JP4516174B2 - Separator centrifuge - Google Patents

Separator centrifuge Download PDF

Info

Publication number
JP4516174B2
JP4516174B2 JP2000030361A JP2000030361A JP4516174B2 JP 4516174 B2 JP4516174 B2 JP 4516174B2 JP 2000030361 A JP2000030361 A JP 2000030361A JP 2000030361 A JP2000030361 A JP 2000030361A JP 4516174 B2 JP4516174 B2 JP 4516174B2
Authority
JP
Japan
Prior art keywords
valve
water
closing
opening
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000030361A
Other languages
Japanese (ja)
Other versions
JP2001219096A (en
Inventor
保寿 田中
呈 木村
兼司 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP2000030361A priority Critical patent/JP4516174B2/en
Publication of JP2001219096A publication Critical patent/JP2001219096A/en
Application granted granted Critical
Publication of JP4516174B2 publication Critical patent/JP4516174B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Centrifugal Separators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、分離板型遠心分離機に関し、さらに詳しくはスラッジを排出する機構として1台の分離板型遠心分離機にトータル排出機構とパーシャル排出機構をそれぞれ独立した専用機構として設けた分離板型遠心分離機に関する。
【0002】
【従来の技術】
分離板型遠心分離機は、高速回転により大きい遠心力が得られ、しかも積層した分離板が大きい沈降面積を有しているため、処理液中の微粒固形分を高精度で分離するのに適し、多くの産業分野で利用されている。特に船舶用ディーゼルエンジン機関の燃料油および潤滑油の清浄化に多く用いられている。
【0003】
従来のパーシャル排出機構を持った分離板型遠心分離機100は、図5に示すように、高速回転する回転体101と、回転体101内に原液(例えば油と水と固形分との混合液)を供給する液入口管102と、前記原液を遠心分離するために案内筒107に沿って小間隙を有し多数積層して装着された分離板108を有する分離室Sと、前記分離室Sで分離されたスラッジを外部へ排出するために回転軸114の上下方向に作動する弁シリンダ103と、前記弁シリンダ103を開閉するための作動水供給部104,105とパイロット弁Vと、作動水をパイロット弁Vに供給又は作動水を外部に排出するための導水路とから構成されるパーシャル排出機構と、分離室Sで分離された清浄油を系外に抜き出すための油抜き出し部106とから主要部が構成される。
【0004】
これらから構成される分離板型遠心分離機100は以下のように作用する。
液入口管102を通って、案内筒107によって回転体101内の分離室Sの下部に導入された原液は、高速回転する回転体101内の分離室S内で遠心力の作用を受けて成分毎の比重差により分離され、比重の重いスラッジ分は、分離板108の下面に沿って半径方向の外向きに移動し、分離室Sの最外径部に堆積する。この間、低圧(例えば0.4〜0.5MPaGの元圧力を0.02MPaGに減圧)の閉弁水がノズルA′から閉弁水圧室105aに導入され、遠心力がこの閉弁水に作用して高い圧力を発生し、弁シリンダ103を上方に押し上げ回転体蓋101aの周縁底部に装着された弁パッキン109に圧接してスラッジ排出口110をシールしている。
【0005】
前記において、原液の処理量およびそのスラッジの含有量から、回転体101内に堆積したスラッジの堆積量が所定量になる時間を判断して、図示しない自動制御盤に設置されたタイマーにより電磁弁を開いて、閉弁水を閉弁水圧室105aへ供給する圧力よりも高い高圧(例えば0.4〜0.5MPaGの元圧力を0.3MPaGに減圧)の開弁水をノズルA′からオリフィス堰に導入し、ノズルB′側に堰WRを溢流した開弁水は、開弁水圧室104aに短時間(例えば0.5秒間)導入される。この開弁水に遠心力が作用して高い圧力が発生し、発生したこの水圧力により、パイロット弁Vの弁体111が、回転体101の半径方向外向きに押さえつけられていた遠心力に打ち勝って回転体101の半径方向内向きに移動する。この移動により、パイロット弁Vの弁体111による閉弁水排水孔113とのシールが破れ、閉弁水圧室105a内の閉弁水が瞬時に閉弁水排出孔112から外部に流出する。
【0006】
この結果、弁シリンダ103は下降し、スラッジ排出口110のシールが破れ、回転体101内に堆積していたスラッジはスラッジ排出口110から外部に排出される。この後、直ちに開弁水の供給は停止され、パイロット弁Vの弁体111は回転体101自体の遠心力により元の位置に戻り閉弁水排水孔113は再びシールされる。閉弁水をノズルA′から供給すると閉弁水圧室105a内に閉弁水が充満するため、弁シリンダ103は上方に押し上げられ、再び弁パッキン109と圧接するようになるのでスラッジ排出口110がシールされ、スラッジ排出が停止する。
【0007】
一方、分離室内で分離された比重の軽い清浄油(軽液)は、分離板108の下面に沿って回転軸114側に移動しながら上昇し、液抜き出し部106から外部に排出される。
尚、分離室内で分離された余分な水は、水取板T′D′と回転体101の上部内壁との間の流路から外部に排出される。
【0008】
以上述べた説明は、従来のスラッジの排出機構としてパイロット弁Vのパーシャル排出機能を使用した時の作用を説明したものであるが、同じパイロット弁Vのトータル排出機能を使用したい場合は以下のように操作していた。
高圧(例えば0.4〜0.5MPaGの元圧力)の開弁水を、ノズルB′から開弁水圧室104aに供給することで対応していた。
【0009】
【発明が解決しようとする課題】
しかしながら、従来のパーシャル排出機構を持った分離板型遠心分離機100は以下のような問題があった。
(1)スラッジを排出する場合、トータル排出機能またはパーシャル排出機能どちらの機能でも使用できる1個のパイロット弁Vにて弁シリンダ103の開閉操作をしていた。そのため、パーシャル排出機能の制御は、作動水の投入時間および作動水の圧力調整により行っていた。その結果、パーシャル排出時のような短い操作時間内に弁シリンダ103の開度および開弁時間を精密に調整するのは困難で、且つ、精度が非常に低かった。
(2)また、開弁水を開弁水圧室104aに供給すると、閉弁水圧室105a内の閉弁水が瞬時に閉弁水排出孔112から外部に抜けてしまうので、弁シリンダ103の開度の調整は大まかにならざるを得ないので、1回のスラッジ排出量が回転体101内の総スラッジ量の約50体積%となってしまうため、どうしても原液の損失量が大きく清浄油(軽液)の歩留まりが悪かった。また、通常は、パーシャル排出機能主体でトータル排出機能を補助的にして運転するのでトータル排出機能を100%活用できないため、どうしても回転体101内部での固形分の固着および偏析が発生しやすく、特に原液中の固形分濃度が高い場合は運転中に回転体101のアンバランスが発生しやすかった。
【0010】
本発明は、上記課題を解決するためになされたものであって、パーシャル排出時に精密に弁シリンダの開度を調整でき、且つ、運転中に回転体のアンバランスが起こり難い分離板型遠心分離機を提供することを目的とする。
【0011】
【課題を解決するための手段】
前記課題を解決するためになされた本発明の要旨とするところは、回転体内の案内筒の軸方向に多数積層した分離板を装着し、前記案内筒から分離室内に原液を導入して遠心力によりスラッジを分離し、前記回転体内に装着される弁シリンダを、作動水で軸方向に作動させてスラッジ排出口を開閉し、前記スラッジを外部に排出する分離板型遠心分離機において、前記回転体の大径円柱部下部の回転軸に対して対称の位置に、スラッジ排出用のパーシャル排出機構およびトータル排出機構を、少なくともそれぞれを一対以上設け、前記パーシャル排出機構が、前記回転体の下部中心側に設けられた回転軸の外周に対向して、前記回転軸と適宜隙間を設け、前記回転体側の内周に沿って複数の横溝を有するオリフィス堰と、前記オリフィス堰と前記回転軸の間に作動水を供給するための作動水供給管を備えた導水路切り替え装置と、前記弁シリンダを閉めるときに、前記オリフィス堰を溢流しない低圧の閉弁水を、前記弁シリンダ下部に沿って設けられる閉弁水圧室へ供給する閉弁水の供給路と、閉弁水圧室と、第一の閉弁水排水孔とから形成される閉弁水供給ラインと、前記弁シリンダを開けるときに、前記オリフィス堰を溢流した高圧の開弁水をパイロット弁の開弁水圧室へ供給する開弁水の供給路と、弁シリンダを開けた後に前記開弁水を前記開弁水供給路から外部に抜き出すための水抜きノズルとから形成される開弁水供給ラインと、前記閉弁水圧室に沿って上部に設けられ、スラッジを排出する時に、弁パッキンに圧接する部分を開閉する弁シリンダと、その上部で前記第一の閉弁水排出孔と連通し、その下部で前記開弁水供給路および第二の閉弁水排水孔と連通し、内部に摺動自在にT字型の弁体を内設したパイロット弁と、前記第二の閉弁水排水孔の下部に設けられ、閉弁水を一時的に溜めるバッファータンクと、前記バッファータンクから外部に排出する閉弁水の量を調整する閉弁水排出量調整ノズルとから形成される閉弁水排出ラインと、から主要部が構成され、前記トータル排出機構が、前記回転体の下部中心側に設けられた回転軸の外周に対向して、前記回転軸と適宜隙間を設け、前記回転体側の内周に沿って複数の横溝を有するオリフィス堰と、前記オリフィス堰と前記回転軸の間に作動水を供給するための作動水供給管を備えた導水路切り替え装置と、前記弁シリンダを閉めるときに、前記オリフィス堰を溢流しない低圧の閉弁水を、前記弁シリンダ下部に沿って設けられる閉弁水圧室へ供給する閉弁水供給路と、閉弁水排出孔とから形成される閉弁水供給ラインと、前記弁シリンダを開けるときに、前記オリフィス堰を溢流させないで直接パイロット弁の開弁水圧室へ高圧の開弁水を供給する開弁水供給路と、弁シリンダを開けた後に前記開弁水を前記開弁水供給路から外部に抜き出すための水抜きノズルとから形成される開弁水供給ラインと、前記閉弁水圧室に沿って上部に設けられ、スラッジを排出する時に、弁パッキンに圧接する部分を開閉する弁シリンダと、その上部で閉弁水排出孔と連通し、その下部で前記開弁水供給路と連通し、内部に摺動自在にT字型の弁体を内設して、閉弁水を外部に全量排出する閉弁水排出孔を有するパイロット弁と、から主要部が構成されることを特徴とするものである。
【0012】
このように、回転体の大径円柱部の下部に、回転軸に対して対称の位置となるように、スラッジ排出用のトータル排出機構およびパーシャル排出機構のそれぞれを少なくとも一対以上設けたことにより、パーシャル排出機構を独立した専用機構として使用できる。
【0014】
このように、トータル排出機構と分離独立したパーシャル排出機構のパイロット弁の後流側に第二の閉弁水排水孔と、前記第二の閉弁水排水孔の下部に閉弁水を一時的に溜めるバッファータンクと、前記バッファタンクから外部に排出する閉弁水の量を調整する閉弁水排出量調整ノズルとから形成される閉弁水排出ラインを設けることにより、パーシャル排出時の弁シリンダの開度を精密に調整できるようになった。その結果、スラッジの排出量を常に安定して調整することが可能となった。
【0016】
前記パーシャル排出機構の欠点を補うために、前記パーシャル排出機構とは別に独立して前記のように構成されるトータル排出専用機構を設けてトータル排出機能を100%活用できるようにしたので、遠心分離機全体としてスラッジの排出を確実に好適に行うことができるようになり、回転体のアンバランスを発生し難くすることができる。その結果、両機構の互いのメリットを維持でき、且つ、スラッジの高い分離処理安定性を保持できる分離板型遠心分離機を提供できる。
【0017】
【発明の実施の形態】
以下、本発明に係る分離板型遠心分離機の実施の形態について図面を参照して説明する。図1は、本発明に係る分離板型遠心分離機の正面断面図、図2(a)は、パーシャル排出機構の詳細断面図、図2(b)は、トータル排出機構の詳細断面図、図3は、トータル排出機構およびパーシャル排出機構に作動水を供給するときに使用する作動水分岐装置、図4は、本発明に係る分離板型遠心分離機のトータル排出機構およびパーシャル排出機構の一作動例を示すタイミングチャートである。
【0018】
尚、本発明でいう分離板型遠心分離機とは、回転体内に截頭円錐形状の薄板からなる分離板を案内筒の軸方向に沿って小間隙を有して多数積層して装着した竪型の遠心分離機であって、回転体内で分離・堆積されるスラッジを弁シリンダの開閉によって外部に排出する機構を有する遠心分離機を意味する。また、本発明におけるスラッジとは、遠心力で回転体内の最外径部側に分離・堆積される固形分、水分および油分(軽液分)の混合物を意味する。
【0019】
本発明に係る分離板型遠心分離機1は、図1に示すように、
回転軸2に取りつけられて高速回転する回転体3と、
前記回転体3内部に原液を供給する液入口管4と、
前記原液を回転体3内の最下部から分離室SZに導くための案内筒5と、
前記原液を分離するために前記案内筒5の軸方向沿って小間隙を有して多数積層して装着した分離板10を有する分離室SZと、
前記分離室SZで分離したスラッジを外部へ排出するために回転体3の大径円柱部3b下部の周囲に沿って回転軸2の対称の位置にそれぞれが一対ずつ設けられるパーシャル排出機構6およびトータル排出機構7と、
前記分離室SZで分離された油(軽液)を外部に抜き出すための液抜き出し部9と、
から主要部が構成される。
【0020】
回転体3は、上半分が略截頭円錐台形部、下半分が前記截頭円錐台形部の大径よりも大きな径を直径とした大径円柱部3bであり、これらが一体化した形状をしている。回転体3は回転軸2と一体化して回転できるように固定されている。
回転体3の下部中心側には、パーシャル排出機構6およびトータル排出機構7へ作動水を供給する供給ラインを作動水の供給圧力によって切りかえる導水路切り替え用のオリフィス堰6h,7hが、回転軸2の周囲に適宜間隔を有して周設されている。また、前記導水路切り替え用のオリフィス堰6h,7hと回転軸2との間には、図2(a)および図2(b)に示すように、導水路切り替え用オリフィス堰6h,7hへの作動水供給管6m,7mが軸方向に設けられている。導水路切り替え用オリフィス堰6h,7hとパイロット弁PV,P′V′とは開弁水の供給路6g,7g、開弁水圧室61,71等の導水路に連結されている。
【0021】
液入口管4は、回転体3の中心部上部に設けられ、回転体3内に外部から原液を供給するための配管である。
【0022】
案内筒5は、回転体3内の中心部に設けられ、液入口管4から回転体3内に導入された原液を回転体3内の最下部から分離室SZに導くための末広がりの形状をした部材である。
【0023】
分離室SZは、遠心力で原液を比重差により各成分に分離するための部屋であり、分離板10を案内筒5の軸方向に小間隙を有して多数積層して装着した分離領域と回転体3内の最外径部のスラッジ堆積領域とから形成される。分離室SZ内に導入された原液は分離板10間の隙間を上昇して流れていくうちに比重の重い水および固形分はスラッジ堆積領域へ、油(軽液)は回転体3の中心側へと分離され、比重の軽い液は回転体3の上部に設けられた液抜き出し部9より油(軽液)として外部に排出される。一方、分離室SZ内で分離された余分な水は水取板TDと回転体3の上部内壁間に形成される流路を通って液抜き出し部8より外部に排出される。
【0024】
パーシャル排出機構6は、図2(a)に示すように、
作動水供給管6mに所定の圧力の作動水を供給するための後述する作動水分岐装置と、
作動水供給管6mから供給される作動水の圧力によって、回転軸2側に開口した複数の横溝を有するオリフィス堰6hの堰W1を溢流させる導水路切り替え部と、
弁シリンダ6aを閉める時に、堰W1を溢流しない低圧の閉弁水(例えば元圧力が0.4〜0.5MPaGの高圧水を減圧して供給圧力を0.02MPaGとした水)を、パーシャル排出機構6の中間部より上部の半径方向に設けられる弁シリンダ6aの下部に沿って設けられる閉弁水圧室6bへ供給するオリフィス堰6hの上部と連通する閉弁水の供給路6kと、前記閉弁水の供給路6kと接続している閉弁水圧室6bと、前記閉弁水圧室6bの外胴側端部の下方に接続している第一の閉弁水排水孔6cとから形成される閉弁水供給ラインと、
弁シリンダ6aを開ける時に、堰W1を溢流した高圧の開弁水(例えば元圧力が0.4〜0.5MPaGの高圧水を減圧して供給圧力を0.3MPaGとした水)を堰W1とW2の間からパイロット弁PVの開弁水圧室6lへ供給する開弁水の供給路6gと、弁シリンダ6aを開けた後に前記開弁水を開弁水の供給路6gから外部に抜き出すための水抜きノズル6fとから構成される開弁水供給ラインと、
閉弁水圧室6bに沿って上部に設けられ、スラッジを排出する時に、弁パッキン6Pに圧接する部分を開閉する弁シリンダ6aと、
その上部で第一の閉弁水排水孔6cと連通し、その下部で前記開弁水の供給路6gと第二の閉弁水排水孔6iと連通し、内部に摺動自在にT字型の弁体6eを内設して、開弁水によりT字型の弁体6eを回転軸2側に移動させて第一の開弁水排水孔6cと第二の開弁水排水孔6i間の流路を開閉する回転体3の底部外胴部に設けられるパイロット弁PVと、
前記第二の閉弁水排水孔6iと、前記第二の閉弁水排水孔6iの下部に設けられ閉弁水を一時的に溜めるバッファータンク6jと、回転体3の下部角部に設けられる閉弁水排出量調整ノズル6dとから形成される閉弁水排出ラインと、
から主要部が構成される。
尚、作動水供給管6mの形状は、先端部が90度に曲げられた円形のノズル配管であり、オリフィス堰6hの最上段の横溝に先端部が挿入される。
【0025】
トータル排出機構7は、図2(b)に示すように、
作動水供給管7mに所定の圧力の作動水を供給するための後述する作動水分岐装置と、
作動水供給管7mから供給される作動水を所定の位置に供給できる回転軸2側に開口した複数の横溝を有するオリフィス堰7hと、
弁シリンダ7aを閉める時に、パーシャル排出機構6の閉弁水供給路6kから堰W′1を溢流しない低圧の閉弁水(例えば元圧力が0.4〜0.5MPaGの高圧水を減圧して供給圧力を0.02MPaGとした水)を供給されるトータル排出機構7の中間部より上部の半径方向に設けられる弁シリンダ7aの下部に沿って設けられる閉弁水圧室7bと、前記閉弁水圧室7bの外胴側端部の下方に接続する閉弁水排出孔7cとから形成される閉弁水供給ラインと、
弁シリンダ7aを開ける時に、作動水供給管7mのノズルBから直接堰W′2と堰W′3で形成された横溝に高圧の開弁水(例えば供給圧力が0.4〜0.5MPaGの水)を供給することにより短時間で開弁水圧室7lに作動水を充満させることができる開弁水の供給路7gと、弁シリンダ7aを開けた後に前記開弁水を前記開弁水の供給路7gから外部に抜き出すための水抜きノズル7fとから形成される開弁水供給ラインと、
閉弁水圧室7bに沿って上部に設けられ、スラッジを排出する時に、弁パッキン7Pに圧接する部分を開閉する弁シリンダ7aと、
その上部で閉弁水排出孔7cと連通し、その下部で前記開弁水供給路7gと連通し、内部に摺動自在なT字型の弁体7eを内設して、開弁水により弁体7eを回転軸2側に移動させて閉弁水を外部に全量排出する閉弁水排出孔7dを有するパイロット弁P′V′と、
から主要部が構成される。
尚、作動水供給管7mの形状は、先端部が90度に曲げられた円形のノズル配管であり、オリフィス堰7hの最上段の横溝に先端部が挿入される。
【0026】
このように構成して、トータル排出機構をパーシャル排出機構と分離独立したスラッジ排出機構とすることにより、トータル排出機能を任意に設定して作動できるので、回転体内壁への固形物の固着・偏析が好適に防止できる。従って、回転体の運転時のバランスがよくなるので機械のメンテナンス間隔が延長されたり、回転軸系のメインテナンス費用が削減できる。
【0027】
次に、本発明に係る分離板型遠心分離機1のパーシャル排出機構6およびトータル排出機構7の取り付け位置について説明する。
図1の図面上では、パーシャル排出機構6に対してトータル排出機構7は回転軸2を挟んで相互に対称の位置に設けられているように図示されているが、構造を対比するためにこのように図示したものであり、一対のパーシャル排出機構6および一対のトータル排出機構7が回転軸2を挟んでそれぞれ対称の位置に設けられている(本実施の形態ではパーシャル排出機構6とトータル排出機構7は90度振り分けの位置に取りつけられている)。
このように、回転軸を挟んで一対のトータル排出機構および一対のパーシャル排出機構をそれぞれ対称の位置に設けることにより回転体3のアンバランスを発生し難くすることができる。
【0028】
以上の構成からなる本発明に係る分離板型遠心分離機1の作用について図1および図2を参照して説明する。尚、ここではパーシャル排出機構6とトータル排出機構7とを対応させて全体的な動きを説明する。
液入口管4から案内筒5によって分離室SZ内の下部に導入された原液は、分離室SZ内で高速回転する回転体3の遠心力の作用により油(軽液)と水とスラッジとに分離され比重の重いスラッジ分は、分離板10の下面に沿って半径方向の外向きに移動し、分離室SZの最外径部に堆積する。この間、作動水供給管6mから作動水として低圧の閉弁水が供給され、閉弁水の供給路6kを通った閉弁水が閉弁水圧室6b、7bに導入される。その際、遠心力がこの閉弁水に作用して高い圧力を発生し、弁シリンダ6a,7aを上方に押し上げ回転体蓋3aの周縁底部に装着された弁パッキン6P,7Pに圧接してスラッジ排出口se1,se2をシールしている。
【0029】
前記において、原液の処理量およびそのスラッジの含有量から、回転体3内に堆積したスラッジの堆積量が所定量になる時間を判断して、図示しないタイマーにより開弁水を開弁水圧室6l(又は7l)に導入する。
スラッジのパーシャル排出時、すなわち開弁水をパイロット弁PVの開弁水圧室6lに供給した場合は、弁体6eが回転軸2側に移動して弁体6eによる第一の閉弁水の排出孔6cとのシールが破れ、閉弁水圧室6b内の閉弁水を閉弁水排出量調整ノズル6dから、また、開弁水の供給路6g内の開弁水の残液を水抜きノズル6fから外部に流出する。この時、第二の閉弁水排水孔6iと前記第二の閉弁水排水孔6iの下部に設けられ、閉弁水を一時的に溜めるバッファータンク6jがクッションとなり、かつ、バッファータンク6jの下に連設し回転体3の下部角部に設けられる閉弁水排出量調整ノズル6dの排出量を調整することにより、閉弁水が瞬時に外部に抜けないので、弁シリンダ6aに一定の背圧を掛けることが可能となり、背圧を掛けることにより弁シリンダ6aの開度を精密に調節できる。
