JP4512685B2 - Design method of turbo pump bearing device - Google Patents

Design method of turbo pump bearing device Download PDF

Info

Publication number
JP4512685B2
JP4512685B2 JP2003135763A JP2003135763A JP4512685B2 JP 4512685 B2 JP4512685 B2 JP 4512685B2 JP 2003135763 A JP2003135763 A JP 2003135763A JP 2003135763 A JP2003135763 A JP 2003135763A JP 4512685 B2 JP4512685 B2 JP 4512685B2
Authority
JP
Japan
Prior art keywords
bearing
gap
pump
damping coefficient
spring constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003135763A
Other languages
Japanese (ja)
Other versions
JP2004339986A (en
Inventor
裕之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
IHI Aerospace Co Ltd
Original Assignee
IHI Corp
IHI Aerospace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, IHI Aerospace Co Ltd filed Critical IHI Corp
Priority to JP2003135763A priority Critical patent/JP4512685B2/en
Publication of JP2004339986A publication Critical patent/JP2004339986A/en
Application granted granted Critical
Publication of JP4512685B2 publication Critical patent/JP4512685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Support Of The Bearing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ロケットエンジンなどに使用する流体水素や液体酸素の昇圧用ポンプの軸受装置に係り、特に軸振動低減のために軸受剛性を調整することのできる軸受装置に関する。
【0002】
【従来の技術】
ロケットエンジンの燃焼器に推進薬として液体水素や液体酸素を昇圧して送るターボポンプは、10,000〜100,000rpmの高速で回転しており、軸の振動を抑制することが必要である。
【0003】
図2(A)はポンプの回転軸を玉軸受で支持した状態を示す概念図であり、1は回転軸、2は玉軸受、3はハウジング、4はインペラである。
【0004】
図2(B)は減衰係数を大きくするため、玉軸受の外側に機械ダンパを取り付けた状態を示す概念図であり、5は機械ダンパである。機械ダンパ5は、薄い板を重ねたり、金網を挟み込んだりしてなるもので、摩擦力などによって振動を減衰させるものである。また、機械ダンパ5に替えて、流体膜ダンパを玉軸受の外側に形成したものが特許文献1に開示されている。
【0005】
【特許文献1】
特開平5−44723号公報(第2〜3頁、図1)
【0006】
図2(C)は軸受そのものの減衰係数を上げるために流体軸受を使用した例を示す概念図であり、6は流体軸受である。流体軸受6で支持された回転軸の振動の減衰を目的とした減衰軸受の例としては、たとえば、特許文献2や特許文献3がある。
【0007】
【特許文献2】
特開平5−44722号公報(第3〜4頁、図1)
【特許文献3】
特開2000−145768号公報(第2〜3頁、図1)
【0008】
【発明が解決しようとする課題】
回転機械の回転軸の振動は、回転軸を支持する軸受のバネ定数や減衰係数によるところが多い。一般に減衰係数の大きい軸受を使用する方が、軸受振動の振幅は小さくなる。しかしながら、図2(A)に示す、玉軸受のような機械軸受では、その大きさによってバネ定数や減衰係数が決まってしまうので、軸受の振動を抑制するためには減衰係数を大きくする機構を付加することが必要である。
【0009】
その1例として、図2(B)に示すような機械ダンパは、構造は簡単であるが振動の減衰のため主に摩擦力を利用するものであるため、スティック・スリップ現象を伴ない、十分な性能を得られない場合がある。また、特許文献1に開示された技術は、電気粘性流体や液晶を使用し、それらに印加する電界の強度を変化させて流体の粘性を制御することにより回転軸の振動を低減させるものであるが、構造が複雑であり、使用する流体が高価であるなどの問題がある。
【0010】
さらに、図2(C)に図示された技術または特許文献2、特許文献3に開示された技術は、減衰作用のある流体軸受に関する技術であるが、流体軸受は流体の粘度に依存するものであるため、必ずしもあらゆる温度条件に適用することができない場合もあるし、振動が大きくなるとメタルコンタクトを惹き起し、軸受としての性能が低下してしまうなどの問題がある。
【0011】
本発明は、従来技術のかかる問題点に鑑み案出されたもので、非特許文献1に開示された気体軸受に関する技術を機械軸受の液体ダンパに応用することにより、簡単な構造でありながら、軸受剛性と減衰係数を調節することができるポンプの軸受装置を提供することを目的とする。
【0012】
【非特許文献1】
十合 晋一著、「気体軸受設計ガイドブック」、共立出版株式会社、2002年1月10日発行、 P25〜27
【0013】
【課題を解決するための手段】
上記目的を達成するため、本願請求項1記載発明のポンプの軸受装置は、ポンプの回転軸を支持するころがり軸受の外輪の外側または外輪を支持する環状のスリーブの外側に狭い環状の隙間を形成し、該隙間にポンプ出口側から導入した高圧の液体を流すようにしたものである。
【0014】
ポンプの出口側から上記隙間までの流体流路の途中に流量調節用のオリフィスを設けるのが好ましい。
【0015】
ポンプで流送される液体は、液体水素や液体酸素などの液化ガスであってもよい。
【0016】
上記隙間の寸法は、10〜1000μmであり、上記隙間に流入する液体の圧力は、その液化ガスの三重点圧力〜40MPaであるのが好ましい。なお、三重点とは、圧力と温度を縦軸と横軸にとった状態図において、気体と液体、気体と固体、液体と固体の各境界線が重なり合った交点のことであり、気体、液体、固体が共存する状態である。たとえば、液体酸素の三重点は54.359K、100Pa、液体水素の三重点は13.96K、7200Paである。
【0017】
次に本発明の作用を説明する。玉軸受など機械軸受の外輪の外側、または、機械軸受を支持する円環状のスリーブの外側に狭い環状の隙間を形成し、その隙間に高圧の流体を供給する。該隙間に高圧液体による流体膜がある場合、この部分は擬似的な構造部材として働き、流体膜固有のバネ定数と減衰係数を有している。流体膜部分のバネの定数をK、減衰係数をc、機械軸受部分のバネ定数をK’、減衰係数をc’とすると、それを直列に配置した場合の合成された軸受部の特性は、合成バネ定数をK、合成減衰係数をcとするとそれぞれ、
K=K’K/(K’+K) (1)
c=c’+c(2)
となる。
【0018】
したがって、Kが大きい程、KはK’に近づくし、cは単純に増加する。
【0019】
一方、バネの定数K供給圧力と下流側の圧力との差圧をΔP、隙間の寸法をcとすると
∝√(ΔP)/C (3)
となり、
流体膜の減衰係数c
∝√(ΔP)/C (4)
となる。
【0020】
したがって、小さな寸法Cの隙間に大きな差圧ΔPの流体膜を生成すると、合成バネ定数は機械軸受のバネ定数K’と同じであって変化せず、合成減衰係数だけを大きくすることができる。また、これによりバネ定数に対する減衰係数の割合、すなわち、c/Kが機械軸受のみの場合よりも大きくなり、より高い減衰効果が得られる。したがって、回転軸の振動を低減することができる。
【0021】
【発明の実施の形態】
以下、本発明の一実施形態について図面を参照しつつ説明する。図1は本発明のポンプの軸受装置の概念図であり、図1(A)は1つの実施形態を示す断面図であり、図1(B)は他の実施形態を示す断面図である。なお、これらの図において、図2を用いて説明した従来技術と共通する部分には同一の符号を付している。
【0022】
図1(A)において、1はポンプの回転軸、2は玉軸受、3はハウジング、4はインペラである。7はポンプ出口である。11は玉軸受2の外輪に外嵌され、玉軸受2を支持するスリーブである。スリーブ11はハウジング3にボルト等で固定されていてもよいし、固定されていなくてもよい。スリーブ11とハウジング3の内面との間には隙間Cが形成されている。ポンプ出口7と隙間Cとは液体流路8で連通しており、液体流路8の途中には流量調節用のオリフィス9が設けられている。10はハウジング3の内面に形成された環状の溝であり、該溝10の底部に液体流路8が連結されている。
【0023】
次に本実施形態の作用を説明する。玉軸受2を支持するスリーブ11の外側に形成された隙間Cとポンプ出口7との間は液体流路8で連結されており、ポンプ出口7から隙間Cに高圧の流体が流れる。ハウジング3には液体流路8と隙間Cに連通する環状の溝10が形成されているので、隙間Cには全周に一様な流れが生じ、隙間Cに高圧の液体による流体膜12が形成される。流体膜12の入口側(溝10)と出口側(スリーブ11の両端)の間には大きな差圧ΔPが生じている。
【0024】
オリフィス9および隙間Cの寸法を適当に選ぶことにより、ΔPの大きさを調節することができる。流体膜12は、擬似的な構造部材として働き、固有のバネ定数Kと減衰係数cを有している。機械軸受(玉軸受2)と流体膜12とは直列に配置されているので、機械軸受のバネ定数と減衰係数とを、それぞれK’とc’とすると、合成されたバネ係数Kと減衰係数cとは先に述べたが、数1に示す4つの式で与えられる。
【0025】
【数1】

Figure 0004512685
【0026】
数1の式(1)、(2)からわかるように、Kが大きい程KはK’に近づく。また、cは単純に増加する。さらに、小さな寸法の隙間Cに大きな差圧ΔPの流体膜12を生成すると、合成されたバネ定数Kは、機械軸受(玉軸受2)のバネ定数K’と同じであって変化せず、減衰係数cだけを大きくすることができる。また、これによりバネ定数Kに対する減衰係数cの割合、すなわち、c/Kが機械軸受のみの場合よりも大きくなり、より高い減衰効果が得られる。したがって、回転軸1の振動を低減することができる。
【0027】
数1の式(1)と(2)は、バネとダンパを直列に連結した場合の普通の式なので、説明を省略し、式(3)と(4)について導き方を説明する。非特許文献1のP26〜27に示される(2.38)、(2.39)より数2に示す2つの式が得られる。
【0028】
【数2】
Figure 0004512685
【0029】
ここで、M=Min−Mout、Min=Moutであり、流体膜12の流れは層流で、隙間Cは全て液体により満たされていると考える。また、流体がn個の孔から、圧力Psで供給される場合を考えると、数3が得られる。
【0030】
【数3】
Figure 0004512685
【0031】
また、円環状の流体膜12部を流れる流量は、数4で与えられる。
【0032】
【数4】
Figure 0004512685
【0033】
そして、M=Min−Moutに数3および数4の式を代入すると、α、β、θ、φ、s、qの特性は数5で与えられる。
【0034】
【数5】
Figure 0004512685
【0035】
以上より合成されたバネ定数Kと合成された減衰係数cの特性は、数6で与えられることがわかる。
【0036】
【数6】
Figure 0004512685
【0037】
【変形例】
図1(B)は本発明の他の実施形態(変形例)を示す図である。図1(B)が図1(A)と異なる点は、図1(A)にはスリーブ11があるのに対し、図1(B)にはスリーブ11がなく、隙間Cは玉軸受2の外輪の外側に直接形成されていることである。スリーブ11があれば、圧力のかかる面積が大きくなるので、流体膜12によって受けられる荷重を大きくとることができる。一方、スリーブ11がない場合、圧力のかかる面積が小さいので、流体膜によって受けられる荷重が小さくなるが、程度の問題であって、同様の効果が得られるし、構造が簡単になる。なお、軸受2の外輪には何らかの回り止めがあった方がよい。
【0038】
本発明は、以上述べた2つの実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。たとえば、隙間Cと液体流路8との間に円環状の溝10を介在させるようにした方が、溝10に替えて全周に亘って適当な間隔で穿設した多数の小孔を設け、該小孔に図示しないヘッダを介して液体流路8を接続してもよい。また、軸受は玉軸受でなくローラー軸受などでもよい。
【0039】
【発明の効果】
以上述べたように、本発明のポンプの軸受装置は、ころがり軸受の外輪の外側に狭い隙間を形成し、その隙間にポンプで昇圧された高圧の液体の一部を導入するようにしたので、簡単な構造でありながら、ころがり軸受のバネ定数を変化させずに減衰係数を大きくすることができて、軸の振動を効果的に抑制することができるという優れた効果を有する。
【図面の簡単な説明】
【図1】本発明のポンプの軸受装置の概念図である。
【図2】従来のポンプの軸受装置の概念図である。
【符号の説明】
1 回転軸
2 玉軸受(ころがり軸受)
7 ポンプ出口
8 液体流路
9 オリフィス
隙間[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bearing device for a pump for boosting fluid hydrogen or liquid oxygen used in a rocket engine or the like, and more particularly to a bearing device capable of adjusting bearing rigidity to reduce shaft vibration.
[0002]
[Prior art]
A turbo pump that sends liquid hydrogen or liquid oxygen as a propellant to a rocket engine combustor while rotating at a high speed of 10,000 to 100,000 rpm is required to suppress shaft vibration.
[0003]
FIG. 2A is a conceptual diagram showing a state in which the rotary shaft of the pump is supported by a ball bearing, wherein 1 is a rotary shaft, 2 is a ball bearing, 3 is a housing, and 4 is an impeller.
[0004]
FIG. 2B is a conceptual diagram showing a state in which a mechanical damper is attached to the outside of the ball bearing in order to increase the damping coefficient, and 5 is a mechanical damper. The mechanical damper 5 is formed by stacking thin plates or sandwiching a wire mesh, and attenuates vibrations by a frictional force or the like. Further, Patent Document 1 discloses a fluid film damper formed on the outside of a ball bearing in place of the mechanical damper 5.
[0005]
[Patent Document 1]
Japanese Laid-Open Patent Publication No. 5-44723 (pages 2 and 3, FIG. 1)
[0006]
FIG. 2C is a conceptual diagram showing an example in which a fluid bearing is used to increase the damping coefficient of the bearing itself, and 6 is a fluid bearing. Examples of the damping bearing for the purpose of damping the vibration of the rotating shaft supported by the fluid bearing 6 include, for example, Patent Document 2 and Patent Document 3.
[0007]
[Patent Document 2]
Japanese Patent Laid-Open No. 5-44722 (pages 3 to 4, FIG. 1)
[Patent Document 3]
JP 2000-145768 (pages 2 and 3, FIG. 1)
[0008]
[Problems to be solved by the invention]
The vibration of the rotating shaft of a rotating machine is mostly due to the spring constant and damping coefficient of the bearing that supports the rotating shaft. Generally, the use of a bearing having a large damping coefficient reduces the amplitude of bearing vibration. However, in a mechanical bearing such as a ball bearing shown in FIG. 2 (A), the spring constant and damping coefficient are determined depending on the size, and therefore a mechanism for increasing the damping coefficient is used to suppress the vibration of the bearing. It is necessary to add.
[0009]
As an example, a mechanical damper as shown in FIG. 2 (B) is simple in structure, but uses frictional force mainly for damping vibration, so it does not cause stick-slip phenomenon and is sufficient. May not be able to obtain proper performance. The technique disclosed in Patent Document 1 uses an electrorheological fluid or liquid crystal, and reduces the vibration of the rotating shaft by controlling the viscosity of the fluid by changing the strength of the electric field applied thereto. However, there is a problem that the structure is complicated and the fluid to be used is expensive.
[0010]
Furthermore, the technique illustrated in FIG. 2C or the technique disclosed in Patent Document 2 and Patent Document 3 is a technique related to a fluid bearing having a damping action, but the fluid bearing depends on the viscosity of the fluid. For this reason, there are cases where it cannot always be applied to all temperature conditions, and when vibration increases, there is a problem that a metal contact is caused and the performance as a bearing is lowered.
[0011]
The present invention has been devised in view of such problems of the prior art, and by applying the technology relating to the gas bearing disclosed in Non-Patent Document 1 to a liquid damper of a mechanical bearing, while having a simple structure, An object of the present invention is to provide a pump bearing device capable of adjusting the bearing rigidity and the damping coefficient.
[0012]
[Non-Patent Document 1]
Junichi Juai, “Guide Bearing Design Guidebook”, Kyoritsu Publishing Co., Ltd., published on January 10, 2002, P25-27
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the pump bearing device according to claim 1 of the present invention forms a narrow annular gap on the outer side of the outer ring of the rolling bearing that supports the rotating shaft of the pump or on the outer side of the annular sleeve that supports the outer ring. The high-pressure liquid introduced from the pump outlet side is allowed to flow through the gap.
[0014]
It is preferable to provide an orifice for adjusting the flow rate in the middle of the fluid flow path from the outlet side of the pump to the gap.
[0015]
The liquid fed by the pump may be a liquefied gas such as liquid hydrogen or liquid oxygen.
[0016]
The size of the gap is preferably 10 to 1000 μm, and the pressure of the liquid flowing into the gap is preferably the triple point pressure of the liquefied gas to 40 MPa. The triple point is an intersection where the boundary lines of gas and liquid, gas and solid, and liquid and solid overlap in a state diagram in which pressure and temperature are plotted on the vertical and horizontal axes. In this state, solids coexist. For example, the triple point of liquid oxygen is 54.359 K, 100 Pa, and the triple point of liquid hydrogen is 13.96 K, 7200 Pa.
[0017]
Next, the operation of the present invention will be described. A narrow annular gap is formed outside the outer ring of a mechanical bearing such as a ball bearing or outside of an annular sleeve that supports the mechanical bearing, and a high-pressure fluid is supplied to the gap. When there is a fluid film of high-pressure liquid in the gap, this portion functions as a pseudo structural member and has a spring constant and a damping coefficient inherent to the fluid film. When the spring constant of the fluid film portion is K 3 , the damping coefficient is c 3 , the spring constant of the mechanical bearing portion is K ′, and the damping coefficient is c ′, the characteristics of the combined bearing portion when they are arranged in series Respectively, where the combined spring constant is K and the combined damping coefficient is c,
K = K′K 3 / (K ′ + K 3 ) (1)
c = c ′ + c 3 (2)
It becomes.
[0018]
Therefore, the larger K 3 is, the closer K is to K ′ and c simply increases.
[0019]
On the other hand, the constant K 3 of the spring, [Delta] P the pressure difference between the pressure in the supply pressure and the downstream side, when the dimensions of the gap and c r K 3 α√ (ΔP) / C r (3)
And
The damping coefficient c 3 of the fluid film is c 3 ∝√ (ΔP) / C r 4 (4)
It becomes.
[0020]
Therefore, when generating the fluid film of greater pressure difference ΔP in the gap small dimensions C r, synthetic spring constant does not change the same as the spring constant K 'of the machine bearings, it can only be increased synthesis damping coefficient . In addition, the ratio of the damping coefficient to the spring constant, that is, c / K becomes larger than that of the mechanical bearing alone, and a higher damping effect can be obtained. Therefore, vibration of the rotating shaft can be reduced.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual diagram of a bearing device for a pump according to the present invention, FIG. 1 (A) is a sectional view showing one embodiment, and FIG. 1 (B) is a sectional view showing another embodiment. In these drawings, the same reference numerals are given to the portions common to the prior art described with reference to FIG.
[0022]
In FIG. 1A, 1 is a rotating shaft of the pump, 2 is a ball bearing, 3 is a housing, and 4 is an impeller. 7 is a pump outlet. Reference numeral 11 denotes a sleeve that is fitted on the outer ring of the ball bearing 2 and supports the ball bearing 2. The sleeve 11 may be fixed to the housing 3 with a bolt or the like, or may not be fixed. A gap Cr is formed between the sleeve 11 and the inner surface of the housing 3. The pump outlet 7 and the clearance C r communicates with the liquid flow path 8, in the middle of the liquid flow path 8 is an orifice 9 for flow rate control is provided. Reference numeral 10 denotes an annular groove formed on the inner surface of the housing 3, and the liquid flow path 8 is connected to the bottom of the groove 10.
[0023]
Next, the operation of this embodiment will be described. A gap C r formed outside the sleeve 11 that supports the ball bearing 2 and the pump outlet 7 are connected by a liquid flow path 8, and a high-pressure fluid flows from the pump outlet 7 to the gap Cr . Since the housing 3 an annular groove 10 that communicates with the gap C r the liquid flow path 8 is formed, the gap C r cause uniform flow through the entire circumference, the fluid by high pressure liquid in the gap C r A film 12 is formed. A large differential pressure ΔP is generated between the inlet side (groove 10) and the outlet side (both ends of the sleeve 11) of the fluid film 12.
[0024]
By choosing the dimensions of the orifice 9 and the clearance C r appropriately, it is possible to adjust the size of the [Delta] P. The fluid film 12 functions as a pseudo structural member and has an inherent spring constant K 3 and a damping coefficient c 3 . Since the mechanical bearing (ball bearing 2) and the fluid film 12 are arranged in series, if the spring constant and damping coefficient of the mechanical bearing are K ′ and c ′, respectively, the combined spring coefficient K and damping coefficient are obtained. As described above, c is given by the four equations shown in Equation 1.
[0025]
[Expression 1]
Figure 0004512685
[0026]
As can be seen from Equations (1) and (2) in Equation 1, K is closer to K ′ as K 3 is larger. Also, c simply increases. Further, when the fluid film 12 having a large differential pressure ΔP is generated in the gap Cr having a small size, the synthesized spring constant K is the same as the spring constant K ′ of the mechanical bearing (ball bearing 2) and does not change. Only the attenuation coefficient c can be increased. Further, the ratio of the damping coefficient c to the spring constant K, that is, c / K becomes larger than that of the mechanical bearing alone, and a higher damping effect can be obtained. Therefore, the vibration of the rotating shaft 1 can be reduced.
[0027]
Equations (1) and (2) in Equation 1 are ordinary equations when a spring and a damper are connected in series, so that the explanation is omitted and how to derive Equations (3) and (4) will be described. Two formulas shown in Formula 2 are obtained from (2.38) and (2.39) shown in P26 to 27 of Non-Patent Document 1.
[0028]
[Expression 2]
Figure 0004512685
[0029]
Here, it is considered that M = M in −M out and M in = M out , the flow of the fluid film 12 is a laminar flow, and all the gaps Cr are filled with the liquid. Further, considering the case where the fluid is supplied from n holes at the pressure Ps, Equation 3 is obtained.
[0030]
[Equation 3]
Figure 0004512685
[0031]
Further, the flow rate flowing through the annular fluid film 12 is given by equation (4).
[0032]
[Expression 4]
Figure 0004512685
[0033]
Then, by substituting Equations 3 and 4 into M = M in −M out , the characteristics of α, β, θ, φ, s, and q are given by Equation 5.
[0034]
[Equation 5]
Figure 0004512685
[0035]
From the above, it can be seen that the characteristics of the combined spring constant K 3 and the combined damping coefficient c 3 are given by Equation 6.
[0036]
[Formula 6]
Figure 0004512685
[0037]
[Modification]
FIG. 1B is a diagram showing another embodiment (modified example) of the present invention. Figure 1 (B) in FIG. 1 (A) is different from, whereas there is a sleeve 11 in FIG. 1 (A), no sleeve 11 in FIG. 1 (B), the clearance C r is the ball bearing 2 It is directly formed on the outer side of the outer ring. If the sleeve 11 is provided, the area to which pressure is applied is increased, so that the load received by the fluid film 12 can be increased. On the other hand, when the sleeve 11 is not provided, the area to which pressure is applied is small, so that the load received by the fluid film is small. However, this is a problem, and the same effect can be obtained and the structure is simplified. It should be noted that the outer ring of the bearing 2 should have some kind of detent.
[0038]
The present invention is not limited to the two embodiments described above, and various modifications can be made without departing from the scope of the invention. For example, when the annular groove 10 is interposed between the gap Cr and the liquid flow path 8, a large number of small holes formed at appropriate intervals over the entire circumference instead of the groove 10 are provided. The liquid flow path 8 may be connected to the small hole via a header (not shown). The bearing may be a roller bearing instead of a ball bearing.
[0039]
【The invention's effect】
As described above, in the pump bearing device of the present invention, a narrow gap is formed outside the outer ring of the rolling bearing, and a part of the high-pressure liquid boosted by the pump is introduced into the gap. Although it has a simple structure, it has an excellent effect that the damping coefficient can be increased without changing the spring constant of the rolling bearing and the vibration of the shaft can be effectively suppressed.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a bearing device for a pump according to the present invention.
FIG. 2 is a conceptual diagram of a conventional pump bearing device.
[Explanation of symbols]
1 Rotating shaft 2 Ball bearing (rolling bearing)
7 Pump outlet 8 Liquid flow path 9 Orifice Cr gap

Claims (1)

ロケットエンジンの燃焼器に液体水素または液体酸素を昇圧して送るターボポンプの軸受装置であって、ポンプの回転軸(1)を支持するころがり軸受(2)の外輪の外側、または、外輪を支持する環状のスリーブ(11)の外側に狭い環状の隙間(Cr)と該環状の隙間(Cr)の軸方向の中央に環状の溝(10)を形成し、該溝(10)にポンプ出口(7)側から導入した高圧の液体を流すようにするとともに、ポンプの出口(7)側から上記溝(10)までの流体流路の途中に流量調節用のオリフィス(9)を設けてなるターボポンプの軸受装置の設計方法であって、次の手順によって上記隙間(Cr)の寸法と上記オリフィス(9)の寸法を求めることを特徴とするターボポンプの軸受装置の設計方法。
1.軸受に要求される性能から合成バネ定数(K)と合成減衰係数(c)とを決定する。
2.上記の合成バネ定数(K)と合成減衰係数(c)と下記の4個の式によって、上記隙間(Cr)の寸法と隙間(Cr)内の流体膜(12)の入口側と出口側の差圧(ΔP)とを求める。
3.その差圧(ΔP)と上記隙間(Cr)の寸法とから上記オリフィス(9)の寸法を求める。
K=K’K /(K’+K
c=c’+c
∝√(ΔP)/Cr
∝√(ΔP)/Cr
上記式において、K’は機械軸受部分のバネ定数、c’は機械軸受部分の減衰係数、K は流体膜部分のバネ定数、c は流体膜部分の減衰係数であり、合成バネ定数(K)と合成減衰係数(c)とは機械軸受部分と流体膜部分とを直列に配置したものとして計算できる。
A turbo-pump bearing device for boosting liquid hydrogen or liquid oxygen to a rocket engine combustor and supporting the outer ring or outer ring of a rolling bearing (2) that supports the rotary shaft (1) of the pump A narrow annular gap (Cr) is formed outside the annular sleeve (11), and an annular groove (10) is formed in the center of the annular gap (Cr) in the axial direction, and a pump outlet ( 7) Turbo in which high-pressure liquid introduced from the side is allowed to flow, and an orifice (9) for adjusting the flow rate is provided in the middle of the fluid flow path from the outlet (7) side of the pump to the groove (10). A method for designing a bearing device for a pump, wherein the size of the gap (Cr) and the size of the orifice (9) are obtained by the following procedure.
1. The composite spring constant (K) and the composite damping coefficient (c) are determined from the performance required for the bearing.
2. According to the above-described combined spring constant (K), combined damping coefficient (c), and the following four equations, the size of the gap (Cr) and the inlet side and outlet side of the fluid film (12) in the gap (Cr) The differential pressure (ΔP) is obtained.
3. The dimension of the orifice (9) is obtained from the differential pressure (ΔP) and the dimension of the gap (Cr).
K = K′K 3 / (K ′ + K 3 )
c = c ′ + c 3
K 3 ∝√ (ΔP) / Cr
c 3 ∝√ (ΔP) / Cr 4
In the above equation, K ′ is the spring constant of the mechanical bearing portion, c ′ is the damping coefficient of the mechanical bearing portion, K 3 is the spring constant of the fluid film portion, c 3 is the damping coefficient of the fluid film portion, and the combined spring constant ( K) and the combined damping coefficient (c) can be calculated as a mechanical bearing portion and a fluid film portion arranged in series.
JP2003135763A 2003-05-14 2003-05-14 Design method of turbo pump bearing device Expired - Fee Related JP4512685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003135763A JP4512685B2 (en) 2003-05-14 2003-05-14 Design method of turbo pump bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003135763A JP4512685B2 (en) 2003-05-14 2003-05-14 Design method of turbo pump bearing device

Publications (2)

Publication Number Publication Date
JP2004339986A JP2004339986A (en) 2004-12-02
JP4512685B2 true JP4512685B2 (en) 2010-07-28

Family

ID=33525926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003135763A Expired - Fee Related JP4512685B2 (en) 2003-05-14 2003-05-14 Design method of turbo pump bearing device

Country Status (1)

Country Link
JP (1) JP4512685B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113614401A (en) 2019-03-22 2021-11-05 三菱重工发动机和增压器株式会社 Bearing device and rotating device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111090A (en) * 1983-11-21 1985-06-17 Ebara Corp Rotary gas machinery
JPS61226593A (en) * 1985-03-29 1986-10-08 Tokyo Gas Co Ltd Vertical submergible pump
JPH07719Y2 (en) * 1986-01-23 1995-01-11 三菱重工業株式会社 pump
JPH0544723A (en) * 1991-05-30 1993-02-23 Tonen Corp Bearing device
JP2949913B2 (en) * 1991-06-20 1999-09-20 トヨタ自動車株式会社 Oil film squeeze film damper
JPH0544722A (en) * 1991-08-08 1993-02-23 Toshiba Corp Damping bearing
JPH0578991U (en) * 1992-03-30 1993-10-26 日本カーター株式会社 Shaft whirl prevention device for multi-stage submerged motor pump
JP2000145768A (en) * 1998-11-10 2000-05-26 Hitachi Ltd Squeeze film damper bearing
JP2002147247A (en) * 2000-11-16 2002-05-22 Nsk Ltd Rotation support device for turbocharger
JP2003139134A (en) * 2001-11-06 2003-05-14 Ishikawajima Harima Heavy Ind Co Ltd Squeeze film damper bearing

Also Published As

Publication number Publication date
JP2004339986A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
CN107044480B (en) Bearing with drainage loop and press-filming damping device
US6135639A (en) Fixed arc squeeze film bearing damper
JPS60263723A (en) Compression film damper
US4693616A (en) Bearing for a fluid flow engine and method for damping vibrations of the engine
US9739170B2 (en) Flexibly damped mounting assemblies for power gear box transmissions in geared aircraft engine architectures
JPH01283428A (en) Critical speed controller for high-speed shaft
JP6577509B2 (en) System and method for variable squeeze film damper
JP6409049B2 (en) Rotating machine with adaptive bearing journal and method of operation
US9797303B2 (en) Turbocharger with thrust bearing providing combined journal and thrust bearing functions
KR20150074036A (en) Fluid film hydrodynamic flexure pivot tilting pad semi-floating ring journal bearing with compliant dampers
JP4296292B2 (en) Fluid bearing
JP5094833B2 (en) Tilting pad journal bearing device
GB2069070A (en) Aerodynamic foil insert bearing
JP4512685B2 (en) Design method of turbo pump bearing device
JP5093807B2 (en) Hydrostatic gas bearing spindle
WO2020054133A1 (en) Damper bearing and damper
JPH11141545A (en) Squeeze film damper bearing
JP2009156333A (en) Bearing device of rotary machine
US20190128140A1 (en) Bearing device for an exhaust gas turbocharger, and exhaust gas turbocharger
WO2012057012A1 (en) Bearing method for rotating shaft and device
WO2020194381A1 (en) Bearing device and rotation device
JPH0571358A (en) Bearing device of turbocharger
JP4031867B2 (en) Hydrostatic air bearing device
JP2021110241A (en) Compression system
JP2000280102A (en) Damper device of spindle

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050916

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100302

R150 Certificate of patent or registration of utility model

Ref document number: 4512685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees