JP4511157B2 - Corrosion resistant material and method for producing the same - Google Patents

Corrosion resistant material and method for producing the same Download PDF

Info

Publication number
JP4511157B2
JP4511157B2 JP2003392665A JP2003392665A JP4511157B2 JP 4511157 B2 JP4511157 B2 JP 4511157B2 JP 2003392665 A JP2003392665 A JP 2003392665A JP 2003392665 A JP2003392665 A JP 2003392665A JP 4511157 B2 JP4511157 B2 JP 4511157B2
Authority
JP
Japan
Prior art keywords
layer
iridium
platinum
metal
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003392665A
Other languages
Japanese (ja)
Other versions
JP2005154805A (en
Inventor
孝之 島宗
智弘 丸子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuya Metal Co Ltd
Original Assignee
Furuya Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuya Metal Co Ltd filed Critical Furuya Metal Co Ltd
Priority to JP2003392665A priority Critical patent/JP4511157B2/en
Publication of JP2005154805A publication Critical patent/JP2005154805A/en
Application granted granted Critical
Publication of JP4511157B2 publication Critical patent/JP4511157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、主として化学プロセスで使用する貯蔵容器や反応器、配管等を形成する強酸雰囲気に耐えられる耐食性に優れた金属材料に関するものである。   The present invention relates to a metal material having excellent corrosion resistance that can withstand a strong acid atmosphere that mainly forms storage containers, reactors, pipes and the like used in chemical processes.

従来から化学処理用として腐食性の薬液を使用することが行われる。特に電子デバイス処理などでは高純度品を使用する必要がある一方で、使用する薬液そのものの腐食性は従来に比較して非常に高くなっていることがしばしば見られる。このような薬液の保管或いは薬液処理槽として、温度が比較的低いところ或いは少量用途ではフッ素樹脂がしばしば使用されてきた。   Conventionally, a corrosive chemical solution is used for chemical treatment. In particular, it is necessary to use a high-purity product for electronic device processing and the like, but it is often seen that the corrosiveness of the chemical solution itself is much higher than before. For such chemical storage or chemical processing tanks, fluororesins have often been used in relatively low temperature or small volume applications.

しかしながら、フッ素樹脂製容器は高価であることはもちろんであるが、それに加えて大型化が困難であるという問題を有していた。また古くから使われてきた容器として、ポリプロピレン製容器や強化樹脂製容器などが有る。さらに金属製容器として、アルカリ液或いは有機物液に対してはステンレススチール製が使われ、その他例えば硫酸に対しては表面を鉛加工した金属タンクなどが使われてきた。また液の特性によるが、耐食金属製容器として、硫酸や塩酸の希酸、又は硝酸に対してチタン製が使われてきた。   However, the fluororesin container is not only expensive, but also has a problem that it is difficult to increase the size. In addition, examples of containers that have been used for a long time include polypropylene containers and reinforced resin containers. Further, as a metal container, stainless steel is used for alkali liquid or organic liquid, and for example, a metal tank whose surface is processed with lead has been used for sulfuric acid. Depending on the characteristics of the liquid, titanium made of sulfuric acid, dilute acid of hydrochloric acid, or nitric acid has been used as a corrosion-resistant metal container.

しかしながら、樹脂製容器は高温での使用に問題があり、金属製容器は高温での物理強度はあるものの、化学的には反応性がより強くなるためにその使用可能な範囲が狭められ、或いは溶出を無視して使用するなどが行われていた。この条件で満足できるケースは問題ないが、例えば鉛張りの容器に硫酸を保管する場合或いは反応を起こさせる場合、鉛表面がPbOとなる。このときPbOは安定で問題ないとされるものの、実際は硫酸中への溶出が問題となるケースが出ており、またこれによる二次汚染の可能性の問題も指摘されるに至っている。さらにチタン等の容器では二次汚染の問題は少ないが、高濃度の塩酸や硫酸では僅かではあるが反応して溶出する。したがって条件によって使用出来ないケースがあった。 However, resin containers have problems in use at high temperatures, and metal containers have physical strength at high temperatures, but their chemical use becomes stronger, so their usable range is narrowed, or It was used by ignoring elution. There is no problem in a case that can be satisfied under this condition, but for example, when sulfuric acid is stored in a lead-clad container or when a reaction is caused, the lead surface becomes PbO 2 . At this time, although PbO 2 is stable and has no problem, there are cases in which elution into sulfuric acid becomes a problem in practice, and the possibility of secondary contamination due to this has been pointed out. In addition, although there is little problem of secondary contamination in containers such as titanium, it reacts and elutes, albeit slightly, with high concentrations of hydrochloric acid and sulfuric acid. Therefore, there were cases where it could not be used depending on the conditions.

このような場合のために、パラジウムとの合金(JIS 11種、12種)などが知られている。これはパラジウムとチタンの間の電気化学的作用でチタンの電位を貴に保持するようにしたものであるが、パラジウム自体の耐食性があまり期待できないこともあり、耐食性の点では有効ではあるが、十分に目的を果たせるものではなかった。   For such a case, alloys (JIS 11 types, 12 types) with palladium are known. This is to keep the potential of titanium preciously by the electrochemical action between palladium and titanium, but the corrosion resistance of palladium itself may not be expected so much, but it is effective in terms of corrosion resistance, It was not enough to serve its purpose.

更に近年、電子デバイス工業を含めて化学プラントなどでは規模を拡大して採算をとるなど、大型化が益々進んでいる現状から、大型設備に対応できる材料が求められていた。このような材料に関しては超臨界処理装置への応用として以下の技術が提案されている(例えば、特許文献1及び2を参照。)。   Further, in recent years, materials that can be used for large-scale facilities have been demanded from the current situation in which the increase in size has been progressing, such as increasing profits in chemical plants including the electronic device industry. Regarding such materials, the following techniques have been proposed as applications to supercritical processing apparatuses (see, for example, Patent Documents 1 and 2).

特許文献1には、超臨界水条件における強酸性液に対して安定な材料として、金属表面を緻密で貫通孔の無い、しかも最も耐食性に優れた酸化イリジウム被覆を施す方法が示されている。この被覆構造により金属材料は直接には液とは触れないので、どのような材料でも良いことになっていて、表面の酸化イリジウム被膜のみで保護することが示されている。安定に被覆構造を形成できれば極めて優れた方法であるが、(1)被膜製造を基本的には水蒸気雰囲気下でやらなければならないこと、(2)被覆の厚さの制御が重要となること、という問題を有しており、全てのケースについて容易には応用することが困難であった。   Patent Document 1 discloses a method of applying an iridium oxide coating that is dense and free of through-holes and has the most excellent corrosion resistance as a material that is stable against a strongly acidic liquid under supercritical water conditions. Since this coating structure prevents the metal material from coming into direct contact with the liquid, any material can be used, and it is shown that the surface is protected only by the iridium oxide film on the surface. Although it is an extremely excellent method if the coating structure can be stably formed, (1) the coating production must be basically performed in a water vapor atmosphere, and (2) the control of the coating thickness is important. It was difficult to easily apply to all cases.

特許文献2には、同じく主として超臨界水処理容器として強酸雰囲気に対する耐食コーティングに関する技術が開示されている。つまりチタン又はチタン合金表面に酸化イリジウム含有層を設けること、またタンタルの中間層を介して酸化イリジウム被覆を設けるものである。ここに示す技術は特許文献1と同じく酸性の雰囲気下での耐食性を高めるための被覆を行ったチタンやチタン合金に対して行なったものであり、この被覆構造を有する材料を使用した超臨界水処理装置が開示されている。特許文献2ではチタンやチタン合金はその表面の酸化物によって強酸に対して金属を保護しているが、酸化物形成を積極的には行っておらず、長期間の使用を考慮するとその耐食性に問題が残されている。
特開2001−170478号公報 特開2002−361069号公報
Patent Document 2 discloses a technique relating to a corrosion-resistant coating against a strong acid atmosphere mainly as a supercritical water treatment container. That is, an iridium oxide-containing layer is provided on the surface of titanium or a titanium alloy, and an iridium oxide coating is provided via an intermediate layer of tantalum. The technique shown here is applied to titanium or titanium alloy coated to enhance the corrosion resistance in an acidic atmosphere as in Patent Document 1, and supercritical water using a material having this coating structure. A processing device is disclosed. In Patent Document 2, titanium and titanium alloys protect metals against strong acids by oxides on their surfaces, but they do not actively form oxides, and their long-term use makes them more resistant to corrosion. The problem remains.
JP 2001-170478 A JP 2002-36169 A

本発明が解決しようとする課題は主として化学プロセスに使用する強酸などの腐食性液体の容器や反応器又は配管に使用する、非常に信頼性の高い金属ベースの耐食性材料を提供することである。   The problem to be solved by the present invention is to provide a highly reliable metal-based corrosion resistant material for use in containers, reactors or piping of corrosive liquids such as strong acids used primarily in chemical processes.

本発明者らは、上記課題を解決すべく鋭意研究した結果、金属の表面をその金属の酸化被膜で覆った弁金属(バルブ金属)を基材として、その酸化被膜の表面に白金薄層、白金−イリジウム合金層、金属イリジウム層及び酸化イリジウム含有層を順次形成した保護層をさらに設けることで、強酸などに対して非常に信頼性の高い耐食性を有することを見出し、本発明を完成させた。すなわち、本発明に係る耐食材は、弁金属を基材とし、該基材の表面に白金薄層を形成し、該白金薄層の上に白金−イリジウム合金層を形成し、該白金−イリジウム合金層の上に金属イリジウム層を形成し、該金属イリジウム層の上に酸化イリジウム含有層を形成したことを特徴とする。   As a result of diligent research to solve the above problems, the present inventors have used a valve metal (valve metal) whose metal surface is covered with an oxide film of the metal as a base material, a platinum thin layer on the surface of the oxide film, By further providing a protective layer in which a platinum-iridium alloy layer, a metal iridium layer, and an iridium oxide-containing layer were sequentially formed, it was found that the present invention has a highly reliable corrosion resistance against strong acids and the like, and the present invention was completed. . That is, the corrosion-resistant material according to the present invention comprises a valve metal as a base material, a platinum thin layer is formed on the surface of the base material, a platinum-iridium alloy layer is formed on the platinum thin layer, and the platinum-iridium A metal iridium layer is formed on the alloy layer, and an iridium oxide-containing layer is formed on the metal iridium layer.