一方、スラッジのトータル排出時、すなわち開弁水をパイロット弁P′V′の開弁水圧室7lに供給した場合は、弁体7eが回転軸2側に移動して弁体7eによる閉弁水の排出孔7cとのシールが破れ、閉弁水圧室7b内の閉弁水を全量閉弁水排出孔7dから、また、開弁水の供給路7g内の開弁水の残液を水抜きノズル7fから外部に流出する。
このように、スラッジを排出するためにパーシャル排出機構およびトータル排出機構に開弁水を供給すると、この開弁水に遠心力が作用して高い圧力が発生し、この圧力によりパイロット弁PV(又はパイロット弁P′V′)の弁体6e(又は弁体7e)が遠心力に打ち勝って半径方向の内向きに移動する。この移動により、弁体6e(又は弁体7e)による第一の閉弁水排水孔6c(又は閉弁水排水孔7c)とのシールが破れ、閉弁水圧室6b(又は閉弁水圧室7b)内の閉弁水は閉弁水排出量調整ノズル6d(又は閉弁水排出孔7d)から、また、開弁水の供給路6g(又は開弁水の供給路7g)内の残液は水抜きノズル6f(又は水抜きノズル7f)から外部に流出される。
【0030】
その結果、弁シリンダ6a(又は弁シリンダ7a)は下降し、スラッジ排出口se1(又はスラッジ排出口se2)のシールが破れ、堆積していたスラッジはスラッジ排出口se1(又はスラッジ排出口se2)から外部に排出される。この後、直ちに開弁水の供給は停止され、開弁水の供給がなくなると、弁体6e(又は弁体7e)は遠心力により元の位置に戻り、パイロット弁PV(又はパイロット弁P′V′)と第一の閉弁水排水孔6c(又は、閉弁水排水孔7c)のシールができるようになるので、再び閉弁水を供給すると閉弁水圧室6b(又は閉弁水圧室7b)内に閉弁水が充満するため、弁シリンダ6a(又は弁シリンダ7a)は上方に押し上げられ、スラッジ排出口se1(又はスラッジ排出口se2)が再びシールされる。
【0031】
分離室内で分離された余分な水分は、分離板10の水取板TDと回転体蓋3aの内壁との間に設けられた間隙を通って回転体3上部の液抜け出し部8から外部に水として抜き出される。
一方、比重の軽い油(軽液)は、積層される分離板10を下から上に上昇しながら回転体3の回転軸2側に集められ、回転体3上部の液抜き出し部9から外部に清浄油(軽液)として抜き出される。
【0032】
次に、本発明に係る分離板型遠心分離1が、独立した機構としてパーシャル排出機構6を設けたことにより、弁シリンダ6aの開度が精密に調節できるようになる作用について図2(a)を参照して説明する。
パイロット弁PVの開弁水圧室6lに高圧の開弁水(例えば供給圧力が0.4〜0.5MPaGの水)を供給することにより、パイロット弁PVの弁体6eと第一の閉弁水排水孔6cとのシールが破れる。この後、閉弁水圧室6b内の閉弁水は、パイロット弁PVを通過して第二の閉弁水排水孔6iと、前記第二の閉弁水排水孔6iの下部に設けられ閉弁水を一時的に溜めるバッファータンク6jとを経由して閉弁水排出量調整ノズル6dから外部へ排出される。一方、開弁水の供給路6g内の開弁水の残液は、水抜きノズル6fから外部に排出される。
この時、パイロット弁PVの後流側に、第二の閉弁水排水孔6iと、前記第二の閉弁水排水孔6iの下部に閉弁水を一時的に溜めるバッファータンク6jと、前記バッファータンク6jの下に連設する閉弁水排出量調整ノズル6dとを設けて閉弁水排出量調整ノズル6dの排出量を調整することにより、閉弁水圧室6b内の閉弁水が瞬時に外部に抜けなくなる。その結果、弁シリンダ6aに一定の背圧を掛けることが可能となり、背圧を掛けるにより弁シリンダ6aの開度を精密に調節できるようになる。
閉弁水排出量調整ノズル6dの排出量は、中心部に孔を開けたテーパ螺子の雄螺子を、大径円柱部3bの下側角部に設けられたテーパ螺子の雌螺子部を有する貫通孔に挿入し、螺合させて螺子部の穴径(オリフィス径)を調節することにより閉弁水排出量を調整できる。
高圧の開弁水の供給を止めて、開弁水が堰W1を超えなくなると、堰W1を超えない低圧の閉弁水により弁シリンダ6aが閉められる。しかし、開弁水(高圧水)を供給している間は、前回の閉弁水が外部に抜けきるまでは弁シリンダ6aに背圧が掛かっているので弁シリンダ6aがスラッジ排出口se1をシールできないのでスラッジが外部に排出され続ける。閉弁水圧室6bにおける閉弁水の供給圧力が背圧よりも高くなると、徐々に弁シリンダ6aが上昇して弁パッキン6Pに圧接することによりスラッジ排出口se1を完全にシールできる。
このようにして弁シリンダ6aの弁開度は、開弁水と閉弁水との圧力差及び閉弁水排出量調整ノズル6dの螺子部の穴径を調整することにより精密に調整できる。
【0033】
次に、図3を参照して本発明に係る分離板型遠心分離機1のパーシャル排出機構6およびトータル排出機構7を動作させるための作動水を供給する作動水分岐装置の説明をする。
作動水分岐装置は、図3に示すように、4つの電磁弁SV1,SV2,SV3,SV9と2つの減圧弁RV1,RV2とこれらを結ぶ配管類から主要部が構成される。調整水・置換水としては、一番上流側に設けられる電磁弁SV3の開閉により元圧力0.4〜0.5MPaGの高圧水がそのまま回転体3内へ供給される。トータル排出機構7への開弁水としては、電磁弁SV3のすぐ下流側に並設される電磁弁SV1の開閉により、元圧力0.4〜0.5MPaGの高圧水がそのまま作動水(開弁水)として作動水供給管7mに供給される。トータル排出機構7およびパーシャル排出機構6へ供給する閉弁水としては、前記電磁弁SV1のさらに下流側に並設される電磁弁SV2を開とし、元圧力が0.4〜0.5MPaGの高圧水をさらに後段に設けられた減圧弁RV1により0.02MPaG迄減圧し、この減圧した水が作動水(閉弁水)として作動水供給管6mに供給される。
また、パーシャル排出機構6へ供給する開弁水としては、元圧力が0.4〜0.5MPaGの高圧水を後段に設けられた減圧弁RV2により約0.3MPaG迄減圧し、さらに下流側に並設された電磁弁SV9を開として、前記減圧した水が配管の後流側で前記閉弁水供給ラインと合流した配管ラインから作動水(開弁水)として作動水供給管6mに供給される。
【0034】
次に、図4を参照して本発明に係る分離板型遠心分離機1のパーシャル排出機構6およびトータル排出機構7が作動しているときのタイミングチャートの一実施例について説明をする。
(1)最初に、図3の電磁弁SV2を開とし、減圧弁RV1により作動水である元圧力が0.4〜0.5MPaGの高圧水の圧力を0.02MPaGに減圧した後、パーシャル排出機構6およびトータル排出機構7に閉弁水として供給する。(弁シリンダ6aおよび弁シリンダ7a閉。電磁弁SV2閉)。
(2)電磁弁SV3を開とし回転体3の内部に調整水または置換水である封水を注入し、分離室SZ内の分離境界面の位置を設定する。設定が終わったら封水の注入を停止する。これ以後、必要な時に適宜封水を注入する。電磁弁SV3閉。
(3)電磁弁SV1を開とし供給圧力が0.4〜0.5MPaGの開弁水をトータル排出機構7へ給水する。ここで、トータル排出機構7へ閉弁水を供給しているときは、弁シリンダ7aの開閉の応答性を上げるために電磁弁SV2を閉めて閉弁水の供給を一時停止する。電磁弁SV1を数秒(例えば3〜5秒)開とし、回転体3内のスラッジ分が全量排出される。電磁弁SV1閉。
(4)トータル排出後、再びSV2を開とし、閉弁水を供給して弁シリンダ7aを閉めた後に原液の供給を開始する。この間、閉弁水は、間欠給水(例えば15分間隔)されている。
(5)回転体3内にスラッジ分が堆積してきたら、電磁弁SV9を開としてパーシャル排出機構6に高圧(例えば0.3MPaG)の開弁水を供給する。この時、短い時間(数秒)で電磁弁SV9を開閉する。
この時、パーシャル排出機構6の閉弁水圧室6bからパイロット弁PVを経由して第二の閉弁水排水孔6iに排出される閉弁水を、一時的に溜めるバッファータンク6jと前記バッファータンク6jから外部への閉弁水排出量を調整できる閉弁水排出量調整ノズル6dとを後流側に設けたことにより、弁シリンダ6aに背圧を掛けることが可能となり、弁シリンダ6aに背圧を掛けることにより弁シリンダ6aの開度を精密に調節できる。
すなわち、開弁水を供給した後すぐに電磁弁SV9を閉じると、閉弁水圧室6b内の閉弁水が瞬時に外部に抜けずに系内に残っているため外部への閉弁水排出量を絞ってやればさらに緩やかに弁シリンダが開く。
(6)このように作動させて、数回のパーシャル排出に対してトータル排出を1回行うことで回転体3内の固形物が好適に外部に排出されるので回転体3のアンバランスの発生する頻度が少なくなる。トータル排出の回数を増やせばさらにアンバランスの発生を少なくすることができる。
【0035】
このように、従来の分離板型遠心分離機のスラッジ排出機構であった1個のパイロット弁にトータル排出機能とパーシャル排出機能を持たせて使用されていたパーシャル排出機のスラッジ排出機構を、パーシャル排出機構とトータル排出機構とを分離独立させ、回転軸を挟んで対象の位置に、それぞれの機構を少なくとも一対以上設けたスラッジ排出機構とすることによりパーシャル排出時のスラッジ排出量を常に安定して排出することが可能となる。
また、トータル排出機構をパーシャル排出機構と独立した機能として一緒に設けたことで、パーシャル排出による回転体のアンバランスの発生を起こし難くすることができる。
【0036】
【発明の効果】
(1)弁シリンダの弁開度を高精度に調整してパーシャル排出することができるので原液の損失が軽減される。
(2)パーシャル排出専用機能をトータル排出専用機能と分離独立した機能とすることでトータル排出機能をいつでも任意設定できるので回転体内壁への固形物の固着・偏析が防止できる。従って、回転体の運転時のバランスがよくなるので機械のメインテナンス間隔が延長されたり、回転軸系の寿命が延びるのでメインテナンス費用が削減できる。
(3)パーシャル排出時の弁開度を一定にできるため、スラッジ排出量の調整が容易となる。
【図面の簡単な説明】
【図1】本発明に係る分離板型遠心分離機の正面断面図である。
【図2】(a)パーシャル排出機構の詳細断面図である。
(b)トータル排出機構の詳細断面図である。
【図3】トータル排出機構およびパーシャル排出機構に作動水を供給するときに使用する作動水分岐装置である。
【図4】本発明に係る分離板型遠心分離機のトータル排出機構およびパーシャル排出機構の一作動例を示すタイミングチャートである。
【図5】従来のパーシャル排出機構を有する分離板型遠心分離機の正面断面である。
【符号の説明】
1 分離板型遠心分離機
2 回転軸
3 回転体
3a 回転体蓋
3b 大径円柱部
6 パーシャル排出機構
6a 弁シリンダ
6b 閉弁水圧室
6c 第一の閉弁水排水孔
6d 閉弁水排出量調整ノズル
6e 弁体
6f 水抜きノズル
6g 開弁水の供給路
6h オリフィス堰
6i 第二の閉弁水排水孔
6k 閉弁水の供給路
6m 作動水供給管
6P 弁パッキン
7 トータル排出機構
7a 弁シリンダ
7b 閉弁水圧室
7c 閉弁水排水孔
7d 閉弁水排出孔
7e 弁体
7f 水抜きノズル
7g 開弁水の供給路
7h オリフィス堰
7m 作動水供給管
7P 弁パッキン
10 分離板
PV,P′V′ パイロット弁
SZ 分離室
se1,se2 スラッジ排出口
TD 水取板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a separation plate type centrifuge, and more specifically, as a mechanism for discharging sludge, a separation plate type in which a total discharge mechanism and a partial discharge mechanism are provided as independent mechanisms independently in one separation plate type centrifuge. It relates to a centrifuge.
[0002]
[Prior art]
Separation plate type centrifuges are suitable for separating fine solids in processing liquids with high accuracy, because a large centrifugal force can be obtained at high speed rotation, and the laminated separation plates have a large sedimentation area. It is used in many industrial fields. In particular, it is often used for cleaning fuel oil and lubricating oil of marine diesel engine engines.
[0003]
As shown in FIG. 5, a separation plate type centrifugal separator 100 having a conventional partial discharge mechanism includes a rotating body 101 that rotates at a high speed, and a raw solution (for example, a mixed liquid of oil, water, and solids) in the rotating body 101. ), A separation chamber S having a separation plate 108 mounted with a plurality of stacked small gaps along the guide tube 107 for centrifuging the stock solution, and the separation chamber S The valve cylinder 103 that operates in the vertical direction of the rotary shaft 114 in order to discharge the sludge separated in the above, the operating water supply parts 104 and 105 for opening and closing the valve cylinder 103, the pilot valve V, and the operating water Is supplied to the pilot valve V or from a partial discharge mechanism configured to discharge the working water to the outside, and an oil extraction unit 106 for extracting the clean oil separated in the separation chamber S out of the system. The main section is configured.
[0004]
The separation plate type centrifuge 100 composed of these functions as follows.
The stock solution introduced into the lower part of the separation chamber S in the rotating body 101 by the guide tube 107 through the liquid inlet pipe 102 is subjected to the action of centrifugal force in the separation chamber S in the rotating body 101 rotating at high speed. The sludge portion that is separated by the difference in specific gravity and has a high specific gravity moves outward in the radial direction along the lower surface of the separation plate 108 and accumulates in the outermost diameter portion of the separation chamber S. During this time, low-pressure (for example, 0.4 to 0.5 MPaG original pressure is reduced to 0.02 MPaG) valve closing water is introduced from the nozzle A ′ to the valve closing water pressure chamber 105a, and centrifugal force acts on the valve closing water. A high pressure is generated, and the valve cylinder 103 is pushed upward to come into pressure contact with the valve packing 109 mounted on the bottom edge of the rotating body lid 101a to seal the sludge discharge port 110.
[0005]
In the above description, the time required for the accumulated amount of sludge accumulated in the rotator 101 to be a predetermined amount is determined from the processing amount of the stock solution and the content of the sludge, and the solenoid valve is operated by a timer installed in an automatic control panel (not shown). The valve opening water at a high pressure (for example, the original pressure of 0.4 to 0.5 MPaG is reduced to 0.3 MPaG) higher than the pressure for supplying the valve closing water to the valve closing water pressure chamber 105a is supplied from the nozzle A 'to the orifice. The valve opening water introduced into the weir and overflowing the weir WR on the nozzle B ′ side is introduced into the valve opening water pressure chamber 104a for a short time (for example, 0.5 seconds). A high pressure is generated by the centrifugal force acting on the valve opening water, and the generated water pressure overcomes the centrifugal force that the valve body 111 of the pilot valve V is pressed outward in the radial direction of the rotating body 101. Thus, the rotating body 101 moves inward in the radial direction. By this movement, the seal of the pilot valve V with the valve closing water drain hole 113 by the valve body 111 is broken, and the valve closing water in the valve closing water pressure chamber 105a instantaneously flows out from the valve closing water discharge hole 112 to the outside.
[0006]
As a result, the valve cylinder 103 is lowered, the seal of the sludge discharge port 110 is broken, and the sludge accumulated in the rotating body 101 is discharged from the sludge discharge port 110 to the outside. Thereafter, the supply of the valve opening water is immediately stopped, the valve body 111 of the pilot valve V is returned to the original position by the centrifugal force of the rotating body 101 itself, and the valve closing water drain hole 113 is sealed again. When the valve-closing water is supplied from the nozzle A ′, the valve-closing water is filled in the valve-closing water pressure chamber 105a, so that the valve cylinder 103 is pushed upward and comes into pressure contact with the valve packing 109 again. Sealed and sludge discharge stops.
[0007]
On the other hand, clean oil (light liquid) having a low specific gravity separated in the separation chamber rises while moving toward the rotating shaft 114 along the lower surface of the separation plate 108 and is discharged to the outside from the liquid extraction unit 106.
The excess water separated in the separation chamber is discharged to the outside from a flow path between the water collecting plate T′D ′ and the upper inner wall of the rotating body 101.
[0008]
The above explanation has explained the operation when the partial discharge function of the pilot valve V is used as a conventional sludge discharge mechanism. However, when the total discharge function of the same pilot valve V is to be used, the following is performed. Was operating.
This has been dealt with by supplying high-pressure (for example, 0.4 to 0.5 MPaG original pressure) valve-opening water from the nozzle B 'to the valve-opening water pressure chamber 104a.
[0009]
[Problems to be solved by the invention]
However, the conventional separation plate centrifuge 100 having a partial discharge mechanism has the following problems.
(1) When sludge is discharged, the valve cylinder 103 is opened and closed with one pilot valve V that can be used for either the total discharge function or the partial discharge function. For this reason, the partial discharge function is controlled by adjusting the working water charging time and the working water pressure. As a result, it was difficult to precisely adjust the opening and valve opening time of the valve cylinder 103 within a short operation time such as during partial discharge, and the accuracy was very low.
(2) Further, if the valve opening water is supplied to the valve opening water pressure chamber 104a, the valve closing water in the valve closing water pressure chamber 105a instantaneously escapes from the valve closing water discharge hole 112 to the outside. Therefore, the amount of sludge discharged at one time is about 50% by volume of the total amount of sludge in the rotating body 101. Therefore, the loss of the stock solution is inevitably large, and the clean oil (light (Liquid) yield was poor. Also, since the partial discharge function is mainly operated with the total discharge function as an auxiliary, the total discharge function cannot be used 100%, so solid solids and segregation inside the rotating body 101 are apt to occur. When the solid content concentration in the stock solution was high, the rotating body 101 was likely to be unbalanced during operation.
[0010]
The present invention has been made in order to solve the above-described problem, and is capable of precisely adjusting the opening degree of the valve cylinder at the time of partial discharge, and the separation plate type centrifugal separation in which the unbalance of the rotating body hardly occurs during operation. The purpose is to provide a machine.
[0011]
[Means for Solving the Problems]
The present invention has been made to solve the above problems. Key points of The reason is that a large number of separating plates are attached in the axial direction of the guide cylinder in the rotating body, and the sludge is separated by centrifugal force by introducing the stock solution from the guide cylinder into the separating chamber, and is mounted in the rotating body. In the separation plate type centrifuge that opens and closes the sludge discharge port by operating the valve cylinder in the axial direction with working water, and discharges the sludge to the outside, the rotary cylinder below the large-diameter column part of the rotating body At least one pair of partial discharge mechanism and total discharge mechanism for sludge discharge are provided at symmetrical positions. The partial discharge mechanism has a plurality of lateral grooves along the inner periphery on the rotating body side so as to face the outer periphery of the rotating shaft provided on the lower center side of the rotating body, to provide an appropriate gap with the rotating shaft. An orifice weir, a conduit switching device having a working water supply pipe for supplying working water between the orifice weir and the rotating shaft, and a low pressure that does not overflow the orifice weir when the valve cylinder is closed The closed water formed by the valve-closing water supply path for supplying the valve-closing water to the valve-closing water pressure chamber provided along the lower part of the valve cylinder, the valve-closing water pressure chamber, and the first valve-closing water drain hole. When the valve cylinder is opened, the valve water supply passage for supplying high-pressure valve-opening water overflowing the orifice weir to the valve-opening water pressure chamber of the pilot valve and the valve cylinder are opened. Later, the valve-opening water is removed from the valve-opening water supply passage. A valve opening water supply line formed from a water drain nozzle for drawing out into the valve, and a valve cylinder provided at an upper portion along the valve closing water pressure chamber for opening and closing a portion that presses the valve packing when sludge is discharged; A T-shaped valve that communicates with the first valve-closing water discharge hole at its upper part, communicates with the valve-opening water supply passage and the second valve-closing water drainage hole at its lower part, and is slidable inside A pilot valve having an internal body, a buffer tank that is provided below the second valve-closing water drain hole, and temporarily stores the valve-closing water, and an amount of valve-closing water that is discharged from the buffer tank to the outside. A valve closing water discharge line formed from a valve closing water discharge amount adjusting nozzle to be adjusted constitutes a main part, and the total discharge mechanism is arranged on the outer periphery of a rotating shaft provided on the lower center side of the rotating body. Oppositely, a gap is provided as appropriate with the rotating shaft, An orifice weir having a plurality of lateral grooves along the inner periphery on the rolling element side, a conduit switching device provided with a working water supply pipe for supplying working water between the orifice weir and the rotating shaft, and the valve cylinder Is formed from a valve-closing water supply passage that supplies low-pressure valve-closing water that does not overflow the orifice weir to a valve-closing water pressure chamber provided along the lower part of the valve cylinder, and a valve-closing water discharge hole. A valve-closing water supply line, a valve-opening water supply path for supplying high-pressure valve-opening water directly to the valve-opening water pressure chamber of the pilot valve without overflowing the orifice weir when the valve cylinder is opened, and a valve A valve opening water supply line formed from a drain nozzle for extracting the valve opening water to the outside from the valve opening water supply path after opening the cylinder, and provided at the upper part along the valve closing water pressure chamber, When draining sludge, A valve cylinder that opens and closes a portion that presses against the kin, and communicates with the valve-closing water discharge hole at the upper part thereof, communicates with the valve-opening water supply passage at the lower part thereof, and a T-shaped valve body is slidable inside. The main part is composed of a pilot valve with a closed water discharge hole that is installed inside and discharges the entire amount of closed water to the outside. It is characterized by this.
[0012]
In this way, by providing at least a pair of sludge discharge total discharge mechanism and partial discharge mechanism so as to be symmetrical with respect to the rotation axis at the lower part of the large-diameter cylindrical portion of the rotating body, The partial discharge mechanism can be used as an independent dedicated mechanism.
[0014]
Thus, the second closed water drain hole is provided downstream of the pilot valve of the partial discharge mechanism separated from the total discharge mechanism and the closed water is temporarily provided below the second closed water drain hole. A valve cylinder at the time of partial discharge is provided by providing a closed water discharge line formed by a buffer tank stored in the buffer tank and a closed water discharge amount adjusting nozzle for adjusting the amount of closed valve water discharged from the buffer tank to the outside The opening of can be adjusted precisely. As a result, it became possible to always adjust the sludge discharge amount stably.
[0016]
In order to compensate for the drawbacks of the partial discharge mechanism, a total discharge exclusive mechanism configured as described above is provided separately from the partial discharge mechanism so that the total discharge function can be used 100%. As a whole machine, sludge can be discharged reliably and reliably, and unbalance of the rotating body can be made difficult to occur. As a result, it is possible to provide a separation plate centrifuge that can maintain the mutual merits of both mechanisms and can maintain high separation treatment stability of sludge.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a separation plate type centrifuge according to the present invention will be described with reference to the drawings. 1 is a front sectional view of a separation plate type centrifugal separator according to the present invention, FIG. 2 (a) is a detailed sectional view of a partial discharging mechanism, and FIG. 2 (b) is a detailed sectional view of a total discharging mechanism. 3 is a working water branching device used when working water is supplied to the total discharge mechanism and the partial discharge mechanism, and FIG. 4 is an operation of the total discharge mechanism and the partial discharge mechanism of the separation plate centrifuge according to the present invention. It is a timing chart which shows an example.
[0018]
The separation plate type centrifugal separator referred to in the present invention is a plate in which a large number of separation plates made of thin frustoconical plates are stacked in the rotating body with a small gap along the axial direction of the guide cylinder. This means a centrifugal separator having a mechanism for discharging sludge separated and deposited in a rotating body to the outside by opening and closing a valve cylinder. The sludge in the present invention means a mixture of solid content, water content and oil content (light liquid content) separated and deposited on the outermost diameter side of the rotating body by centrifugal force.
[0019]
As shown in FIG. 1, the separation plate type centrifugal separator 1 according to the present invention is
A rotating body 3 attached to the rotating shaft 2 and rotating at a high speed;
A liquid inlet pipe 4 for supplying a stock solution into the rotating body 3;
A guide tube 5 for guiding the stock solution from the lowermost part in the rotating body 3 to the separation chamber SZ;
A separation chamber SZ having a separation plate 10 mounted in a stack with a plurality of small gaps along the axial direction of the guide cylinder 5 in order to separate the stock solution;
In order to discharge the sludge separated in the separation chamber SZ to the outside, a partial discharge mechanism 6 and a total of which are provided in pairs at symmetrical positions of the rotary shaft 2 along the periphery of the lower part of the large-diameter cylindrical portion 3b of the rotating body 3 A discharge mechanism 7;
A liquid extraction part 9 for extracting the oil (light liquid) separated in the separation chamber SZ to the outside;
The main part consists of
[0020]
The rotating body 3 is a large-diameter cylindrical portion 3b whose upper half is a substantially frustoconical trapezoidal portion and whose lower half is a diameter larger than the large diameter of the truncated frustoconical portion. is doing. The rotating body 3 is fixed so that it can rotate integrally with the rotating shaft 2.
At the lower center side of the rotating body 3, orifice weirs 6 h and 7 h for switching the conduit for switching the supply line for supplying the working water to the partial discharge mechanism 6 and the total discharge mechanism 7 by the supply pressure of the working water are provided on the rotary shaft 2. Are provided with a suitable space around the periphery. In addition, as shown in FIGS. 2 (a) and 2 (b), between the orifice weirs 6h and 7h for switching the conduits and the rotary shaft 2, the conduit weirs 6h and 7h for switching the conduits are connected. Working water supply pipes 6m and 7m are provided in the axial direction. The diversion channel switching orifice weirs 6h and 7h and the pilot valves PV and P'V 'are connected to the diversion channels such as the valve-opening water supply channels 6g and 7g and the valve-opening water pressure chambers 61 and 71.
[0021]
The liquid inlet pipe 4 is a pipe that is provided at the upper part of the center of the rotator 3 and supplies the stock solution from the outside into the rotator 3.
[0022]
The guide tube 5 is provided at the center of the rotating body 3 and has a divergent shape for guiding the stock solution introduced from the liquid inlet pipe 4 into the rotating body 3 from the lowermost part of the rotating body 3 to the separation chamber SZ. It is a member.
[0023]
The separation chamber SZ is a chamber for separating the stock solution into each component due to the difference in specific gravity by centrifugal force, and a separation region in which a large number of separation plates 10 are stacked in the axial direction of the guide tube 5 and mounted. It is formed from the sludge accumulation region of the outermost diameter portion in the rotating body 3. As the undiluted solution introduced into the separation chamber SZ flows up through the gaps between the separation plates 10, water and solids with high specific gravity flow to the sludge accumulation region, and oil (light liquid) flows to the center side of the rotating body 3. The liquid having a low specific gravity is discharged to the outside as oil (light liquid) from the liquid extraction portion 9 provided at the upper portion of the rotating body 3. On the other hand, excess water separated in the separation chamber SZ is discharged outside from the liquid extraction portion 8 through a flow path formed between the water intake plate TD and the upper inner wall of the rotating body 3.
[0024]
As shown in FIG. 2A, the partial discharge mechanism 6
A working water branching device to be described later for supplying working water of a predetermined pressure to the working water supply pipe 6m;
A conduit switching unit for overflowing the weir W1 of the orifice weir 6h having a plurality of lateral grooves opened to the rotating shaft 2 side by the pressure of the working water supplied from the working water supply pipe 6m;
When the valve cylinder 6a is closed, the low-pressure valve-closing water that does not overflow the weir W1 (for example, water whose original pressure is 0.4 to 0.5 MPaG and the supply pressure is 0.02 MPaG) A valve-closing water supply path 6k communicating with an upper portion of an orifice weir 6h supplied to a valve-closing water pressure chamber 6b provided along a lower portion of a valve cylinder 6a provided in a radial direction above an intermediate portion of the discharge mechanism 6; Formed from a valve-closing water pressure chamber 6b connected to the valve-closing water supply path 6k and a first valve-closing water drain hole 6c connected to the lower side of the outer body side end of the valve-closing water pressure chamber 6b. With closed valve water supply line,
When the valve cylinder 6a is opened, the high-pressure valve-opening water that overflows the weir W1 (for example, water whose original pressure is 0.4 to 0.5 MPaG and the supply pressure is 0.3 MPaG) is supplied to the weir W1. For opening the valve-opening water from the valve-opening water supply path 6g after the valve cylinder 6a is opened and the valve-opening water supply path 6g supplied to the valve-opening water pressure chamber 6l of the pilot valve PV A valve-opening water supply line composed of a water draining nozzle 6f;
A valve cylinder 6a provided at an upper portion along the valve-closing water pressure chamber 6b, for opening and closing a portion that presses the valve packing 6P when discharging sludge;
An upper part communicates with the first valve-closing water drain hole 6c, and a lower part communicates with the valve-opening water supply passage 6g and the second valve-closing water drain hole 6i, and is slidable inside. Of the first valve opening water drain hole 6c and the second valve opening water drain hole 6i by moving the T-shaped valve element 6e to the rotating shaft 2 side by the valve opening water. A pilot valve PV provided at the bottom outer body of the rotating body 3 for opening and closing the flow path of
Provided in the second valve closing water drain hole 6i, a buffer tank 6j that is provided below the second valve closing water drain hole 6i and temporarily stores the valve closing water, and a lower corner of the rotating body 3. A valve-closing water discharge line formed by the valve-closing water discharge amount adjustment nozzle 6d;
The main part consists of
The shape of the working water supply pipe 6m is a circular nozzle pipe whose tip is bent at 90 degrees, and the tip is inserted into the uppermost horizontal groove of the orifice weir 6h.
[0025]
As shown in FIG. 2 (b), the total discharge mechanism 7
A working water branching device to be described later for supplying working water of a predetermined pressure to the working water supply pipe 7m;
An orifice weir 7h having a plurality of lateral grooves opened on the rotating shaft 2 side that can supply the working water supplied from the working water supply pipe 7m to a predetermined position;
When the valve cylinder 7a is closed, the low-pressure valve-closing water that does not overflow the weir W'1 from the valve-closing water supply passage 6k of the partial discharge mechanism 6 (for example, the high-pressure water having an original pressure of 0.4 to 0.5 MPaG is reduced. A closed water pressure chamber 7b provided along a lower portion of a valve cylinder 7a provided in a radial direction above an intermediate portion of the total discharge mechanism 7 supplied with water having a supply pressure of 0.02 MPaG, and the valve closing A valve-closing water supply line formed from a valve-closing water discharge hole 7c connected to the lower side of the outer trunk side end of the water pressure chamber 7b;
When the valve cylinder 7a is opened, high-pressure valve opening water (for example, supply pressure of 0.4 to 0.5 MPaG) is directly inserted into the lateral groove formed by the weir W'2 and the weir W'3 from the nozzle B of the working water supply pipe 7m. Water), the valve-opening water pressure chamber 7l can be filled with the working water in a short time, and the valve-opening water is supplied to the valve-opening water after the valve cylinder 7a is opened. A valve-opening water supply line formed from a water drain nozzle 7f for extracting from the supply path 7g to the outside;
A valve cylinder 7a provided at an upper portion along the valve-closing water pressure chamber 7b, which opens and closes a portion that presses the valve packing 7P when sludge is discharged;
The upper part communicates with the valve-closing water discharge hole 7c, the lower part communicates with the valve-opening water supply passage 7g, and a slidable T-shaped valve body 7e is provided in the interior thereof. A pilot valve P′V ′ having a valve closing water discharge hole 7d for moving the valve body 7e toward the rotary shaft 2 and discharging the entire amount of valve closing water to the outside;
The main part consists of
The shape of the working water supply pipe 7m is a circular nozzle pipe whose tip is bent at 90 degrees, and the tip is inserted into the uppermost horizontal groove of the orifice weir 7h.
[0026]
By constructing in this way and making the total discharge mechanism a sludge discharge mechanism separated and independent from the partial discharge mechanism, the total discharge function can be set and operated arbitrarily, so that solids adhere to the rotating body wall and segregate. Can be suitably prevented. Therefore, since the balance during operation of the rotating body is improved, the maintenance interval of the machine can be extended, and the maintenance cost of the rotating shaft system can be reduced.
[0027]
Next, attachment positions of the partial discharge mechanism 6 and the total discharge mechanism 7 of the separation plate centrifuge 1 according to the present invention will be described.
In the drawing of FIG. 1, the total discharge mechanism 7 is illustrated as being provided at symmetrical positions with respect to the partial discharge mechanism 6 with the rotation shaft 2 interposed therebetween. In this embodiment, a pair of partial discharge mechanisms 6 and a pair of total discharge mechanisms 7 are provided at symmetrical positions with the rotating shaft 2 in between (in this embodiment, the partial discharge mechanism 6 and the total discharge are The mechanism 7 is mounted at a 90-degree sorting position).
As described above, the unbalance of the rotating body 3 can be made difficult to occur by providing the pair of total discharge mechanisms and the pair of partial discharge mechanisms at symmetrical positions with the rotation shaft interposed therebetween.
[0028]
The operation of the separation plate type centrifugal separator 1 according to the present invention having the above configuration will be described with reference to FIG. 1 and FIG. Here, the overall movement will be described with the partial discharge mechanism 6 and the total discharge mechanism 7 associated with each other.
The stock solution introduced from the liquid inlet pipe 4 into the lower part of the separation chamber SZ by the guide cylinder 5 is converted into oil (light liquid), water, and sludge by the action of the centrifugal force of the rotating body 3 that rotates at a high speed in the separation chamber SZ. The separated sludge having a high specific gravity moves radially outward along the lower surface of the separation plate 10 and accumulates on the outermost diameter portion of the separation chamber SZ. During this time, low-pressure valve-closing water is supplied as operating water from the operating-water supply pipe 6m, and the valve-closing water that has passed through the valve-closing water supply path 6k is introduced into the valve-closing water pressure chambers 6b and 7b. At that time, centrifugal force acts on the valve-closing water to generate a high pressure, pushes the valve cylinders 6a and 7a upward, and presses against the valve packings 6P and 7P mounted on the peripheral bottom of the rotating body lid 3a to sludge. The discharge ports se1 and se2 are sealed.
[0029]
In the above description, the amount of time during which the accumulated amount of sludge accumulated in the rotating body 3 reaches a predetermined amount is determined from the processing amount of the stock solution and the content of the sludge, and the valve-opening water is supplied to the valve-opening water pressure chamber 6l by a timer (not shown). (Or 7l).
During partial discharge of sludge, that is, when valve opening water is supplied to the valve opening water pressure chamber 6l of the pilot valve PV, the valve body 6e moves to the rotary shaft 2 side and the first valve closing water is discharged by the valve body 6e. The seal with the hole 6c is broken, and the valve-closing water in the valve-closing water pressure chamber 6b is discharged from the valve-closing water discharge amount adjusting nozzle 6d, and the remaining valve-opening water in the valve-opening water supply passage 6g is drained from the nozzle. It flows out from 6f. At this time, a buffer tank 6j that is provided below the second valve closing water drain hole 6i and the second valve closing water drain hole 6i and temporarily stores the valve closing water serves as a cushion, and the buffer tank 6j By adjusting the discharge amount of the valve closing water discharge amount adjusting nozzle 6d provided below and provided at the lower corner portion of the rotating body 3, the valve closing water does not instantaneously escape to the outside. Back pressure can be applied, and the opening of the valve cylinder 6a can be precisely adjusted by applying the back pressure.
On the other hand, at the time of total discharge of sludge, that is, when the valve opening water is supplied to the valve opening water pressure chamber 7l of the pilot valve P'V ', the valve body 7e moves to the rotating shaft 2 side and the valve closing water by the valve body 7e. The seal with the discharge hole 7c is broken, and all of the valve-closing water in the valve-closing water pressure chamber 7b is drained from the valve-closing water discharge hole 7d, and the remaining valve-opening water in the valve-opening water supply passage 7g is drained. It flows out of the nozzle 7f.
In this way, when valve opening water is supplied to the partial discharge mechanism and the total discharge mechanism in order to discharge sludge, centrifugal force acts on the valve opening water to generate a high pressure, and this pressure causes the pilot valve PV (or The valve body 6e (or the valve body 7e) of the pilot valve P'V ') overcomes the centrifugal force and moves inward in the radial direction. By this movement, the seal between the valve body 6e (or the valve body 7e) and the first valve closing water drain hole 6c (or the valve closing water drain hole 7c) is broken, and the valve closing water pressure chamber 6b (or valve closing water pressure chamber 7b) is broken. ) In the valve-closing water discharge amount adjusting nozzle 6d (or valve-closing water discharge hole 7d) and the remaining liquid in the valve-opening water supply path 6g (or valve-opening water supply path 7g) It flows out from the drain nozzle 6f (or drain nozzle 7f) to the outside.
[0030]
As a result, the valve cylinder 6a (or the valve cylinder 7a) is lowered, the seal of the sludge discharge port se1 (or sludge discharge port se2) is broken, and the accumulated sludge is discharged from the sludge discharge port se1 (or sludge discharge port se2). It is discharged outside. Thereafter, the supply of the valve opening water is immediately stopped. When the supply of the valve opening water is stopped, the valve body 6e (or the valve body 7e) returns to the original position by the centrifugal force, and the pilot valve PV (or the pilot valve P ' V ′) and the first valve-closing water drain hole 6c (or valve-closing water drain hole 7c) can be sealed, so when valve-closing water is supplied again, the valve-closing water pressure chamber 6b (or valve-closing water pressure chamber) 7b) is filled with valve-closing water, the valve cylinder 6a (or valve cylinder 7a) is pushed upward, and the sludge discharge port se1 (or sludge discharge port se2) is sealed again.
[0031]
Excess water separated in the separation chamber passes through a gap provided between the water take-off plate TD of the separation plate 10 and the inner wall of the rotating body lid 3a to the outside from the liquid discharge portion 8 above the rotating body 3. As extracted.
On the other hand, oil with a low specific gravity (light liquid) is collected on the rotating shaft 2 side of the rotating body 3 while raising the laminated separation plates 10 from the bottom to the top, and from the liquid extraction part 9 above the rotating body 3 to the outside. Extracted as clean oil (light liquid).
[0032]
Next, the separation plate type centrifugal separator 1 according to the present invention is provided with the partial discharge mechanism 6 as an independent mechanism, so that the opening degree of the valve cylinder 6a can be precisely adjusted as shown in FIG. Will be described with reference to FIG.
By supplying high-pressure valve-opening water (for example, water having a supply pressure of 0.4 to 0.5 MPaG) to the valve-opening water pressure chamber 6l of the pilot valve PV, the valve body 6e of the pilot valve PV and the first valve-closing water are supplied. The seal with the drain hole 6c is broken. Thereafter, the valve-closing water in the valve-closing water pressure chamber 6b passes through the pilot valve PV and is provided at the second valve-closing water drain hole 6i and below the second valve-closing water drain hole 6i. The water is discharged from the valve closing water discharge amount adjusting nozzle 6d to the outside through the buffer tank 6j for temporarily storing water. On the other hand, the remaining liquid of the valve opening water in the valve opening water supply path 6g is discharged to the outside from the drain nozzle 6f.
At this time, on the downstream side of the pilot valve PV, the second valve closing water drain hole 6i, the buffer tank 6j for temporarily storing the valve closing water below the second valve closing water drain hole 6i, By providing a valve-closing water discharge amount adjusting nozzle 6d provided under the buffer tank 6j and adjusting the discharge amount of the valve-closing water discharge amount adjusting nozzle 6d, the valve-closing water in the valve-closing water pressure chamber 6b is instantaneously supplied. It will not come out to the outside. As a result, it is possible to apply a constant back pressure to the valve cylinder 6a, and the opening degree of the valve cylinder 6a can be precisely adjusted by applying the back pressure.
The discharge amount of the valve closing water discharge amount adjusting nozzle 6d is determined by penetrating a male screw having a taper screw having a hole in the center thereof and a female screw portion having a taper screw provided at a lower corner of the large-diameter cylindrical portion 3b. The valve-closing water discharge amount can be adjusted by inserting into the hole and screwing to adjust the hole diameter (orifice diameter) of the screw portion.
When the supply of the high-pressure valve opening water is stopped and the valve opening water does not exceed the weir W1, the valve cylinder 6a is closed by the low-pressure valve closing water that does not exceed the weir W1. However, while the valve-opening water (high-pressure water) is being supplied, the valve cylinder 6a seals the sludge discharge port se1 since the back pressure is applied to the valve cylinder 6a until the previous valve-closing water is completely discharged. Since it is not possible, sludge continues to be discharged to the outside. When the supply pressure of the valve-closing water in the valve-closing water pressure chamber 6b becomes higher than the back pressure, the valve cylinder 6a gradually rises and presses against the valve packing 6P, whereby the sludge discharge port se1 can be completely sealed.
In this way, the valve opening degree of the valve cylinder 6a can be adjusted precisely by adjusting the pressure difference between the valve opening water and the valve closing water and the hole diameter of the screw portion of the valve closing water discharge amount adjusting nozzle 6d.
[0033]
Next, a working water branching apparatus that supplies working water for operating the partial discharge mechanism 6 and the total discharge mechanism 7 of the separation plate centrifuge 1 according to the present invention will be described with reference to FIG.
As shown in FIG. 3, the working water branching device is composed of four solenoid valves SV1, SV2, SV3, SV9, two pressure reducing valves RV1, RV2, and piping connecting them. As adjustment water / substitution water, high-pressure water having an original pressure of 0.4 to 0.5 MPaG is supplied as it is into the rotating body 3 by opening and closing the electromagnetic valve SV3 provided on the most upstream side. As the valve opening water to the total discharge mechanism 7, high-pressure water having an original pressure of 0.4 to 0.5 MPaG is directly applied to the working water (valve opening) by opening and closing the electromagnetic valve SV1 arranged in parallel immediately downstream of the electromagnetic valve SV3. Water) is supplied to the working water supply pipe 7m. As the valve-closing water supplied to the total discharge mechanism 7 and the partial discharge mechanism 6, the solenoid valve SV2 arranged in parallel further downstream of the solenoid valve SV1 is opened, and the original pressure is a high pressure of 0.4 to 0.5 MPaG. The water is further reduced to 0.02 MPaG by a pressure reducing valve RV1 provided at a later stage, and this reduced pressure water is supplied as working water (valve closing water) to the working water supply pipe 6m.
Further, as the valve opening water supplied to the partial discharge mechanism 6, high pressure water having an original pressure of 0.4 to 0.5 MPaG is decompressed to about 0.3 MPaG by a pressure reducing valve RV2 provided in the subsequent stage, and further downstream. When the solenoid valve SV9 provided in parallel is opened, the decompressed water is supplied to the working water supply pipe 6m as working water (opening water) from a pipe line joined to the valve closing water supply line on the downstream side of the pipe. The
[0034]
Next, an embodiment of a timing chart when the partial discharge mechanism 6 and the total discharge mechanism 7 of the separation plate centrifuge 1 according to the present invention are operating will be described with reference to FIG.
(1) First, the electromagnetic valve SV2 in FIG. 3 is opened, and the pressure of the high pressure water whose working pressure is 0.4 to 0.5 MPaG is reduced to 0.02 MPaG by the pressure reducing valve RV1, and then the partial discharge is performed. The water is supplied to the mechanism 6 and the total discharge mechanism 7 as valve closing water. (Valve cylinder 6a and valve cylinder 7a are closed. Solenoid valve SV2 is closed).
(2) The electromagnetic valve SV3 is opened, sealing water as adjustment water or replacement water is injected into the rotator 3, and the position of the separation boundary surface in the separation chamber SZ is set. When the setting is completed, stop the sealing water injection. Thereafter, seal water is appropriately injected when necessary. Solenoid valve SV3 is closed.
(3) The solenoid valve SV1 is opened, and valve opening water with a supply pressure of 0.4 to 0.5 MPaG is supplied to the total discharge mechanism 7. Here, when the valve closing water is being supplied to the total discharge mechanism 7, the solenoid valve SV2 is closed to temporarily stop the supply of the valve closing water in order to increase the open / close response of the valve cylinder 7a. The electromagnetic valve SV1 is opened for several seconds (for example, 3 to 5 seconds), and the entire amount of sludge in the rotating body 3 is discharged. Solenoid valve SV1 is closed.
(4) After the total discharge, SV2 is opened again, the valve water is supplied and the valve cylinder 7a is closed, and then the supply of the stock solution is started. During this time, the valve closing water is intermittently supplied (for example, at intervals of 15 minutes).
(5) When the sludge has accumulated in the rotating body 3, the solenoid valve SV9 is opened and high-pressure (for example, 0.3 MPaG) valve-opening water is supplied to the partial discharge mechanism 6. At this time, the solenoid valve SV9 is opened and closed in a short time (several seconds).
At this time, the buffer tank 6j for temporarily storing the closed water discharged from the closed water pressure chamber 6b of the partial discharge mechanism 6 to the second closed water drain hole 6i via the pilot valve PV and the buffer tank By providing a valve closing water discharge amount adjusting nozzle 6d that can adjust the valve closing water discharge amount from 6j to the outside, it is possible to apply a back pressure to the valve cylinder 6a, and the valve cylinder 6a is subjected to a back pressure. By applying pressure, the opening degree of the valve cylinder 6a can be adjusted precisely.
That is, if the solenoid valve SV9 is closed immediately after supplying the valve-opening water, the valve-closing water in the valve-closing water pressure chamber 6b remains in the system without being immediately discharged to the outside, so that the valve-closing water is discharged to the outside. If the amount is reduced, the valve cylinder opens more slowly.
(6) By operating in this way and performing a total discharge once for several partial discharges, the solid matter in the rotating body 3 is preferably discharged to the outside, so an unbalance of the rotating body 3 occurs. Less frequently. Increasing the total number of discharges can further reduce the occurrence of imbalance.
[0035]
In this way, the sludge discharge mechanism of the partial discharger, which has been used with one pilot valve having the total discharge function and the partial discharge function, which was the sludge discharge mechanism of the conventional separation plate type centrifuge, is changed to the partial discharge mechanism. The discharge mechanism and total discharge mechanism are separated and independent, and the sludge discharge amount at the time of partial discharge is always stabilized by adopting the sludge discharge mechanism with at least one pair of each mechanism at the target position across the rotating shaft. It becomes possible to discharge.
Further, since the total discharge mechanism is provided as a function independent of the partial discharge mechanism, it is possible to make it difficult for the rotating body to be unbalanced due to partial discharge.
[0036]
【The invention's effect】
(1) Since the partial opening of the valve cylinder can be adjusted with high accuracy, loss of the stock solution is reduced.
(2) By making the partial discharge dedicated function separate and independent from the total discharge dedicated function, the total discharge function can be arbitrarily set at any time, so that solid matter can be prevented from sticking or segregating on the wall of the rotating body. Accordingly, since the balance during operation of the rotating body is improved, the maintenance interval of the machine is extended and the life of the rotating shaft system is extended, so that the maintenance cost can be reduced.
(3) Since the valve opening during partial discharge can be made constant, the sludge discharge amount can be easily adjusted.
[Brief description of the drawings]
FIG. 1 is a front sectional view of a separation plate type centrifuge according to the present invention.
FIG. 2A is a detailed cross-sectional view of a partial discharge mechanism.
(B) It is detailed sectional drawing of a total discharge mechanism.
FIG. 3 is a working water branching device used when working water is supplied to a total discharge mechanism and a partial discharge mechanism.
FIG. 4 is a timing chart showing an example of operation of the total discharge mechanism and the partial discharge mechanism of the separation plate centrifuge according to the present invention.
FIG. 5 is a front sectional view of a separation plate type centrifuge having a conventional partial discharge mechanism.
[Explanation of symbols]
1 Separating plate centrifuge
2 Rotating shaft
3 Rotating body
3a Rotating body lid
3b Large diameter cylindrical part
6 Partial discharge mechanism
6a Valve cylinder
6b Closed water pressure chamber
6c 1st closed water drain hole
6d Valve closing water discharge adjustment nozzle
6e Disc
6f Drain nozzle
6g Valve water supply path
6h Orifice weir
6i Second valve water drainage hole
6k Closed water supply path
6m working water supply pipe
6P valve packing
7 Total discharge mechanism
7a Valve cylinder
7b Valve closed water pressure chamber
7c Closed water drain hole
7d Valve closing water discharge hole
7e Valve body
7f Drain nozzle
7g Valve water supply path
7h Orifice weir
7m Working water supply pipe
7P valve packing
10 Separation plate
PV, P'V 'Pilot valve
SZ separation chamber
se1, se2 Sludge outlet
TD water removal board

Claims (1)

回転体内の案内筒の軸方向に多数積層した分離板を装着し、前記案内筒から分離室内に原液を導入して遠心力によりスラッジを分離し、前記回転体内に装着される弁シリンダを、作動水で軸方向に作動させてスラッジ排出口を開閉し、前記スラッジを外部に排出する分離板型遠心分離機において、前記回転体の大径円柱部下部の回転軸に対して対称の位置に、スラッジ排出用のパーシャル排出機構およびトータル排出機構を、少なくともそれぞれを一対以上設け
前記パーシャル排出機構が、
前記回転体の下部中心側に設けられた回転軸の外周に対向して、前記回転軸と適宜隙間を設け、前記回転体側の内周に沿って複数の横溝を有するオリフィス堰と、前記オリフィス堰と前記回転軸の間に作動水を供給するための作動水供給管を備えた導水路切り替え装置と、
前記弁シリンダを閉めるときに、前記オリフィス堰を溢流しない低圧の閉弁水を、前記弁シリンダ下部に沿って設けられる閉弁水圧室へ供給する閉弁水の供給路と、閉弁水圧室と、第一の閉弁水排水孔とから形成される閉弁水供給ラインと、
前記弁シリンダを開けるときに、前記オリフィス堰を溢流した高圧の開弁水をパイロット弁の開弁水圧室へ供給する開弁水の供給路と、弁シリンダを開けた後に前記開弁水を前記開弁水供給路から外部に抜き出すための水抜きノズルとから形成される開弁水供給ラインと、
前記閉弁水圧室に沿って上部に設けられ、スラッジを排出する時に、弁パッキンに圧接する部分を開閉する弁シリンダと、
その上部で前記第一の閉弁水排出孔と連通し、その下部で前記開弁水供給路および第二の閉弁水排水孔と連通し、内部に摺動自在にT字型の弁体を内設したパイロット弁と、
前記第二の閉弁水排水孔の下部に設けられ、閉弁水を一時的に溜めるバッファータンクと、前記バッファータンクから外部に排出する閉弁水の量を調整する閉弁水排出量調整ノズルとから形成される閉弁水排出ラインと、から主要部が構成され、
前記トータル排出機構が、
前記回転体の下部中心側に設けられた回転軸の外周に対向して、前記回転軸と適宜隙間を設け、前記回転体側の内周に沿って複数の横溝を有するオリフィス堰と、前記オリフィス堰と前記回転軸の間に作動水を供給するための作動水供給管を備えた導水路切り替え装置と、
前記弁シリンダを閉めるときに、前記オリフィス堰を溢流しない低圧の閉弁水を、前記弁シリンダ下部に沿って設けられる閉弁水圧室へ供給する閉弁水供給路と、閉弁水排出孔とから形成される閉弁水供給ラインと、
前記弁シリンダを開けるときに、前記オリフィス堰を溢流させないで直接パイロット弁の開弁水圧室へ高圧の開弁水を供給する開弁水供給路と、弁シリンダを開けた後に前記開弁水を前記開弁水供給路から外部に抜き出すための水抜きノズルとから形成される開弁水供給ラインと、
前記閉弁水圧室に沿って上部に設けられ、スラッジを排出する時に、弁パッキンに圧接する部分を開閉する弁シリンダと、
その上部で閉弁水排出孔と連通し、その下部で前記開弁水供給路と連通し、内部に摺動自在にT字型の弁体を内設して、閉弁水を外部に全量排出する閉弁水排出孔を有するパイロット弁と、から主要部が構成される
ことを特徴とする分離板型遠心分離機。
A large number of separation plates are mounted in the axial direction of the guide cylinder in the rotating body, the raw liquid is introduced into the separation chamber from the guide cylinder, the sludge is separated by centrifugal force, and the valve cylinder mounted in the rotating body is operated. In the separation plate type centrifuge that operates in the axial direction with water, opens and closes the sludge discharge port, and discharges the sludge to the outside, at a position symmetrical to the rotation axis at the lower part of the large-diameter cylindrical portion of the rotating body, Provide at least one pair of partial discharge mechanism and total discharge mechanism for sludge discharge ,
The partial discharge mechanism is
An orifice weir having a plurality of lateral grooves along the inner periphery on the rotating body side, provided with an appropriate gap with the rotating shaft so as to face the outer periphery of the rotating shaft provided on the lower center side of the rotating body, and the orifice weir And a water conduit switching device provided with a working water supply pipe for supplying working water between the rotating shaft and
When the valve cylinder is closed, a low-pressure valve closing water that does not overflow the orifice weir is supplied to a valve closing water pressure chamber provided along the lower part of the valve cylinder, and a valve closing water pressure chamber. And a closed water supply line formed from the first closed water drain hole,
When the valve cylinder is opened, the valve-opening water supply path for supplying high-pressure valve-opening water overflowing the orifice weir to the valve-opening water pressure chamber of the pilot valve, and the valve-opening water after the valve cylinder is opened A valve-opening water supply line formed from a water-discharging nozzle for drawing out from the valve-opening water supply path;
A valve cylinder provided at an upper portion along the valve-closing water pressure chamber, and opening and closing a portion that presses the valve packing when sludge is discharged;
An upper part communicates with the first valve-closing water discharge hole, and a lower part communicates with the valve-opening water supply passage and the second valve-closing water drain hole. A pilot valve with
A buffer tank that is provided below the second valve-closing water drain hole and temporarily stores the valve-closing water, and a valve-closing water discharge amount adjustment nozzle that adjusts the amount of the valve-closing water discharged from the buffer tank to the outside The main part is composed of a closed water discharge line formed from
The total discharge mechanism is
An orifice weir having a plurality of lateral grooves along the inner periphery on the rotating body side, provided with an appropriate gap with the rotating shaft so as to face the outer periphery of the rotating shaft provided on the lower center side of the rotating body, and the orifice weir And a water conduit switching device provided with a working water supply pipe for supplying working water between the rotating shaft and
When the valve cylinder is closed, a valve-closing water supply path for supplying low-pressure valve-closing water that does not overflow the orifice weir to a valve-closing water pressure chamber provided along the lower part of the valve cylinder, and a valve-closing water discharge hole A closed water supply line formed from
When opening the valve cylinder, the valve opening water supply path for supplying high-pressure valve opening water directly to the valve opening water pressure chamber of the pilot valve without overflowing the orifice weir, and the valve opening water after opening the valve cylinder A valve opening water supply line formed from a water drain nozzle for extracting the water from the valve opening water supply path to the outside,
A valve cylinder provided at an upper portion along the valve-closing water pressure chamber, and opening and closing a portion that presses the valve packing when sludge is discharged;
The upper part communicates with the valve-closing water discharge hole, and the lower part communicates with the valve-opening water supply passage. A T-shaped valve body is slidably provided inside, and the entire amount of valve-closing water is externally provided. A separation plate type centrifugal separator characterized in that a main part is composed of a pilot valve having a closed water discharge hole for discharging .
JP2000030361A 2000-02-08 2000-02-08 Separator centrifuge Expired - Lifetime JP4516174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000030361A JP4516174B2 (en) 2000-02-08 2000-02-08 Separator centrifuge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000030361A JP4516174B2 (en) 2000-02-08 2000-02-08 Separator centrifuge

Publications (2)

Publication Number Publication Date
JP2001219096A JP2001219096A (en) 2001-08-14
JP4516174B2 true JP4516174B2 (en) 2010-08-04

Family

ID=18555384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000030361A Expired - Lifetime JP4516174B2 (en) 2000-02-08 2000-02-08 Separator centrifuge

Country Status (1)

Country Link
JP (1) JP4516174B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101181734B1 (en) 2012-06-04 2012-09-19 이재웅 Operating method of centrifugal separator
KR101198109B1 (en) 2012-06-04 2012-11-09 이재웅 bowl structure of centrifugal separator
WO2013183857A1 (en) * 2012-06-04 2013-12-12 Lee Jae Woong Bowl structure and rotating vertical shaft structure of centrifugal separator
JP6810020B2 (en) * 2017-12-19 2021-01-06 巴工業株式会社 Disc centrifuge

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108550A (en) * 1980-02-01 1981-08-28 Mitsubishi Kakoki Kaisha Ltd Centrifugal separator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE405213B (en) * 1976-06-11 1978-11-27 Alfa Laval Ab CENTRIFUGAL SEPARATOR
JPS6115968Y2 (en) * 1980-07-29 1986-05-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108550A (en) * 1980-02-01 1981-08-28 Mitsubishi Kakoki Kaisha Ltd Centrifugal separator

Also Published As

Publication number Publication date
JP2001219096A (en) 2001-08-14

Similar Documents

Publication Publication Date Title
KR870001593B1 (en) Centrifugal separator and method of operating the same
JP2596591B2 (en) How to operate the centrifuge
US4755165A (en) Method and device for separating two liquid phases by means of a centrifuge
RU2573876C2 (en) Product phase separation by centrifuge
KR102266818B1 (en) Method for controlling discharge timing of centrifugal separator and centrifugal separator
JP4516174B2 (en) Separator centrifuge
SE418459B (en) centrifugal
EP0197063B1 (en) Centrifugal separator
JP4397516B2 (en) Separator plate centrifuge and method for operating the same
US4210275A (en) Continuously operating centrifugal separator
RU2283188C2 (en) Screw centrifuge with solid rotor
US2906449A (en) Flushing of centrifugal separators of the hermetic type
JP4516175B2 (en) Separator centrifuge
JPWO2012029167A1 (en) Separator plate centrifuge and method for operating the same
GB1379376A (en) Automatic centrifuge drum for clarifying liquids
JP4592934B2 (en) Separator plate centrifuge and method for operating the same
JPH07246349A (en) Separation plate type centrifuge
US2468069A (en) Liquid separation method and apparatus
RU2628778C1 (en) Centrifuge for cleaning process liquids from mechanical impurities and water
CN215387748U (en) Dynamic and static separator for separating impurities
JP7199901B2 (en) centrifuge
US2631777A (en) Process for centrifugal separation of yeast cells from beer
JP7199902B2 (en) centrifuge
JPS6287264A (en) Discharge method in oil purifier
JP2554908B2 (en) How to operate the centrifuge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100514

R150 Certificate of patent or registration of utility model

Ref document number: 4516174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term