JP4515755B2 - Processing equipment - Google Patents

Processing equipment Download PDF

Info

Publication number
JP4515755B2
JP4515755B2 JP2003427020A JP2003427020A JP4515755B2 JP 4515755 B2 JP4515755 B2 JP 4515755B2 JP 2003427020 A JP2003427020 A JP 2003427020A JP 2003427020 A JP2003427020 A JP 2003427020A JP 4515755 B2 JP4515755 B2 JP 4515755B2
Authority
JP
Japan
Prior art keywords
power supply
frequency
high frequency
electrode
supply line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003427020A
Other languages
Japanese (ja)
Other versions
JP2005191056A (en
Inventor
勉 東浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2003427020A priority Critical patent/JP4515755B2/en
Priority to US11/017,737 priority patent/US20050236111A1/en
Publication of JP2005191056A publication Critical patent/JP2005191056A/en
Application granted granted Critical
Publication of JP4515755B2 publication Critical patent/JP4515755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32577Electrical connecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Description

本発明は、処理室内の載置台上で被処理基板に所望の処理を施す処理装置に係り、特に載置台上で基板を加熱する方式の処理装置に関する。   The present invention relates to a processing apparatus that performs a desired process on a substrate to be processed on a mounting table in a processing chamber, and more particularly to a processing apparatus that heats a substrate on the mounting table.

半導体デバイスやFPD(Flat Panel Display)の製造に用いられる枚葉式のエッチング、堆積、酸化、スパッタリング等のプロセスでは、真空状態の処理容器内で載置台上に被処理基板を載置し、該載置台上で基板の温度を一定に維持しながら、処理容器内に処理ガスを供給するようにしている。その際、処理ガスのイオン化や化学反応等を促進するためにプラズマを用いることもよく行なわれている。   In processes such as single-wafer etching, deposition, oxidation, and sputtering used to manufacture semiconductor devices and FPDs (Flat Panel Displays), a substrate to be processed is mounted on a mounting table in a vacuum processing container. The processing gas is supplied into the processing container while keeping the temperature of the substrate constant on the mounting table. At that time, plasma is often used to promote ionization, chemical reaction, and the like of the processing gas.

この種のプロセスにおける基板の温度制御は、大別して、載置台上の基板を冷却して一定温度に制御する冷却方式と、載置台上の基板を加熱して一定温度に制御する加熱方式とに分類される。従来より、加熱方式としては、プラズマからの入射熱によって基板を加熱するプラズマ入熱方式と、載置台の上方にランプを設けて該ランプからの輻射熱によって基板を加熱するランプ加熱方式と、載置台の内部に電熱線を設けて該電熱線の抵抗発熱によって基板を加熱するホットプレート方式とが知られている。ホットプレート方式では、載置台から基板へ熱を伝える効率や均一性を高めるために、載置台の上部または上面に静電チャックを設け、静電チャックの静電吸着力で基板を載置台に押し付けるようにしている。   Substrate temperature control in this type of process is broadly divided into a cooling method that cools the substrate on the mounting table to a constant temperature, and a heating method that heats the substrate on the mounting table and controls it to a constant temperature. being classified. Conventionally, as a heating method, a plasma heat input method in which a substrate is heated by incident heat from plasma, a lamp heating method in which a lamp is provided above the mounting table and the substrate is heated by radiant heat from the lamp, and a mounting table There is known a hot plate system in which a heating wire is provided inside the substrate and the substrate is heated by resistance heating of the heating wire. In the hot plate method, in order to improve the efficiency and uniformity of transferring heat from the mounting table to the substrate, an electrostatic chuck is provided on the upper or upper surface of the mounting table, and the substrate is pressed against the mounting table by the electrostatic chucking force of the electrostatic chuck. I am doing so.

しかしながら、プラズマ入熱方式は、基板温度がプラズマの変動によって影響されやすく、プラズマに左右されない独立した任意の温度制御は望めないという欠点がある。また、ランプ加熱方式は、処理容器にランプを取り付けるのが機構的ないしスペース的に難しいという問題がある。特に、平行平板型プラズマ処理装置では、載置台を下部電極とし、その上方に上部電極を対向配置するため、処理容器内にランプを配置するスペースを確保できないのが普通である。ホットプレート方式は、載置台の中に電熱線を組み込むとともに外付けのヒータ電源からの給電ラインを電熱線まで引き込むため、載置台内部の構造が煩雑化して製作コストが嵩むという問題がある。特に、静電チャックを用いる場合は、載置台の内部で電熱線の組み込みおよび給電ラインの引き込みと静電チャックに対する給電ラインの引き込みとを両立または併存させる構成は非常に煩雑であり、多大の製作コストを要する。   However, the plasma heat input method has a drawback that the substrate temperature is easily affected by fluctuations in the plasma, and independent independent temperature control that does not depend on the plasma cannot be expected. In addition, the lamp heating method has a problem that it is difficult to attach the lamp to the processing vessel in terms of mechanism and space. In particular, in a parallel plate type plasma processing apparatus, since the mounting table is a lower electrode and the upper electrode is disposed opposite to the mounting electrode, it is normal that a space for arranging a lamp in the processing container cannot be secured. The hot plate method has a problem in that the structure inside the mounting table becomes complicated and the manufacturing cost increases because the heating wire is incorporated into the mounting table and the power supply line from the external heater power supply is drawn to the heating wire. In particular, when an electrostatic chuck is used, the configuration in which the installation of the heating wire and the feeding line and the feeding line with respect to the electrostatic chuck are both compatible or coexist in the mounting table is very complicated and requires a great deal of manufacturing. Cost is required.

本発明は、上記のような従来技術の問題点に鑑みてなされたもので、載置台内部の煩雑化や特別な加熱機構の設置を伴なわない加熱方式により載置台上の被処理基板の温度を任意に制御できるようにした処理装置を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and the temperature of the substrate to be processed on the mounting table by a heating method that does not complicate the inside of the mounting table or install a special heating mechanism. It is an object of the present invention to provide a processing apparatus that can arbitrarily control the process.

本発明の処理装置は、プラズマの生成または導入の可能な処理容器と、前記処理容器内で被処理基板を載置する第1の電極と、前記第1の電極上に設けられ、電極部と前記電極部を上下両側から挟む誘電体とを有する静電チャックと、第1の給電ラインを介して前記静電チャックの電極部に静電吸着用の直流電圧を印加する直流電源と、一方の出力端子が第2の給電ラインを介して前記第1の電極に電気的に接続され、加熱用の第1の高周波を出力する第1の高周波電源と、前記第1の給電ラインの途中に設定された第1のノードと前記第1の高周波電源の他方の出力端子との間で前記直流電源からの直流を遮断し前記第1の高周波を通す高周波バイパス回路と、一方の出力端子が第3の給電ラインと前記第2の給電ラインとを介して前記第1の電極に電気的に接続され、高周波バイアス用の第2の高周波を出力する第2の高周波電源と、前記第1のノードよりも前記静電チャックの電極部寄りで前記第1の給電ラインの途中に設けられ、前記直流電源からの前記直流電圧を通すとともに前記第1の高周波電源からの前記第1の高周波を通し、前記第2の高周波電源からの前記第2の高周波を遮断する第1のフィルタ回路とを有し、前記第1の高周波電源と前記第2の給電ラインと前記静電チャックの電極部と前記第1の給電ラインと前記第1のフィルタ回路と前記高周波バイパス回路とを含む閉回路内で前記第1の高周波電源より出力される前記第1の高周波の電流が流れ、前記静電チャックの電極部のジュール熱によって前記載置台上の前記基板が加熱される構成とした。
The processing apparatus of the present invention includes a processing container capable of generating or introducing plasma, a first electrode for placing a substrate to be processed in the processing container, an electrode unit provided on the first electrode, An electrostatic chuck having a dielectric that sandwiches the electrode part from above and below, a DC power source that applies a DC voltage for electrostatic attraction to the electrode part of the electrostatic chuck via a first power supply line, An output terminal is electrically connected to the first electrode via a second power supply line, and is set in the middle of the first power supply line and a first high-frequency power source that outputs a first high-frequency for heating A high-frequency bypass circuit that cuts off the direct current from the direct-current power source and passes the first high-frequency between the first node and the other output terminal of the first high-frequency power source; Through the second power supply line and the second power supply line. A second high-frequency power source that is electrically connected to the first electrode and outputs a second high-frequency for high-frequency bias, and the first feed line closer to the electrode portion of the electrostatic chuck than the first node. A first part provided in the middle for passing the DC voltage from the DC power supply and passing the first high frequency from the first high frequency power supply, and blocking the second high frequency from the second high frequency power supply. The first high-frequency power source, the second power supply line, the electrode portion of the electrostatic chuck, the first power supply line, the first filter circuit, and the high-frequency bypass circuit. The first high-frequency current output from the first high-frequency power source flows in a closed circuit including the substrate, and the substrate on the mounting table is heated by Joule heat of the electrode portion of the electrostatic chuck. .

本発明の処理装置では、第1の高周波電源より出力される第1の高周波の電流が第1および第2の給電ラインを介して静電チャックの電極を流れることによって該電極部がジュール熱で発熱し、熱伝導で載置台上の基板が加熱される。ここで、第1の給電ラインは、静電チャックの電極部に対して直流電源からの静電吸着用の直流電圧を印加するためにも用いられる。また、第2の給電ラインは、第1の電極に対して第2の高周波電源からの高周波バイアス用の第2の高周波を供給するためにも用いられる。第1の給電ラインにおいては、高周波バイアス回路の働きにより加熱用高周波の給電と静電吸着用直流電圧の給電とを両立させることができる。
In the processing apparatus of the present invention , the first high-frequency current output from the first high-frequency power source flows through the electrodes of the electrostatic chuck through the first and second power supply lines, so that the electrode section is heated by Joule heat. Heat is generated and the substrate on the mounting table is heated by heat conduction. Here, the first power supply line is also used to apply a DC voltage for electrostatic attraction from a DC power source to the electrode portion of the electrostatic chuck. The second power supply line is also used to supply a second high frequency for high frequency bias from a second high frequency power supply to the first electrode. In the first power supply line, both the high-frequency power supply for heating and the DC power supply for electrostatic adsorption can be made compatible by the action of the high-frequency bias circuit.

本発明の好ましい一態様によれば、第3の給電ラインと第2の給電ラインとが接続される第2のノードよりも第1の高周波電源の一方の出力端子寄りで第2の給電ラインの途中に、第1の高周波電源からの第1の高周波を通し、第2の高周波電源からの第2の高周波を遮断する第2のフィルタ回路が設けられる。かかる第2のフィルタ回路により、第1の高周波電源を高周波バイアス用の第2の高周波から保護し、第2の給電ラインを第1の高周波と第2の高周波とに共用させることができる。また、好ましくは、第3の給電ラインの途中に、第2の高周波電源からの第2の高周波を通し、第1の高周波電源からの第1の高周波を遮断する第3のフィルタ回路が設けられてよい。かかる第3のフィルタ回路により、第2の高周波電源を加熱用の第1の高周波から保護することができる。   According to a preferred aspect of the present invention, the second power supply line is located closer to one output terminal of the first high-frequency power supply than the second node to which the third power supply line and the second power supply line are connected. On the way, a second filter circuit is provided that passes the first high frequency from the first high frequency power supply and blocks the second high frequency from the second high frequency power supply. With this second filter circuit, the first high-frequency power source can be protected from the second high-frequency for high-frequency bias, and the second power supply line can be shared by the first high-frequency and the second high-frequency. Preferably, a third filter circuit that passes the second high frequency from the second high frequency power supply and blocks the first high frequency from the first high frequency power supply is provided in the middle of the third power supply line. It's okay. The third filter circuit can protect the second high frequency power source from the first high frequency for heating.

本発明の好ましい一態様によれば、処理容器内で、第1の電極と対向して所望の間隔を空けて第2の電極が配置される。この場合、第2の高周波電源より第1の電極に供給される第2の高周波が、第1の電極と第2の電極との間でプラズマを生成するための高周波を兼ねることもできる。あるいは、第2の電極に第4の給電ラインを介して第3の高周波電源よりプラズマ生成用の第3の高周波を供給することもできる。第1の給電ラインにおいては、第1のフィルタ回路が第3の高周波電源からの第3の高周波を遮断するのが好ましい。   According to one preferable aspect of the present invention, the second electrode is disposed in the processing container so as to face the first electrode with a desired interval. In this case, the second high frequency supplied from the second high frequency power supply to the first electrode can also serve as a high frequency for generating plasma between the first electrode and the second electrode. Alternatively, the third high frequency for plasma generation can be supplied from the third high frequency power source to the second electrode via the fourth power supply line. In the first power supply line, the first filter circuit preferably blocks the third high frequency from the third high frequency power supply.

本発明の処理装置によれば、上記のような構成と作用により、載置台内部の煩雑化や特別な加熱機構の設置を伴なわない加熱方式によって載置台上の被処理基板の温度を任意に制御することができる。   According to the processing apparatus of the present invention, the temperature and temperature of the substrate to be processed on the mounting table can be arbitrarily set by a heating method that does not involve complicated installation inside the mounting table or installation of a special heating mechanism. Can be controlled.

以下、添付図を参照して本発明の好適な実施の形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図1に、本発明の第1の実施形態によるプラズマエッチング装置の構成を示す。このプラズマエッチング装置は、平行平板型プラズマエッチング装置として構成されており、たとえば表面がアルマイト処理(陽極酸化処理)されたアルミニウムからなる円筒形のチャンバ(処理容器)10を有している。チャンバ10は保安接地されている。   FIG. 1 shows the configuration of a plasma etching apparatus according to the first embodiment of the present invention. This plasma etching apparatus is configured as a parallel plate type plasma etching apparatus, and has, for example, a cylindrical chamber (processing vessel) 10 made of aluminum whose surface is anodized (anodized). The chamber 10 is grounded for safety.

チャンバ10の底部には、セラミックなどの絶縁板12を介してたとえばアルミニウムからなる円柱状の支持台14が配置され、この支持台14の上にたとえばアルミニウムからなる円盤状のサセプタ16が設けられている。サセプタ16は載置台と下部電極とを兼用し、この上に被処理基板としてたとえば半導体ウエハWが載置される。   A cylindrical support base 14 made of, for example, aluminum is disposed on the bottom of the chamber 10 via an insulating plate 12 such as ceramic, and a disk-like susceptor 16 made of, for example, aluminum is provided on the support base 14. Yes. The susceptor 16 serves as both a mounting table and a lower electrode, on which, for example, a semiconductor wafer W is mounted as a substrate to be processed.

サセプタ16の上面には半導体ウエハWをクーロン力またはジョンソン・ラーベック力で保持するための静電チャック18が設けられている。この静電チャック18は導電板または導電膜からなる電極部20を一対の誘電体または絶縁体シート22,24の間に挟み込んだものであり、電極部20には給電ライン26を介して直流電源28の出力端子が電気的に接続されている。直流電源28からの直流電圧により、半導体ウエハWがクーロン力またはジョンソン・ラーベック力で静電チャック18に吸着保持されるようになっている。電極部20の材質は、タングステン、モリブデン、ニッケル等の高融点金属が好ましい。給電ライン26は、チャンバ10の下からチャンバ底板、絶縁板12、支持台14およびサセプタ16を貫通する絶縁シース(図示せず)の中に収められており、好ましくは静電チャック18の電極部20の中心部に接続されてよい。   An electrostatic chuck 18 is provided on the upper surface of the susceptor 16 to hold the semiconductor wafer W with Coulomb force or Johnson Rabeck force. The electrostatic chuck 18 is obtained by sandwiching an electrode portion 20 made of a conductive plate or a conductive film between a pair of dielectric or insulator sheets 22 and 24, and a DC power source is connected to the electrode portion 20 via a power supply line 26. 28 output terminals are electrically connected. The semiconductor wafer W is attracted and held on the electrostatic chuck 18 by a Coulomb force or a Johnson-Rahbek force by a DC voltage from the DC power supply 28. The material of the electrode part 20 is preferably a refractory metal such as tungsten, molybdenum, or nickel. The power supply line 26 is housed in an insulating sheath (not shown) penetrating from the bottom of the chamber 10 through the chamber bottom plate, the insulating plate 12, the support 14 and the susceptor 16, and is preferably an electrode portion of the electrostatic chuck 18. It may be connected to 20 central parts.

静電チャック18の周囲でサセプタ16の上面には、エッチングの均一性を向上させるためのたとえばシリコンからなるフォーカスリング30が配置されている。サセプタ16および支持台14の側面にはたとえば石英からなる円筒状の内壁部材32が貼り付けられている。   A focus ring 30 made of, for example, silicon is disposed on the upper surface of the susceptor 16 around the electrostatic chuck 18 to improve etching uniformity. A cylindrical inner wall member 32 made of, for example, quartz is attached to the side surfaces of the susceptor 16 and the support base 14.

支持台14の内部には、たとえば円周方向に延びる冷媒室34が設けられている。この冷媒室34には、外付けのチラーユニット(図示せず)より配管36a,36bを介して所定温度の冷媒たとえば冷却水が循環供給される。冷媒の温度によってサセプタ16上の半導体ウエハWの処理温度を制御できるようになっている。   A coolant chamber 34 extending in the circumferential direction, for example, is provided inside the support base 14. A refrigerant of a predetermined temperature, for example, cooling water, is circulated and supplied to the refrigerant chamber 34 via pipes 36a and 36b from an external chiller unit (not shown). The processing temperature of the semiconductor wafer W on the susceptor 16 can be controlled by the temperature of the refrigerant.

サセプタ16の上方には、このサセプタと平行に対向してシャワーヘッド38が接地電位の上部電極として設けられている。このシャワーヘッド38は、多数のガス通気孔40aを有する下面の電極板40と、この電極板40を着脱可能に支持する電極支持体42とを有する。電極支持体42の内部にバッファ室44が設けられ、このバッファ室44のガス導入口44aには処理ガス供給部46からのガス供給管48が接続されている。シャワーヘッド38とチャンバ10の側壁との間には、たとえばアルミナからなるリング形状の絶縁性遮蔽部材49が気密に取り付けられている。   Above the susceptor 16, a shower head 38 is provided as an upper electrode of the ground potential so as to face the susceptor in parallel. The shower head 38 has a lower electrode plate 40 having a large number of gas vent holes 40a, and an electrode support 42 for detachably supporting the electrode plate 40. A buffer chamber 44 is provided inside the electrode support 42, and a gas supply pipe 48 from the processing gas supply unit 46 is connected to a gas inlet 44 a of the buffer chamber 44. A ring-shaped insulating shielding member 49 made of alumina, for example, is airtightly attached between the shower head 38 and the side wall of the chamber 10.

チャンバ10の底部には排気口50が設けられ、この排気口50に排気管52を介して排気装置54が接続されている。排気装置54は、ターボ分子ポンプなどの真空ポンプを有しており、チャンバ10内のプラズマ処理空間を所望の真空度まで減圧できるようになっている。チャンバ10の側壁には、半導体ウエハWの搬入出口を開閉するゲートバルブ56が取り付けられている。   An exhaust port 50 is provided at the bottom of the chamber 10, and an exhaust device 54 is connected to the exhaust port 50 via an exhaust pipe 52. The exhaust device 54 has a vacuum pump such as a turbo molecular pump, and can depressurize the plasma processing space in the chamber 10 to a desired degree of vacuum. A gate valve 56 that opens and closes the loading / unloading port of the semiconductor wafer W is attached to the side wall of the chamber 10.

この実施形態のプラズマエッチング装置では、チャンバ10の外に3つの高周波電源58,60,62が設けられている。   In the plasma etching apparatus of this embodiment, three high-frequency power sources 58, 60, and 62 are provided outside the chamber 10.

高周波電源58は、サセプタ16上の半導体ウエハWの温度を加熱方式で制御するために静電チャック18の電極部20を抵抗加熱させるもので、その一方の出力端子が給電ライン64を介してサセプタ16に電気的に接続され、他方の出力端子がグランド電位に接続されており、好ましくは1〜100kHzの範囲内の周波数たとえば10kHzの高周波を好ましくは可変制御可能なパワーで出力する。なお、給電ライン64は、チャンバ10の下からチャンバ底板、絶縁板12および支持台14を貫通してサセプタ16に達する絶縁シース(図示せず)の中に収められている。   The high frequency power source 58 is for heating the electrode portion 20 of the electrostatic chuck 18 by resistance in order to control the temperature of the semiconductor wafer W on the susceptor 16 by a heating method, and one output terminal thereof is connected to the susceptor via the power supply line 64. 16 and the other output terminal is connected to the ground potential, and preferably outputs a frequency within a range of 1 to 100 kHz, for example, a high frequency of 10 kHz, preferably with variable controllable power. The power supply line 64 is housed in an insulating sheath (not shown) that reaches the susceptor 16 through the chamber bottom plate, the insulating plate 12 and the support base 14 from below the chamber 10.

高周波電源60は、RFバイアス用のもので、その一方の出力端子が給電ライン66、ノード68および給電ライン64を介してサセプタ16に電気的に接続され、他方の出力端子がグランド電位に接続されており、好ましくは2〜20MHzの範囲内の周波数たとえば2MHzの高周波を出力する。   The high-frequency power supply 60 is for RF bias, and one output terminal thereof is electrically connected to the susceptor 16 via the feed line 66, the node 68 and the feed line 64, and the other output terminal is connected to the ground potential. Preferably, a frequency within the range of 2 to 20 MHz, for example, a high frequency of 2 MHz is output.

高周波電源62は、上部電極38と下部電極16との間で高周波放電によるプラズマを生成するためのもので、その一方の出力端子が給電ライン70を介して上部電極38に電気的に接続され、他方の出力端子がグランド電位に接続されており、好ましくは50〜300MHzの範囲内の周波数たとえば60MHzの高周波を出力する。給電ライン70の途中に、高周波電源62の出力インピーダンスに負荷インピーダンスを整合させるための整合器72が設けられてよい。   The high-frequency power source 62 is for generating plasma by high-frequency discharge between the upper electrode 38 and the lower electrode 16, and one output terminal thereof is electrically connected to the upper electrode 38 via the power supply line 70, The other output terminal is connected to the ground potential, and preferably outputs a frequency within a range of 50 to 300 MHz, for example, a high frequency of 60 MHz. A matching unit 72 for matching the load impedance to the output impedance of the high frequency power supply 62 may be provided in the middle of the power supply line 70.

高周波電源58とノード68との間で給電ライン64の途中には、高周波電源58からの加熱用高周波(10kHz)を通し、高周波電源60からのRFバイアス用高周波(2MHz)と高周波電源62からのプラズマ生成用高周波(60MHz)とを遮断するローパス・フィルタ(LPF)74が設けられている。   A heating high frequency (10 kHz) from the high frequency power supply 58 is passed in the middle of the power supply line 64 between the high frequency power supply 58 and the node 68, and an RF bias high frequency (2 MHz) from the high frequency power supply 60 and the high frequency power supply 62 are supplied. A low-pass filter (LPF) 74 that cuts off the high frequency (60 MHz) for plasma generation is provided.

給電ライン66の途中には、高周波電源60からのRFバイアス用高周波(2MHz)を通し、高周波電源58からの加熱用高周波(10kHz)と高周波電源62からのプラズマ生成用高周波(60MHz)とを遮断するバンドパス・フィルタ(BPF)76が設けられる。高周波電源62からのプラズマ生成用高周波(60MHz)をサセプタ16とグランドとの間で通すためのハイパス・フィルタ(図示せず)を設ける場合は、上記バンドパス・フィルタ(BPF)76の代わりに高周波電源58からの加熱用高周波(10kHz)を遮断するだけのハイパス・フィルタを用いることもできる。   An RF bias high frequency (2 MHz) from the high frequency power supply 60 is passed in the middle of the power supply line 66, and the heating high frequency (10 kHz) from the high frequency power supply 58 and the plasma generating high frequency (60 MHz) from the high frequency power supply 62 are cut off. A band pass filter (BPF) 76 is provided. When providing a high-pass filter (not shown) for passing a plasma-generating high-frequency (60 MHz) from the high-frequency power source 62 between the susceptor 16 and the ground, a high-frequency filter is used instead of the band-pass filter (BPF) 76. A high-pass filter that only cuts off the heating high frequency (10 kHz) from the power source 58 can also be used.

なお、給電ライン66の途中またはノード68よりもサセプタ16寄りの給電ライン64の途中に、高周波電源60の出力インピーダンスに負荷インピーダンスを整合させるための整合器(図示せず)を設けることもできる。   A matching unit (not shown) for matching the load impedance to the output impedance of the high frequency power supply 60 can be provided in the middle of the power feeding line 66 or in the middle of the power feeding line 64 closer to the susceptor 16 than the node 68.

一方、給電ライン26においては、直流電源28の出力端子とノード78との間に抵抗80およびコンデンサ82からなるローパス・フィルタ84が接続されるとともに、ノード78とグランド電位との間にたとえばコンデンサ86からなる高周波バイパス回路88が接続される。さらに、ノード78よりも静電チャック18寄りで給電ライン26の途中にフィルタ90が設けられる。   On the other hand, in the power supply line 26, a low-pass filter 84 including a resistor 80 and a capacitor 82 is connected between the output terminal of the DC power supply 28 and the node 78, and a capacitor 86, for example, is connected between the node 78 and the ground potential. A high frequency bypass circuit 88 is connected. Further, a filter 90 is provided in the middle of the power supply line 26 closer to the electrostatic chuck 18 than the node 78.

フィルタ90は、直流電源28からの直流電圧と高周波電源58からの加熱用高周波(10kHz)とを通し、高周波電源60からのRFバイアス用高周波(2MHz)と高周波電源62からのプラズマ生成用高周波(60MHz)とを遮断するように構成されている。高周波バイパス回路88は、直流電源28からの直流電圧を遮断し、高周波電源58からの加熱用高周波(10kHz)を通す機能を有している。ローパス・フィルタ84は、直流電源28からの直流電圧を通し、高周波電源58からの加熱用高周波(10kHz)を遮断する機能を有している。   The filter 90 passes a DC voltage from the DC power supply 28 and a heating high frequency (10 kHz) from the high frequency power supply 58, and a high frequency for RF bias (2 MHz) from the high frequency power supply 60 and a high frequency for plasma generation from the high frequency power supply 62 ( 60 MHz). The high frequency bypass circuit 88 has a function of cutting off the direct current voltage from the direct current power supply 28 and passing the heating high frequency (10 kHz) from the high frequency power supply 58. The low-pass filter 84 has a function of passing a DC voltage from the DC power supply 28 and blocking a heating high frequency (10 kHz) from the high frequency power supply 58.

このプラズマエッチング装置において、エッチングを行なうには、先ずゲートバルブ56を開状態にして加工対象の半導体ウエハWをチャンバ10内に搬入して、静電チャック18の上に載置する。そして、処理ガス供給部46よりエッチングガス(一般に混合ガス)を所定の流量および流量比でチャンバ10内に導入し、排気装置54によりチャンバ10内の圧力を設定値にする。直流電源28より直流電圧を静電チャック18の電極部20に印加して、半導体ウエハWを静電チャック18上に固定する。さらに、高周波電源60より所定のパワーでRFバイアス用高周波をサセプタ(下部電極)16に供給するとともに、高周波電源62より所定のパワーでプラズマ生成用高周波をシャワーヘッド(上部電極)38に供給する。シャワーヘッド38より吐出されたエッチングガスは両電極16,38間で高周波の放電によってプラズマ化し、このプラズマで生成されるラジカルやイオンによって半導体ウエハWの主面がエッチングされる。   In order to perform etching in this plasma etching apparatus, first, the gate valve 56 is opened, and the semiconductor wafer W to be processed is loaded into the chamber 10 and placed on the electrostatic chuck 18. Then, an etching gas (generally a mixed gas) is introduced into the chamber 10 from the processing gas supply unit 46 at a predetermined flow rate and flow rate ratio, and the pressure in the chamber 10 is set to a set value by the exhaust device 54. A DC voltage is applied from the DC power source 28 to the electrode portion 20 of the electrostatic chuck 18 to fix the semiconductor wafer W on the electrostatic chuck 18. Further, a high frequency for RF bias is supplied from the high frequency power supply 60 to the susceptor (lower electrode) 16 with a predetermined power, and a high frequency for plasma generation is supplied from the high frequency power supply 62 to the shower head (upper electrode) 38 with a predetermined power. The etching gas discharged from the shower head 38 is turned into plasma by high-frequency discharge between the electrodes 16 and 38, and the main surface of the semiconductor wafer W is etched by radicals and ions generated by the plasma.

このプラズマエッチング装置では、静電チャック18の電極部20に対して、高周波電源58より給電ライン64とサセプタ16とを介して所定のパワーで加熱用高周波(10kHz)を供給する。サセプタ16と静電チャック18の電極部20とは静電チャック18の下部誘電体24を介して交流結合または容量(キャパシタンス)結合されるため、高周波電源58からの高周波電流はサセプタ16より下部誘電体24を介して静電チャック18の電極部20の各部に流れ込む。そして、電極部20の各部に流れ込んだ高周波電流は給電ライン26に抜け、給電ライン26を通ってフィルタ90に入り、フィルタ90を出ると高周波バイパス回路88を通ってグランドつまり高周波電源58の他方の出力端子へ流れ込む。   In this plasma etching apparatus, a heating high frequency (10 kHz) is supplied from the high frequency power source 58 to the electrode portion 20 of the electrostatic chuck 18 through the power supply line 64 and the susceptor 16 with a predetermined power. Since the susceptor 16 and the electrode portion 20 of the electrostatic chuck 18 are AC-coupled or capacitively coupled via the lower dielectric 24 of the electrostatic chuck 18, the high-frequency current from the high-frequency power source 58 is lower than the susceptor 16. It flows into each part of the electrode part 20 of the electrostatic chuck 18 through the body 24. Then, the high-frequency current flowing into each part of the electrode unit 20 passes through the power supply line 26, enters the filter 90 through the power supply line 26, and exits the filter 90, then passes through the high-frequency bypass circuit 88 to the ground, that is, the other of the high-frequency power supply 58. Flows into the output terminal.

この加熱用高周波の極性が反対になるサイクルでは、高周波電源58の他方の出力端子からの高周波電流が高周波バイパス回路88を通ってフィルタ90に入り、フィルタ90を出てから給電ライン26を通って静電チャック18の電極部20に流れ込む。給電ライン26より電極部20に流れ込んだ高周波電流は、電極部20の各部から容量結合で下部誘電体24を介してサセプタ16に抜け、サセプタ16から給電ライン64を通って高周波電源58の一方の出力端子へ流れ込む。   In the cycle in which the polarity of the heating high frequency is reversed, the high frequency current from the other output terminal of the high frequency power supply 58 enters the filter 90 through the high frequency bypass circuit 88, exits the filter 90, and then passes through the feed line 26. It flows into the electrode part 20 of the electrostatic chuck 18. The high-frequency current that has flowed into the electrode unit 20 from the power supply line 26 is capacitively coupled to the susceptor 16 via the lower dielectric 24 from the respective parts of the electrode unit 20, and passes through the power supply line 64 from the susceptor 16 to one of the high-frequency power sources 58. Flows into the output terminal.

このように、高周波電源58からの高周波の電流が静電チャック18の電極部20を流れることによって、電極部20でジュール熱が発生し、そのジュール熱が静電チャック18上の半導体ウエハWに熱伝導で移り、半導体ウエハWが加熱される。高周波電源58の出力パワーを可変調整することで、半導体ウエハWに対する加熱量を制御し、ひいては半導体ウエハWの温度を制御することができる。この実施形態では、半導体ウエハWの処理温度を所望の温度に制御するために、チラーユニットより支持台14の冷媒室34に供給する冷媒の温度を可変調整する方法も併用している。   As described above, when a high frequency current from the high frequency power supply 58 flows through the electrode portion 20 of the electrostatic chuck 18, Joule heat is generated in the electrode portion 20, and the Joule heat is applied to the semiconductor wafer W on the electrostatic chuck 18. The semiconductor wafer W is heated by heat conduction and heated. By variably adjusting the output power of the high-frequency power source 58, the heating amount for the semiconductor wafer W can be controlled, and consequently the temperature of the semiconductor wafer W can be controlled. In this embodiment, in order to control the processing temperature of the semiconductor wafer W to a desired temperature, a method of variably adjusting the temperature of the refrigerant supplied from the chiller unit to the refrigerant chamber 34 of the support base 14 is also used.

上記のように、この実施形態では、サセプタ16の内部に電熱線のような特別な発熱機構を設ける必要はなく、半導体ウエハWをサセプタ16上に保持しておくための静電チャック18の電極部20に加熱用の高周波を供給し、電極部20のジュール熱によって半導体ウエハWを所望の温度に加熱するようにしている。しかも、高周波電源58からの加熱用の高周波を静電チャック18の電極部20に供給するために、高周波電源60からのRFバイアス用高周波をサセプタ16に供給するためにも用いられる給電ライン64と、直流電源28からの静電吸着用の直流電圧を静電チャック18の電極部20に供給するためにも用いられる給電ライン26とを利用する。このような給電ライン64,26の共用において、高周波電源58はローパス・フィルタ(LPF)74によってRFバイアス用高周波(2MHz)やプラズマ生成用高周波(60MHz)から保護され、高周波電源60はバンドパス・フィルタ(BPF)76によって加熱用高周波(10kHz)やプラズマ生成用高周波(60MHz)から保護され、直流電源28はフィルタ90およびローパス・フィルタ84によって全ての高周波から保護される。   As described above, in this embodiment, it is not necessary to provide a special heating mechanism such as a heating wire inside the susceptor 16, and the electrode of the electrostatic chuck 18 for holding the semiconductor wafer W on the susceptor 16. A high frequency for heating is supplied to the unit 20, and the semiconductor wafer W is heated to a desired temperature by Joule heat of the electrode unit 20. In addition, in order to supply the heating high frequency from the high frequency power supply 58 to the electrode portion 20 of the electrostatic chuck 18, the power supply line 64 used also to supply the RF bias high frequency from the high frequency power supply 60 to the susceptor 16; The power supply line 26 that is also used to supply the DC voltage for electrostatic attraction from the DC power source 28 to the electrode portion 20 of the electrostatic chuck 18 is used. In such shared use of the power supply lines 64 and 26, the high frequency power source 58 is protected from a high frequency for RF bias (2 MHz) and a high frequency for plasma generation (60 MHz) by a low-pass filter (LPF) 74. The filter (BPF) 76 protects the high frequency for heating (10 kHz) and the high frequency for plasma generation (60 MHz), and the DC power supply 28 is protected from all high frequencies by the filter 90 and the low-pass filter 84.

この実施形態では、上部電極(シャワーヘッド)38にプラズマ生成用の高周波を印加し、下部電極(サセプタ)16にRFバイアス用の高周波を印加している。しかしながら、プラズマ生成用またはRFバイアス用の高周波を上部または下部電極に印加する形態は任意であり、種々の態様が可能である。たとえば、上部電極38にプラズマ生成用の高周波を印加せずに、下部電極16にRFバイアス用とプラズマ生成用の2種類の高周波を印加するか、または下部電極16にRFバイアス用とプラズマ生成用とを兼める1種類の高周波を印加することもできる。また、上部電極38に対してはプラズマ生成用の高周波を印加する一方で、下部電極16に対してはRFバイアスを印加せずに自己バイアス方式とすることなども可能である。   In this embodiment, a high frequency for plasma generation is applied to the upper electrode (shower head) 38, and a high frequency for RF bias is applied to the lower electrode (susceptor) 16. However, the mode of applying a high frequency for plasma generation or RF bias to the upper or lower electrode is arbitrary, and various modes are possible. For example, without applying a high frequency for plasma generation to the upper electrode 38, two types of high frequency for RF bias and plasma generation are applied to the lower electrode 16, or for the RF bias and plasma generation to the lower electrode 16. It is also possible to apply one type of high frequency that also serves as In addition, a high frequency for plasma generation is applied to the upper electrode 38, while a self-bias method can be used without applying an RF bias to the lower electrode 16.

図2に、第2の実施形態によるプラズマエッチング装置の構成を示す。図中、上記第1の実施形態(図1)におけるものと同様の構成または機能を有する部分には同一の符号を附してある。   FIG. 2 shows the configuration of the plasma etching apparatus according to the second embodiment. In the figure, parts having the same configuration or function as those in the first embodiment (FIG. 1) are denoted by the same reference numerals.

この第2の実施形態では、チャンバ10の底部に絶縁板12を介してたとえばアルミニウムからなる円盤状のサセプタ下部電極92が配置され、このサセプタ下部電極92の上に誘電体たとえばセラミックからなるサセプタ94が設けられる。サセプタ94の内部には上面(基板載置面)に近接して板状またはシート状のサセプタ上部電極96が設けられる。サセプタ上部電極96の材質は、タングステン、モリブデン、ニッケル等の高融点金属が好ましい。   In the second embodiment, a disc-shaped susceptor lower electrode 92 made of, for example, aluminum is disposed on the bottom of the chamber 10 via an insulating plate 12, and a susceptor 94 made of a dielectric, for example, ceramic is placed on the susceptor lower electrode 92. Is provided. Inside the susceptor 94, a plate-like or sheet-like susceptor upper electrode 96 is provided in the vicinity of the upper surface (substrate mounting surface). The material of the susceptor upper electrode 96 is preferably a refractory metal such as tungsten, molybdenum, or nickel.

高周波電源98は、サセプタ94上の半導体ウエハWの温度を加熱方式で制御するために誘電体からなるサセプタ94自体を高周波加熱で発熱させるもので、一方の出力端子が給電ライン100を介してサセプタ上部電極96に電気的に接続され、他方の出力端子がグランドを介してサセプタ下部電極92に電気的に接続され、好ましくは1MHz〜200MHzの範囲内の周波数たとえば10MHzの高周波を出力する。高周波電源98からの高周波がサセプタ上部電極96とサセプタ下部電極92との間に印加されると、両電極96,92間に形成される高周波電界の下でサセプタ94内部が誘電損失により発熱し、熱伝導でサセプタ94上の半導体ウエハWが加熱される。高周波電源98の出力パワーを可変制御することで、サセプタ94内部の発熱量を任意に制御し、ひいては半導体ウエハWの温度を任意に制御することができる。   The high-frequency power source 98 heats the susceptor 94 itself made of a dielectric material by high-frequency heating in order to control the temperature of the semiconductor wafer W on the susceptor 94 by a heating method, and one output terminal is connected to the susceptor via the power supply line 100. It is electrically connected to the upper electrode 96, and the other output terminal is electrically connected to the susceptor lower electrode 92 through the ground, and preferably outputs a frequency within the range of 1 MHz to 200 MHz, for example, a high frequency of 10 MHz. When a high frequency from the high frequency power supply 98 is applied between the susceptor upper electrode 96 and the susceptor lower electrode 92, the inside of the susceptor 94 generates heat due to dielectric loss under a high frequency electric field formed between the electrodes 96, 92. The semiconductor wafer W on the susceptor 94 is heated by heat conduction. By variably controlling the output power of the high-frequency power source 98, the amount of heat generated inside the susceptor 94 can be arbitrarily controlled, and thus the temperature of the semiconductor wafer W can be arbitrarily controlled.

この実施形態では、サセプタ94上に半導体ウエハWを静電吸着力で保持するために、直流電源28からの直流電圧を給電ライン102、ノード104および給電ライン100を介してサセプタ上部電極96に印加してよい。この場合、ノード104と高周波電源98との間で給電ライン100の途中に、高周波電源98からの高周波を通し直流電源28からの直流電圧と高周波電源62からの高周波とを遮断するハイパス・フィルタ(HPF)またはバンドパス・フィルタ106を設けてよい。また、給電ライン102の途中には、直流電源28からの直流電圧を通し、高周波電源98,62からのそれぞれの高周波を遮断するフィルタ108を設けてよい。   In this embodiment, in order to hold the semiconductor wafer W on the susceptor 94 with an electrostatic attraction force, a DC voltage from the DC power supply 28 is applied to the susceptor upper electrode 96 via the power supply line 102, the node 104 and the power supply line 100. You can do it. In this case, in the middle of the power supply line 100 between the node 104 and the high-frequency power source 98, a high-pass filter that passes a high frequency from the high-frequency power source 98 and blocks a DC voltage from the DC power source 28 and a high frequency from the high-frequency power source 62 ( HPF) or bandpass filter 106 may be provided. In addition, a filter 108 that passes a DC voltage from the DC power supply 28 and blocks high frequencies from the high-frequency power supplies 98 and 62 may be provided in the middle of the power supply line 102.

図3に、第3の実施形態によるプラズマエッチング装置の構成を示す。図中、上記第1または第2の実施形態(図1または図2)におけるものと同様の構成または機能を有する部分には同一の符号を附してある。   FIG. 3 shows the configuration of the plasma etching apparatus according to the third embodiment. In the figure, parts having the same configuration or function as those in the first or second embodiment (FIG. 1 or 2) are denoted by the same reference numerals.

この第3の実施形態では、サセプタ94の下にサセプタ94ないしサセプタ電極96とほぼ同軸にコイル110が配置される。高周波電源112は、サセプタ94上の半導体ウエハWの温度を加熱方式で制御するためにサセプタ94内部の電極96を高周波加熱で発熱させるもので、その出力端子が給電ライン114を介してコイル110に電気的に接続され、好ましくは1kHz〜10MHzの範囲内の周波数たとえば2kHzの高周波を出力する。高周波電源112からの高周波電流がコイル110を流れると、コイル110により形成される高周波の電磁場Jがサセプタ電極96を貫通し、サセプタ電極96内に発生する渦電流によってサセプタ電極96が発熱し、熱伝導でサセプタ96上の半導体ウエハWが加熱される。高周波電源112の出力パワーを可変制御することで、サセプタ電極96の発熱量を任意に制御し、ひいては半導体ウエハWの温度を任意に制御することができる。   In the third embodiment, the coil 110 is disposed under the susceptor 94 so as to be substantially coaxial with the susceptor 94 or the susceptor electrode 96. The high-frequency power source 112 heats the electrode 96 inside the susceptor 94 by high-frequency heating in order to control the temperature of the semiconductor wafer W on the susceptor 94 by a heating method, and its output terminal is connected to the coil 110 via the power supply line 114. It is electrically connected, and preferably outputs a frequency in the range of 1 kHz to 10 MHz, for example, a high frequency of 2 kHz. When a high-frequency current from the high-frequency power source 112 flows through the coil 110, a high-frequency electromagnetic field J formed by the coil 110 penetrates the susceptor electrode 96, and the susceptor electrode 96 generates heat due to the eddy current generated in the susceptor electrode 96. The semiconductor wafer W on the susceptor 96 is heated by conduction. By variably controlling the output power of the high-frequency power source 112, the amount of heat generated by the susceptor electrode 96 can be arbitrarily controlled, and thus the temperature of the semiconductor wafer W can be arbitrarily controlled.

この実施形態では、サセプタ94上に半導体ウエハWを静電吸着力で保持するために、直流電源28からの直流電圧を給電ライン116を介してサセプタ上部電極96に印加してよい。また、高周波電源60からのRFバイアス用高周波を給電ライン118、ノード117および給電ライン116を介してサセプタ上部電極96に印加することも可能である。好ましくは、給電ライン114の途中に、高周波電源112からの加熱用高周波を通し、高周波電源60からのRFバイアス用高周波や高周波電源62からのプラズマ生成用高周波を遮断するためのフィルタ120を設けてよい。また、給電ライン118の途中には、高周波電源60からのRFバイアス用高周波を通し、直流電源28からの直流電圧を遮断するハイパス・フィルタ(HPF)122を設けてよい。   In this embodiment, in order to hold the semiconductor wafer W on the susceptor 94 with an electrostatic attraction force, a DC voltage from the DC power supply 28 may be applied to the susceptor upper electrode 96 via the power supply line 116. It is also possible to apply the RF bias high frequency from the high frequency power supply 60 to the susceptor upper electrode 96 via the power supply line 118, the node 117 and the power supply line 116. Preferably, a filter 120 for passing a high frequency for heating from the high frequency power supply 112 and blocking a high frequency for RF bias from the high frequency power supply 60 and a high frequency for plasma generation from the high frequency power supply 62 is provided in the middle of the power supply line 114. Good. Further, a high pass filter (HPF) 122 that cuts the DC voltage from the DC power supply 28 through the RF bias RF from the RF power supply 60 may be provided in the middle of the power supply line 118.

上記した第2および第3の実施形態でも、プラズマ生成用の高周波またはRFバイアス用の高周波を上部または下部電極に印加する形態は任意であり、種々の変形が可能である。また、本発明において、給電ラインはケーブルや導体棒など任意の形態を採ることができる。   Also in the second and third embodiments described above, the form in which the high frequency for plasma generation or the high frequency for RF bias is applied to the upper or lower electrode is arbitrary, and various modifications are possible. In the present invention, the feeder line can take any form such as a cable or a conductor rod.

プラズマ処理装置においても同様であり、特に上記実施形態のような容量結合型平行平板タイプのプラズマ発生方式は一例であり、他の任意の方式たとえばマグネトロン方式やECR(Electron Cyclotron Resonance)方式などにも本発明は適用可能である。また、プラズマプロセスの種類もエッチングに限定されず、CVD(Chemical Vapor Deposition)、酸化、スパッタリングなど任意のプラズマプロセスに本発明は適用可能である。さらに、プラズマプロセスにより処理される被処理体も半導体ウエハに限るものではなく、たとえばガラス基板またはLCD(Liquid Crystal Display)基板などにも適用可能である。さらには、本発明はプラズマ処理装置以外の処理装置にも適用可能である。   The same applies to the plasma processing apparatus. In particular, the capacitively coupled parallel plate type plasma generation method as in the above embodiment is an example, and other arbitrary methods such as a magnetron method and an ECR (Electron Cyclotron Resonance) method can be used. The present invention is applicable. The type of plasma process is not limited to etching, and the present invention can be applied to any plasma process such as CVD (Chemical Vapor Deposition), oxidation, and sputtering. Furthermore, the target object to be processed by the plasma process is not limited to a semiconductor wafer, and can be applied to, for example, a glass substrate or an LCD (Liquid Crystal Display) substrate. Furthermore, the present invention can be applied to a processing apparatus other than the plasma processing apparatus.

本発明の第1の実施形態によるプラズマエッチング装置の構成を示す図である。It is a figure which shows the structure of the plasma etching apparatus by the 1st Embodiment of this invention. 第2の実施形態によるプラズマエッチング装置の構成を示す図である。It is a figure which shows the structure of the plasma etching apparatus by 2nd Embodiment. 第3の実施形態によるプラズマエッチング装置の構成を示す図である。It is a figure which shows the structure of the plasma etching apparatus by 3rd Embodiment.

符号の説明Explanation of symbols

10 チャンバ
14 支持台
16 サセプタ(下部電極)
18 静電チャック
20 電極部
24 下部誘電体(シート)
26 給電ライン
28 直流電源
38 シャワーヘッド(上部電極)
46 処理ガス供給部
54 排気装置
58 加熱用高周波電源
60 RFバイアス用高周波電源
62 プラズマ生成用高周波電源
64,66,70 給電ライン
74 ローパス・フィルタ(LPF)
76 バンドパス・フィルタ(BPF)
84 ローパス・フィルタ
88 高周波バイパス回路
90 フィルタ
92 サセプタ下部電極
94 サセプタ
96 サセプタ上部電極
98 加熱用高周波電源
100,102 給電ライン
106 ハイパス・フィルタ(HPF)
112 加熱用高周波電源
114,116,118 給電ライン
120 フィルタ
10 chamber 14 support 16 susceptor (lower electrode)
18 Electrostatic chuck 20 Electrode unit 24 Lower dielectric (sheet)
26 Power supply line 28 DC power supply 38 Shower head (upper electrode)
46 Processing gas supply unit 54 Exhaust device 58 High frequency power source for heating 60 High frequency power source for RF bias 62 High frequency power source for plasma generation 64, 66, 70 Feed line 74 Low pass filter (LPF)
76 Bandpass Filter (BPF)
84 Low-pass filter 88 High-frequency bypass circuit 90 Filter 92 Lower electrode of susceptor 94 Susceptor 96 Upper electrode of susceptor 98 High-frequency power source for heating 100, 102 Feed line 106 High-pass filter (HPF)
112 High frequency power supply for heating
114, 116, 118 Feed line 120 Filter

Claims (8)

プラズマの生成または導入の可能な処理容器と、
前記処理容器内で被処理基板を載置する第1の電極と、
前記第1の電極上に設けられ、電極部と前記電極部を上下両側から挟む誘電体とを有する静電チャックと、
第1の給電ラインを介して前記静電チャックの電極部に静電吸着用の直流電圧を印加する直流電源と、
一方の出力端子が第2の給電ラインを介して前記第1の電極に電気的に接続され、加熱用の第1の高周波を出力する第1の高周波電源と、
前記第1の給電ラインの途中に設定された第1のノードと前記第1の高周波電源の他方の出力端子との間で前記直流電源からの直流を遮断し前記第1の高周波を通す高周波バイパス回路と、
一方の出力端子が第3の給電ラインと前記第2の給電ラインとを介して前記第1の電極に電気的に接続され、高周波バイアス用の第2の高周波を出力する第2の高周波電源と、
前記第1のノードよりも前記静電チャックの電極部寄りで前記第1の給電ラインの途中に設けられ、前記直流電源からの前記直流電圧を通すとともに前記第1の高周波電源からの前記第1の高周波を通し、前記第2の高周波電源からの前記第2の高周波を遮断する第1のフィルタ回路と
を有し、前記第1の高周波電源と前記第2の給電ラインと前記静電チャックの電極部と前記第1の給電ラインと前記第1のフィルタ回路と前記高周波バイパス回路とを含む閉回路内で前記第1の高周波電源より出力される前記第1の高周波の電流が流れ、前記静電チャックの電極部のジュール熱によって前記載置台上の前記基板が加熱される処理装置。
A processing vessel capable of generating or introducing plasma; and
A first electrode for placing a substrate to be processed in the processing container;
An electrostatic chuck provided on the first electrode and having an electrode part and a dielectric sandwiching the electrode part from above and below;
A DC power supply for applying a DC voltage for electrostatic attraction to the electrode portion of the electrostatic chuck via a first power supply line;
A first high-frequency power source having one output terminal electrically connected to the first electrode via a second power supply line and outputting a first high-frequency for heating;
A high frequency bypass that cuts off direct current from the direct current power source and passes the first high frequency between a first node set in the middle of the first power supply line and the other output terminal of the first high frequency power source. Circuit,
A second high frequency power source having one output terminal electrically connected to the first electrode via a third power supply line and the second power supply line, and outputting a second high frequency for high frequency bias; ,
The first node is provided in the middle of the first power supply line closer to the electrode portion of the electrostatic chuck than the first node, passes the DC voltage from the DC power supply, and the first from the first high-frequency power supply. A first filter circuit that cuts off the second high-frequency power from the second high-frequency power source, the first high-frequency power source, the second power supply line, and the electrostatic chuck The first high-frequency current output from the first high-frequency power source flows in a closed circuit including the electrode unit, the first power supply line, the first filter circuit, and the high-frequency bypass circuit, and A processing apparatus in which the substrate on the mounting table is heated by Joule heat of an electrode portion of an electric chuck.
前記第1の高周波の周波数が前記第2の高周波の周波数よりも低い請求項に記載の処理装置。 The first frequency of the high frequency is lower than the frequency of the second high-frequency, processing apparatus according to claim 1. 前記第3の給電ラインと前記第2の給電ラインとが接続される第2のノードよりも前記第1の高周波電源の一方の出力端子寄りで前記第2の給電ラインの途中に設けられ、前記第1の高周波電源からの前記第1の高周波を通し、前記第2の高周波電源からの前記第2の高周波を遮断する第2のフィルタ回路を有する請求項1または請求項2に記載の処理装置。 Provided in the middle of the second power supply line closer to one output terminal of the first high-frequency power supply than a second node to which the third power supply line and the second power supply line are connected; 3. The process according to claim 1 , further comprising: a second filter circuit that passes the first high frequency from a first high frequency power supply and blocks the second high frequency from the second high frequency power supply. apparatus. 前記第3の給電ラインの途中に設けられ、前記第2の高周波電源からの前記第2の高周波を通し、前記第1の高周波電源からの前記第1の高周波を遮断する第3のフィルタ回路を有する請求項のいずれか一項に記載の処理装置。 A third filter circuit provided in the middle of the third power supply line and configured to pass the second high frequency from the second high frequency power supply and cut off the first high frequency from the first high frequency power supply; a processing apparatus according to any one of claims 1 to 3. 前記処理容器内で前記第1の電極と対向して所望の間隔を空けて配置される第2の電極を有する請求項のいずれか一項に記載の処理装置。 Wherein the processing vessel first electrode and opposite to a second electrode are spaced a desired interval, the processing apparatus according to any one of claims 1 to 3. 前記第2の高周波電源より前記第1の電極に供給される前記第2の高周波が、前記第1の電極と前記第2の電極との間でプラズマを生成するための高周波を兼ねる請求項に記載の処理装置。 The second high frequency supplied to the first electrode than the second high-frequency power source, also serves as a high frequency for generating plasma between the first electrode and the second electrode, claim 5. The processing apparatus according to 5 . 前記第2の電極に第4の給電ラインを介してプラズマ生成用の第3の高周波を供給する第3の高周波電源を有する請求項に記載の処理装置。 Wherein the second electrode has a fourth third high-frequency power supply for supplying third RF power for plasma generation via a feed line, the processing apparatus according to claim 5. 前記第1のフィルタ回路が前記第3の高周波電源からの前記第3の高周波を遮断する請求項に記載の処理装置。 Said first filter circuit to block the third frequency from the third RF power supply, processing apparatus according to claim 6.
JP2003427020A 2003-12-24 2003-12-24 Processing equipment Expired - Fee Related JP4515755B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003427020A JP4515755B2 (en) 2003-12-24 2003-12-24 Processing equipment
US11/017,737 US20050236111A1 (en) 2003-12-24 2004-12-22 Processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003427020A JP4515755B2 (en) 2003-12-24 2003-12-24 Processing equipment

Publications (2)

Publication Number Publication Date
JP2005191056A JP2005191056A (en) 2005-07-14
JP4515755B2 true JP4515755B2 (en) 2010-08-04

Family

ID=34786403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003427020A Expired - Fee Related JP4515755B2 (en) 2003-12-24 2003-12-24 Processing equipment

Country Status (2)

Country Link
US (1) US20050236111A1 (en)
JP (1) JP4515755B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8038796B2 (en) 2004-12-30 2011-10-18 Lam Research Corporation Apparatus for spatial and temporal control of temperature on a substrate
US7780814B2 (en) * 2005-07-08 2010-08-24 Applied Materials, Inc. Wafer pre-clean reactor cable termination for selective suppression/reflection of source and bias frequency cross products
JP4753306B2 (en) * 2006-03-29 2011-08-24 東京エレクトロン株式会社 Plasma processing equipment
US7838800B2 (en) * 2006-09-25 2010-11-23 Tokyo Electron Limited Temperature controlled substrate holder having erosion resistant insulating layer for a substrate processing system
TWI520262B (en) * 2008-04-02 2016-02-01 Ap系統股份有限公司 Substrate assembling apparatus
US8475673B2 (en) * 2009-04-24 2013-07-02 Lam Research Company Method and apparatus for high aspect ratio dielectric etch
US8802545B2 (en) * 2011-03-14 2014-08-12 Plasma-Therm Llc Method and apparatus for plasma dicing a semi-conductor wafer
JP5712054B2 (en) 2011-05-31 2015-05-07 日本発條株式会社 Heater unit with shaft and manufacturing method of heater unit with shaft
KR101295794B1 (en) * 2011-05-31 2013-08-09 세메스 주식회사 Apparatus for treating substrate
CN103811261B (en) * 2012-11-13 2016-08-24 中微半导体设备(上海)有限公司 Reduce the structure of wafer leakage current and the plasma processing chamber of this structure is set
US20160153091A1 (en) * 2014-03-31 2016-06-02 Spp Technologies Co., Ltd. Heating Device and Plasma Processing Apparatus Provided Therewith
US10090162B2 (en) * 2016-01-18 2018-10-02 Hitachi High-Technologies Corporation Plasma processing method and plasma processing device
US10435789B2 (en) * 2016-12-06 2019-10-08 Asm Ip Holding B.V. Substrate treatment apparatus
JP7408570B2 (en) * 2018-05-03 2024-01-05 アプライド マテリアルズ インコーポレイテッド RF grounding configuration for pedestal
CN113820531A (en) * 2020-06-19 2021-12-21 拓荆科技股份有限公司 Semiconductor equipment with radio frequency system state controlled
CN112331607B (en) * 2020-10-28 2024-03-26 北京北方华创微电子装备有限公司 Electrostatic chuck and semiconductor processing apparatus
WO2022146667A1 (en) * 2020-12-29 2022-07-07 Mattson Technology, Inc. Electrostatic chuck assembly for plasma processing apparatus
CN113336183B (en) * 2021-06-04 2023-12-12 东南大学 Static discharge protection and energy storage structure of clamped beam of microwave integrated circuit
CN113328707B (en) * 2021-06-04 2023-09-12 东南大学 Static electricity and heat energy collection and self-power supply in radio frequency amplifier
CN117352430A (en) * 2023-10-10 2024-01-05 拓荆科技股份有限公司 Semiconductor processing equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241327A (en) * 1986-04-11 1987-10-22 Mitsubishi Electric Corp Semiconductor manufacturing device
JPH11340149A (en) * 1998-05-28 1999-12-10 Hitachi Ltd System and method for plasma treatment
US6483690B1 (en) * 2001-06-28 2002-11-19 Lam Research Corporation Ceramic electrostatic chuck assembly and method of making

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298024A (en) * 1989-05-12 1990-12-10 Tadahiro Omi Reactive ion etching apparatus
JP3582287B2 (en) * 1997-03-26 2004-10-27 株式会社日立製作所 Etching equipment
JP3792999B2 (en) * 2000-06-28 2006-07-05 株式会社東芝 Plasma processing equipment
US20040025791A1 (en) * 2002-08-09 2004-02-12 Applied Materials, Inc. Etch chamber with dual frequency biasing sources and a single frequency plasma generating source

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241327A (en) * 1986-04-11 1987-10-22 Mitsubishi Electric Corp Semiconductor manufacturing device
JPH11340149A (en) * 1998-05-28 1999-12-10 Hitachi Ltd System and method for plasma treatment
US6483690B1 (en) * 2001-06-28 2002-11-19 Lam Research Corporation Ceramic electrostatic chuck assembly and method of making

Also Published As

Publication number Publication date
US20050236111A1 (en) 2005-10-27
JP2005191056A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
JP4515755B2 (en) Processing equipment
US11404281B2 (en) Method of etching silicon containing films selectively against each other
KR102383357B1 (en) Mounting table and substrate processing apparatus
JP4903610B2 (en) Plasma processing equipment
KR100274757B1 (en) Plasma treatment apparatus and plasma treatment method
JP5160802B2 (en) Plasma processing equipment
TWI584699B (en) Plasma processing device and plasma processing method
JP5317424B2 (en) Plasma processing equipment
KR100745942B1 (en) Inductive coupling plasma processing apparatus
JP3150058B2 (en) Plasma processing apparatus and plasma processing method
KR20160078332A (en) Temperature control mechanism, temperature control method, and substrate processing apparatus
TW201243942A (en) Focus ring and plasma processing apparatus
KR19980025047A (en) Plasma processing equipment
TW201207987A (en) Plasma processing apparatus and method of manufacturing semiconductor device
JP2000323456A (en) Plasma processing device and electrode used therefor
JP2019176030A (en) Plasma processing apparatus
TWI772200B (en) Temperature controlling apparatus, and temperature controlling method
JP5438260B2 (en) Plasma processing equipment
JP2019033231A (en) Plasma treatment apparatus
JP2019176032A (en) Plasma processing apparatus
TW202117913A (en) Substrate support and plasma processing apparatus
JP2000331996A (en) Plasma processing device
JP5367000B2 (en) Plasma processing equipment
JP5264238B2 (en) Plasma processing equipment
JP2001210628A (en) Plasma treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100513

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4515755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees