に移動することを規制している。
Of both end portions in the circumferential direction of the back yoke 31a of each stator piece 31, a convex portion 33 protruding in the circumferential direction is formed at one end portion, and the convex portion of the adjacent stator piece 31 is formed at the other end portion. A recess 34 into which the portion 33 can be fitted is formed. Thereby, the stator pieces 31, 31 that are adjacent in the circumferential direction are such that the convex portion 33 of the back yoke 31 a of one stator piece 31 is fitted into the concave portion 34 of the back yoke 31 a of the other stator piece 31. They are positioned and connected and fixed in a predetermined relative arrangement state.
Further, two winding holding claws 31c and 31c projecting outward in the circumferential direction are formed at the inner peripheral end of the teeth 31b of each stator piece 31, and the stator winding wound around each tooth 31b. The line 32 is restricted from moving inward in the circumferential direction.

そして、各ティース31bに巻回された固定子巻線32のうち、周方向で隣り合うティース31b,31b間のスロットに配置された各巻線同士を、スロットの外部、つまり各ティース31bの回転軸線O方向の端面上で接続する巻線渡り部32aは樹脂モールド部41により被覆されている。
樹脂モールド部41は、例えば略円筒状に形成され、固定子3の回転軸線O方向の端面3A,3A(例えば、複数のティース31b,…,31bの回転軸線O方向の端面)に接続されている。さらに、樹脂モールド部41の外周面41A上において、固定子3の端面3A,3Aとの接続部近傍には、径方向に一段縮径するようにして、円環状の切欠部42が形成されている。
Of the stator windings 32 wound around the teeth 31b, the windings disposed in the slots between the teeth 31b and 31b adjacent in the circumferential direction are connected to the outside of the slot, that is, the rotation axis of each tooth 31b. The winding transition part 32 a connected on the end face in the O direction is covered with the resin mold part 41.
The resin mold portion 41 is formed, for example, in a substantially cylindrical shape, and is connected to end surfaces 3A, 3A of the stator 3 in the rotation axis O direction (for example, end surfaces of the plurality of teeth 31b, ..., 31b in the rotation axis O direction). Yes. Further, on the outer peripheral surface 41A of the resin mold portion 41, an annular notch portion 42 is formed in the vicinity of the connection portion with the end surfaces 3A and 3A of the stator 3 so as to reduce the diameter by one step in the radial direction. Yes.

そして、樹脂モールド部41の外周面41Aは、固定子3の外周面を覆うハウジング4の内周面に接続されている。これにより、樹脂モールド部41の切欠部42と、固定子3の回転軸線O方向の端面3Aと、ハウジング4の内周面とによって周囲を囲まれるようにして円環状の冷媒流路43が画成されている。
なお、ハウジング4には、鉛直方向上方の位置でハウジング4を貫通して冷媒流路43に連通する冷媒流入孔44aが形成され、樹脂モールド部41には、鉛直方向下方の位置で回転軸線O方向に沿って伸び、樹脂モールド部41を貫通して冷媒流路43に連通する冷媒排出孔44bが形成されている。
The outer peripheral surface 41 </ b> A of the resin mold portion 41 is connected to the inner peripheral surface of the housing 4 that covers the outer peripheral surface of the stator 3. As a result, an annular refrigerant flow path 43 is defined so as to be surrounded by the cutout portion 42 of the resin mold portion 41, the end surface 3A of the stator 3 in the direction of the rotation axis O, and the inner peripheral surface of the housing 4. It is made.
The housing 4 is formed with a refrigerant inflow hole 44a that penetrates the housing 4 at a position vertically above and communicates with the refrigerant flow path 43. The resin mold portion 41 has a rotational axis O at a position vertically below. A refrigerant discharge hole 44 b extending in the direction and penetrating the resin mold portion 41 and communicating with the refrigerant flow path 43 is formed.

これにより、例えば図3に示すように、モータ1の運転時等においてハウジング4の冷媒流入孔44aに供給された冷却油等の冷却媒体(冷媒)は、鉛直方向上方から下方に向かい略円環状の冷媒流路43内を流通する過程で、樹脂モールド部41を介して発熱源とされる固定子巻線32、特に巻線渡り部32aとの間で熱交換を行い、相対的に高温状態の固定子巻線32を冷却する。
そして、冷媒流路43内を流通した冷媒は、樹脂モールド部41の冷媒排出孔44bから外部に排出されるようになっている。
Thereby, for example, as shown in FIG. 3, the cooling medium (refrigerant) such as cooling oil supplied to the refrigerant inflow hole 44a of the housing 4 during operation of the motor 1 or the like is substantially annular from the upper side to the lower side in the vertical direction. In the process of flowing through the refrigerant flow path 43, heat is exchanged between the stator winding 32, which is a heat source via the resin mold portion 41, particularly the winding transition portion 32a, and a relatively high temperature state. The stator winding 32 is cooled.
And the refrigerant | coolant which distribute | circulated the inside of the refrigerant flow path 43 is discharged | emitted outside from the refrigerant | coolant discharge hole 44b of the resin mold part 41. FIG.

また、固定子3の外周面を覆うハウジング4は、例えばアルミニウム合金等の非磁性体により形成され、回転軸線O方向の両端部には、ハウジング4を他の機器(例えば、車両の内燃機関等)に接続固定するためのフランジ部4a,4aが形成されている。そして、このハウジング4に挿入された固定子3は、締まりばめされた状態で固定されている。
つまり、ハウジング4は、その内径が固定子3の外径に対して所定の締め代を有するように設定されており、ハウジング4に固定子3を固定する際には、まず、ハウジング4を加熱して、固定子3が挿入可能となるまでハウジング4の内径を熱膨張させた後に、ハウジングに4に固定子3を挿入する。次に、ハウジング4を冷却すると、ハウジング4は内径が熱収縮して固定子3を締め付け、固定子3の固定が完了する。
The housing 4 covering the outer peripheral surface of the stator 3 is formed of a nonmagnetic material such as an aluminum alloy, for example, and the housing 4 is connected to other devices (for example, an internal combustion engine of a vehicle, etc.) at both ends in the direction of the rotation axis O. The flange portions 4a and 4a are formed for connection and fixing. And the stator 3 inserted in this housing 4 is being fixed in the state of being interference-fitted.
That is, the inner diameter of the housing 4 is set so as to have a predetermined allowance with respect to the outer diameter of the stator 3. When the stator 3 is fixed to the housing 4, first, the housing 4 is heated. Then, after the inner diameter of the housing 4 is thermally expanded until the stator 3 can be inserted, the stator 3 is inserted into the housing 4. Next, when the housing 4 is cooled, the inner diameter of the housing 4 is thermally contracted, the stator 3 is tightened, and the fixing of the stator 3 is completed.

そして、このモータ1の製造方法、特に、樹脂モールド部41を形成する方法としては、先ず、例えば図4および図5に示すように、所定形状の円環状凹溝51aが形成され、分割可能とされた成形型51の所定位置に、固定子巻線32が巻装されたステータ3を装着して、成形型51の円環状凹溝51a内に巻線渡り部32aを挿入する。
次に、熱可塑性あるいは熱硬化性の所定量の溶融樹脂52を成形型51内に流し込み、巻線渡り部32aおよび固定子3の回転軸線O方向の端部を溶融樹脂52中に浸漬させた状態で冷却あるいは加熱して溶融樹脂52を硬化させる。これにより、樹脂モールド部41が形成される。
次に、成形型51を分割して樹脂モールド部41を取り出し、ハウジング4に固定子3を挿入する。これにより、樹脂モールド部41の外周面41Aがハウジング4の内周面に当接して、樹脂モールド部41の切欠部42の開口端がハウジング4の内周面により閉塞されることで、円環状の冷媒流路43が画成される。
次に、固定子3の内部に回転子2を装着し、一連の工程を終了する。
And as a manufacturing method of this motor 1, especially the method of forming the resin mold part 41, first, as shown, for example in FIG.4 and FIG.5, the annular groove 51a of a predetermined shape is formed, and it can be divided | segmented. The stator 3 around which the stator winding 32 is wound is mounted at a predetermined position of the formed mold 51, and the winding transition portion 32 a is inserted into the annular groove 51 a of the mold 51.
Next, a predetermined amount of thermoplastic or thermosetting molten resin 52 was poured into the mold 51, and the winding transition portion 32 a and the end of the stator 3 in the direction of the rotation axis O were immersed in the molten resin 52. The molten resin 52 is cured by cooling or heating in the state. Thereby, the resin mold part 41 is formed.
Next, the mold 51 is divided, the resin mold portion 41 is taken out, and the stator 3 is inserted into the housing 4. As a result, the outer peripheral surface 41A of the resin mold portion 41 abuts on the inner peripheral surface of the housing 4, and the opening end of the notch portion 42 of the resin mold portion 41 is closed by the inner peripheral surface of the housing 4, thereby forming an annular shape. The refrigerant flow path 43 is defined.
Next, the rotor 2 is mounted inside the stator 3, and the series of steps is completed.

なお、溶融樹脂52は、例えば不飽和ポリエステル樹脂等の合成樹脂にガラス繊維を混入させたものであって、さらに、必要に応じて、例えば硬化剤や充填剤や離型剤や強化剤(例えば、SiC、AlN等の複合セラミックス)等を混入させたものを用いることができる。これにより、所望の耐熱性および振動吸収性を確保することができる。
また、成形型51の円環状凹溝51aは、例えば図5に示すように、ステータ3の外径と同等あるいは僅かに大きな径の外周側内壁面61Aを有し、ステータ3の外周側端部を装着するためのステータ装着部61と、このステータ装着部61よりも小さな径を有し、ステータ3の巻線渡り部32aよりも外周側にずれた位置に配置される外周側内壁面62Aを具備する切欠部生成部62と、この切欠部生成部62よりも大きな径であって、ハウジング4の内径と同等あるいは僅かに大きな径の外周側内壁面63Aを有する拡径部63とを備えて構成されている。
The molten resin 52 is obtained by mixing glass fibers with a synthetic resin such as an unsaturated polyester resin, and further, for example, a curing agent, a filler, a release agent, a reinforcing agent (for example, , SiC, AlN and other composite ceramics) can be used. Thereby, desired heat resistance and vibration absorbability can be ensured.
Further, as shown in FIG. 5, for example, the annular concave groove 51 a of the mold 51 has an outer peripheral side inner wall surface 61 </ b> A having a diameter equal to or slightly larger than the outer diameter of the stator 3. A stator mounting portion 61 for mounting the outer peripheral side inner wall surface 62A, which has a smaller diameter than the stator mounting portion 61 and is arranged at a position shifted to the outer peripheral side from the winding transition portion 32a of the stator 3. The notch part generating part 62 provided, and a diameter-increased part 63 having an outer peripheral inner wall surface 63A having a diameter larger than that of the notch part generating part 62 and equal to or slightly larger than the inner diameter of the housing 4 are provided. It is configured.

上述したように、本実施の形態によるモータ1によれば、巻線渡り部32aを被覆する樹脂モールド部41の切欠部42により冷媒流路43を形成したことにより、例えば固定子3の外周に冷媒流路43を形成する場合に比べて、モータ1の径方向寸法が増大してしまうことを防止することができる。しかも、発熱源である固定子巻線32と冷却媒体(冷媒)との間には樹脂モールド部41が介在するだけであるから、例えば熱伝導性が相対的に高い樹脂により樹脂モールド部41を形成することで、冷却効率を向上させることができる。   As described above, according to the motor 1 according to the present embodiment, the coolant flow path 43 is formed by the notch portion 42 of the resin mold portion 41 that covers the winding transition portion 32a. Compared with the case where the refrigerant flow path 43 is formed, it is possible to prevent the radial dimension of the motor 1 from increasing. In addition, since only the resin mold part 41 is interposed between the stator winding 32 that is a heat generation source and the cooling medium (refrigerant), for example, the resin mold part 41 is made of resin having relatively high thermal conductivity. By forming, cooling efficiency can be improved.

また、巻線渡り部32aを被覆する樹脂モールド部41に冷媒流路43を形成したことにより、例えば樹脂モールド部41を備えていない状態でスロットの外部に露出する場合に比べて、樹脂モールド部41、冷媒流路43、冷媒の順にスムースに放熱されるため、巻線渡り部32aの放熱性を向上させることができる。しかも、巻線渡り部32aを樹脂モールド部41によってティース31bに固定することでモータ1の運転に伴う巻線渡り部32aの振動の発生を抑制することができる。
しかも、樹脂モールド部41に切欠部42を設けることで冷媒流路43内を流通する冷媒と樹脂モールド部41との接触面積を増大させ、樹脂モールド部41を介した固定子巻線32の放熱性を向上させることができる
In addition, since the coolant channel 43 is formed in the resin mold portion 41 that covers the winding transition portion 32a, for example, the resin mold portion is not exposed to the outside of the slot without the resin mold portion 41 being provided. Since heat is smoothly radiated in the order of 41, the refrigerant flow path 43, and the refrigerant, it is possible to improve the heat dissipation of the winding crossover portion 32a. In addition, by fixing the winding transition part 32 a to the teeth 31 b by the resin mold part 41, it is possible to suppress the occurrence of vibration of the winding transition part 32 a accompanying the operation of the motor 1.
In addition, by providing the resin mold portion 41 with the cutout portion 42, the contact area between the refrigerant flowing through the refrigerant flow path 43 and the resin mold portion 41 is increased, and heat dissipation of the stator winding 32 via the resin mold portion 41 is achieved. Can improve

さらに、冷媒流路43を周方向に沿って伸びる環状に形成したことにより、樹脂成形等によって樹脂モールド部41を形成する際に、例えば樹脂モールド部41および冷媒流路43をそれぞれ個別に形成するなど、煩雑な手間がかかることを防止することができる。しかも、冷媒流路43が複雑化することを防止しつつ、同一の冷媒を供用して複数の巻線渡り部32a,…,32aを効率良く冷却することができる。   Further, since the coolant channel 43 is formed in an annular shape extending in the circumferential direction, when the resin mold portion 41 is formed by resin molding or the like, for example, the resin mold portion 41 and the coolant channel 43 are individually formed. Thus, it is possible to prevent troublesome work. In addition, while preventing the refrigerant flow path 43 from becoming complicated, it is possible to efficiently cool the plurality of winding crossover portions 32a, ..., 32a by using the same refrigerant.

なお、上述した実施の形態においては、冷媒流路43に導入された冷媒が重力によりスムースに排出される点で好ましいため、冷媒を冷媒流路43内の鉛直方向上方から下方に向かい流通させるとしたが、これに限定されず、例えば図6および図7に示すように、冷媒を冷媒流路43内の鉛直方向下方から上方に向かい流通させてもよい。
この変形例に係るモータ1では、樹脂モールド部41の外周面41A上において、回転軸線O方向の端部に、径方向に一段縮径するようにして、円環状の切欠部42が形成されている。
そして、樹脂モールド部41の外周面41Aは、固定子3の外周面を覆うハウジング4の内周面に接続され、さらに、樹脂モールド部41の回転軸線O方向の端面41Bは、ハウジング4の回転軸線O方向の端部において内周面上から径方向内方に向かい突出するフランジ部4bに接続されている。これにより、樹脂モールド部41の切欠部42と、ハウジング4の内周面と、ハウジング4のフランジ部4bとによって周囲を囲まれるようにして円環状の冷媒流路43が画成されている。
この変形例において、冷媒を冷媒流路43内の鉛直方向下方から上方に向かい流通させることにより、例えば冷媒中に空気等のガスが混入して気泡が形成される場合であっても、気泡の移動方向と冷媒の流通方向とが略同方向となり、気泡を容易に外部に排出することができる。
しかも、冷媒流路43が樹脂モールド部41の回転軸線O方向の端部に設けられることによって、この冷媒流路43内を流通する冷媒自体の放熱を促進することができる。
In the above-described embodiment, the refrigerant introduced into the refrigerant flow path 43 is preferable in that it is smoothly discharged due to gravity. Therefore, when the refrigerant is circulated downward from the upper side in the vertical direction in the refrigerant flow path 43. However, the present invention is not limited to this. For example, as shown in FIGS. 6 and 7, the refrigerant may be circulated from the vertically lower side to the upper side in the refrigerant flow path 43.
In the motor 1 according to this modified example, an annular notch 42 is formed on the outer peripheral surface 41A of the resin mold portion 41 at the end in the direction of the rotation axis O so as to reduce the diameter by one step in the radial direction. Yes.
The outer peripheral surface 41A of the resin mold portion 41 is connected to the inner peripheral surface of the housing 4 that covers the outer peripheral surface of the stator 3, and the end surface 41B of the resin mold portion 41 in the rotation axis O direction is the rotation of the housing 4. At the end in the direction of the axis O, it is connected to a flange 4b projecting radially inward from the inner peripheral surface. Thereby, an annular refrigerant flow path 43 is defined so as to be surrounded by the cutout portion 42 of the resin mold portion 41, the inner peripheral surface of the housing 4, and the flange portion 4 b of the housing 4.
In this modification, the refrigerant is circulated upward from the lower side in the vertical direction in the refrigerant flow path 43, so that, for example, even when a gas such as air is mixed into the refrigerant to form bubbles, The moving direction and the flow direction of the refrigerant are substantially the same direction, and the bubbles can be easily discharged to the outside.
In addition, by providing the refrigerant flow path 43 at the end of the resin mold portion 41 in the direction of the rotation axis O, it is possible to promote heat dissipation of the refrigerant itself flowing through the refrigerant flow path 43.

本発明の一実施形態に係るモータの分解斜視図である。It is a disassembled perspective view of the motor which concerns on one Embodiment of this invention. 図1に示すモータの周方向に対する断面図である。It is sectional drawing with respect to the circumferential direction of the motor shown in FIG. 図2に示すA−A線矢視図である。It is an AA arrow line view shown in FIG. 本実施形態に係る成形型の斜視図である。It is a perspective view of the shaping | molding die concerning this embodiment. 図5に示す成形型にステータを装着した状態を示す図である。It is a figure which shows the state which mounted | wore the stator to the shaping | molding die shown in FIG. 本実施形態の変形例に係るモータの周方向に対する断面図である。It is sectional drawing with respect to the circumferential direction of the motor which concerns on the modification of this embodiment. 図6に示すA−A線矢視図である。It is an AA arrow directional view shown in FIG.

符号の説明Explanation of symbols

1 モータ
2 回転子
3 固定子
4 ハウジング
31a バックヨーク(ヨーク部)
31b ティース(巻線装着部、鉄心部)
32 固定子巻線(巻線)
32a 巻線渡り部
41 樹脂モールド部(樹脂部)
42 切欠部
43 冷媒流路

DESCRIPTION OF SYMBOLS 1 Motor 2 Rotor 3 Stator 4 Housing 31a Back yoke (yoke part)
31b Teeth (winding mounting part, iron core part)
32 Stator winding (winding)
32a Winding crossing part 41 Resin mold part (resin part)
42 Notch 43 Refrigerant flow path

Claims (1)

回転子と、該回転子を回転させる回転磁界を発生する固定子と、前記固定子を固定するハウジングとを備え、
前記固定子は、円環状のヨーク部と、該ヨーク部の内周部あるいは外周部に設けられた巻線装着部と、該巻線装着部に巻装される巻線とを備え、
前記巻線装着部は、鉄心部と、該鉄心部を軸方向に貫通する複数の貫通孔または前記鉄心部の径方向を深さ方向として軸方向に沿って延在する複数の溝部とを備え、
前記巻線は、前記鉄心部の周方向に沿って所定間隔をおいた位置に配置される複数の前記貫通孔または前記溝部に装着されると共に、前記鉄心部の軸方向の端面上に沿って配設される巻線渡り部を備え、
前記巻線渡り部を被覆し、周方向に沿って伸びる環状に形成されてなる樹脂部と、
前記樹脂部の外周面において、前記固定子の前記回転軸線方向の端面との接続部近傍に径方向に一段縮径するようにして、周方向に沿って伸びる環状の切欠部と、
前記樹脂部の外周面が前記ハウジングの内周面に当接して、前記樹脂部の前記切欠部の開口端が前記ハウジングの内周面により閉塞されることで、前記樹脂部の前記切欠部と、前記固定子の前記回転軸線方向の前記端面と、前記ハウジングの前記内周面とによって周囲を囲まれるようにして形成される円環状の冷媒流路とを備えるモータの製造方法であって、
前記樹脂部は、所定形状の円環状凹溝であって分割可能とされた成形型を用いて形成され、
前記成形型は、前記固定子の外径と同等あるいは僅かに大きな径の外周側内壁面を有し、前記固定子の外周側端部を装着するためのステータ装着部と、前記ステータ装着部よりも小さな径を有し、前記巻線渡り部よりも外周側にずれた位置に配置される外周側内壁面を具備する切欠部生成部と、前記切欠部生成部よりも大きな径であって、前記ハウジングの内径と同等あるいは僅かに大きな径の外周側内壁面を有する拡径部とを備えて構成され、
前記成形型の所定位置に、前記巻線が巻装された前記固定子を装着し、
前記成形型の前記円環状凹溝内に前記巻線渡り部を挿入し、
熱可塑性あるいは熱硬化性の所定量の溶融樹脂を前記成形型に流し込み、
前記巻線渡り部および前記固定子の前記回転軸線方向の端部を前記溶融樹脂中に浸漬させた状態で冷却あるいは加熱して前記溶融樹脂を硬化させて前記樹脂部が形成され、
前記成形型を分割して前記樹脂部を取り出し、前記ハウジングに前記固定子を挿入し、前記樹脂部の外周面が前記ハウジングの内周面に当接して、前記樹脂部の前記切欠部の前記開口端が前記ハウジングの前記内周面により閉塞されることで、前記樹脂部の前記切欠部と、前記固定子の前記回転軸線方向の前記端面と、前記ハウジングの前記内周面とによって周囲を囲まれるようにして前記円環状の前記冷媒流路が画成されることを特徴とするモータの製造方法
A rotor, a stator that generates a rotating magnetic field that rotates the rotor, and a housing that fixes the stator;
The stator includes an annular yoke portion, a winding mounting portion provided on an inner peripheral portion or an outer peripheral portion of the yoke portion, and a winding wound around the winding mounting portion.
The winding mounting portion includes an iron core portion and a plurality of through holes that penetrate the iron core portion in the axial direction or a plurality of groove portions that extend along the axial direction with the radial direction of the iron core portion as a depth direction. ,
The winding is attached to the plurality of through holes or the groove portions arranged at predetermined intervals along the circumferential direction of the iron core portion, and along the axial end surface of the iron core portion. It is provided with a winding crossing part to be arranged,
A resin part that covers the winding transition part and is formed in an annular shape extending in the circumferential direction;
In the outer peripheral surface of the resin portion, an annular notch portion extending in the circumferential direction so as to reduce in diameter one step in the vicinity of the connection portion with the end surface in the rotational axis direction of the stator, and
The outer peripheral surface of the resin portion is in contact with the inner peripheral surface of the housing, and the opening end of the notch portion of the resin portion is closed by the inner peripheral surface of the housing, thereby the notch portion of the resin portion and and said end face of said rotational axis direction of the stator, a manufacturing method of a motor and a refrigerant flow path of annular formed so as to be surrounded by said inner peripheral surface of the housing,
The resin part is formed using a mold that is an annular groove having a predetermined shape and can be divided;
The molding die has an outer peripheral side inner wall surface having a diameter equal to or slightly larger than the outer diameter of the stator, a stator mounting part for mounting the outer peripheral side end of the stator, and a stator mounting part. Has a smaller diameter, a notch portion generating portion comprising an outer peripheral side inner wall surface disposed at a position shifted to the outer peripheral side from the winding crossing portion, and a larger diameter than the notch portion generating portion, An enlarged-diameter portion having an outer peripheral side inner wall surface having a diameter equal to or slightly larger than the inner diameter of the housing,
At the predetermined position of the mold, the stator around which the winding is wound is mounted,
Inserting the winding transition part into the annular groove of the mold,
Pour a predetermined amount of thermoplastic or thermosetting resin into the mold,
The resin part is formed by curing or melting the molten resin by cooling or heating the winding transition part and the end of the rotation axis direction of the stator immersed in the molten resin,
The mold is divided to take out the resin portion, the stator is inserted into the housing, the outer peripheral surface of the resin portion is in contact with the inner peripheral surface of the housing, and the notch portion of the resin portion is Since the open end is closed by the inner peripheral surface of the housing, the notch portion of the resin portion, the end surface of the stator in the rotation axis direction, and the inner peripheral surface of the housing surround the periphery. The method for manufacturing a motor , wherein the annular refrigerant flow path is defined so as to be surrounded .
JP2004173984A 2004-06-11 2004-06-11 Manufacturing method of motor Expired - Fee Related JP4519533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004173984A JP4519533B2 (en) 2004-06-11 2004-06-11 Manufacturing method of motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004173984A JP4519533B2 (en) 2004-06-11 2004-06-11 Manufacturing method of motor

Publications (2)

Publication Number Publication Date
JP2005354821A JP2005354821A (en) 2005-12-22
JP4519533B2 true JP4519533B2 (en) 2010-08-04

Family

ID=35588801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004173984A Expired - Fee Related JP4519533B2 (en) 2004-06-11 2004-06-11 Manufacturing method of motor

Country Status (1)

Country Link
JP (1) JP4519533B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4673911B2 (en) 2008-08-12 2011-04-20 トヨタ自動車株式会社 Rotating electric machine and rotating electric machine cooling system
JP2010187489A (en) * 2009-02-13 2010-08-26 Meidensha Corp Rotary electric machine
JP5330860B2 (en) * 2009-02-27 2013-10-30 トヨタ自動車株式会社 Rotating electric machine
JP5216038B2 (en) * 2010-03-25 2013-06-19 株式会社日立製作所 Rotating motor
KR101340403B1 (en) 2010-04-23 2013-12-11 가부시키가이샤 아이에이치아이 Rotary machine
JP5589738B2 (en) * 2010-10-07 2014-09-17 トヨタ自動車株式会社 Motor cooling device
US20130278091A1 (en) 2010-12-22 2013-10-24 Ihi Corporation Rotary machine
EP2498380A1 (en) * 2011-03-09 2012-09-12 Siemens Aktiengesellschaft Stator arrangement
CN102857028B (en) * 2012-08-29 2015-07-08 武汉唯特特种电机有限公司 Fluid-cooled motor
JP6374798B2 (en) * 2015-01-30 2018-08-15 株式会社クボタ Cooling structure of rotating electric machine
US10008907B2 (en) * 2016-03-17 2018-06-26 Ford Global Technologies, Llc Over mold with integrated insert to enhance heat transfer from an electric machine end winding
DE102016204980A1 (en) * 2016-03-24 2017-09-28 Zf Friedrichshafen Ag Electric machine with a cooling device
JP6406310B2 (en) * 2016-04-28 2018-10-17 マツダ株式会社 Electric motor structure and electric motor manufacturing method
DE102017208556A1 (en) * 2017-05-19 2018-11-22 Mahle International Gmbh Electric machine, in particular for a vehicle
DE102017208566A1 (en) 2017-05-19 2018-11-22 Mahle International Gmbh Electric machine, in particular for a vehicle
DE102017208550A1 (en) 2017-05-19 2018-11-22 Mahle International Gmbh Electric machine, in particular for a vehicle
DE102017208564A1 (en) * 2017-05-19 2018-11-22 Mahle International Gmbh Electric machine, in particular for a vehicle
JP2019057986A (en) * 2017-09-20 2019-04-11 トヨタ自動車株式会社 Method for manufacturing stator
JP6848792B2 (en) * 2017-09-28 2021-03-24 トヨタ自動車株式会社 Rotating electric machine stator and its manufacturing method
CN108110928B (en) * 2018-01-25 2024-02-09 博远机电(嘉兴)有限公司 High-voltage ultra-high-speed permanent magnet synchronous motor
JP6875463B2 (en) * 2019-07-10 2021-05-26 株式会社フジクラ motor
KR102144666B1 (en) * 2019-09-04 2020-08-14 박창진 Turbo motor for high efficiency cooling through sealed cooling of stator
JP7435795B2 (en) * 2020-08-11 2024-02-21 株式会社Ihi rotating machinery
CN113437825B (en) * 2021-07-05 2022-06-28 珠海格力电器股份有限公司 Motor heat radiation structure, motor and compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62236339A (en) * 1986-04-08 1987-10-16 Mitsubishi Electric Corp Ac generator for vehicle
JPH0779544A (en) * 1993-09-10 1995-03-20 Matsushita Electric Ind Co Ltd Water-cooled motor
JP2002247806A (en) * 2000-12-14 2002-08-30 Denso Corp Dynamo-electric machine for vehicle
JP2004129396A (en) * 2002-10-03 2004-04-22 Nissan Motor Co Ltd Stator structure of double-spindle multilayer motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62236339A (en) * 1986-04-08 1987-10-16 Mitsubishi Electric Corp Ac generator for vehicle
JPH0779544A (en) * 1993-09-10 1995-03-20 Matsushita Electric Ind Co Ltd Water-cooled motor
JP2002247806A (en) * 2000-12-14 2002-08-30 Denso Corp Dynamo-electric machine for vehicle
JP2004129396A (en) * 2002-10-03 2004-04-22 Nissan Motor Co Ltd Stator structure of double-spindle multilayer motor

Also Published As

Publication number Publication date
JP2005354821A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
JP4519533B2 (en) Manufacturing method of motor
JP4389918B2 (en) Rotating electric machine and AC generator
US20130278091A1 (en) Rotary machine
US20110260566A1 (en) Rotating electrical machine
JP4082359B2 (en) Cooling structure of rotating electric machine
JP2019068701A (en) Rotary electric machine rotor and method of manufacturing the same
GB2358523A (en) Electronically commutated electrical machine
JP2016506235A (en) Axial motor shoe cooling gap
JP2003070199A (en) Motor or dynamo and manufacturing method thereof
JP2006025573A (en) Structure of stator of disk type rotary electric machine
JP2008167609A (en) Electric motor
JP5331521B2 (en) Toroidal winding motor
JP2011109774A (en) Rotating electric machine
JP2007205246A (en) Water pump and hybrid vehicle
JP3882721B2 (en) Cooling structure for rotating electrical machine and method for manufacturing the same
JP2017204984A (en) Rotor of rotary electric machine, rotary electric machine, and method of manufacturing rotor of rotary electric machine
US20190052157A1 (en) Rotor assembly, motor including rotor assembly, and method for manufacturing rotor assembly
JP2015226334A (en) Electric motor
JP2004173375A (en) Laminated core with permanent magnet
JP2010141960A (en) Insulating member
JP5929146B2 (en) Rotor for rotating electrical machine and method for manufacturing the same
CN113964966B (en) Stator assembly, manufacturing method thereof and axial flux motor
JP7001941B2 (en) Electric motor
JP2007074844A (en) Stator core, motor
US20190157951A1 (en) Rotor, electric motor, air conditioner, and method for manufacturing rotor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees