JP4512859B2 - Method of burying ready-made piles in pile holes - Google Patents

Method of burying ready-made piles in pile holes Download PDF

Info

Publication number
JP4512859B2
JP4512859B2 JP2000129969A JP2000129969A JP4512859B2 JP 4512859 B2 JP4512859 B2 JP 4512859B2 JP 2000129969 A JP2000129969 A JP 2000129969A JP 2000129969 A JP2000129969 A JP 2000129969A JP 4512859 B2 JP4512859 B2 JP 4512859B2
Authority
JP
Japan
Prior art keywords
pile
ready
shaft portion
hole
pile hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000129969A
Other languages
Japanese (ja)
Other versions
JP2001073358A (en
Inventor
愛雄 渡部
好伸 木谷
洋一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitani Sekisan Co Ltd
Original Assignee
Mitani Sekisan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitani Sekisan Co Ltd filed Critical Mitani Sekisan Co Ltd
Priority to JP2000129969A priority Critical patent/JP4512859B2/en
Publication of JP2001073358A publication Critical patent/JP2001073358A/en
Application granted granted Critical
Publication of JP4512859B2 publication Critical patent/JP4512859B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、杭孔の下端部に形成した根固め部に、既製杭を埋設して基礎杭構造を形成する施工方法に関する。
【0002】
【従来の技術】
既製杭を拡大球根部を有する杭孔内に埋設する拡大根固め工法において、その品質上最も重要な拡大球根部の形成である。
【0003】
従来の施工方法では、杭孔21の軸部22を掘削し続いて軸部22の下端部を拡大して拡大球根部23を掘削し、その後、拡大球根部23内にセメントミルクを注入し、掘削土とセメントミルクとを撹拌・混合しソイルセメント化する方法が取られていた。また他の方法では、杭孔21の下部でセメントミルクを高圧噴射しながら拡大球根部23を併行築造する方法もあった。
【0004】
また、杭孔21の拡大球根部23や軸部22にソイルセメントを充填した場合、通常、杭孔21の上端部は、ソイルセメントを形成せず、泥土層26のままとしてあった。これは、杭孔21の上端部の該泥土層26は、既製杭の降下により地上に溢れて出て回収されるので、杭基礎の品質には影響しないと考えられていた為である。尚、泥土は水分が多いと泥水となっている場合もあった。
【0005】
従って、これらの工法により、杭孔21内には、下からソイルセメント(根固め液)層24、ソイルセメント(杭周固定液)層25、泥土層26が形成され(図11(a))、この中に既製杭27を下降埋設していた(図11(b))。
【0006】
【発明が解決しようとする課題】
前記従来の技術の内、拡大球根部の築造について以下の問題点があった。
【0007】
(1) 拡大球根部において、掘削土と根固め用セメントミルクを混合するため、拡大球根部のソイルセメントの品質が、掘削土の地質に左右され、各杭の支持力がばらつく原因となる問題点があった。
【0008】
(2) また、施工の地盤において、シルト等地質の良くない部分(地層)があると、それが原因で杭基礎の品質が低下する問題点があった。
【0009】
また、前記従来の技術の既製杭27の押し入れ・沈設方法について、既製杭27を杭孔21へ下降させる際に、既製杭27が泥土層26を通過するので、既製杭27の表面に泥土が付着して泥土膜29、29が形成されたままで既製杭27が沈設されていた(図11(b))。従って、ソイルセメントの固化時に既製杭27とソイルセメント層24、25とが十分に一体化されないことがあった。従って、杭基礎の支持力発現時に初期沈下し、支持力が安定しない問題点があった。
【0010】
これは、杭孔下端部を拡大掘削しない杭孔に既製杭を埋設する工法の場合にも同様の問題点が存在していた。
【0011】
【課題を解決するための手段】
然るにこの発明では、底部からセメントミルクを注入し、杭孔下端部(根固め部)内の掘削泥土をセメントミルクに置換するので、また、ソイルセメント層を杭孔のほぼ孔口まで形成するので、前記問題点を解決した。
【0012】
即ちこの発明は、拡大球根部を有する杭孔内に、上下に開放した中空部を有する既製杭を埋設する方法であって、
(1) 既製杭の最大径より大径の杭孔軸部を掘削すると共に該杭孔軸部の下端部に拡底して拡大球根部を掘削する。
(2) 次に、前記杭孔の底部から根固め用のセメントミルクを注入し、セメントミルクの充填に従って、前記拡大球根部内に満たされていた掘削泥土を、比重差を利用して上方に押し上げて、セメントミルクに置換して、セメントミルク層を形成する。
(3) 次に、前記杭孔軸部で杭周固定液用のセメントミルクを注入し、前記杭孔軸部内の掘削泥土をセメントミルクと撹拌混合して杭孔軸部内にソイルセメント層を形成する。前記ソイルセメント層を前記杭孔のほぼ孔口まで形成し、前記杭孔内から泥土層を排除する。
(4) 続いて、前記杭孔内に既製杭を、表面に泥土膜を形成せずに、沈設する。
以上の工程をとることを特徴とした杭孔内への既製杭の埋設方法である。
【0013】
また、この発明は、杭孔内に、上下に開放した中空部を有する既製杭を埋設する方法であって、
(1) 既製杭の最大径より大径の杭孔を掘削する。
(2) 次に、前記杭孔の底部から根固め用のセメントミルクを注入し、セメントミルクの充填に従って、杭孔の下端部内に満たされていた掘削泥土を、比重差を利用して上方に押し上げて、セメントミルクに置換して、セメントミルク層を形成する。
(3) 次に、前記杭孔の中間部及び上部で杭周固定液用のセメントミルクを注入し、前記杭孔中間部及び上部内の掘削泥土をセメントミルクと撹拌混合して杭孔の中間部及び上部内にソイルセメント層を形成する。前記ソイルセメント層を前記杭孔のほぼ孔口まで形成し、前記杭孔内から泥土層を排除する。
(4) 続いて、前記杭孔内に、既製杭を、表面に泥土膜を形成せずに、沈設する。
以上の工程をとることを特徴とした杭孔内への既製杭の埋設方法である。
【0014】
た、既製杭を回転しながら杭孔内に沈設する杭孔内への既製杭の埋設方法である。また、既製杭を異形摩擦杭とした埋設方法である。
【0015】
また、前記において、既製杭を、1つ又は複数の突起を形成した下部軸部の上部であって、前記下部軸部の最上に位置する突起に連続して、前記下部軸部より大径に形成した上部軸部を一体に形成して構成し、前記既製杭を、その下部軸部の最上に位置する突起が、杭穴の拡大球根部内に位置するように埋設したことを特徴とする杭孔内への既製杭の埋設方法である。また、既製杭を、1つ又は複数の突起を形成した下部軸部の上部であって、前記下部軸部の最上に位置する突起に連続して、前記下部軸部より大径に形成した上部軸部を一体に形成して構成し、前記既製杭を、その下部軸部の最上に位置する突起が、杭穴内の根固め用セメントミルクが注入された区間内に位置するように埋設したことを特徴とする杭孔内への既製杭の埋設方法である。更に、既製杭を下杭とその上方に位置する1つ又は複数の上杭とから構成し、前記下杭は、1つ又は複数の突起を形成した下部軸部の上部であって、前記下部軸部の最上に位置する突起に連続して、前記下部軸部より大径に形成した上部軸部を一体に形成して構成し、前記上杭は、前記上部軸部の外径と略同径の外径で形成したことを特徴とする杭孔内への既製杭の埋設方法である。
【0016】
前記におけるソイルセメントとは、例えば軸部径300mm・節部径450mmの杭の場合に、セメント量45kg、水45リットルで、練り上がり量0.05393m 程度(深さ1m当たり)、圧縮強度75kg/cm のセメントミルクを注入し、掘削土等と混合してソイルセメントとして形成する。いかなる配合とするかは、杭基礎全体の所要強度、周辺地盤の強度、既製杭の強度などにより決定される。
【0017】
また、前記における既製杭としては、節杭(異形摩擦杭)一本又は複数の連結、円筒杭の一本又は複数の連結、あるいは、節杭と円筒杭との継ぎ杭その他の異種の継ぎ杭等として、構成することもできる。
【0018】
また、前記における異形摩擦杭とは、外面に突起を有する杭で、例えばいわゆる節杭の他その形状は任意である(図2〜図6、8)。
【0019】
例えば、環状の突起30、30を所定間隔で設けた既製杭10で、環状突起30、30は異なる間隔(図2(a))、又は異なる径の環状突起30、30a、30bとすることもできる(図2(b)(c))。また、環状突起30は軸部と一体成形の他、部分リング状の部材31、31を着脱自在に取り付けて構成した既製杭10とすることもできる(図3(a)(b))。
【0020】
また、環状突起の一部に切り欠き32、32を形成して、放射状の突起33、33を設けた形状の既製杭10とすることもできる(図4(a)(b))。また、切り欠き32の位置を上下で位相を違えて突起33、33を設けた既製杭10とすることもできる(図5(a)(b)(c))。
【0021】
また、突起34を縦に配置した板状として、放射状に配置して既製杭10を形成することもできる(図6(a)(b))。
【0022】
前記における「ソイルセメント層を杭孔のほぼ孔口まで形成する」とは、杭孔の杭孔口付近までソイルセメント層を形成することが望ましいが、構築現場の状況などに応じて、適宜杭孔口より下方位置までとすることも可能である。
【0023】
【発明の実施の形態】
既製杭としての節杭10の最大径より大径の杭孔軸部2を掘削すると共に該杭孔軸部2の下端部を拡底して拡大球根部3を掘削する。
【0024】
次に、杭孔1の底部から根固め用のセメントミルクを注入し、杭孔1の拡大球根部3内に満たされていた掘削泥土をセメントミルクに置換する。次に、杭孔軸部2で杭周固定液用のセメントミルクを注入し、杭孔1の軸部2内の掘削泥土をセメントミルクと撹拌混合して杭孔1の軸部2内のほぼ孔口5までソイルセメント層7を形成する。続いて、杭穴1内に中空部13を上下に開放した節杭10を沈設して、セメントミルク又はソイルセメントの固化により、杭孔球根部及び節杭10の中空部13のセメントミルクが充填され、杭孔の軸部2にソイルセメントが充填された節杭10と一体となった基礎構造体が構築される。
【0025】
【実施例1】
(1) 図1等に基づきこの発明の実施例を説明する。
【0026】
既製杭の径に見合った所定の杭孔1を掘削する。まず、既製杭の外径より大径の円筒状の杭孔を所定の深さまで、掘削土を杭孔内壁に練付けながら又は掘削土を排土しながら、掘削し、その杭孔の下端部を拡大径に掘削して、拡大球根部3とし、杭孔1の拡大球根部3の上方を軸部2とする。この状態で、杭孔1内には掘削土が残っている。
【0027】
次に、泥土化した掘削土の残っている拡大球根部3の最下端(底)4に根固め液としての比重が大きいセメントミルクを注入する。この際セメントミルクの充填に従って、該部の掘削土を杭孔1の上方(杭孔軸部2)に押し上げ、前記拡大球根部3の掘削土をほとんどセメントミルクに置換する。従って、拡大球根部3内にはセメントミルク層6が形成される。
【0028】
ここで、掘削土にシルトなど拡大球根部3のセメントミルクの品質に良くない土泥が存在する場合であっても、これら泥土の比重(1.2〜1.7)は、セメンミルク(比重:1.7以上)より軽く、セメントミルク層6の上方に容易に押し上げられる。また掘削土に比重の大きい砂質や砂れき(比重:2.7〜2.8)が混入している場合は拡大球根部2のセメントミルク内に残るが骨材として作用するので、セメントミルクの品質上何ら問題はなく、高品質なセメント層が形成される。
【0029】
次に、杭孔1の軸部2内に杭周固定液としてのセメントミルクをほぼ杭孔口5まで注入し、セメントミルクと該部の掘削土とを撹拌混合しソイルセメントを生成し、ソイルセメント層7を形成する(図1(a))。この際、ソイルセメント層7とセメントミルク層6とは比重が違うので、両層が混ざることは少ない。
【0030】
次に、節杭10を、ほぼ杭孔口5までソイルセメント層7が形成されている杭孔1に押し入れ、ソイルセメント層7を貫通して、前記節杭10の下端11は拡大球根部3のセメントミルク層6内に位置させる。ここで、節杭10は中空部13が上下に開放し、外壁12に所定長さ毎に節14、14を有する。
【0031】
節杭10を沈設する際に、杭孔1内には泥土層がないので、節杭10の全面(外面、中空部内面)で、泥土が付着しない。よって、節杭10の表面には泥土膜が形成されず、セメントミルク層又はソイルセメント層が直接に接触している。
【0032】
また、杭孔1の拡大球根部3及び軸部2の下端部の内壁と、節杭10の外壁との間隙には、セメントミルク層6が形成されており、前記セメントミルク層6の上方の杭孔1の軸部2の内壁と前記節杭10の外壁との間隙には、ソイルセメント層7が形成される。また、節杭10の中空部13には、杭孔1のソイルセメント層7の通過に従いソイルセメントが充填されるが、その後、拡大球根部のセメントミルク層6内を通過するに従い、中空部には下端11からセメントミルクが充填され、中空部上端から比重の軽いソイルセメントを押し出し、最終的には中空部には杭外周部より圧縮強度の大きいソイルセメント層8が形成される(図1(b))。
【0033】
セメントミルク及びソイルセメントが固化し強度を発現することにより、杭孔1内で、節杭10とソイルセメント層7、8、セメントミルク層6とが一体となった基礎杭構造体16を構成する(図1(b))。従って、セメントミルク層6、ソイルセメント層7、8は外周部の地盤より圧縮強度がより大きく形成されるので、鉛直支持力の安定化と共に水平支持力も強化されている。
【0034】
前記のように、地盤が強化されるので、本発明の工法は、シルト(一般に粒径0.005〜0.074mm程度)及び粘土(一般に粒径0.005mm以下)が主成分の地盤(圧縮強度の良くない地盤)の施工において特に有効である。
【0035】
(2)他の実施例−1
前記実施例において、施工条件などの理由により、杭沈設前の杭孔内に若干の泥水帯が介在する場合であっても、杭孔1内のほぼ全深さで、ソイルセメント層又はセメントミルク層が形成されている為に特に影響がないが、節杭10に付着する泥水膜を完全に除去する為には、節杭10を回転しながら沈設する等することにより、杭周部等に付着した泥水をソイルセメント内に飛散させることができる。更に、節杭10を回転させながら下降することにより、節杭10の節14、14の下端部などに点在する気泡を消滅させることもできる。
【0036】
(3)他の実施例−2
また、前記実施例において、既製杭として中空部が上下に開放した節杭を使用したので、効果が最も顕著に現れるが、中空部を封鎖した又は中空部を有さない節杭の他、円筒杭、鋼管杭などその他の既製杭の単独又は組合せで使用することもできる。また、中空部を有する既製杭の場合には、更に水平支持力の向上にも有効である。
【0037】
(4)他の実施例−3
また、前記実施例において、軸部の外径が上下位置で異なる他の既製杭35を使用することもできる。
【0038】
既製杭35は、下部軸部36が、外径400mm、軸部肉厚65mmで形成され、前記下部軸部36の下端部及び中間部に、外径550mmの環状突起38、環状突起38a(最上に位置する突起)が2つ形成されている。また、下部軸部36の最上の環状突起38aに連続して、前記下部軸部36より大径の上部軸部37(外径500mm、軸部肉厚115mm)が形成されている(図8(a))。
【0039】
続いて、軸部2(径580mm)、拡大球根部3(径800mm、拡大球根部長2500mm)で、杭孔1を掘削し、杭孔1内で拡大球根部3内に同様にセメントミルク層6、ソイルセメント層7を形成する(図1(a))。続いて、杭孔1内に既製杭35を、杭孔1の拡大球根部3内に下部軸部36の最上の環状突起38aが位置するように埋設する。このとき、既製杭35の下端面39と拡大球根部底部3の最下端(底)4とは高さH( =500mm)、下部軸部36の最上に位置する環状突起38aと拡大球根部3の上端部3aとが高さH( =500mm)に位置するように埋設する。即ち、下部軸部36の最上に位置する環状突起38aが杭孔1の拡大球根部3内に位置することに伴い、上部軸部37の下端部37aも拡大球根部3内に位置することになる。また、既製杭35の埋設にともない、セメントミルク層6の上面は、上昇し、杭孔1の拡大球根部3内及び軸部2の下部がセメントミルク層6となっている(図9(a))。
【0040】
これによって、セメントミルク層6が形成されている拡大球根部3内に、下部軸部36よりも大径の上部軸部37の下端部37aが埋設され、セメントミルクとの付着面積が増大し、ソイルセメント層7が形成された杭孔1の軸部2においても、下部軸部36より大径の上部軸部37が埋設されることによって、ソイルセメント層7との付着面積が増大する。
【0041】
例えば、比較用既製杭として、上部軸部37の外径を下部軸部36と同一の軸部外径400mm、軸部肉厚65mmで、下端部及び中間部に環状突起38、38(外径550mm)を2つ有する既製杭を形成する。この比較用既製杭を上記と同じ掘削径(軸部2の外径580mm、拡大球根部3の外径800mm、拡大球根部の深さ2500mm)の杭孔1に埋設した場合を比べると、前記既製杭35では、比較用既製杭に比べて約1.2倍の付着面積が得られ、水平支持力の向上と安定性が強化される。
【0042】
また、必要に応じて上部軸部37にも、下部軸部36の環状突起38と略同径の環状突起41を設けて既製杭35とすることもできる(図8(b)。この場合も前記同様に、拡大球根部3を有する杭孔1に埋設すれば、さらに付着面積が増大し、上部軸部37の環状突起41による支圧力が付与される。
【0043】
また、複数の既製杭を連結する連結杭構造とする場合には、下部軸部36と該下部軸部36より大径の上部軸部37を有し、少なくとも下部軸部36に環状突起38を形成した既製杭35を下杭として使用し、その上部に上杭として他の既製杭42(図8(a)(b)鎖線図示42)の1つ又は複数本を連結して、既製杭とする(図示していない)。この場合、既製杭42は、上部軸部37の外径と略同径で、下杭と連結できれば、PHC杭、PRC杭、SC杭、節杭、鋼管杭等その種類は問わない。連結杭構造とすることによって、長尺杭となった場合であっても、杭孔1の全長に亘って連結杭との付着面積を増大させることができる(図示していない)。
【0044】
上記のような既製杭35を使用して、環状突起38を拡大球根部3内に位置するように埋設する効果としては、拡大球根部3でのセメントミルクとの付着面積を増大させ、良好な付着状態を維持させることにより、拡大球根部3内での支持力を向上・安定化させ、かつ下部軸部36から上部軸部37へと移行する部分の補強も併せて実現できるだけでなく、杭孔1の軸部2全長に亘ってソイルセメント層7との付着面積を増大させることによって、杭周面支持力を向上させて、基礎杭構造全体としての鉛直支持力及び引抜力を従来比約1.2倍に強化できる。
【0045】
また、拡大球根部3に上部軸部37の下端部を埋設してセメントミルクとの付着面積を増大したことによる拡大球根部3内での支持力の増加に伴い、上部軸部37を下部軸部36より大径に形成して杭孔1の軸部2全長に亘ってソイルセメント層7との付着を増大させたことによって、従来比約2倍の曲げモーメント力が得られ、地震等の過大な曲げモーメントが作用した際にも十分に耐え得ることができる。
【0046】
尚、この実施例で、セメントミルク等の付着を増すために、環状突起38の外径を拡大しないのは、杭孔1の軸部2の外径をさらに大きい径に掘削しないためである。また、セメントミルク等の付着を増すために、下部軸部36の外径を拡大せず、上部軸部37のみを大径としたのは、最も支持力の発現が期待される拡大球根部3内での環状突起38、38からの支圧力を確保しつつ、かつ付着力の拡大を図ったためである。杭全長に亘って軸部を大径とした場合には、軸部表面から環状突起38の先端までの高さが、既製杭の全長に亘って低くなってしまい、支圧力の低下を招くことになる。
【0047】
【実施例2】
(1) 図7等に基づきこの発明の実施例を説明する。
【0048】
前記実施例1は杭孔1の下端部を拡大掘削して根固め部に拡大球根部を形成したので、より強固な基礎構造体を構築できるが、この実施例2では、杭孔1の下端部を拡大掘削しないが、実施例1と同様な方法により強固な根固め部を形成でき、従来の問題点を解決できる。
【0049】
既製杭の径に見合った所定の杭孔1を掘削する。まず、既製杭の外径より大径の円筒状の杭孔1を所定の深さまで、掘削土を杭孔壁に練付ながら又は掘削土を排土しながら掘削する。この状態で、杭孔1内には泥土化した掘削土が残っている。
【0050】
次に、掘削土の残っている杭孔1の最下端(底)4に根固め液としての比重が大きいセメントミルクを注入する。この際セメントミルクの充填に従って、杭孔1の下端部の掘削土を杭孔1の上方(杭孔1の中間部及び上部)に押し上げ、下端部の掘削土をほとんどセメントミルクに置換する。従って、杭孔1の下端部内にはセメントミルク層6が形成される。
【0051】
ここで、掘削土にシルトなど杭孔1の下端部のセメントミルクの品質に良くない土泥が存在する場合であっても、これら泥土の比重(1.2〜1.7)は、セメンミルク(比重:1.7以上)より軽く、セメントミルク層6の上方に容易に押し上げられる。また掘削土に比重の大きい砂質や砂れき(比重:2.7〜2.8)が混入している場合は杭孔1の下端部のセメントミルク内に残るが骨材として作用するので、セメントミルクの品質上何ら問題はなく、高品質なセメントミルク層が形成される。
【0052】
次に、杭孔1の中間部及び上部内に杭周固定液としてのセメントミルクをほぼ杭孔口5まで注入し、セメントミルクと該部の掘削土とを撹拌混合しソイルセメントを生成し、ソイルセメント層7を形成する(図7(a))。この際、ソイルセメント層7とセメントミルク層6とは比重が違うので、両層が混ざることは少ない。
【0053】
次に、節杭10を、ほぼ杭孔口5までソイルセメント層7が形成されている杭孔1に押し入れ、ソイルセメント層7を貫通して、前記節杭10の下端11は杭孔1の下端部のセメントミルク層6内に位置させる。ここで、節杭10は中空部13が上下に開放し、外壁12に所定長さ毎に節14、14を有する。
【0054】
節杭10を沈設する際に、杭孔1内には泥土層がないので、節杭10の全面(外面、中空部内面)で、泥土が付着しない。よって、節杭10の表面には泥土膜が形成されず、セメントミルク層又はソイルセメント層が直接に接触している。
【0055】
また、杭孔1の下端部及び中間部(下側)の内壁と、節杭10の外壁との間隙には、セメントミルク層6が形成されており、前記セメントミルク層6の上方の杭孔1の中間部(上側)及び上部の内壁と前記節杭10の外壁との間隙には、ソイルセメント層7が形成される。また、節杭10の中空部13には、杭孔1のソイルセメント層7の通過に従いソイルセメントが充填されるが、その後、下端部のセメントミルク層6内を通過するに従い、中空部には下端11からセメントミルクが充填され、中空部上端から比重の軽いソイルセメントを押し出し、最終的には中空部には杭外周部より圧縮強度の大きいソイルセメント層8が形成される(図7(b))。
【0056】
セメントミルク及びソイルセメントが固化し強度を発現することにより、杭孔1内で、節杭10とソイルセメント層7、8、セメントミルク層6とが一体となった基礎杭構造体16を構成する(図7(b))。従って、セメントミルク層6、ソイルセメント層7、8は外周部の地盤より圧縮強度がより大きく形成されるので、鉛直支持力の安定化と共に水平支持力も強化されている。
【0057】
前記のように、地盤が強化されるので、前記実施例1と同様に、シルト(一般に粒径0.005〜0.074mm程度)及び粘土(一般に粒径0.005mm以下)が主成分の地盤(圧縮強度の良くない地盤)の施工において特に有効である。
【0058】
(2)他の実施例−1
前記実施例において、施工条件などの理由により、杭沈設前の杭孔内に若干の泥水帯が介在する場合であっても、杭孔1内のほぼ全深さで、ソイルセメント層又はセメントミルク層が形成されている為に特に影響がないが、節杭10に付着する泥水膜を完全に除去する為には、実施例1と同様に、節杭10を回転しながら沈設する等することにより、杭周部等に付着した泥水をソイルセメント内に飛散させることができる。更に、節杭10を回転させながら下降することにより、節杭10の節14及びその節杭10の下端部などに点在する気泡を消滅させることもできる。
【0059】
(3)他の実施例−2
また、前記実施例において、既製杭として中空部が上下に開放した節杭を使用したので、効果が最も顕著に現れるが、実施例1と同様に、中空部を封鎖した又は中空部を有さない節杭の他、円筒杭、鋼管杭などその他の既製杭の単独又は組合せで使用することもできる。また、中空部を有する既製杭の場合には、更に水平支持力の向上にも有効である。
【0060】
(4)他の実施例−3
また、前記実施例において、軸部の外径が上下位置で異なる他の既製杭35を使用することもできる。
【0061】
既製杭35は、下部軸部36が、外径400mm、軸部肉厚65mmで形成され、前記下部軸部36の下端部及び中間部に、外径550mmの環状突起38、環状突起38a(最上に位置する突起)が2つ形成されている。また、下部軸部36の最上の環状突起38aに連続して、前記下部軸部36より大径の上部軸部37(外径500mm、軸部肉厚115mm)が形成されている(図8(a))。
【0062】
続いて、径580mmで、杭孔1を掘削し、同様に、杭孔1内の下部にセメントミルク層(根固め液層)6、上部にソイルセメント層7を形成する(図7(a))。続いて、杭孔1内に既製杭35を、杭孔1のセメントミルク層6内に下部軸部36の最上の環状突起38aが位置するように埋設する。このとき、既製杭35の下端面39が、杭孔1の最下端(底)4から高さH( =500mm)に位置するように埋設する。即ち、下部軸部36の最上に位置する環状突起38aが杭孔1のセメントミルク層6内に位置することに伴い、上部軸部37の下端部37aもセメントミルク層6内に位置することになる(図10(a))。
【0063】
これによって、杭孔1のセメントミルク層6内に、下部軸部36よりも大径の上部軸部37の下端部37aが埋設され、セメントミルクとの付着面積が増大し、ソイルセメント層7が形成された杭孔1においても、下部軸部36より大径の上部軸部37が埋設されることによって、ソイルセメント層7との付着面積が増大する。
【0064】
例えば、比較用既製杭として、上部軸部37の外径を下部軸部36と同一の軸部外径400mm、軸部肉厚65mmで、下端部及び中間部に環状突起38、38(外径550mm)を2つ有する既製杭を形成する。この比較用既製杭を上記と同じ掘削径(軸部2の外径580mm)の杭孔1に埋設した場合を比べると、前記既製杭35では、比較用既製杭に比べて約1.2倍の付着面積が得られ、水平支持力の向上と安定性が強化される。
【0065】
また、必要に応じて上部軸部37にも、下部軸部36の環状突起38と略同径の環状突起41を設けて既製杭35とすることもできる(図8(b)。この場合も前記同様に、杭孔1のソイルセメント層7内に埋設すれば、さらに付着面積が増大し、上部軸部37の環状突起41による支圧力が付与される。
【0066】
また、複数の既製杭を連結する連結杭構造とする場合には、下部軸部36と該下部軸部36より大径の上部軸部37を有し、少なくとも下部軸部36に環状突起38を形成した既製杭35を下杭として使用し、その上部に上杭として他の既製杭42(図8(a)(b)鎖線図示42)の1つ又は複数本を連結して、既製杭とする(図示していない)。この場合、既製杭42は、上部軸部37の外径と略同径で、下杭と連結できれば、PHC杭、PRC杭、SC杭、節杭、鋼管杭等その種類は問わない。連結杭構造とすることによって、長尺杭となった場合であっても、杭孔1の全長に亘って連結杭との付着面積を増大させることができる(図示していない)。
【0067】
上記のような既製杭35を使用して、環状突起38をセメントミルク層6内に位置するように埋設する効果としては、セメントミルク層6内でのセメントミルクとの付着面積を増大させ良好な付着状態を維持させることによって、セメントミルク層6内での支持力を向上・安定化させ、かつ下部軸部36から上部軸部37へと移行する部分の補強も併せて実現できるだけでなく、杭孔1の全長に亘ってソイルセメント層7との付着面積を増大させることによって、杭周面支持力を向上させて、基礎杭構造全体としての鉛直支持力及び引抜力を従来比約1.2倍に強化できる。
【0068】
また、セメントミルク層6内に上部軸部37の下端部を埋設してセメントミルクとの付着面積を増大したことによるセメントミルク層6内での支持力の増加に伴い、上部軸部37を下部軸部36より大径に形成して杭孔1の軸部2全長に亘ってソイルセメント層7との付着を増大させたことによって、従来比約2倍の曲げモーメント力が得られ、地震等の過大な曲げモーメントが作用した際にも十分に耐え得ることができる。
【0069】
尚、この実施例で、セメントミルク等の付着を増すために、環状突起38の外径を拡大しないのは、杭孔1の外径をさらに大きい径に掘削しないためである。また、セメントミルク等の付着を増すために、下部軸部36の外径を拡大せず、上部軸部37のみを大径としたのは、最も支持力の発現が期待されるセメントミルク層6内での環状突起38、38からの支圧力を確保しつつ、かつ付着力の拡大を図ったためである。既製杭の全長に亘って軸部を大径とした場合には、軸部表面から環状突起38の先端までの高さが、杭全長に亘って低くなってしまい、支圧力の低下を招くことになる。
【0070】
【発明の効果】
本発明による既製杭の埋設施工において、品質の確かな根固め部が得られるので各杭の鉛直支持力のばらつきが減少し、安定化する。とりわけ、根固め部を拡大掘削して拡大球根部とした場合には、その効果が顕著に得られる。また、施工後の支持力発現時における初期沈下(1〜2mm)を改善でき、鉛直支持力が安定化する。
【0071】
また、本杭は、杭の中空部も含めて圧縮強度の大きいセメントミルク又はソイルセメントが充填された固化体の複合体として構成されているので、杭の水平支持力に関しても杭自身の設計上の曲げモーメント値に対し、実測値としては約1.5倍の値が得られている。従って、耐震性能も同様に期待できる。
【0072】
また、上下に開放した中空部を有する既製杭を使用した場合には、その杭下端部が閉鎖されないで、開放されており、杭の沈設時に杭の中空部にソイルセメントが充填され、有効利用されている。従って、杭の沈設時に、セメントミルクが溢れ、廃棄される量も少なく経済的な工法となっている。
【0073】
尚、既製杭として、上下両端部が封鎖された既製杭を使用した場合であっても、初期沈下防止及び鉛直支持力の安定化の効果は同様に得られる。
【0074】
また、本発明の工法は、シルト及び粘土が主成分の地盤(圧縮強度の良くない地盤)の施工において特に有効である。
【0075】
また、拡大球根部に杭の突起部を埋め込んだ高支持力の基礎構造体においては、品質及び信頼性の両面に関し特に有効である。
【図面の簡単な説明】
【図1】この発明の実施例1で、(a)は既製杭埋設前の杭孔の縦断面図、(b)は既製杭埋設後の杭孔の縦断面図である。
【図2】この発明の実施例に使用する異形摩擦杭で、(a)は環状突起を異なる間隔で設けた杭の正面図、(b)は異なる径の環状突起とした杭の正面図、(c)は同じく平面図である。
【図3】同じく異形摩擦杭で、(a)は環状突起を着脱可能とした杭の平面図、(b)は正面図である。
【図4】同じく異形摩擦杭で、(a)は放射状の突起とした杭の正面図、(b)は(a)のA−A線における断面図である。
【図5】同じく異形摩擦杭で、(a)は放射状の突起を位相を違えて設けた杭の正面図、(b)は(a)のB−B線における断面図、(c)は(a)のC−C線における断面図である。
【図6】同じく異形摩擦杭で、(a)は板状の突起を放射状に設けた杭の正面図、(b)は(a)のD−D線における断面図である。
【図7】この発明の実施例2で、(a)は既製杭埋設前の杭孔の縦断面図、(b)は既製杭埋設後の杭孔の縦断面図である。
【図8】(a)(b)は、この発明の実施に使用する他の既製杭である。
【図9】(a)(b)は、図8の既製杭を埋設した実施例1の杭孔の縦断面図である。
【図10】(a)(b)は、図8の既製杭を埋設した実施例2の杭孔の縦断面図である。
【図11】従来例で、(a)は既製杭埋設前の杭孔の縦断面図、(b)は既製杭埋設後の杭孔の縦断面図である。
【符号の説明】
1 杭孔
2 杭孔の軸部
3 杭孔の拡大球根部
4 杭孔の底
5 杭孔口
6 セメントミルク層
7 ソイルセメント層
8 ソイルセメント層
10 節杭(既製杭)
11 節杭の下端
12 節杭の外壁
13 節杭の中空部
14 節杭の節
16 基礎構造体
21 杭孔(従来例)
22 杭孔の軸部(従来例)
23 杭孔の拡大球根部(従来例)
24 ソイルセメント(根固め液)層(従来例)
25 ソイルセメント(杭周固定液)層(従来例)
26 泥土層(従来例)
27 既製杭(従来例)
28 既製杭の中空部(従来例)
29 泥土膜(従来例)
30 環状突起
33 放射状の突起
34 放射状の突起
35 既製杭
36 下部軸部
37 上部軸部
38 環状突起
38a 下部軸部の最上に位置する環状突起
39 既製杭の下端
41 上部軸部の環状突起
42 既製杭(上杭)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a construction method for forming a foundation pile structure by burying a ready-made pile in a root consolidation portion formed at a lower end portion of a pile hole.
[0002]
[Prior art]
This is the formation of the enlarged bulb part which is the most important in terms of quality in the enlarged root consolidation method in which the ready-made pile is embedded in the pile hole having the enlarged bulb part.
[0003]
In the conventional construction method, the shaft portion 22 of the pile hole 21 is excavated, then the lower end portion of the shaft portion 22 is expanded to expand the expanded bulb portion 23, and then cement milk is injected into the expanded bulb portion 23, A method of stirring and mixing excavated soil and cement milk to form a soil cement has been used. As another method, there is a method in which the enlarged bulb portion 23 is built in parallel while jetting cement milk at a lower portion of the pile hole 21 at a high pressure.
[0004]
In addition, when the expanded bulb portion 23 and the shaft portion 22 of the pile hole 21 are filled with soil cement, usually the upper end portion of the pile hole 21 does not form the soil cement and remains the mud layer 26. This is because the mud layer 26 at the upper end of the pile hole 21 overflows and is recovered on the ground due to the descent of the ready-made piles, and is considered not to affect the quality of the pile foundation. In some cases, the mud became muddy water with a lot of water.
[0005]
Therefore, by these methods, a soil cement (solidification liquid) layer 24, a soil cement (pile circumference fixing liquid) layer 25, and a mud layer 26 are formed in the pile hole 21 from below (FIG. 11 (a)). In this, the ready-made pile 27 was laid down (FIG. 11 (b)).
[0006]
[Problems to be solved by the invention]
Among the prior arts described above, there were the following problems regarding the construction of the enlarged bulb part.
[0007]
(1) In the expanded bulb part, since the excavated soil and cement milk for root consolidation are mixed, the quality of the soil cement in the enlarged bulb part depends on the geology of the excavated soil and causes a problem that the bearing capacity of each pile varies. There was a point.
[0008]
(2) In addition, there was a problem that the quality of the pile foundation deteriorated due to the poor geology such as silt in the construction ground.
[0009]
Moreover, when the ready-made pile 27 is lowered into the pile hole 21, the ready-made pile 27 passes through the mud layer 26 when the ready-made pile 27 is pushed in and placed in the conventional technique. The ready-made pile 27 was laid down with the mud mud films 29 and 29 formed thereon (FIG. 11 (b)). Therefore, when the soil cement is solidified, the ready-made pile 27 and the soil cement layers 24 and 25 may not be sufficiently integrated. Therefore, there was a problem that the bearing capacity was not stable due to initial settlement when the bearing capacity of the pile foundation was developed.
[0010]
The same problem also existed in the case of a method of burying a ready-made pile in a pile hole where the lower end of the pile hole is not expanded and excavated.
[0011]
[Means for Solving the Problems]
However, in this invention, cement milk is injected from the bottom, and the excavation mud in the lower end of the pile hole (root consolidation part) is replaced with cement milk. The above problems were solved.
[0012]
In other words, the present invention, in a pile hole having an enlarged bulb portion, Opened up and down It is a method of burying a ready-made pile having a hollow part,
(1) Excavate a pile hole shaft portion having a diameter larger than the maximum diameter of a ready-made pile, and expand the bottom of the pile hole shaft portion to excavate an enlarged bulb portion.
(2) Next, inject cement milk for consolidation from the bottom of the pile hole. According to cement milk filling The excavation mud filled in the enlarged bulb part, using the specific gravity difference Push it up Replaced with cement milk And form a cement milk layer To do.
(3) Next, cement milk for pile circumference fixing liquid is injected at the pile hole shaft, and the excavation mud in the pile hole shaft is agitated and mixed with cement milk to form a soil cement layer in the pile hole shaft. To do. The soil cement layer is formed up to the hole opening of the pile hole, and the mud layer is removed from the pile hole.
(4) Subsequently, a ready-made pile is set in the pile hole without forming a mud film on the surface.
This is a method for burying a ready-made pile in a pile hole, characterized by taking the above steps.
[0013]
In addition, this invention, in the pile hole, Opened up and down It is a method of burying a ready-made pile having a hollow part,
(1) Excavate a hole with a diameter larger than the maximum diameter of the ready-made pile.
(2) Next, inject cement milk for consolidation from the bottom of the pile hole. According to cement milk filling Excavation mud filled in the lower end of the pile hole, using the specific gravity difference Push it up Replaced with cement milk And form a cement milk layer To do.
(3) Next, injecting cement milk for pile periphery fixing liquid at the middle and upper part of the pile hole, stirring and mixing the excavated mud in the middle and upper part of the pile hole with the cement milk, A soil cement layer is formed in the part and the upper part. The soil cement layer is formed up to the hole opening of the pile hole, and the mud layer is removed from the pile hole.
(4) Subsequently, a ready-made pile is set in the pile hole without forming a mud film on the surface.
This is a method for burying a ready-made pile in a pile hole, characterized by taking the above steps.
[0014]
Ma Moreover, it is a method of burying the ready-made pile in the pile hole that is set in the pile hole while rotating the ready-made pile. Moreover, it is the embedding method which used the ready-made pile as the deformed friction pile.
[0015]
Further, in the above, the ready-made pile is an upper part of the lower shaft part on which one or a plurality of protrusions are formed, and is continuous with the protrusion positioned at the top of the lower shaft part, and has a larger diameter than the lower shaft part. Pile characterized in that the formed upper shaft portion is integrally formed, and the ready-made pile is embedded so that the protrusion located at the top of the lower shaft portion is located in the enlarged bulb portion of the pile hole It is a method of burying ready-made piles in the hole. Further, the pre-made pile is the upper part of the lower shaft part in which one or a plurality of protrusions are formed, and the upper part is formed in a larger diameter than the lower shaft part continuously with the protrusion located at the top of the lower shaft part. The shaft part is formed integrally, and the ready-made pile is embedded so that the protrusion located at the top of the lower shaft part is located in the section into which the cement milk for root consolidation in the pile hole is injected. This is a method of burying ready-made piles in a pile hole. Furthermore, the ready-made pile is composed of a lower pile and one or more upper piles positioned above the lower pile, and the lower pile is an upper part of a lower shaft portion in which one or more protrusions are formed, An upper shaft portion having a larger diameter than the lower shaft portion is formed integrally with the protrusion located at the top of the shaft portion, and the upper pile is substantially the same as the outer diameter of the upper shaft portion. It is a method for burying a ready-made pile in a pile hole, characterized by being formed with an outer diameter of the diameter.
[0016]
The soil cement in the above is, for example, a pile having a shaft diameter of 300 mm and a node diameter of 450 mm, with a cement amount of 45 kg, water of 45 liters, and a kneading amount of 0.05393 m 3 Degree (per 1 m depth), compressive strength 75 kg / cm 2 The cement milk is poured and mixed with excavated soil to form soil cement. The composition of the pile is determined by the required strength of the entire pile foundation, the strength of the surrounding ground, the strength of the ready-made pile, and the like.
[0017]
In addition, as the ready-made piles described above, one or a plurality of joint piles (deformed friction piles), one or a plurality of joints of cylindrical piles, or a joint pile between a joint pile and a cylindrical pile, or other dissimilar joint piles And so on.
[0018]
Moreover, the irregular-shaped friction pile in the above is a pile which has a processus | protrusion on the outer surface, for example, the shape other than what is called a node pile is arbitrary (FIGS. 2-6).
[0019]
For example, in the ready-made pile 10 in which the annular protrusions 30 and 30 are provided at a predetermined interval, the annular protrusions 30 and 30 may be different intervals (FIG. 2A) or annular protrusions 30, 30a, and 30b having different diameters. (FIGS. 2B and 2C). Moreover, the annular protrusion 30 can also be made into the ready-made pile 10 comprised by attaching the ring-shaped members 31 and 31 so that attachment or detachment is possible other than integral molding with the axial part (FIG. 3 (a) (b)).
[0020]
Moreover, it can also be set as the ready-made pile 10 of the shape which formed the notches 32 and 32 in a part of annular protrusion, and provided the radial protrusions 33 and 33 (FIG. 4 (a) (b)). Moreover, it can also be set as the ready-made pile 10 which provided the processus | protrusions 33 and 33 by changing the phase of the notch 32 up and down (FIG. 5 (a) (b) (c)).
[0021]
Moreover, the ready-made pile 10 can also be formed by arrange | positioning radially as a plate shape which has arrange | positioned the protrusion 34 vertically (FIG. 6 (a) (b)).
[0022]
In the above description, “to form the soil cement layer almost to the hole opening of the pile hole” is preferably to form the soil cement layer to the vicinity of the pile hole opening of the pile hole. It is also possible to extend from the hole to a lower position.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
The pile hole shaft portion 2 having a diameter larger than the maximum diameter of the joint pile 10 as a ready-made pile is excavated, and the lower end portion of the pile hole shaft portion 2 is expanded to excavate the enlarged bulb portion 3.
[0024]
Next, cement milk for consolidation is injected from the bottom of the pile hole 1, and the excavated mud filled in the enlarged bulb portion 3 of the pile hole 1 is replaced with cement milk. Next, cement milk for pile circumference fixing liquid is injected at the pile hole shaft portion 2, and the excavated mud in the shaft portion 2 of the pile hole 1 is agitated and mixed with the cement milk, so that it is substantially within the shaft portion 2 of the pile hole 1. A soil cement layer 7 is formed up to the hole opening 5. Subsequently, the pile pile 1 in which the hollow portion 13 is opened up and down is set in the pile hole 1, and cement milk in the pile hole bulb portion and the hollow portion 13 of the joint pile 10 is filled by cement milk or soil cement solidification. Thus, a foundation structure integrated with the joint pile 10 in which the shaft portion 2 of the pile hole is filled with soil cement is constructed.
[0025]
[Example 1]
(1) An embodiment of the present invention will be described with reference to FIG.
[0026]
A predetermined pile hole 1 corresponding to the diameter of the ready-made pile is excavated. First, drill a cylindrical pile hole with a diameter larger than the outer diameter of the ready-made pile to a predetermined depth, while kneading the excavated soil to the inner wall of the pile hole or discharging the excavated soil, and lower end of the pile hole Is drilled to an enlarged diameter to obtain an enlarged bulb portion 3, and an upper portion of the enlarged bulb portion 3 of the pile hole 1 is designated as a shaft portion 2. In this state, excavated soil remains in the pile hole 1.
[0027]
Next, cement milk having a large specific gravity as a root hardening liquid is injected into the lowermost end (bottom) 4 of the enlarged bulb portion 3 where the excavated soil that has become mud remains. At this time, according to the filling of the cement milk, the excavated soil of the portion is pushed up above the pile hole 1 (the pile hole shaft portion 2), and the excavated soil of the enlarged bulb portion 3 is almost replaced with cement milk. Accordingly, a cement milk layer 6 is formed in the enlarged bulb portion 3.
[0028]
Here, even if there is soil mud such as silt that is not good in the quality of cement milk in the expanded bulb part 3, the specific gravity (1.2 to 1.7) of these mud soil is cement milk (specific gravity: 1.7 or more) Lighter and easily pushed up above the cement milk layer 6. If the excavated soil contains sand or gravel with a high specific gravity (specific gravity: 2.7 to 2.8), it remains in the cement milk of the enlarged bulb 2 but acts as an aggregate. There is no problem in quality, and a high-quality cement layer is formed.
[0029]
Next, cement milk as a pile circumference fixing liquid is poured into the shaft hole 2 of the pile hole 1 up to the pile hole mouth 5, and the cement milk and the excavated soil in the part are stirred and mixed to produce a soil cement. A cement layer 7 is formed (FIG. 1A). At this time, since the specific gravity of the soil cement layer 7 and the cement milk layer 6 is different, the two layers are rarely mixed.
[0030]
Next, the joint pile 10 is pushed into the pile hole 1 in which the soil cement layer 7 is formed almost to the pile hole mouth 5 and penetrates the soil cement layer 7 so that the lower end 11 of the joint pile 10 is the expanded bulb portion 3. In the cement milk layer 6. Here, the joint pile 10 has a hollow portion 13 opened up and down, and the outer wall 12 has nodes 14 and 14 for each predetermined length.
[0031]
When the joint pile 10 is laid down, there is no mud layer in the pile hole 1, so mud does not adhere to the entire surface of the joint pile 10 (outer surface, inner surface of the hollow portion). Therefore, no mud film is formed on the surface of the joint pile 10, and the cement milk layer or the soil cement layer is in direct contact.
[0032]
Further, a cement milk layer 6 is formed in a gap between the enlarged bulb portion 3 of the pile hole 1 and the inner wall of the lower end portion of the shaft portion 2 and the outer wall of the joint pile 10, and above the cement milk layer 6. A soil cement layer 7 is formed in the gap between the inner wall of the shaft portion 2 of the pile hole 1 and the outer wall of the joint pile 10. In addition, the hollow portion 13 of the joint pile 10 is filled with the soil cement according to the passage of the soil cement layer 7 of the pile hole 1, but then, as the hollow portion 13 passes through the cement milk layer 6 of the enlarged bulb portion, the hollow portion 13 Is filled with cement milk from the lower end 11, and a soil cement having a light specific gravity is extruded from the upper end of the hollow portion, and finally, a soil cement layer 8 having a compressive strength higher than that of the outer peripheral portion of the pile is formed in the hollow portion (FIG. 1 ( b)).
[0033]
When the cement milk and the soil cement are solidified and exhibit strength, a foundation pile structure 16 in which the joint pile 10, the soil cement layers 7 and 8, and the cement milk layer 6 are integrated is formed in the pile hole 1. (FIG. 1 (b)). Accordingly, since the cement milk layer 6 and the soil cement layers 7 and 8 are formed to have a compressive strength larger than that of the ground at the outer peripheral portion, the horizontal supporting force is strengthened together with the stabilization of the vertical supporting force.
[0034]
Since the ground is strengthened as described above, the construction method of the present invention is based on the ground (compressed) mainly composed of silt (generally about 0.005 to 0.074 mm particle size) and clay (generally 0.005 mm or less particle size). This is particularly effective in the construction of ground with poor strength.
[0035]
(2) Other embodiment-1
In the said Example, even if it is a case where some muddy water zones intervene in the pile hole before pile laying for reasons, such as construction conditions, it is soil cement layer or cement milk in the full depth in the pile hole 1. There is no particular effect because the layer is formed, but in order to completely remove the muddy water film adhering to the joint pile 10, by setting the joint pile 10 while rotating it, The adhering muddy water can be scattered in the soil cement. Furthermore, by lowering the joint pile 10 while rotating, the bubbles scattered at the lower ends of the joints 14 and 14 of the joint pile 10 can be eliminated.
[0036]
(3) Other embodiment-2
Further, in the above-mentioned embodiment, since a joint pile having a hollow portion opened up and down is used as a ready-made pile, the effect is most noticeable, but in addition to a joint pile having a hollow portion sealed or having no hollow portion, a cylinder It can also be used alone or in combination with other ready-made piles such as piles and steel pipe piles. Moreover, in the case of the ready-made pile which has a hollow part, it is effective also in the improvement of a horizontal supporting force.
[0037]
(4) Other embodiment-3
Moreover, in the said Example, the other ready-made pile 35 from which the outer diameter of an axial part differs in an up-down position can also be used.
[0038]
The ready-made pile 35 has a lower shaft portion 36 having an outer diameter of 400 mm and a shaft portion thickness of 65 mm, and an annular protrusion 38 and an annular protrusion 38a (the uppermost portion) having an outer diameter of 550 mm at the lower end portion and the middle portion of the lower shaft portion 36. Two projections) are formed. Further, an upper shaft portion 37 (outer diameter 500 mm, shaft portion thickness 115 mm) larger in diameter than the lower shaft portion 36 is formed continuously with the uppermost annular protrusion 38a of the lower shaft portion 36 (FIG. 8 ( a)).
[0039]
Subsequently, the pile hole 1 is excavated with the shaft portion 2 (diameter 580 mm) and the enlarged bulb portion 3 (diameter 800 mm, enlarged bulb length 2500 mm), and the cement milk layer 6 is similarly formed in the enlarged bulb portion 3 within the pile hole 1. Then, a soil cement layer 7 is formed (FIG. 1A). Subsequently, the ready-made pile 35 is embedded in the pile hole 1 so that the uppermost annular protrusion 38 a of the lower shaft portion 36 is positioned in the enlarged bulb portion 3 of the pile hole 1. At this time, the lower end surface 39 of the ready-made pile 35 and the lowermost end (bottom) 4 of the enlarged bulb bottom portion 3 have a height H. 2 (= 500 mm), the annular protrusion 38a located at the uppermost position of the lower shaft portion 36 and the upper end portion 3a of the enlarged bulb portion 3 have a height H. 1 It is embedded so as to be located at (= 500 mm). That is, as the annular protrusion 38 a located at the uppermost position of the lower shaft portion 36 is positioned in the enlarged bulb portion 3 of the pile hole 1, the lower end portion 37 a of the upper shaft portion 37 is also positioned in the enlarged bulb portion 3. Become. Further, as the ready-made pile 35 is buried, the upper surface of the cement milk layer 6 rises, and the cement bulb 6 is formed in the enlarged bulb portion 3 of the pile hole 1 and the lower portion of the shaft portion 2 (FIG. 9 (a)). )).
[0040]
Thereby, the lower end portion 37a of the upper shaft portion 37 having a larger diameter than the lower shaft portion 36 is embedded in the enlarged bulb portion 3 where the cement milk layer 6 is formed, and the adhesion area with the cement milk is increased. Also in the shaft part 2 of the pile hole 1 in which the soil cement layer 7 is formed, the upper shaft part 37 having a larger diameter than the lower shaft part 36 is embedded, so that the adhesion area with the soil cement layer 7 is increased.
[0041]
For example, as a comparative ready-made pile, the outer diameter of the upper shaft portion 37 is the same as that of the lower shaft portion 36, the shaft portion outer diameter is 400 mm, and the shaft portion thickness is 65 mm. Ready-made piles having two 550 mm). Compared to the case where the ready-made pile for comparison is embedded in a pile hole 1 having the same excavation diameter as described above (the outer diameter of the shaft portion 2 is 580 mm, the outer diameter of the enlarged bulb portion 3 is 800 mm, and the depth of the enlarged bulb portion is 2500 mm), With the ready-made pile 35, an adhesion area of about 1.2 times that of the comparative ready-made pile is obtained, and the horizontal supporting force is improved and the stability is enhanced.
[0042]
Further, if necessary, the upper shaft portion 37 may be provided with an annular protrusion 41 having substantially the same diameter as the annular protrusion 38 of the lower shaft portion 36 to form a ready-made pile 35 (FIG. 8B). Similarly to the above, when embedded in the pile hole 1 having the enlarged bulb portion 3, the adhesion area is further increased, and a support pressure by the annular protrusion 41 of the upper shaft portion 37 is applied.
[0043]
Further, in the case of a connection pile structure for connecting a plurality of ready-made piles, it has a lower shaft portion 36 and an upper shaft portion 37 having a diameter larger than that of the lower shaft portion 36, and an annular protrusion 38 is provided on at least the lower shaft portion 36. The formed ready-made pile 35 is used as the lower pile, and one or more of the other ready-made piles 42 (FIGS. 8A and 8B) are connected to the upper portion thereof as an upper pile, (Not shown). In this case, as long as the ready-made pile 42 is substantially the same diameter as the outer diameter of the upper shaft portion 37 and can be connected to the lower pile, the type of PHC pile, PRC pile, SC pile, joint pile, steel pipe pile, etc. is not limited. Even if it becomes a long pile by setting it as a connection pile structure, the adhesion area with a connection pile can be increased over the full length of the pile hole 1 (not shown).
[0044]
As an effect of using the ready-made pile 35 as described above and embedding the annular protrusion 38 so as to be positioned in the enlarged bulb portion 3, the adhesion area with the cement milk in the enlarged bulb portion 3 is increased, By maintaining the adhesion state, not only can the supporting force in the enlarged bulb portion 3 be improved and stabilized, and the portion that moves from the lower shaft portion 36 to the upper shaft portion 37 can be reinforced, and the pile can be realized. By increasing the adhesion area with the soil cement layer 7 over the entire length of the shaft portion 2 of the hole 1, the pile peripheral surface support force is improved, and the vertical support force and the pull-out force as the entire foundation pile structure are reduced compared with the conventional one. Can be strengthened 1.2 times.
[0045]
Further, as the supporting force in the enlarged bulb portion 3 is increased by embedding the lower end portion of the upper shaft portion 37 in the enlarged bulb portion 3 and increasing the adhesion area with cement milk, the upper shaft portion 37 is moved to the lower shaft. By forming a larger diameter than the portion 36 and increasing the adhesion with the soil cement layer 7 over the entire length of the shaft portion 2 of the pile hole 1, a bending moment force approximately twice as large as that of the conventional one can be obtained. It can sufficiently withstand even when an excessive bending moment is applied.
[0046]
In this embodiment, in order to increase adhesion of cement milk or the like, the outer diameter of the annular protrusion 38 is not enlarged because the outer diameter of the shaft portion 2 of the pile hole 1 is not excavated to a larger diameter. In order to increase adhesion of cement milk or the like, the outer diameter of the lower shaft portion 36 is not enlarged, and only the upper shaft portion 37 is made larger in diameter. This is because the adhesive force from the annular projections 38, 38 is secured and the adhesion force is increased. When the shaft portion has a large diameter over the entire length of the pile, the height from the surface of the shaft portion to the tip of the annular protrusion 38 is lowered over the entire length of the ready-made pile, leading to a decrease in support pressure. become.
[0047]
[Example 2]
(1) An embodiment of the present invention will be described with reference to FIG.
[0048]
In the first embodiment, the lower end portion of the pile hole 1 is enlarged and excavated and the enlarged bulb portion is formed in the root consolidation portion, so that a stronger foundation structure can be constructed. Although the portion is not expanded and excavated, a solid rooted portion can be formed by the same method as in Example 1, and the conventional problems can be solved.
[0049]
A predetermined pile hole 1 corresponding to the diameter of the ready-made pile is excavated. First, the cylindrical pile hole 1 having a diameter larger than the outer diameter of the ready-made pile is excavated to a predetermined depth while kneading the excavated soil to the pile hole wall or discharging the excavated soil. In this state, excavated soil that has become mud remains in the pile hole 1.
[0050]
Next, cement milk having a large specific gravity as a root hardening liquid is poured into the lowest end (bottom) 4 of the pile hole 1 where the excavated soil remains. At this time, according to the filling of cement milk, the excavated soil at the lower end of the pile hole 1 is pushed up above the pile hole 1 (intermediate part and upper part of the pile hole 1), and the excavated soil at the lower end is almost replaced with cement milk. Accordingly, a cement milk layer 6 is formed in the lower end portion of the pile hole 1.
[0051]
Here, even if there is soil mud that is not good in the quality of the cement milk at the lower end of the pile hole 1 such as silt in the excavated soil, the specific gravity (1.2 to 1.7) of these mud soil is cement milk ( The specific gravity is 1.7 or more) and is easily pushed up above the cement milk layer 6. If the excavated soil contains sand or gravel with a high specific gravity (specific gravity: 2.7 to 2.8), it remains in the cement milk at the lower end of the pile hole 1 but acts as an aggregate. There is no problem in the quality of the milk, and a high-quality cement milk layer is formed.
[0052]
Next, cement milk as a pile circumference fixing liquid is injected almost into the pile hole mouth 5 in the middle and upper part of the pile hole 1, and the cement milk and the excavated soil of the part are stirred and mixed to produce a soil cement. A soil cement layer 7 is formed (FIG. 7A). At this time, since the specific gravity of the soil cement layer 7 and the cement milk layer 6 is different, the two layers are rarely mixed.
[0053]
Next, the joint pile 10 is pushed into the pile hole 1 in which the soil cement layer 7 is formed almost to the pile hole mouth 5, penetrates the soil cement layer 7, and the lower end 11 of the joint pile 10 is the pile hole 1. It is located in the cement milk layer 6 at the lower end. Here, the joint pile 10 has a hollow portion 13 opened up and down, and the outer wall 12 has nodes 14 and 14 for each predetermined length.
[0054]
When the joint pile 10 is laid down, there is no mud layer in the pile hole 1, so mud does not adhere to the entire surface of the joint pile 10 (outer surface, inner surface of the hollow portion). Therefore, no mud film is formed on the surface of the joint pile 10, and the cement milk layer or the soil cement layer is in direct contact.
[0055]
Further, a cement milk layer 6 is formed in the gap between the inner wall of the lower end portion and the intermediate portion (lower side) of the pile hole 1 and the outer wall of the joint pile 10, and the pile hole above the cement milk layer 6 is formed. A soil cement layer 7 is formed in the gap between the intermediate wall (upper side) 1 and the inner wall of the upper part and the outer wall of the joint pile 10. In addition, the hollow portion 13 of the joint pile 10 is filled with the soil cement according to the passage of the soil cement layer 7 of the pile hole 1, and thereafter, as the hollow portion 13 passes through the cement milk layer 6 at the lower end portion, Cement milk is filled from the lower end 11, and a soil cement having a light specific gravity is extruded from the upper end of the hollow portion, and finally, a soil cement layer 8 having a higher compressive strength than the outer peripheral portion of the pile is formed in the hollow portion (FIG. )).
[0056]
When the cement milk and the soil cement are solidified and exhibit strength, a foundation pile structure 16 in which the joint pile 10, the soil cement layers 7 and 8, and the cement milk layer 6 are integrated is formed in the pile hole 1. (FIG. 7B). Accordingly, since the cement milk layer 6 and the soil cement layers 7 and 8 are formed to have a compressive strength larger than that of the ground at the outer peripheral portion, the horizontal supporting force is strengthened together with the stabilization of the vertical supporting force.
[0057]
As described above, since the ground is strengthened, as in Example 1, the ground is mainly composed of silt (generally about 0.005 to 0.074 mm in particle size) and clay (generally 0.005 mm or less in particle size). It is particularly effective in the construction of (ground with poor compression strength).
[0058]
(2) Other embodiment-1
In the said Example, even if it is a case where some muddy water zones intervene in the pile hole before pile laying for reasons, such as construction conditions, it is soil cement layer or cement milk in the full depth in the pile hole 1. There is no particular effect because the layer is formed, but in order to completely remove the muddy water film adhering to the joint pile 10, as in Example 1, the joint pile 10 is set while rotating. Thereby, the muddy water adhering to the pile periphery and the like can be scattered in the soil cement. Further, by lowering the joint pile 10 while rotating, the bubbles scattered in the joint 14 of the joint pile 10 and the lower end portion of the joint pile 10 can be eliminated.
[0059]
(3) Other embodiment-2
Moreover, in the said Example, since the node pile which the hollow part was open | released up and down was used as a ready-made pile, although an effect appears most notably, like Example 1, the hollow part was sealed or it has a hollow part. It can also be used alone or in combination with other ready-made piles such as cylindrical piles and steel pipe piles. Moreover, in the case of the ready-made pile which has a hollow part, it is effective also in the improvement of a horizontal supporting force.
[0060]
(4) Other embodiment-3
Moreover, in the said Example, the other ready-made pile 35 from which the outer diameter of an axial part differs in an up-down position can also be used.
[0061]
The ready-made pile 35 has a lower shaft portion 36 having an outer diameter of 400 mm and a shaft portion thickness of 65 mm, and an annular protrusion 38 and an annular protrusion 38a (the uppermost portion) having an outer diameter of 550 mm at the lower end portion and the middle portion of the lower shaft portion 36. Two projections) are formed. Further, an upper shaft portion 37 (outer diameter 500 mm, shaft portion thickness 115 mm) larger in diameter than the lower shaft portion 36 is formed continuously with the uppermost annular protrusion 38a of the lower shaft portion 36 (FIG. 8 ( a)).
[0062]
Subsequently, the pile hole 1 is excavated with a diameter of 580 mm, and similarly, a cement milk layer (root hardening liquid layer) 6 is formed in the lower part of the pile hole 1 and a soil cement layer 7 is formed in the upper part (FIG. 7A). ). Subsequently, the ready-made pile 35 is embedded in the pile hole 1 so that the uppermost annular protrusion 38 a of the lower shaft portion 36 is positioned in the cement milk layer 6 of the pile hole 1. At this time, the lower end surface 39 of the ready-made pile 35 has a height H from the lowest end (bottom) 4 of the pile hole 1. 3 It is embedded so as to be located at (= 500 mm). That is, as the annular protrusion 38 a located at the uppermost position of the lower shaft portion 36 is positioned in the cement milk layer 6 of the pile hole 1, the lower end portion 37 a of the upper shaft portion 37 is also positioned in the cement milk layer 6. (FIG. 10A).
[0063]
As a result, the lower end portion 37a of the upper shaft portion 37 having a larger diameter than the lower shaft portion 36 is embedded in the cement milk layer 6 of the pile hole 1, the adhesion area with the cement milk is increased, and the soil cement layer 7 is formed. Also in the formed pile hole 1, the upper shaft portion 37 having a larger diameter than the lower shaft portion 36 is embedded, whereby the adhesion area with the soil cement layer 7 is increased.
[0064]
For example, as a comparative ready-made pile, the outer diameter of the upper shaft portion 37 is the same as that of the lower shaft portion 36, the shaft portion outer diameter is 400 mm, and the shaft portion thickness is 65 mm. Ready-made piles having two 550 mm). Compared with the case where this ready-made pile for comparison is embedded in the pile hole 1 having the same excavation diameter (outer diameter 580 mm of the shaft portion 2) as described above, the ready-made pile 35 is about 1.2 times as large as the comparative ready-made pile. The adhesion area is obtained, and the horizontal support force is improved and the stability is enhanced.
[0065]
Further, if necessary, the upper shaft portion 37 may be provided with an annular protrusion 41 having substantially the same diameter as the annular protrusion 38 of the lower shaft portion 36 to form a ready-made pile 35 (FIG. 8B). Similarly to the above, if the pile hole 1 is embedded in the soil cement layer 7, the adhesion area is further increased, and a support pressure by the annular protrusion 41 of the upper shaft portion 37 is applied.
[0066]
Further, in the case of a connection pile structure for connecting a plurality of ready-made piles, it has a lower shaft portion 36 and an upper shaft portion 37 having a diameter larger than that of the lower shaft portion 36, and an annular protrusion 38 is provided on at least the lower shaft portion 36. The formed ready-made pile 35 is used as the lower pile, and one or more of the other ready-made piles 42 (FIGS. 8A and 8B) are connected to the upper portion thereof as an upper pile, (Not shown). In this case, as long as the ready-made pile 42 is substantially the same diameter as the outer diameter of the upper shaft portion 37 and can be connected to the lower pile, the type of PHC pile, PRC pile, SC pile, joint pile, steel pipe pile, etc. is not limited. Even if it becomes a long pile by setting it as a connection pile structure, the adhesion area with a connection pile can be increased over the full length of the pile hole 1 (not shown).
[0067]
As an effect of using the ready-made pile 35 as described above and embedding the annular protrusion 38 so as to be located in the cement milk layer 6, the adhesion area with the cement milk in the cement milk layer 6 is increased. By maintaining the adhesion state, not only can the supporting force in the cement milk layer 6 be improved / stabilized, and the portion that moves from the lower shaft portion 36 to the upper shaft portion 37 can be reinforced, as well as piles. By increasing the adhesion area with the soil cement layer 7 over the entire length of the hole 1, the pile peripheral surface supporting force is improved, and the vertical supporting force and the pulling force of the entire foundation pile structure are about 1.2 compared with the conventional one. Can be doubled.
[0068]
In addition, the lower shaft portion of the upper shaft portion 37 is buried in the cement milk layer 6 to increase the supporting force in the cement milk layer 6 by increasing the adhesion area with the cement milk. Bending moment force approximately twice that of the conventional is obtained by increasing the adhesion with the soil cement layer 7 over the entire length of the shaft portion 2 of the pile hole 1 by forming it with a diameter larger than that of the shaft portion 36. Even when an excessive bending moment is applied, it can withstand sufficiently.
[0069]
In this embodiment, in order to increase adhesion of cement milk or the like, the outer diameter of the annular protrusion 38 is not enlarged because the outer diameter of the pile hole 1 is not excavated to a larger diameter. Further, in order to increase adhesion of cement milk or the like, the outer diameter of the lower shaft portion 36 is not enlarged, and only the upper shaft portion 37 is made larger in diameter, so that the cement milk layer 6 that is expected to exhibit the most supporting force is used. This is because the adhesive force from the annular projections 38, 38 is secured and the adhesion force is increased. When the shaft portion has a large diameter over the entire length of the ready-made pile, the height from the surface of the shaft portion to the tip of the annular protrusion 38 becomes lower over the entire length of the pile, leading to a decrease in support pressure. become.
[0070]
【The invention's effect】
In the laying construction of ready-made piles according to the present invention, since a firm part with a certain quality can be obtained, the variation in the vertical bearing force of each pile is reduced and stabilized. In particular, when the root consolidation part is enlarged and excavated to obtain an enlarged bulb part, the effect is remarkably obtained. Moreover, the initial subsidence (1-2 mm) at the time of the support force expression after construction can be improved, and a vertical support force is stabilized.
[0071]
In addition, since this pile is configured as a composite of solidified bodies filled with cement milk or soil cement with high compressive strength, including the hollow part of the pile, the pile's horizontal bearing capacity also depends on the design of the pile itself. About 1.5 times as a measured value is obtained with respect to the bending moment value. Therefore, the seismic performance can be expected as well.
[0072]
In addition, when using a ready-made pile with a hollow part opened up and down, the lower end of the pile is not closed and opened, and the pile hollow part is filled with soil cement when the pile is laid down for effective use Has been. Therefore, cement pile overflows when piles are laid, and the amount of waste is small, making it an economical method.
[0073]
In addition, even if it is a case where the ready-made pile by which the upper-and-lower-ends both ends were used as a ready-made pile, the effect of prevention of initial settlement and stabilization of a vertical bearing force is acquired similarly.
[0074]
In addition, the construction method of the present invention is particularly effective in the construction of a ground mainly composed of silt and clay (a ground having poor compression strength).
[0075]
Moreover, in the high-bearing-strength foundation structure in which the protruding part of the pile is embedded in the enlarged bulb part, it is particularly effective in terms of both quality and reliability.
[Brief description of the drawings]
1A is a longitudinal sectional view of a pile hole before burying a ready-made pile, and FIG. 1B is a longitudinal sectional view of a pile hole after burying a ready-made pile in Embodiment 1 of the present invention;
FIG. 2 is a modified friction pile used in the embodiment of the present invention, in which (a) is a front view of a pile provided with annular protrusions at different intervals, and (b) is a front view of a pile having annular protrusions of different diameters; (C) is also a plan view.
FIG. 3 is a plan view of a pile that is also a modified friction pile, in which (a) shows an annular protrusion that can be attached and detached, and (b) is a front view.
FIG. 4 is a front view of a pile having a deformed friction pile, in which (a) is a radial protrusion, and (b) is a cross-sectional view taken along line AA in (a).
5A is a front view of a pile having a different shape, and FIG. 5B is a cross-sectional view taken along the line BB of FIG. 5A, and FIG. It is sectional drawing in the CC line of a).
6A is a front view of a pile having a plate-like projection radially, and FIG. 6B is a cross-sectional view taken along the line DD in FIG.
7A is a longitudinal cross-sectional view of a pile hole before burying a pre-made pile, and FIG. 7B is a vertical cross-sectional view of the pile hole after burying a pre-made pile.
8A and 8B are other ready-made piles used in the practice of the present invention.
9A and 9B are longitudinal sectional views of a pile hole of Example 1 in which the ready-made pile of FIG. 8 is embedded.
10A and 10B are longitudinal sectional views of a pile hole of Example 2 in which the ready-made pile of FIG. 8 is embedded.
11A is a longitudinal sectional view of a pile hole before burying a ready-made pile, and FIG. 11B is a longitudinal sectional view of the pile hole after burying a ready-made pile.
[Explanation of symbols]
1 Pile hole
2 Shaft hole shaft
3 Expanded bulb part of pile hole
4 Bottom of pile hole
5 Pile hole
6 Cement milk layer
7 Soil cement layer
8 Soil cement layer
10 joint pile (off-the-shelf pile)
11 Lower end of joint pile
12 Exterior wall of joint pile
13 Hollow section of joint pile
14 Clause pile
16 Foundation structure
21 Pile hole (conventional example)
22 Pile hole shaft (conventional example)
23 Expanded bulb part of pile hole (conventional example)
24 Soil cement (root hardening liquid) layer (conventional example)
25 Soil cement (pile circumference fixing liquid) layer (conventional example)
26 Mud layer (conventional example)
27 Ready-made piles (conventional example)
28 Hollow part of ready-made pile (conventional example)
29 Mud film (conventional example)
30 Annular projection
33 Radial projection
34 Radial protrusion
35 Ready-made piles
36 Lower shaft
37 Upper shaft
38 Annular projection
38a An annular projection located at the top of the lower shaft
39 Lower end of ready-made pile
41 Annular projection of upper shaft
42 Ready-made pile (upper pile)

Claims (7)

拡大球根部を有する杭孔内に、上下に開放した中空部を有する既製杭を埋設する方法であって、
(1) 既製杭の最大径より大径の杭孔軸部を掘削すると共に該杭孔軸部の下端部に拡底して拡大球根部を掘削する。
(2) 次に、前記杭孔の底部から根固め用のセメントミルクを注入し、セメントミルクの充填に従って、前記拡大球根部内に満たされていた掘削泥土を、比重差を利用して上方に押し上げて、セメントミルクに置換して、セメントミルク層を形成する。
(3) 次に、前記杭孔軸部で杭周固定液用のセメントミルクを注入し、前記杭孔軸部内の掘削泥土をセメントミルクと撹拌混合して杭孔軸部内にソイルセメント層を形成する。前記ソイルセメント層を前記杭孔のほぼ孔口まで形成し、前記杭孔内から泥土層を排除する。
(4) 続いて、前記杭孔内に既製杭を、表面に泥土膜を形成せずに、沈設する。
以上の工程をとることを特徴とした杭孔内への既製杭の埋設方法。
In a pile hole having an enlarged bulb part, a method of burying a ready-made pile having a hollow part opened up and down ,
(1) Excavate a pile hole shaft portion having a diameter larger than the maximum diameter of a ready-made pile, and expand the bottom of the pile hole shaft portion to excavate an enlarged bulb portion.
(2) Next, cement milk for root consolidation is injected from the bottom of the pile hole, and the excavated mud filled in the enlarged bulb is pushed upward using the specific gravity difference as the cement milk is filled. Then , a cement milk layer is formed by replacing with cement milk .
(3) Next, cement milk for pile circumference fixing liquid is injected at the pile hole shaft, and the excavation mud in the pile hole shaft is agitated and mixed with cement milk to form a soil cement layer in the pile hole shaft. To do. The soil cement layer is formed up to the hole opening of the pile hole, and the mud layer is removed from the pile hole.
(4) Subsequently, a ready-made pile is set in the pile hole without forming a mud film on the surface.
A method for burying a ready-made pile in a pile hole characterized by taking the above steps.
杭孔内に、上下に開放した中空部を有する既製杭を埋設する方法であって、
(1) 既製杭の最大径より大径の杭孔を掘削する。
(2) 次に、前記杭孔の底部から根固め用のセメントミルクを注入し、セメントミルクの充填に従って、杭孔の下端部内に満たされていた掘削泥土を、比重差を利用して上方に押し上げて、セメントミルクに置換して、セメントミルク層を形成する。
(3) 次に、前記杭孔の中間部及び上部で杭周固定液用のセメントミルクを注入し、前記杭孔中間部及び上部内の掘削泥土をセメントミルクと撹拌混合して杭孔の中間部及び上部内にソイルセメント層を形成する。前記ソイルセメント層を前記杭孔のほぼ孔口まで形成し、前記杭孔内から泥土層を排除する。
(4) 続いて、前記杭孔内に、既製杭を、表面に泥土膜を形成せずに、沈設する。
以上の工程をとることを特徴とした杭孔内への既製杭の埋設方法。
It is a method of burying a ready-made pile having a hollow portion opened up and down in a pile hole,
(1) Excavate a hole with a diameter larger than the maximum diameter of the ready-made pile.
(2) Next, cement milk for root consolidation is injected from the bottom of the pile hole, and the excavated mud filled in the lower end of the pile hole is poured upward using the specific gravity difference according to the filling of the cement milk. Push up and replace with cement milk to form a cement milk layer .
(3) Next, injecting cement milk for pile periphery fixing liquid at the middle and upper part of the pile hole, stirring and mixing the excavated mud in the middle and upper part of the pile hole with the cement milk, A soil cement layer is formed in the part and the upper part. The soil cement layer is formed up to the hole opening of the pile hole, and the mud layer is removed from the pile hole.
(4) Subsequently, a ready-made pile is set in the pile hole without forming a mud film on the surface.
A method for burying a ready-made pile in a pile hole characterized by taking the above steps.
既製杭を回転しながら杭孔内に沈設する請求項1又は2に記載の杭孔内への既製杭の埋設方法。  The method of burying a ready-made pile in the pile hole according to claim 1 or 2, wherein the ready-made pile is set in the pile hole while rotating. 既製杭を異形摩擦杭とした請求項1又は2に記載の杭孔内への既製杭の埋設方法。  The method for burying a ready-made pile in a pile hole according to claim 1 or 2, wherein the ready-made pile is a modified friction pile. 既製杭を、1つ又は複数の突起を形成した下部軸部の上部であって、前記下部軸部の最上に位置する突起に連続して、前記下部軸部より大径に形成した上部軸部を一体に形成して構成し、
前記既製杭を、その下部軸部の最上に位置する突起が、杭穴の拡大球根部内に位置するように埋設したことを特徴とする請求項1記載の杭孔内への既製杭の埋設方法。
An upper shaft portion, which is an upper portion of a prefabricated pile, which is an upper portion of a lower shaft portion in which one or a plurality of protrusions are formed, and has a diameter larger than that of the lower shaft portion, continuously from the protrusion positioned at the top of the lower shaft portion. Are formed as a unit,
The method of embedding a ready-made pile in a pile hole according to claim 1, wherein the ready-made pile is embedded so that a protrusion located at the top of the lower shaft portion is located in an enlarged bulb portion of the pile hole. .
既製杭を、1つ又は複数の突起を形成した下部軸部の上部であって、前記下部軸部の最上に位置する突起に連続して、前記下部軸部より大径に形成した上部軸部を一体に形成して構成し、
前記既製杭を、その下部軸部の最上に位置する突起が、杭穴内の根固め用セメントミルクが注入された区間内に位置するように埋設したことを特徴とする請求項2記載の杭孔内への既製杭の埋設方法。
An upper shaft portion, which is an upper portion of a prefabricated pile, which is an upper portion of a lower shaft portion in which one or a plurality of protrusions are formed, and has a diameter larger than that of the lower shaft portion, continuously from the protrusion positioned at the top of the lower shaft portion. Are formed as a unit,
3. The pile hole according to claim 2, wherein the ready-made pile is embedded so that a protrusion located at the uppermost part of the lower shaft portion is located in a section into which cement milk for root consolidation in the pile hole is injected. A method of burying ready-made piles inside.
既製杭を下杭とその上方に位置する1つ又は複数の上杭とから構成し、前記下杭は、1つ又は複数の突起を形成した下部軸部の上部であって、前記下部軸部の最上に位置する突起に連続して、前記下部軸部より大径に形成した上部軸部を一体に形成して構成し、前記上杭は、前記上部軸部の外径と略同径の外径で形成したことを特徴とする請求項5又は6記載の杭孔内への既製杭の埋設方法。  The ready-made pile is composed of a lower pile and one or more upper piles located above the lower pile, and the lower pile is an upper part of the lower shaft portion in which one or more protrusions are formed, and the lower shaft portion An upper shaft portion formed larger in diameter than the lower shaft portion is formed integrally with the uppermost protrusion of the lower shaft portion, and the upper pile is substantially the same diameter as the outer diameter of the upper shaft portion. The method for burying a ready-made pile in a pile hole according to claim 5 or 6, wherein the pile is formed with an outer diameter.
JP2000129969A 1999-04-30 2000-04-28 Method of burying ready-made piles in pile holes Expired - Lifetime JP4512859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000129969A JP4512859B2 (en) 1999-04-30 2000-04-28 Method of burying ready-made piles in pile holes

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP12385399 1999-04-30
JP18725499 1999-07-01
JP11-123853 1999-07-01
JP11-187254 1999-07-01
JP2000129969A JP4512859B2 (en) 1999-04-30 2000-04-28 Method of burying ready-made piles in pile holes

Publications (2)

Publication Number Publication Date
JP2001073358A JP2001073358A (en) 2001-03-21
JP4512859B2 true JP4512859B2 (en) 2010-07-28

Family

ID=27314809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000129969A Expired - Lifetime JP4512859B2 (en) 1999-04-30 2000-04-28 Method of burying ready-made piles in pile holes

Country Status (1)

Country Link
JP (1) JP4512859B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021360A (en) * 2001-07-05 2003-01-24 Ground System Corp Air conditioning system utilizing soil heat, and heat exchanger apparatus in soil
KR20030069701A (en) * 2002-02-22 2003-08-27 주식회사 패스모스 Storage system equipped with a security sensor using fingerprint
JP4623574B2 (en) * 2005-02-21 2011-02-02 ジャパンパイル株式会社 How to build a pile
GB2478362B (en) * 2010-03-06 2016-06-29 Shire Structures Ltd Improvements in or relating to small diameter piles
JP5948068B2 (en) * 2012-01-31 2016-07-06 旭化成建材株式会社 Pile construction method with anchors
CN110067245A (en) * 2019-03-22 2019-07-30 西南交通大学 It is a kind of can expanding reinforcing spiral self-drilling type piling bar and its method of construction
CN113779809B (en) * 2021-09-26 2023-12-26 广州大学 Method, system and medium for predicting critical axial load of liquefiable field rock-socketed pile

Also Published As

Publication number Publication date
JP2001073358A (en) 2001-03-21

Similar Documents

Publication Publication Date Title
JP5520347B2 (en) Pile digging method
JP4984308B2 (en) Ready-made pile
JP4512859B2 (en) Method of burying ready-made piles in pile holes
JP4027264B2 (en) How to construct soil cement composite piles
JP3531099B2 (en) Embedment method of ready-made concrete pile, structure of foundation pile, and ready-made concrete pile
JP4572284B2 (en) Method of burying ready-made piles
CN212427073U (en) Reduce bored pile of burden frictional resistance
JPH0547685B2 (en)
JP4724879B2 (en) Foundation pile structure
JP4724878B2 (en) Foundation pile structure
JP4724873B2 (en) Ready-made pile
JPH04185813A (en) Formation of soil-cement composite pile
JP5606727B2 (en) Foundation pile
JP4584512B2 (en) Ready-made pile with soil cement synthetic blade
JP3514183B2 (en) Embedded pile and its construction method
JPH0748833A (en) Foundation pile structure
JP6462298B2 (en) Foundation pile structure
JP4054903B2 (en) Method of burying ready-made piles, foundation pile structure and ready-made piles
JP4441774B2 (en) Ready-made pile and foundation pile structure
JP2019183510A (en) Foundation pile and foundation construction method using the foundation pile
JPH1046573A (en) Bottom enlarged cast-in-place pile and its construction method
JPH0325121A (en) Sinking of pile in inner drilling pile method
JP6873613B2 (en) How to build foundation piles, foundation pile structure and double ready-made piles
KR960011006A (en) Concrete pouring in trench using Styropole ball
JP4200236B2 (en) Tip piles for ready-made piles, ready-made piles with tip brackets, foundation pile structure using ready-made piles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091209

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100421

R150 Certificate of patent or registration of utility model

Ref document number: 4512859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term