本発明に係る耐食材では、前記弁金属は、チタン又はチタン基合金を、チタン又はチタン基合金の酸化被膜で被覆したものであることが好ましい。   In the corrosion-resistant material according to the present invention, the valve metal is preferably one in which titanium or a titanium-based alloy is coated with an oxide film of titanium or a titanium-based alloy.

また本発明に係る耐食材では、前記弁金属は、ニオブ又はニオブ基合金を、ニオブ又はニオブ基合金の酸化被膜で被覆したものであることが好ましい。   In the corrosion-resistant material according to the present invention, the valve metal is preferably niobium or a niobium-based alloy coated with an oxide film of niobium or a niobium-based alloy.

本発明に係る耐食材では、前記白金薄層の厚みは、0.01〜1μmであることが好ましい。   In the corrosion-resistant material according to the present invention, the platinum thin layer preferably has a thickness of 0.01 to 1 μm.

さらに本発明に係る耐食材の製造方法は、弁金属を基材とし、該基材の表面に白金薄層を形成し、該白金薄層の上に白金−イリジウム合金層を形成し、該白金−イリジウム合金層の上に金属イリジウム層を形成し、該金属イリジウム層の上に酸化イリジウム含有層を形成した耐食材の製造方法であって、前記白金薄層は、前記基材の表面に白金塩溶液を塗布して塗布層を得た後、該塗布層を熱分解して形成したものであることを特徴とする。 Furthermore, the method for producing a corrosion-resistant material according to the present invention comprises using a valve metal as a base material, forming a platinum thin layer on the surface of the base material, forming a platinum-iridium alloy layer on the platinum thin layer, A method for producing a corrosion-resistant material in which a metal iridium layer is formed on an iridium alloy layer, and an iridium oxide-containing layer is formed on the metal iridium layer, wherein the platinum thin layer is formed on the surface of the substrate. The coating layer is formed by applying a salt solution to obtain a coating layer, and then thermally decomposing the coating layer.

また本発明に係る耐食材の製造方法では、前記白金−イリジウム合金層は、前記白金薄層の表面に白金塩とイリジウム塩を所望の割合で混合した塩溶液を塗布して塗布層を得た後、該塗布層を熱分解して形成したものであることが好ましい。 In the method for producing a corrosion-resistant material according to the present invention, the platinum-iridium alloy layer is obtained by applying a salt solution in which a platinum salt and an iridium salt are mixed in a desired ratio on the surface of the platinum thin layer to obtain a coating layer. Thereafter, the coating layer is preferably formed by thermal decomposition.

本発明に係る耐食材の製造方法では、前記酸化イリジウム含有層は、前記金属イリジウム層の表面にイリジウム塩含有溶液を塗布して塗布層を得た後、該塗布層を酸化性雰囲気中で熱分解して形成したものであることが好ましい。 In the method for producing a corrosion-resistant material according to the present invention, the iridium oxide-containing layer is obtained by applying an iridium salt-containing solution to the surface of the metal iridium layer to obtain a coating layer, and then heating the coating layer in an oxidizing atmosphere. It is preferably formed by decomposition.

本発明は、弁金属を基材として、その酸化被膜の表面に白金薄層、白金−イリジウム合金層、金属イリジウム層及び酸化イリジウム含有層を順次形成した保護層をさらに設けることで、強酸などの腐食性液体の容器や反応器又は配管に使用しうる、弁金属よりもさらに信頼性の高い金属ベースの耐食性材料を提供することができる。   The present invention provides a protective layer in which a valve metal is used as a base material and a protective layer in which a platinum thin layer, a platinum-iridium alloy layer, a metal iridium layer, and an iridium oxide-containing layer are sequentially formed on the surface of the oxide film. It is possible to provide a metal-based corrosion-resistant material that is more reliable than a valve metal and can be used for a container, a reactor, or piping of a corrosive liquid.

以下、本発明について詳細に説明するが本発明はこれらの記載に限定して解釈されない。図1に本実施形態に係る耐食材の断面構造の一形態を示す模式図を示す。本実施形態に係る耐食材100は、弁金属3を基材とし、基材の表面に白金薄層4を形成し、白金薄層4の上に白金−イリジウム合金層5を形成し、白金−イリジウム合金層5の上に金属イリジウム層6を形成し、金属イリジウム層6の上に酸化イリジウム含有層7を形成したものである。本実施形態では、金属を予め前処理をしてその表面を酸化物化した弁金属に、表面の酸化保持材として酸化性が最も高い白金を接触被覆させ、更に白金薄層の表面層を白金−イリジウムの実質的に傾斜機能材料とすべく白金−イリジウム合金層を介して表面が耐食性に最も優れる金属イリジウム層となし、更に金属イリジウム層の表面をより耐食性に優れた実質的に酸化イリジウムからなる被覆で覆ったものとする。この耐食材は、化学的に安定であると共に芯材となる弁金属には自己酸化物化特性を与えた耐食性材料である。   Hereinafter, the present invention will be described in detail, but the present invention is not construed as being limited to these descriptions. FIG. 1 is a schematic diagram showing one form of a cross-sectional structure of a corrosion-resistant material according to this embodiment. The corrosion resistant material 100 according to the present embodiment uses the valve metal 3 as a base material, forms a platinum thin layer 4 on the surface of the base material, forms a platinum-iridium alloy layer 5 on the platinum thin layer 4, A metal iridium layer 6 is formed on the iridium alloy layer 5, and an iridium oxide-containing layer 7 is formed on the metal iridium layer 6. In this embodiment, platinum, which has the highest oxidizability as a surface oxidation retention material, is contact-coated on a valve metal whose surface has been pre-treated and oxidized on the surface thereof, and the surface layer of the platinum thin layer is platinum- The surface of the metal iridium layer is made of iridium oxide, which has the most excellent corrosion resistance. Further, the surface of the metal iridium layer is made of iridium oxide, which is more excellent in corrosion resistance. It shall be covered with a coating. This corrosion-resistant material is a corrosion-resistant material which is chemically stable and gives autooxidation characteristics to the valve metal serving as the core material.

弁金属とは、アノード酸化により酸化被膜でおおわれる金属のことをいうが、具体的にはアルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモンなどが弁金属になりうる。弁金属は酸化被膜で覆われているため、ベース金属と比較してより化学的安定性が増している。本実施形態では、弁金属自体の化学的安定性・加工性等の材料物性を考慮すると、チタン又はチタン基合金を、チタン又はチタン基合金の酸化被膜で被覆した弁金属、或いはニオブ又はニオブ基合金を、ニオブ又はニオブ基合金の酸化被膜で被覆した弁金属が好ましい。チタン基合金としては、Ti−0.15%Pd、Ti−6%Al−4%V、Ti−5%Ta等の合金が例示できる。また、ニオブ基合金としては、Nb−10%Ti、Nb−10%Zr、Nb−5%Ta等の合金が例示できる。タンクその他では高濃度の硫酸或いは塩酸等の鉱酸が使用され或いは保持されることが多い。フッ酸が保持される場合もある。この状況に対して基材金属としてチタン又はチタン基合金が使える。なお、基材金属としてジルコニウム又ジルコニウム基合金としても良い。フッ化物イオン或いはフッ酸の比較的低い濃度の条件であれば、基材金属としてニオブ又はニオブ基合金が使える。高温で使用する場合には、タンタル又はタンタル基合金を基材金属としても良い。酸化被膜の厚さは、1〜5μmとすることが好ましい。なお、図1の符号1は、弁金属における未酸化状態の金属である。   The valve metal is a metal that is covered with an oxide film by anodic oxidation. Specifically, aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, and the like can be used as the valve metal. . Since the valve metal is covered with an oxide film, the chemical stability is increased compared to the base metal. In the present embodiment, in consideration of material physical properties such as chemical stability and workability of the valve metal itself, titanium or a titanium base alloy is coated with an oxide film of titanium or a titanium base alloy, or a niobium or niobium base. A valve metal in which the alloy is coated with an oxide film of niobium or a niobium-based alloy is preferred. Examples of titanium-based alloys include alloys such as Ti-0.15% Pd, Ti-6% Al-4% V, and Ti-5% Ta. Moreover, as a niobium base alloy, alloys, such as Nb-10% Ti, Nb-10% Zr, Nb-5% Ta, can be illustrated. In tanks and the like, highly concentrated mineral acids such as sulfuric acid or hydrochloric acid are often used or retained. In some cases, hydrofluoric acid may be retained. For this situation, titanium or a titanium-based alloy can be used as the base metal. The base metal may be zirconium or a zirconium-based alloy. Niobium or a niobium-based alloy can be used as the base metal under the condition of a relatively low concentration of fluoride ion or hydrofluoric acid. When used at a high temperature, tantalum or a tantalum-based alloy may be used as the base metal. The thickness of the oxide film is preferably 1 to 5 μm. In addition, the code | symbol 1 of FIG. 1 is the metal of the unoxidized state in a valve metal.

白金薄層4は、酸化性が最も高い白金を表面の酸化保持材として設けるものである。弁金属は水素化しやすいという特徴を有するため、弁金属表面の酸化被膜に薄い白金薄層を形成することで、酸化被膜の保持のための酸化用触媒として作用させ、また水素のマイグレーションと弁金属の水素化を防止させる。したがって、白金薄層4の厚みは、0.01〜1μmとすることが好ましい。   The platinum thin layer 4 is provided with platinum having the highest oxidizability as an oxidation holding material on the surface. Since the valve metal has the feature of being easily hydrogenated, a thin platinum layer is formed on the oxide film on the valve metal surface to act as an oxidation catalyst for maintaining the oxide film. Prevent hydrogenation of Therefore, the thickness of the platinum thin layer 4 is preferably 0.01 to 1 μm.

白金−イリジウム合金層5は、白金薄層4と金属イリジウム層6との非整合性を緩和し、接合の密着性を向上させるために実質的に傾斜機能材料として作用させる。白金−イリジウム合金層5の厚さは、0.1〜1μmとすることが好ましい。   The platinum-iridium alloy layer 5 substantially acts as a functionally gradient material in order to alleviate the incompatibility between the platinum thin layer 4 and the metal iridium layer 6 and improve the adhesion of the junction. The thickness of the platinum-iridium alloy layer 5 is preferably 0.1 to 1 μm.

金属イリジウムは白金に比較して化学的に安定であり、特にアンモニア等の還元雰囲気でもその影響を最小限しか受けないと言う特徴がある。白金の安定性と酸化作用を生かしながら、白金の化学的な安定性の不足を、金属イリジウム層6を設けることによって防ぐ。したがって、金属イリジウム層6は、下層の白金薄層並びに弁金属の保護を目的として白金−イリジウム合金層5の上に設ける。金属イリジウム層6の厚さは、1〜5μmとすることが好ましい。   Metal iridium is chemically stable as compared with platinum, and is particularly characterized by being minimally affected by a reducing atmosphere such as ammonia. By taking advantage of the stability and oxidation action of platinum, the lack of chemical stability of platinum is prevented by providing the metal iridium layer 6. Therefore, the metal iridium layer 6 is provided on the platinum-iridium alloy layer 5 for the purpose of protecting the lower platinum thin layer and the valve metal. The thickness of the metal iridium layer 6 is preferably 1 to 5 μm.

酸化イリジウム含有層7は、金属イリジウム層6の一部を酸化してより安定化すると共に、金属イリジウム層6のマイクロポア内にも酸化イリジウムが入り込み、また表面層の酸化イリジウム含有層7と相まって、貫通孔をより少なくする。金属イリジウム層6の露出部分を酸化させることによってより安定化を図る。酸化イリジウム含有層7は、安定化材である酸化タンタル、酸化チタン、酸化ジルコニウム、酸化スズ、酸化ニオブ、又はこれらの組み合わせ、特に酸化チタンと酸化タンタル、などを加えることが出来る。これによって表面被膜の物理的な強度を増すことが可能になるとともに、より貫通孔を減らすことが可能となる。なお貫通孔が存在してもイリジウムと弁金属との電気化学的作用で、弁金属が貴に保持されるために弁金属自身は防食されるという状態となり、安定である。酸化イリジウム含有層7の厚さは、例えば1〜10μmが例示でき、必要に応じて10μm以上であっても良い。   The iridium oxide-containing layer 7 oxidizes a part of the metal iridium layer 6 to further stabilize the iridium oxide, and iridium oxide also enters the micropores of the metal iridium layer 6. Reduce the number of through holes. Further stabilization is achieved by oxidizing the exposed portion of the metal iridium layer 6. The iridium oxide-containing layer 7 may contain tantalum oxide, titanium oxide, zirconium oxide, tin oxide, niobium oxide, or a combination thereof, particularly titanium oxide and tantalum oxide, which are stabilizing materials. As a result, the physical strength of the surface coating can be increased and the number of through holes can be further reduced. Even if there is a through-hole, the valve metal is preciously retained by the electrochemical action of iridium and the valve metal, so that the valve metal itself is protected from corrosion and is stable. The thickness of the iridium oxide-containing layer 7 may be 1 to 10 μm, for example, and may be 10 μm or more as necessary.

次に本実施形態に係る耐食材の製造法の一例について説明する。電気メッキ法は困難であり、またメッキ速度が極めて遅いという問題点があるために被覆層の形成は、熱分解にて行うことを基本とする。これによって各被覆の整合性がとれるようになる。また被覆厚みの制御がより精密に出来ること、また困難と言われる安定化と、皮膜の厚み全体の制御などに有効に働く。   Next, an example of the manufacturing method of the corrosion-resistant material according to the present embodiment will be described. The electroplating method is difficult and has a problem that the plating rate is extremely slow. Therefore, the coating layer is basically formed by thermal decomposition. As a result, the consistency of each coating can be obtained. In addition, the coating thickness can be controlled more precisely, it works effectively for stabilization, which is said to be difficult, and control of the entire thickness of the coating.

まず、弁金属3はアノード酸化により酸化被膜2を形成する。次に基材である弁金属の表面に白金塩溶液を塗布して塗布層を得る。白金塩溶液としては、ジニトロジアンミン白金(NO(NHPt(フルヤ金属製)に水を添加した溶液、或いはヘキサクロロ白金酸HPtCl(フルヤ金属製)にHClとエタノール等のアルコールと水を添加した溶液を使用する。次に塗布層を熱分解して白金薄層4を形成する。このとき、白金薄層4の厚みは、0.01〜1μmとするが好ましい。熱分解は、空気中300〜700℃で行なうことが好ましい。 First, the valve metal 3 forms the oxide film 2 by anodic oxidation. Next, a platinum salt solution is applied to the surface of the valve metal that is the base material to obtain a coating layer. As a platinum salt solution, a solution obtained by adding water to dinitrodiammineplatinum (NO 2 ) 2 (NH 3 ) 2 Pt (made by Furuya Metal), or HCl and ethanol in hexachloroplatinic acid H 2 PtCl 6 (made by Furuya Metal), etc. Use a solution of alcohol and water. Next, the coating layer is pyrolyzed to form the platinum thin layer 4. At this time, the thickness of the platinum thin layer 4 is preferably 0.01 to 1 μm. The thermal decomposition is preferably performed in air at 300 to 700 ° C.

白金−イリジウム合金層5は、次のように行なう。白金薄層4の表面に白金塩とイリジウム塩を所望の割合で混合した塩溶液を塗布して塗布層を得る。白金塩としては、ジニトロジアンミン白金(NO(NHPt又はHPtClが例示できる。イリジウム塩としては、塩化イリジウムIrCl(フルヤ金属製)が例示でき、これをHClとエタノール等のアルコールでイリジウム塩溶液とする。白金塩とイリジウム塩の割合は、白金とイリジウムの元素比で1:9〜9:1、より好ましくは、3:7〜7:3とすることが好ましい。次に塗布層を熱分解して白金−イリジウム合金層5を形成する。白金−イリジウム合金層5の厚さは、0.1〜1μmとすることが好ましい。 The platinum-iridium alloy layer 5 is performed as follows. A coating solution is obtained by applying a salt solution in which a platinum salt and an iridium salt are mixed in a desired ratio to the surface of the platinum thin layer 4. Examples of the platinum salt include dinitrodiammine platinum (NO 2 ) 2 (NH 3 ) 2 Pt or H 2 PtCl 6 . As the iridium salt, iridium chloride IrCl 3 (made by Furuya Metal Co., Ltd.) can be exemplified, and this is made into an iridium salt solution with HCl and alcohol such as ethanol. The ratio of platinum salt to iridium salt is preferably from 1: 9 to 9: 1, more preferably from 3: 7 to 7: 3, in terms of the elemental ratio of platinum to iridium. Next, the coating layer is pyrolyzed to form the platinum-iridium alloy layer 5. The thickness of the platinum-iridium alloy layer 5 is preferably 0.1 to 1 μm.

金属イリジウム層6の形成は、次のように行なう。還元剤を入れたイリジウム塩溶液を白金−イリジウム合金層5の表面に塗布して塗布層を得る。イリジウム塩溶液としては、塩化イリジウムIrCl(フルヤ金属製)にHClとエタノール等のアルコールで溶液化したものを使用することが好ましい。次に塗布層を還元雰囲気で熱分解して、金属イリジウム層6を形成する。還元雰囲気で熱分解は、火炎中あるいは還元炉内で行なうことが好ましい。アルコールが有機還元剤となる。金属イリジウム層6の厚さは、1〜5μmとすることが好ましい。 The metal iridium layer 6 is formed as follows. An iridium salt solution containing a reducing agent is applied to the surface of the platinum-iridium alloy layer 5 to obtain a coating layer. As the iridium salt solution, it is preferable to use iridium chloride IrCl 3 (manufactured by Furuya Metal Co., Ltd.) in a solution with an alcohol such as HCl and ethanol. Next, the coating layer is thermally decomposed in a reducing atmosphere to form the metal iridium layer 6. The thermal decomposition in a reducing atmosphere is preferably performed in a flame or in a reducing furnace. Alcohol is an organic reducing agent. The thickness of the metal iridium layer 6 is preferably 1 to 5 μm.

酸化イリジウム含有層7は、次のように行なう。金属イリジウム層6の表面にイリジウム塩含有溶液を塗布して塗布層を得る。イリジウム塩含有溶液としては、塩化イリジウムIrClにHClとエタノール等のアルコールで溶液化したものを使用することが好ましい。この溶液に塩化タンタル塩、塩化タンタル、三塩化チタン、四塩化チタン、塩化ニオブ等の塩化物、又は、ブチルタンタレート、ブチルチタネート、オクチルタンタレート、ブチルニオベート等のアルコキシ金属塩を含有させても良い。次に該塗布層を酸化性雰囲気中で熱分解して酸化イリジウム含有層7を形成する。酸化雰囲気は空気中であり、空気を流したマッフル炉などの加熱炉で行う。温度は、400〜550℃とすることが好ましい。その後、さらに、500〜700℃の空気中で被膜を酸化処理することが好ましい。これにより、貫通孔内部が酸化イリジウムとなる。 The iridium oxide containing layer 7 is performed as follows. An iridium salt-containing solution is applied to the surface of the metal iridium layer 6 to obtain a coating layer. As the iridium salt-containing solution, it is preferable to use a solution of iridium chloride IrCl 3 in an alcohol such as HCl and ethanol. This solution contains chlorides such as tantalum chloride, tantalum chloride, titanium trichloride, titanium tetrachloride, niobium chloride, or alkoxy metal salts such as butyl tantalate, butyl titanate, octyl tantalate, and butyl niobate. Also good. Next, the coating layer is thermally decomposed in an oxidizing atmosphere to form the iridium oxide-containing layer 7. The oxidizing atmosphere is in the air, and is performed in a heating furnace such as a muffle furnace in which air is flowed. The temperature is preferably 400 to 550 ° C. Thereafter, it is preferable to oxidize the film in air at 500 to 700 ° C. Thereby, the inside of the through hole becomes iridium oxide.

上記の工程において、白金−イリジウム合金層5、金属イリジウム層6又は酸化イリジウム含有層7とも複数回の塗布−熱分解を繰り返して所望の被覆厚みにする。   In the above process, the platinum-iridium alloy layer 5, the metal iridium layer 6 or the iridium oxide-containing layer 7 is repeatedly subjected to a plurality of coating-pyrolysis to a desired coating thickness.

また、被覆層を形成する場合、表面を清浄化することが好ましい。清浄化は、酸洗によって行うことが好ましい。   Moreover, when forming a coating layer, it is preferable to clean the surface. Cleaning is preferably performed by pickling.

上記の工程により得られた耐食材100は、例えば弁金属をチタン又はチタン基合金とした場合、弁金属よりも材料の溶出が少なく、耐食性が向上していた。   For example, when the valve metal is titanium or a titanium-based alloy, the corrosion-resistant material 100 obtained by the above process has less elution of the material than the valve metal and has improved corrosion resistance.

本実施形態では、弁金属の表面に形成する被覆層は、耐食材について少なくとも液面に接触しうる部分に設ける。例えば、配管であれば、少なくとも配管内部に被覆層を設ける。もちろん全面に被覆層を設けても良い。   In this embodiment, the coating layer formed on the surface of the valve metal is provided at least on the portion that can contact the liquid surface of the corrosion resistant material. For example, in the case of piping, a coating layer is provided at least inside the piping. Of course, a coating layer may be provided on the entire surface.

本実施形態に係る耐食材の断面構造の一形態を示す模式図を示す。The schematic diagram which shows one form of the cross-section of the corrosion-resistant material which concerns on this embodiment is shown.

符号の説明Explanation of symbols

1 弁金属の金属
2 弁金属の酸化被膜
3 弁金属(基材)
4 白金薄層
5 白金−イリジウム合金層
6 金属イリジウム層
7 酸化イリジウム含有層
100 耐食材
1 Valve metal metal 2 Valve metal oxide film 3 Valve metal (base material)
4 Platinum thin layer 5 Platinum-iridium alloy layer 6 Metal iridium layer 7 Iridium oxide-containing layer 100 Corrosion resistant material

Claims (7)

弁金属を基材とし、該基材の表面に白金薄層を形成し、該白金薄層の上に白金−イリジウム合金層を形成し、該白金−イリジウム合金層の上に金属イリジウム層を形成し、該金属イリジウム層の上に酸化イリジウム含有層を形成したことを特徴とする耐食材。   Using a valve metal as a base material, forming a platinum thin layer on the surface of the base material, forming a platinum-iridium alloy layer on the platinum thin layer, and forming a metal iridium layer on the platinum-iridium alloy layer And a corrosion-resistant material, wherein an iridium oxide-containing layer is formed on the metal iridium layer. 前記弁金属は、チタン又はチタン基合金を、チタン又はチタン基合金の酸化被膜で被覆したものであることを特徴とする請求項1記載の耐食材。   The corrosion-resistant material according to claim 1, wherein the valve metal is titanium or a titanium-based alloy coated with an oxide film of titanium or a titanium-based alloy. 前記弁金属は、ニオブ又はニオブ基合金を、ニオブ又はニオブ基合金の酸化被膜で被覆したものであることを特徴とする請求項1記載の耐食材。   2. The corrosion resistant material according to claim 1, wherein the valve metal is a niobium or niobium-based alloy coated with an oxide film of niobium or a niobium-based alloy. 前記白金薄層の厚みは、0.01〜1μmであることを特徴とする請求項1、2又は3記載の耐食材。   The corrosion-resistant material according to claim 1, wherein the platinum thin layer has a thickness of 0.01 to 1 μm. 弁金属を基材とし、該基材の表面に白金薄層を形成し、該白金薄層の上に白金−イリジウム合金層を形成し、該白金−イリジウム合金層の上に金属イリジウム層を形成し、該金属イリジウム層の上に酸化イリジウム含有層を形成した耐食材の製造方法であって、
前記白金薄層は、前記基材の表面に白金塩溶液を塗布して塗布層を得た後、該塗布層を熱分解して形成したものであることを特徴とする耐食材の製造方法
Using a valve metal as a base material, forming a platinum thin layer on the surface of the base material, forming a platinum-iridium alloy layer on the platinum thin layer, and forming a metal iridium layer on the platinum-iridium alloy layer And a method for producing a corrosion-resistant material in which an iridium oxide-containing layer is formed on the metal iridium layer,
The platinum thin layer, after obtaining a coated layer by coating a platinum salt solution to the surface of the substrate, method of manufacturing a corrosion-resistant material, characterized in that the coating layer is obtained by forming by thermal decomposition.
前記白金−イリジウム合金層は、前記白金薄層の表面に白金塩とイリジウム塩を所望の割合で混合した塩溶液を塗布して塗布層を得た後、該塗布層を熱分解して形成したものであることを特徴とする請求項5記載の耐食材の製造方法The platinum-iridium alloy layer is formed by applying a salt solution in which a platinum salt and an iridium salt are mixed at a desired ratio to the surface of the platinum thin layer to obtain a coating layer, and then thermally decomposing the coating layer. The method for producing a corrosion-resistant material according to claim 5, wherein the method is a product . 前記酸化イリジウム含有層は、前記金属イリジウム層の表面にイリジウム塩含有溶液を塗布して塗布層を得た後、該塗布層を酸化性雰囲気中で熱分解して形成したものであることを特徴とする請求項5又は6記載の耐食材の製造方法The iridium oxide-containing layer is formed by applying an iridium salt-containing solution to the surface of the metal iridium layer to obtain a coating layer, and then thermally decomposing the coating layer in an oxidizing atmosphere. The method for producing a corrosion-resistant material according to claim 5 or 6 .
JP2003392665A 2003-11-21 2003-11-21 Corrosion resistant material and method for producing the same Expired - Fee Related JP4511157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003392665A JP4511157B2 (en) 2003-11-21 2003-11-21 Corrosion resistant material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003392665A JP4511157B2 (en) 2003-11-21 2003-11-21 Corrosion resistant material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005154805A JP2005154805A (en) 2005-06-16
JP4511157B2 true JP4511157B2 (en) 2010-07-28

Family

ID=34719295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003392665A Expired - Fee Related JP4511157B2 (en) 2003-11-21 2003-11-21 Corrosion resistant material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4511157B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5710901B2 (en) * 2010-06-29 2015-04-30 株式会社フルヤ金属 Surface hardening method for platinum moldings
JPWO2012020641A1 (en) * 2010-08-12 2013-10-28 株式会社フルヤ金属 Inner cylinder for pressure vessel and manufacturing method thereof
RU2661132C1 (en) * 2014-08-19 2018-07-11 Ниппон Стил Энд Сумитомо Метал Корпорейшн Metal material and electric conductive component containing it
JP6246682B2 (en) * 2014-09-01 2017-12-13 日立オートモティブシステムズ株式会社 Lithium ion secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711497A (en) * 1993-06-25 1995-01-13 Daiso Co Ltd Oxygen generating electrode and manufacture thereof
JPH0790665A (en) * 1993-07-21 1995-04-04 Furukawa Electric Co Ltd:The Oxygen generating electrode
JP2002167674A (en) * 2000-11-29 2002-06-11 Furuya Kinzoku:Kk Metallic material for glass melting treatment and its production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711497A (en) * 1993-06-25 1995-01-13 Daiso Co Ltd Oxygen generating electrode and manufacture thereof
JPH0790665A (en) * 1993-07-21 1995-04-04 Furukawa Electric Co Ltd:The Oxygen generating electrode
JP2002167674A (en) * 2000-11-29 2002-06-11 Furuya Kinzoku:Kk Metallic material for glass melting treatment and its production method

Also Published As

Publication number Publication date
JP2005154805A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
Griess Jr Crevice corrosion of titanium in aqueous salt solutions
US4468416A (en) Electrolytic electrodes having high durability and process for the production of same
US7247229B2 (en) Coatings for the inhibition of undesirable oxidation in an electrochemical cell
CS209834B2 (en) Electrode and method of making the same
EP1756333B1 (en) Anode for oxygen evolution
JP4398858B2 (en) Electrode for generating gas and method for manufacturing the same
PL130519B1 (en) Method of manufacture of electrode with electrocatalytic surface
US6551719B2 (en) Reaction vessel of oxidization and decomposition processing equipment by supercritical water and method for manufacturing the same
US4484999A (en) Electrolytic electrodes having high durability
JP7094110B2 (en) Electrodes for the electrolysis process
JP2010095764A (en) Electrode for electrolysis and method for producing the same
JP4511157B2 (en) Corrosion resistant material and method for producing the same
TW201300576A (en) Anode for oxygen evolution
JP4588868B2 (en) Metal material for glass melting treatment and method for producing the same
DK200801617A (en) Downhole equipment removal system
EP0955395B1 (en) Electrolyzing electrode and process for the production thereof
CA3168177A1 (en) Electrode having polarity capable of being reversed and use thereof
TWI596236B (en) Electrode for oxygen evolution in industrial electrochemical processes
SE433624B (en) ELECTRODES FOR USE IN ELECTROLYSIS OF A WATER SOLUTION OF METAL HALOGENIDE, PROCEDURE FOR MANUFACTURING THE ELECTRODES AND USE OF THEMSELVES
US4285799A (en) Electrodes for electrolytic processes, especially metal electrowinning
JP2005539135A5 (en)
EP2047008A2 (en) Method for treating titanium objects with a surface layer of mixed tantalum and titanium oxides
JP4615847B2 (en) Corrosion resistant material and method for producing the same
KR950034290A (en) Method of doping or coating metal surface with metal element to improve oxide insulating property
JP6714576B2 (en) Catalyst coating and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees