JP4517068B2 - Method for treating chloride-based spent electrolyte and phosphate conversion reactor - Google Patents

Method for treating chloride-based spent electrolyte and phosphate conversion reactor Download PDF

Info

Publication number
JP4517068B2
JP4517068B2 JP2006131887A JP2006131887A JP4517068B2 JP 4517068 B2 JP4517068 B2 JP 4517068B2 JP 2006131887 A JP2006131887 A JP 2006131887A JP 2006131887 A JP2006131887 A JP 2006131887A JP 4517068 B2 JP4517068 B2 JP 4517068B2
Authority
JP
Japan
Prior art keywords
phosphate
salt
chloride
electrolyte
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006131887A
Other languages
Japanese (ja)
Other versions
JP2007303934A (en
Inventor
一平 天本
峰夫 福嶋
宗孝 明珍
Original Assignee
独立行政法人 日本原子力研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人 日本原子力研究開発機構 filed Critical 独立行政法人 日本原子力研究開発機構
Priority to JP2006131887A priority Critical patent/JP4517068B2/en
Publication of JP2007303934A publication Critical patent/JP2007303934A/en
Application granted granted Critical
Publication of JP4517068B2 publication Critical patent/JP4517068B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、使用済燃料の乾式再処理プロセスで生じる塩化物系使用済電解質の再生を行い、廃塩生成により増加した余剰塩をリン酸塩に転換して鉄リン酸ガラスに充填することによって安定化させる処理方法に関するものである。   The present invention regenerates a chloride-based spent electrolyte generated in a dry reprocessing process of spent fuel, converts surplus salt increased due to waste salt generation into phosphate, and fills it with iron phosphate glass. The present invention relates to a stabilization processing method.

使用済燃料の乾式再処理プロセスでは、溶媒である塩化物系の高温溶融塩に使用済燃料を溶解し、電解処理することで陰極上に析出する電解析出物を回収し、再処理製品としている。このような乾式再処理プロセスで発生する使用済電解質は、アクチノイド物質やFP(核***生成物)を含有しているため、高レベル放射性廃棄物として廃棄されることになる。そこで、廃棄物発生量の低減化や経済性などの観点から、使用済電解質の再生を行い、リサイクルする必要がある。   In the dry reprocessing process of spent fuel, the spent fuel is dissolved in a chloride-based high-temperature molten salt, which is a solvent, and electrolytic treatment is performed to collect electrolytic deposits that deposit on the cathode, resulting in a reprocessed product. Yes. The spent electrolyte generated in such a dry reprocessing process contains actinide substances and FP (fission products), and is therefore discarded as high-level radioactive waste. Therefore, it is necessary to recycle and recycle the spent electrolyte from the viewpoint of reducing the amount of waste generated and economical efficiency.

従来技術として、使用済電解質中に残留しているアクチノイド物質を還元・抽出工程で取り除いた後、ゼオライトを充填した吸着筒を通過させることによりFPを除去する再生方法が検討されている(例えば、非特許文献1参照)。しかしながら、このようなFP除去プロセスでは、FPを吸着したゼオライトの処理・処分が必要となり、この操作により次工程(廃棄物処理工程)において、FPを安定化させた大量のソーダライトが発生するため、環境負荷及び経済性の面から大きな課題となっている。   As a prior art, a regeneration method for removing FP by removing actinide substances remaining in a spent electrolyte in a reduction / extraction process and then passing through an adsorption cylinder filled with zeolite has been studied (for example, Non-patent document 1). However, in such an FP removal process, it is necessary to treat and dispose of zeolite adsorbed with FP, and this operation generates a large amount of sodalite with stabilized FP in the next step (waste treatment step). This is a big issue from the viewpoint of environmental impact and economy.

この問題を解決すべく、電解質中のFPをリン酸塩に転換することにより沈殿分離し、更に廃棄する電解質についてもリン酸塩に転換する技術の開発が進められているが、塩化物系電解質のリン酸塩への転換については、これまで十分な検討がなされておらず、未解決のままとなっている。
「乾式再処理技術開発における要素技術開発の現状」明珍宗孝、青瀬晋一、サイクル機構技報、No.24別冊、2004,11、p166
In order to solve this problem, the development of technology for converting the FP in the electrolyte into phosphate by converting it into a precipitate, and also converting the electrolyte to be discarded into phosphate, is being promoted. The conversion to phosphate has not been fully studied so far and remains unresolved.
"Current status of elemental technology development in dry reprocessing technology" Munetaka Munetaka, Junichi Aose, Cycle Technical Report, No. 24 separate volume, 2004, 11, p166

本発明が解決しようとする課題は、塩化物系使用済電解質を再生し、廃棄物発生量の低減を図ることである。特に、廃塩再生により新たに増加した余剰塩をリン酸と反応させてリン酸塩とするリン酸塩転換の方法と装置を明確化し、塩化物系使用済電解質の再生プロセスを確立することである。   The problem to be solved by the present invention is to regenerate the chloride-based spent electrolyte and reduce the amount of waste generated. In particular, by clarifying the phosphate conversion method and equipment for reacting the surplus salt newly increased by waste salt regeneration with phosphoric acid to form phosphate, and establishing a regeneration process for chloride-based spent electrolytes is there.

本発明は、使用済電解質中に蓄積したFP塩化物をリン酸塩と反応させてFPリン酸塩に変換することにより沈殿させ電解質を再生する廃塩再生工程と、廃塩再生により生じた余剰塩をリン酸と反応させてリン酸塩とするリン酸塩転換工程と、前記廃塩再生工程及びリン酸塩転換工程で生成したリン酸塩を鉄リン酸ガラスに充填することにより安定化させるリン酸塩安定化工程とからなる塩化物系使用済電解質の処理方法である。


The present invention relates to a waste salt regeneration step in which FP chloride accumulated in a spent electrolyte is reacted with phosphate and converted into FP phosphate to precipitate and regenerate the electrolyte, and surplus generated by waste salt regeneration. A phosphate conversion step in which a salt is reacted with phosphoric acid to form phosphate, and the phosphate produced in the waste salt regeneration step and phosphate conversion step is stabilized by filling iron phosphate glass. It is the processing method of the chloride type spent electrolyte which consists of a phosphate stabilization process.


ここで、廃塩再生工程でFP塩化物と反応させるリン酸塩がLi3 PO4 −K3 PO4 混合塩であり、前記リン酸塩転換工程は、廃塩再生工程から余剰塩として供給される塊状のLiCl−kCl混合塩を、破砕、粉砕、分級した後、液状のオルトリン酸と捏和(混練)し、攪拌しながら300〜600℃に昇温することにより、塩化物をメタリン酸塩に転換するのが好ましい。 Here, the phosphate to be reacted with FP chloride in the waste salt regeneration step is a Li 3 PO 4 —K 3 PO 4 mixed salt, and the phosphate conversion step is supplied as an excess salt from the waste salt regeneration step. The lumpy LiCl-kCl mixed salt is crushed, pulverized and classified, and then kneaded (kneaded) with liquid orthophosphoric acid, and heated to 300 to 600 ° C. with stirring, whereby the chloride is metaphosphated. It is preferable to convert to

このような塩化物系使用済電解質の処理方法のリン酸塩転換工程で用いるのに好適な装置は、余剰塩を供給する電解質供給部と、オルトリン酸供給部と、供給した粉体の滞留量及び滞留時間を調整可能な捏和機(混練機)と、その温度調節機構と、給排気系を備えているリン酸塩転換反応装置である。   An apparatus suitable for use in the phosphate conversion step of such a chloride-based spent electrolyte treatment method includes an electrolyte supply unit that supplies surplus salt, an orthophosphoric acid supply unit, and a retention amount of the supplied powder. And a kneading machine (kneading machine) capable of adjusting the residence time, a temperature adjusting mechanism thereof, and a phosphate conversion reaction apparatus including a supply / exhaust system.

本発明に係る塩化物系使用済電解質の処理方法は、廃塩を再生できるほか、廃塩再生により新たに増加した余剰塩をリン酸塩に転換でき、得られたリン酸塩を鉄リン酸ガラスに充填することにより、高充填率の安定な固化体が得られる。そのため、高レベル放射性廃棄物の発生量を低減することができる。   The method for treating a chloride-based spent electrolyte according to the present invention can regenerate waste salts, and can convert the surplus salt newly increased by waste salt regeneration to phosphate, and convert the obtained phosphate to iron phosphate. By filling the glass, a stable solidified body having a high filling rate can be obtained. Therefore, the amount of high-level radioactive waste generated can be reduced.

図1は、本発明に係る塩化物系使用済電解質の処理方法の典型的な例を示す工程説明図である。本発明方法は、次の3つの工程から構成される。即ち、溶融塩電解法による使用済燃料の乾式再処理プロセスで発生した塩化物系使用済電解質(廃塩)の再生を行う「廃塩再生工程」、不要となった電解質をリン酸塩に転換する「リン酸塩転換工程」、及び生成したリン酸塩を安定化させるための「リン酸塩安定化工程」である。   FIG. 1 is a process explanatory diagram showing a typical example of a method for treating a chloride-based spent electrolyte according to the present invention. The method of the present invention comprises the following three steps. In other words, the “waste salt regeneration process” in which the chloride-based spent electrolyte (waste salt) generated in the dry reprocessing process of spent fuel by the molten salt electrolysis method is regenerated, and the electrolyte that is no longer needed is converted to phosphate. A “phosphate conversion step” and a “phosphate stabilization step” for stabilizing the produced phosphate.

再処理運転の継続に伴い、電解質中にFP等が残留していくが、残留したFPに起因する電流効率の低下や融点上昇等のため、電解質は当初の機能を果たせなくなる。廃塩再生工程は、そのような廃塩からFPを除去し、電解質を再生させる工程である。電解質中のFPは塩化物となっているため、450℃(723K)以上においてリン酸リチウム(Li3 PO4 )とリン酸カリウム(K3 PO4 )の混合塩を添加することにより、FP塩化物は、リン酸塩となり沈殿する。これによって廃塩からFPが除去され、廃塩は再生されてリサイクル可能となる。なお、添加したLi3 PO4 とK3 PO4 は、それぞれ電解質の組成であるLiClとKClになるため、廃塩再生工程後の電解質量は増加する。増加分の電解質を余剰塩と称する。余剰塩には、再生できずに残った廃塩も含まれる。 As the reprocessing operation continues, FP and the like remain in the electrolyte, but the electrolyte cannot perform its original function due to a decrease in current efficiency or an increase in melting point caused by the remaining FP. The waste salt regeneration step is a step of removing FP from such waste salt and regenerating the electrolyte. Since FP in the electrolyte is chloride, FP chloride is obtained by adding a mixed salt of lithium phosphate (Li 3 PO 4 ) and potassium phosphate (K 3 PO 4 ) at 450 ° C. (723 K) or higher. The matter becomes phosphate and precipitates. This removes FP from the waste salt, which is regenerated and recyclable. The added Li 3 PO 4 and K 3 PO 4 become the electrolyte composition LiCl and KCl, respectively, so that the electrolytic mass after the waste salt regeneration step increases. The increased amount of electrolyte is referred to as excess salt. The surplus salt includes waste salt that remains after it cannot be regenerated.

リン酸塩転換工程は、余剰塩を、次のリン酸塩安定化工程で処理し易いようにリン酸塩に転換する工程である。図2に示すように、破砕、粉砕、分級、捏和(リン酸塩転換)の各ステップを経て、余剰塩はリン酸塩に転換される。例えば、廃塩再生工程から供給される塊状の余剰塩をハンマーミル等で破砕し、破砕物を微粉砕し、粒度を揃え(分級)、リン酸塩に転換する。リン酸塩への転換は、微紛化した余剰塩と液状のオルトリン酸を捏和し、引き続いて、撹拌しながら300〜600℃(573〜873K)に昇温することにより行う。そのときの化学反応は、第1段階として、
LiCl+H3 PO4 →LiH2 PO4 +HCl
KCl+H3 PO4 →KH2 PO4 +HCl
が起り、リン酸二水素リチウム(LiH2 PO4 )とリン酸二水素カリウム(KH2 PO4 )が生成する。この生成物は、第2段階で高温雰囲気のもとで脱水するため、
LiH2 PO4 →LiPO3 +H2
KH2 PO4 →KPO3 +H2
となり、メタリン酸リチウム(LiPO3 )とメタリン酸カリウム(KPO3 )の混合塩が生成する。これらの反応で発生する水蒸気と塩化水素ガスは、塩化水素ガスに対する処理能力のある排気処理系で処理する。このリン酸塩転換工程で、LiPO3 −KPO3 混合塩が生じる。
The phosphate conversion step is a step of converting excess salt into phosphate so that it can be easily treated in the next phosphate stabilization step. As shown in FIG. 2, the surplus salt is converted into phosphate through the steps of crushing, crushing, classification, and kneading (phosphate conversion). For example, massive surplus salt supplied from the waste salt regeneration step is crushed with a hammer mill or the like, the crushed material is pulverized, the particle size is uniformed (classified), and converted to phosphate. Conversion to the phosphate is carried out by kneading the excess salt that has been pulverized and liquid orthophosphoric acid, and subsequently raising the temperature to 300 to 600 ° C. (573 to 873 K) while stirring. The chemical reaction at that time is as the first stage,
LiCl + H 3 PO 4 → LiH 2 PO 4 + HCl
KCl + H 3 PO 4 → KH 2 PO 4 + HCl
Occurs, and lithium dihydrogen phosphate (LiH 2 PO 4 ) and potassium dihydrogen phosphate (KH 2 PO 4 ) are produced. Since this product is dehydrated in a high temperature atmosphere in the second stage,
LiH 2 PO 4 → LiPO 3 + H 2 O
KH 2 PO 4 → KPO 3 + H 2 O
Thus, a mixed salt of lithium metaphosphate (LiPO 3 ) and potassium metaphosphate (KPO 3 ) is formed. Water vapor and hydrogen chloride gas generated by these reactions are processed in an exhaust treatment system capable of processing hydrogen chloride gas. In this phosphate conversion step, a LiPO 3 -KPO 3 mixed salt is formed.

リン酸塩安定化工程は、廃塩再生工程でリン酸塩として除去したFPとリン酸塩転換工程におけるリン酸塩転換により生成したLiPO3 −KPO3 混合塩の安定化を行う工程である。1200℃(1473K)に加熱した溶融炉を用いて、対象となるリン酸塩を鉄リン酸ガラスに充填することにより安定化させる。ガラスの組成を調整するため、五酸化リン(P2 5 )や酸化第二鉄(Fe2 3 )などを適宜添加する。この工程でFP等は鉄リン酸ガラスのマトリックスとして固定化される。 The phosphate stabilization step is a step of stabilizing the FP removed as a phosphate in the waste salt regeneration step and the LiPO 3 -KPO 3 mixed salt generated by phosphate conversion in the phosphate conversion step. Using a melting furnace heated to 1200 ° C. (1473 K), iron phosphate glass is filled with the target phosphate and stabilized. In order to adjust the composition of the glass, phosphorus pentoxide (P 2 O 5 ), ferric oxide (Fe 2 O 3 ), or the like is appropriately added. In this step, FP and the like are immobilized as a matrix of iron phosphate glass.

リン酸塩転換工程で用いる反応装置の一例を、図3に示す。Aは側面図、Bは正面図である。この反応装置は、供給した粉体の滞留量及び滞留時間を調整可能な捏和機10と、余剰塩粉体供給部12と、オルトリン酸供給部14と、温度調節可能な(室温〜650℃(923K))加熱装置16と、給排気系(給気配管18及び排気配管20)などを備えている。ここで捏和機10は、堰板22等により粉体滞留量の調整が可能で、2軸以上の攪拌軸24を有し各攪拌軸24にパドル26が配設されているパドルミキサを用いている。パドルミキサは、パドルの角度調整により粉体の流れが逆転するため、複数のパドルを組み合わせと回転速度の調整により粉体の滞留時間が調整可能である。パドルミキサに代えてパワーニーダなどを使用することも可能である。   An example of the reactor used in the phosphate conversion step is shown in FIG. A is a side view and B is a front view. This reactor comprises a kneader 10 capable of adjusting the retention amount and residence time of the supplied powder, an excess salt powder supply unit 12, an orthophosphoric acid supply unit 14, and a temperature adjustable (room temperature to 650 ° C). (923K)) The heating device 16 and the air supply / exhaust system (the air supply pipe 18 and the exhaust pipe 20) are provided. Here, the kneader 10 is capable of adjusting the amount of powder retained by the weir plate 22 or the like, and uses a paddle mixer having two or more stirring shafts 24 and a paddle 26 disposed on each stirring shaft 24. Yes. In the paddle mixer, the flow of the powder is reversed by adjusting the angle of the paddle. Therefore, the residence time of the powder can be adjusted by combining a plurality of paddles and adjusting the rotation speed. It is also possible to use a power kneader or the like instead of the paddle mixer.

攪拌軸24は、攪拌モータ28により回転方向及び回転速度が制御される。余剰塩粉体は、入口側の余剰塩粉体供給槽30からロータリーバルブ32を介して入口側フィーダ34に供給される。出口側には出口側フィーダ36及び堰板22を経てリン酸塩排出口38が設けられている。給気配管18は入口側に位置し、排気配管20は出口側に位置している。またリン酸供給部14は、リン酸供給槽40から配管接続され、攪拌軸に沿って異なる位置で供給口が開口し、それらの開閉を制御できる配管系42からなる。そして、入口側フィーダ34と出口側フィーダ36との間に、角度可変の複数のパドル26が配設されることになる。   The rotation direction and rotation speed of the stirring shaft 24 are controlled by the stirring motor 28. The surplus salt powder is supplied from the surplus salt powder supply tank 30 on the inlet side to the inlet side feeder 34 via the rotary valve 32. A phosphate discharge port 38 is provided on the outlet side through the outlet side feeder 36 and the weir plate 22. The air supply pipe 18 is located on the inlet side, and the exhaust pipe 20 is located on the outlet side. The phosphoric acid supply unit 14 is connected to a pipe from the phosphoric acid supply tank 40, and includes a pipe system 42 whose supply ports are opened at different positions along the stirring shaft and whose opening and closing can be controlled. A plurality of paddles 26 with variable angles are disposed between the inlet side feeder 34 and the outlet side feeder 36.

このリン酸塩転換反応装置の操作方法は、以下の通りである。
(1)余剰塩供給槽30に一時貯槽された原料粉末(余剰塩)は、一定量が捏和機10へ供給される。
(2)余剰塩粉末は、捏和機10内で撹拌軸24の回転に伴い、パドル26により撹拌され、各パドル26の角度によって、進行方向を変えながら出口側に向かった進んでいく。このとき、捏和機10の上方に設置してあるリン酸供給部14から所定量のオルトリン酸を滴下する。
(3)1回の処理量については、堰板22の位置を調整することにより決定する。また運転を連続で行う場合は、混合塩の供給速度並びにパドルの角度と回転速度により、混合塩の滞留時間の調整を行う。
(5)混合塩とオルトリン酸との捏和が終了した段階で加熱装置16による昇温を開始する。なお、連続運転の場合は、捏和機10の手前を捏和部分とし、以降が脱水部分となるように、粉体の進行メカニズムとオルトリン酸滴下位置及び加熱範囲を適切に設定する。
(6)メタリン酸塩に転換された製品は、堰板22を開くことによってリン酸塩排出口38から外に排出される。
The operation method of this phosphate conversion reaction apparatus is as follows.
(1) A certain amount of the raw material powder (surplus salt) temporarily stored in the surplus salt supply tank 30 is supplied to the kneader 10.
(2) The surplus salt powder is stirred by the paddles 26 as the stirring shaft 24 rotates in the kneader 10, and advances toward the outlet side while changing the traveling direction depending on the angle of each paddle 26. At this time, a predetermined amount of orthophosphoric acid is dropped from the phosphoric acid supply unit 14 installed above the kneader 10.
(3) The amount of processing performed once is determined by adjusting the position of the barrier plate 22. Further, when the operation is continuously performed, the residence time of the mixed salt is adjusted by the supply rate of the mixed salt and the angle and rotation speed of the paddle.
(5) The heating by the heating device 16 is started when the kneading of the mixed salt and orthophosphoric acid is completed. In the case of continuous operation, the powder advancing mechanism, the orthophosphoric acid dropping position and the heating range are appropriately set so that the kneading machine 10 is in front of the kneading machine and the rest is the dewatering part.
(6) The product converted to metaphosphate is discharged out of the phosphate outlet 38 by opening the barrier plate 22.

本発明方法の成立性を実証するため、リン酸塩転換の実験を行った。その結果の例を以下に示す。   In order to demonstrate the feasibility of the method of the present invention, an experiment of phosphate conversion was conducted. An example of the result is shown below.

(実験例1)
図4に3モルのKClに対し過剰(20モル)のH3 PO4 を添加した結果を示す。同図から分かるように、低温域では過剰のH3 PO4 の中でもKClは反応しないが、温度を高めることにより、KH2 PO4 に転換する。327℃(600K)以上に温度を保つことにより、全てのKClはKH2 PO4 となる。ここで、KH2 PO4 は、205℃(478K)以上で内部脱水が起るので、KH2 PO4 が生成したあと、327℃(600K)以上に温度を保持することにより、KPO3 は生成できる。なお、LiClについても、KClに性質がよく似たアルカリ金属塩化物であるので、同様の反応が起る。
(Experimental example 1)
FIG. 4 shows the result of adding an excess (20 mol) of H 3 PO 4 to 3 mol of KCl. As can be seen from the figure, KCl does not react in excess H 3 PO 4 in the low temperature range, but is converted to KH 2 PO 4 by increasing the temperature. By keeping the temperature above 327 ° C. (600 K), all KCl becomes KH 2 PO 4 . Here, since KH 2 PO 4 undergoes internal dehydration at 205 ° C. (478 K) or higher, after KH 2 PO 4 is generated, KPO 3 is generated by maintaining the temperature at 327 ° C. (600 K) or higher. it can. Since LiCl is an alkali metal chloride having properties similar to those of KCl, the same reaction occurs.

(実験例2)
適切なH3 PO4 の添加量を知るために、3モルのKClに化学量論的に必要とされる量の1〜1.5倍のH3 PO4 を添加し、KH2 PO4 の生成量の確認を行った結果を図5に示す。同図より、1.5倍当量以上のH3 PO4 を添加すればリン酸塩転換反応が完遂することがわかる。保持温度は327℃(600K)以上であれば問題ないが、一般的に利用する温度527℃(800K)で確認を行った。なお、LiClの挙動もほぼ同様である。
(Experimental example 2)
In order to know the appropriate amount of H 3 PO 4 added, 1 to 1.5 times the stoichiometrically required amount of H 3 PO 4 is added to 3 mol of KCl, and the amount of KH 2 PO 4 The result of confirming the generation amount is shown in FIG. From the figure, it can be seen that the phosphate conversion reaction is completed when 1.5 times equivalent or more of H 3 PO 4 is added. There is no problem if the holding temperature is 327 ° C. (600 K) or higher, but the confirmation was performed at a commonly used temperature of 527 ° C. (800 K). The behavior of LiCl is almost the same.

本発明に係る塩化物系使用済電解質の処理プロセスの全体構成図。The whole block diagram of the processing process of the chloride type used electrolyte which concerns on this invention. リン酸塩転換工程のフロー図。The flowchart of a phosphate conversion process. リン酸塩転換反応装置の説明図。Explanatory drawing of a phosphate conversion reaction apparatus. リン酸塩転換における温度の影響を示すグラフ。The graph which shows the influence of the temperature in phosphate conversion. 3 PO4 添加量の影響を示すグラフ。Graph showing the effect of K 3 PO 4 addition amount.

符号の説明Explanation of symbols

10 捏和機
12 余剰塩粉体供給部
14 オルトリン酸供給部
16 加熱装置
18 給気配管
20 排気配管
22 堰板
24 攪拌軸
26 パドル
DESCRIPTION OF SYMBOLS 10 Kneading machine 12 Surplus salt powder supply part 14 Orthophosphoric acid supply part 16 Heating device 18 Supply pipe 20 Exhaust pipe 22 Dam plate 24 Stirring shaft 26 Paddle

Claims (3)

使用済電解質中に蓄積したFP塩化物をリン酸塩と反応させてFPリン酸塩に変換することにより沈殿させ電解質を再生する廃塩再生工程と、廃塩再生により生じた余剰塩をリン酸と反応させてリン酸塩にするリン酸塩転換工程と、前記廃塩再生工程及びリン酸塩転換工程で生成したリン酸塩を鉄リン酸ガラスに充填することにより安定化させるリン酸塩安定化工程とからなる塩化物系使用済電解質の処理方法。 A waste salt regeneration step for regenerating the electrolyte by precipitating the FP chloride accumulated in the spent electrolyte by reacting with phosphate to convert it to FP phosphate, and surplus salt generated by the regeneration of the waste salt is converted to phosphoric acid. Phosphate conversion step to react with the phosphate to stabilize the phosphate by filling the iron phosphate glass with the phosphate produced in the waste salt regeneration step and phosphate conversion step A method for treating a chloride-based spent electrolyte comprising a crystallization step. 前記廃塩再生工程でFP塩化物と反応させるリン酸塩がLi3 PO4 −K3 PO4 混合塩であり、前記リン酸塩転換工程は、廃塩再生工程から余剰塩として供給される塊状のLiCl−KCl混合塩を、破砕、粉砕、分級した後、液状のオルトリン酸と捏和し、攪拌しながら300〜600℃に昇温することにより、塩化物をメタリン酸塩に転換する請求項1記載の塩化物系使用済電解質の処理方法。 The phosphate to be reacted with FP chloride in the waste salt regeneration step is a Li 3 PO 4 —K 3 PO 4 mixed salt, and the phosphate conversion step is a lump that is supplied as an excess salt from the waste salt regeneration step The LiCl-KCl mixed salt is crushed, pulverized and classified, then kneaded with liquid orthophosphoric acid, and heated to 300 to 600 ° C. with stirring to convert the chloride to metaphosphate. A method for treating a chloride-based spent electrolyte according to 1. 請求項2記載の塩化物系使用済電解質の処理方法のリン酸塩転換工程で用いる反応装置であって、余剰塩粉体を供給する電解質供給部と、オルトリン酸供給部と、供給した粉体の滞留量及び滞留時間を調整可能な捏和機と、その温度調節機構と、給排気系を備えているリン酸塩転換反応装置。
A reactor used in a phosphate conversion step of the method for treating a chloride-based spent electrolyte according to claim 2, wherein an electrolyte supply unit for supplying excess salt powder, an orthophosphoric acid supply unit, and a supplied powder A phosphate conversion reaction apparatus equipped with a kneader capable of adjusting the residence amount and residence time, a temperature regulation mechanism thereof, and a supply / exhaust system.
JP2006131887A 2006-05-10 2006-05-10 Method for treating chloride-based spent electrolyte and phosphate conversion reactor Expired - Fee Related JP4517068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006131887A JP4517068B2 (en) 2006-05-10 2006-05-10 Method for treating chloride-based spent electrolyte and phosphate conversion reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006131887A JP4517068B2 (en) 2006-05-10 2006-05-10 Method for treating chloride-based spent electrolyte and phosphate conversion reactor

Publications (2)

Publication Number Publication Date
JP2007303934A JP2007303934A (en) 2007-11-22
JP4517068B2 true JP4517068B2 (en) 2010-08-04

Family

ID=38837979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006131887A Expired - Fee Related JP4517068B2 (en) 2006-05-10 2006-05-10 Method for treating chloride-based spent electrolyte and phosphate conversion reactor

Country Status (1)

Country Link
JP (1) JP4517068B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756186B2 (en) 2009-05-12 2011-08-24 独立行政法人 日本原子力研究開発機構 Fission product separation method and apparatus used therefor
JP5668998B2 (en) * 2009-11-26 2015-02-12 独立行政法人日本原子力研究開発機構 Fission product filtration / sorption material and fission product filtration / sorption method using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001516871A (en) * 1997-09-16 2001-10-02 ブリティッシュ・ニュークリア・フューエルズ・パブリック・リミテッド・カンパニー Treatment of molten salt reprocessing waste
JP2003294888A (en) * 2002-03-29 2003-10-15 Toshiba Corp Method and apparatus for processing radioactive waste, and its solidifying method
JP2003294890A (en) * 2002-03-28 2003-10-15 Ishikawajima Harima Heavy Ind Co Ltd Method for processing radioactive substance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001516871A (en) * 1997-09-16 2001-10-02 ブリティッシュ・ニュークリア・フューエルズ・パブリック・リミテッド・カンパニー Treatment of molten salt reprocessing waste
JP2003294890A (en) * 2002-03-28 2003-10-15 Ishikawajima Harima Heavy Ind Co Ltd Method for processing radioactive substance
JP2003294888A (en) * 2002-03-29 2003-10-15 Toshiba Corp Method and apparatus for processing radioactive waste, and its solidifying method

Also Published As

Publication number Publication date
JP2007303934A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
Tang et al. Recovery and regeneration of lithium cobalt oxide from spent lithium-ion batteries through a low-temperature ammonium sulfate roasting approach
JP2019160429A (en) Lithium recovery method
US20220352570A1 (en) Process for the recovery of lithium and other metals from waste lithium ion batteries
KR20220038442A (en) Methods for Recovery of Lithium and Other Metals from Waste Lithium Ion Batteries
CN110494394A (en) For manufacturing the nitrate method of transition metal hydroxide precursor
JP2012121780A (en) Method for manufacturing lithium oxide
Zhao et al. Ultrasonic renovating and coating modifying spent lithium cobalt oxide from the cathode for the recovery and sustainable utilization of lithium-ion battery
CA3201685A1 (en) Production of lithium chemicals and metallic lithium
Liu et al. An emission-free controlled potassium pyrosulfate roasting-assisted leaching process for selective lithium recycling from spent Li-ion batteries
CN113924682A (en) Method for recovering lithium and transition metal from waste positive electrode of waste lithium ion battery
Wang et al. A green process to recover valuable metals from the spent ternary lithium-ion batteries
JP2016003382A (en) Method for removing phosphorus and/or fluorine and method for recovering valuable metal
Deng et al. Hydrothermal desulfurization of spent lead paste based on comproportionation reaction
JP4517068B2 (en) Method for treating chloride-based spent electrolyte and phosphate conversion reactor
CN112317517A (en) Pretreatment system and method suitable for co-processing electrolytic aluminum overhaul residues in cement kiln
CN104975168A (en) Method for rapidly desulfurizing lead-sulfate-containing substances
Liu et al. Oriented conversion of spent LiCoO2-lithium battery cathode materials to high-value products via thermochemical reduction with common ammonium oxalate
Hu et al. High-efficiency leaching of Li and Ni from spent lithium-ion batteries based on sodium persulfate
Milian et al. A comprehensive review of emerging technologies for recycling spent lithium-ion batteries
Yang et al. Mechanism of selective lithium extraction from spent LiFePO4 cathodes in oxidizing alkaline leaching system
Xie et al. One-stage ultrasonic-assisted calcium chloride leaching of lead from zinc leaching residue
Zhou et al. A mild closed-loop process for lithium–iron separation and cathode materials regeneration from spent LiFePO4 batteries
CN108751234A (en) A kind of method of purification of lithium fluoride
JP2018178201A (en) Method for separating copper or zinc from object for exudation treatment
Mendieta–George et al. Study of the direct production of lithium phosphate with pure synthetic solutions and membrane electrolysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees