JP4510323B2 - Surface-coated cemented carbide cutting drill with excellent wear resistance in high-speed cutting - Google Patents

Surface-coated cemented carbide cutting drill with excellent wear resistance in high-speed cutting Download PDF

Info

Publication number
JP4510323B2
JP4510323B2 JP2001133910A JP2001133910A JP4510323B2 JP 4510323 B2 JP4510323 B2 JP 4510323B2 JP 2001133910 A JP2001133910 A JP 2001133910A JP 2001133910 A JP2001133910 A JP 2001133910A JP 4510323 B2 JP4510323 B2 JP 4510323B2
Authority
JP
Japan
Prior art keywords
carbide
phase
cutting
cemented carbide
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001133910A
Other languages
Japanese (ja)
Other versions
JP2002326107A (en
Inventor
淳 岸野
高橋  慧
一樹 岡田
俊之 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001133910A priority Critical patent/JP4510323B2/en
Publication of JP2002326107A publication Critical patent/JP2002326107A/en
Application granted granted Critical
Publication of JP4510323B2 publication Critical patent/JP4510323B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、炭化タングステン基超硬合金で構成された基体(以下、超硬基体という)がすぐれた高温硬さを有し、したがって高熱発生を伴なう鋼や鋳鉄などの高速切削加工に用いた場合に、すぐれた耐摩耗性を発揮する表面被覆超硬合金製切削ドリル(以下、被覆超硬ドリルという)に関するものである。
【0002】
【従来の技術】
従来、一般に、被覆超硬ドリルは、例えば図1(a)に概略正面図で、同(b)に溝形成部の概略横断面図で示される形状を有し、各種の鋼や鋳鉄などの被削材の穴あけ切削加工などに用いられている。
また上記被覆超硬ドリルとして、超硬基体の表面に、TiとAlの複合窒化物[以下、(Ti,Al)Nで示す]で構成された硬質被覆層を0.5〜6μmの平均層厚で形成してなる被覆超硬ドリルも知られている。
【0003】
さらに、上記の従来被覆超硬ドリルの硬質被覆層である(Ti,Al)N層が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置を用い、ヒータで装置内を、例えば雰囲気を0.5Paの真空として、500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al合金がセットされたカソード電極(蒸発源)との間に、例えば電圧:35V、電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入し、一方超硬基体には、例えば−200Vのバイアス電圧を印加する条件で形成されることも知られている。
【0004】
【発明が解決しようとする課題】
一方、近年の穴あけ切削加工などの切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は切削機械の高性能化とも相俟って高速化の傾向にあるが、上記の従来被覆超硬ドリルにおいては、これを鋼や鋳鉄などの通常の条件での穴あけ切削加工に用いた場合には問題はないが、これを高速切削条件で用いると、穴あけ切削加工時に発生する高熱によって、特に切刃面を含む先端部および溝形成部の薄肉部(切刃部)の高温硬さの著しい低下をきたし、この結果摩耗進行が著しく促進されるようになることから、比較的短時間で使用寿命に至るのが現状である。
【0005】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に上記の従来被覆超硬ドリルに着目し、これを構成する超硬基体にすぐれた高温硬さを具備せしめるべく研究を行った結果、
(a)原料粉末として、炭化タングステン(以下、WCで示す)粉末、組成式:(W1−YTi)C(ただし、原子比で、Yは0.3〜0.5を示す)を有するWとTiの複合炭化物[以下、(W,Ti)Cで示す]粉末、炭化ニオブ(以下、NbCで示す)粉末、およびCo粉末を用いて、配合組成を、質量%で(以下、%は質量%を示す)、
Co:8〜10%、
(W,Ti)C:23〜30%、
NbC:5〜%、
WC:残り、
としてなる圧粉体の焼結体で超硬基体を構成すると、この超硬基体は、これを構成する超硬合金が、分散相として、WC相と共に、すぐれた高温硬さを有するWとTiとNbの複合炭化物[以下、(W,Ti,Nb)Cで示す]相が共存し、かつ結合相が、焼結時にCo中へ分散相を形成するWCの一部の主にW成分が固溶し、これによってすぐれた高温強度を具備するようになるCo−W系合金で構成された組織をもつものとなることから、すぐれた高温硬さを具備するようになること。
【0006】
(b)上記(a)の超硬基体の表面に、硬質被覆層として、アークイオンプレーティング装置を用いて、組成式:(Ti1−XAl)N(ただし、Xは、原子比で0.1〜0.6)を有する(Ti,Al)N層を形成すると、高温硬さがさらに一段と向上するようになること。
【0007】
(c)したがって、上記(a)の超硬基体の表面に上記(b)の硬質被覆層を蒸着形成してなる被覆超硬ドリルは、すぐれた高温硬さを具備するようになることから、これを高熱発生を伴なう高速穴あけ切削加工に用いても摩耗進行が著しく抑制され、長期に亘ってすぐれた耐摩耗性を発揮すること。
以上(a)〜(c)に示される研究結果が得られたのである。
【0008】
この発明は、上記の研究結果に基づいてなされたものであって、
Co:8〜10%、
組成式:(W1−YTi)C(ただし、原子比で、Yは0.3〜0.5を示す)を有する(W,Ti)C:23〜30%、
NbC:5〜
WC:残り、
からなる配合組成を有する圧粉体の焼結体にして、走査型電子顕微鏡による組織観察で、分散相が、WC相と、(W,Ti,Nb)C相とからなり、かつ結合相がCo−W系合金からなる組織を有する超硬基体の表面に、硬質被覆層として、アークイオンプレーティング装置を用いて
組成式:(Ti1−XAl)N(ただし、原子比で、Xは0.1〜0.6を示す)を有する平均層厚:〜6μmの(Ti,Al)N層、
蒸着形成してなる、高速切削ですぐれた耐摩耗性を発揮する被覆超硬ドリルに特徴を有するものである。
【0009】
つぎに、この発明の被覆超硬ドリルにおいて、これを構成する超硬基体(焼結体)の配合組成、硬質被覆層のX値、さらに硬質被覆層の平均層厚を上記の通りに限定した理由を説明する。
(1)超硬基体の配合組成
(a)Co
Co成分には、焼結性を向上させ、かつ焼結体の常温強度を向上させる作用があるが、その配合割合が8%未満では、前記作用に所望の向上効果が得られず、一方その配合割合が10%を越えると、高速切削時に偏摩耗の原因となる熱塑性変形を起し易くなり、この結果摩耗進行が促進されるようになることから、その配合割合を8〜10%と定めた。
【0010】
(b)(W,Ti)C
(W,Ti)Cは、焼結時にNbCと結合して、高い高温硬さを有する(W,Ti,Nb)Cを形成し、これが分散相として存在して超硬基体の高温硬さを著しく向上させる作用をもつが、その配合割合が23%未満では、(W,Ti,Nb)C相による高温硬さ向上効果を十分に確保することができず、一方その配合割合が30%を越えると、分散相として存在する(W,Ti,Nb)C相の割合が多くなり過ぎて、切刃部に欠けやチッピング(微小欠け)が発生し易くなることから、その配合割合を23〜30%と定めた。
また、(W,Ti)CのTi成分には、焼結時における(W,Ti)CのNbCとの結合を促進し、もって分散相としてNbC相が存在しないようにする作用があるが、その割合(Y値)がW成分との合量に占める割合で、原子比で0.3未満では前記作用に所望の効果が得られず、さらに形成された(W,Ti,Nb)C相に十分な高温硬さを確保することができず、一方その割合(Y値)が同じく0.5を越えると、焼結後に形成された(W,Ti,Nb)C相自体の強度に低下傾向が現れるようになり、これが原因で切刃部に欠けやチッピングが発生し易くなることから、その割合(Y値)を、原子比で0.3〜0.5と定めた。
【0011】
(c)NbC
NbCには、上記の通り焼結時に(W,Ti)Cと結合して、(W,Ti,Nb)C相を形成し、もって超硬基体の高温硬さを著しく向上させる作用があるが、その配合割合が5%未満では、形成された(W,Ti,Nb)C相に十分な高温硬さを確保することができず、一方その配合割合が7%を越えると、(W,Ti,Nb)C相におけるNb成分の割合が過剰気味になり、自体の強度に低下傾向が現れるようになり、これが原因で切刃稜線部に欠けやチッピングが発生し易くなることから、その配合割合を5〜7%と定めた。
【0012】
(2)硬質被覆層のX値
(Ti,Al)N層におけるAlは常温強度の高いTiNに対して耐熱性を付与し、もってすぐれた高温硬さを具備するようにするために固溶するものであり、したがって組成式:(Ti1−XAl)NのX値が原子比で0.1未満では所望のすぐれた高温硬さを確保することができず、一方その値が同0.6を越えると、切刃に欠けやチッピングが発生し易くなることから、X値を原子比で0.1〜0.6と定めた。
【0013】
(3)硬質被覆層の平均層厚
硬質被覆層を構成する(Ti,Al)N層の平均層厚を、〜6μmとしたのは、その平均層厚がμm未満では、硬質被覆層に所望の高温硬さを安定して付与することができず、一方その平均層厚が6μmを越えると、切刃面に欠けやチッピングが発生し易くなるという理由からである。
【0014】
【発明の実施の形態】
つぎに、この発明の被覆超硬ドリルを実施例により具体的に説明する。
原料粉末として、平均粒径:3.0μmを有するWC粉末、同1.8μmの(W0.7Ti0.4)C粉末、同1.9μmの(W0.5Ti0.5)C粉末、同2.0μmの(W0.4Ti0.6)C粉末、同1.2μmのNbC粉末、および同1.8μmのCo粉末を用意し、これら原料粉末のうちの所要の原料粉末をそれぞれ表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表1に示される組合せで、溝形成部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法をもった超硬基体a,b,g,h,iをそれぞれ製造した。
【0015】
ついで、これらの超硬基体a,b,g,h,iを、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に例示される通常のアークイオンプレーティング装置に装入し、一方カソード電極(蒸発源)として種々の成分組成をもったTi−Al合金を装着し、装置内を排気して0.5Paの真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを装置内に導入して10PaのAr雰囲気とし、この状態で超硬基体に−800vのバイアス電圧を印加して超硬基体表面をArガスボンバート洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して6Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−200vに下げて、前記カソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体a,b,g,h,iのそれぞれの表面に、表3に示される目標組成(X値)および目標層厚の(Ti,Al)N層を硬質被覆層として形成することにより、図1(a)に概略正面図で、同(b)に溝形成部の概略横断面図で示される形状を有する本発明被覆超硬ドリル1〜をそれぞれ製造した。
【0016】
また、比較の目的で、表2の超硬基体a’〜l’に示される通り、超硬基体の配合組成に関し、高温硬さに影響を及ぼす(W,Ti)Cの組成、さらに前記(W,Ti)CおよびNbCの配合割合のうちの少なくともいずれかがこの発明の範囲から外れた配合組成とする以外は同一の条件で、表4に示される通りの比較被覆超硬ドリル1〜12をそれぞれ製造した。
【0017】
なお、本発明被覆超硬ドリル1〜および比較被覆超硬ドリル1〜12について、走査型電子顕微鏡およびオージェ分光分析装置を用いて、超硬基体の組織を観察したところ、いずれもWC相と、(W,Ti,Nb)C相の分散相と、Co−W系合金の結合相からなる組織を示し、さらに硬質被覆層について、その組成(厚さ方向中央部を測定)および厚さ(断面測定)を測定したところ、いずれも目標組成および目標層厚と実質的に同じ値を示した。
【0018】
つぎに、上記本発明被覆超硬ドリル1〜および比較被覆超硬ドリル1〜12のうち、本発明被覆超硬ドリル1,2および比較被覆超硬ドリル1〜4については、
被削材:100mm×250の平面寸法、50mmの厚さを有するJIS・SCM440の板材、
切削速度:140m/min、
送り:0.2mm/rev、
の条件での合金鋼の湿式高速穴あけ加工試験、本発明被覆超硬ドリル3,4および比較被覆超硬ドリル5〜8については、
被削材:100mm×250の平面寸法、50mmの厚さを有するJIS・SCM440の板材、
切削速度:150m/min、
送り:0.25mm/rev、
の条件での合金鋼の湿式高速穴あけ切削加工試験、本発明被覆超硬ドリルおよび比較被覆超硬ドリル9〜12については、
被削材:100mm×250の平面寸法、50mmの厚さを有するJIS・SCM440の板材、
切削速度:160m/min、
送り:0.3mm/rev、
の条件での合金鋼の湿式高速穴あけ切削加工試験、
をそれぞれ行い、いずれの湿式(水溶性切削油使用)高速穴あけ加工試験でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表3、4にそれぞれ示した。
【0019】
【表1】

Figure 0004510323
【0020】
【表2】
Figure 0004510323
【0021】
【表3】
Figure 0004510323
【0022】
【表4】
Figure 0004510323
【0023】
【発明の効果】
表1〜4に示される結果から、本発明被覆超硬ドリル1〜は、いずれも超硬基体がすぐれた高温硬さを有することから、硬質被覆層の具備するすぐれた高温硬さと相俟って、鋼の穴あけ切削加工を高い発熱を伴う高速で行っても、すぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するのに対して、比較被覆超硬ドリル1〜12に見られる通り超硬基体の配合成分である(W,Ti)Cの組成、さらに前記(W,Ti)CおよびNbCの配合割合のうちの少なくともいずれかがこの発明の範囲から低い方に外れると、十分な高温硬さが得られないことから、摩耗進行が速く、一方反対に高い方に外れると、切刃部に欠けやチッピングが発生し、いずれの場合も比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬ドリルは、各種の鋼や鋳鉄などの通常の条件での切削加工は勿論のこと、特に高速穴あけ切削加工においてもすぐれた耐摩耗性を発揮し、使用寿命の延命化を可能にするものであるから、穴あけ切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】 (a)は被覆超硬ドリルの概略正面図で、(b)は同溝形成部の概略横断面図である。
【図2】 アークイオンプレーティング装置の概略説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention is used for high-speed cutting of steel, cast iron, etc., which has a high-temperature hardness of a substrate made of a tungsten carbide-based cemented carbide (hereinafter referred to as a cemented carbide substrate) and thus has high heat generation. The present invention relates to a surface-coated cemented carbide cutting drill (hereinafter referred to as a coated carbide drill) that exhibits excellent wear resistance.
[0002]
[Prior art]
Conventionally, in general, a coated carbide drill has, for example, a schematic front view in FIG. 1A and a schematic cross-sectional view of a groove forming portion in FIG. It is used for drilling and cutting work materials.
Further, as the above-described coated carbide drill, a hard coating layer composed of a composite nitride of Ti and Al [hereinafter referred to as (Ti, Al) N] is formed on the surface of the cemented carbide substrate with an average layer of 0.5 to 6 μm. A coated carbide drill formed with a thickness is also known.
[0003]
Further, an arc ion plating apparatus in which the (Ti, Al) N layer, which is a hard coating layer of the above-described conventional coated carbide drill, is a kind of physical vapor deposition apparatus schematically shown in FIG. 2, for example, Between the anode electrode and the cathode electrode (evaporation source) in which a Ti—Al alloy having a predetermined composition is set in a state where the inside of the apparatus is heated to a temperature of 500 ° C. with, for example, a vacuum of 0.5 Pa. In addition, for example, arc discharge is generated under the conditions of voltage: 35 V and current: 90 A, and simultaneously, nitrogen gas is introduced into the apparatus as a reaction gas, while a bias voltage of −200 V, for example, is applied to the carbide substrate. It is also known that it is formed.
[0004]
[Problems to be solved by the invention]
On the other hand, there are strong demands for labor saving, energy saving, and cost reduction for cutting such as drilling in recent years, and with this, cutting tends to increase in speed with the high performance of cutting machines. However, in the above conventional coated carbide drill, there is no problem when it is used for drilling cutting under normal conditions such as steel or cast iron. Due to the high heat generated during processing, the high-temperature hardness of the tip part including the cutting edge surface and the thin part (cutting edge part) of the groove forming part is significantly reduced, and as a result, the progress of wear is significantly accelerated. Therefore, the service life is reached in a relatively short time.
[0005]
[Means for Solving the Problems]
Therefore, the present inventors have focused on the above-described conventional coated carbide drill from the above viewpoint, and as a result of conducting research to make the carbide substrate constituting this excellent high-temperature hardness,
(A) As a raw material powder, tungsten carbide (hereinafter referred to as WC) powder, composition formula: (W 1-Y Ti Y ) C (wherein Y represents 0.3 to 0.5 in atomic ratio) Using W and Ti composite carbide [hereinafter referred to as (W, Ti) C] powder, niobium carbide (hereinafter referred to as NbC) powder, and Co powder, the composition was expressed in mass% (hereinafter referred to as%). Indicates mass%),
Co: 8-10%
(W, Ti) C: 23 ~30%,
NbC: 5 to 7 %,
WC: The rest
When the cemented carbide substrate is composed of a sintered compact of green compact as follows, the cemented carbide substrate is composed of W and Ti having excellent high-temperature hardness together with the WC phase as a dispersed phase. And Nb composite carbide (hereinafter referred to as (W, Ti, Nb) C) phase coexist and the binder phase forms a dispersed phase into Co during sintering. Since it has a structure composed of a Co—W alloy that dissolves and thereby has excellent high temperature strength, it has excellent high temperature hardness.
[0006]
(B) A composition formula: (Ti 1-X Al X ) N (where X is an atomic ratio) using an arc ion plating apparatus as a hard coating layer on the surface of the superhard substrate of (a) above. When a (Ti, Al) N layer having 0.1 to 0.6) is formed, the high-temperature hardness is further improved.
[0007]
(C) Therefore, the coated carbide drill formed by vapor-depositing the hard coating layer of (b) on the surface of the superhard substrate of (a) is provided with excellent high-temperature hardness. Even if this is used for high-speed drilling with high heat generation, the progress of wear is remarkably suppressed, and excellent wear resistance is exhibited over a long period of time.
The research results shown in (a) to (c) above were obtained.
[0008]
This invention was made based on the above research results,
Co: 8-10%
(W, Ti) C having a composition formula: (W 1-Y Ti Y ) C (wherein Y represents 0.3 to 0.5 in atomic ratio): 23 to 30%,
NbC: 5 to 7 %
WC: The rest
A sintered compact of a green compact having a composition composed of the following, and by a structure observation with a scanning electron microscope, the dispersed phase is composed of a WC phase and a (W, Ti, Nb) C phase, and the binder phase is By using an arc ion plating apparatus as a hard coating layer on the surface of a carbide substrate having a structure made of a Co-W alloy,
Average layer thickness having a composition formula: (Ti 1-X Al X ) N (wherein X is 0.1 to 0.6 by atomic ratio): (Ti, Al) N layer of 1 to 6 μm,
It is characterized by a coated carbide drill that is formed by vapor deposition and exhibits excellent wear resistance in high-speed cutting.
[0009]
Next, in the coated carbide drill of the present invention, the compounding composition of the cemented carbide substrate (sintered body), the X value of the hard coating layer, and the average layer thickness of the hard coating layer are limited as described above. Explain why.
(1) Composition of carbide substrate (a) Co
The Co component has an effect of improving the sinterability and improving the room temperature strength of the sintered body. However, if the blending ratio is less than 8%, a desired improvement effect cannot be obtained in the above-described operation, while If the blending ratio exceeds 10%, it becomes easy to cause thermoplastic deformation that causes uneven wear during high-speed cutting. As a result, the progress of wear is promoted, so the blending ratio is set to 8 to 10%. It was.
[0010]
(B) (W, Ti) C
(W, Ti) C combines with NbC during sintering to form (W, Ti, Nb) C having high high-temperature hardness, and this exists as a dispersed phase to increase the high-temperature hardness of the carbide substrate. Although it has the effect of significantly improving, if the blending ratio is less than 23% , the effect of improving the high temperature hardness by the (W, Ti, Nb) C phase cannot be sufficiently secured, while the blending ratio is 30%. it exceeds the, present as dispersed phase (W, Ti, Nb) too the proportion of C phase is large, since the chipping or chipping the cutting edge portion (small chipping) tends to occur, the blending ratio 23 ~ 30%.
In addition, the Ti component of (W, Ti) C has an effect of promoting the bonding of (W, Ti) C with NbC during sintering so that the NbC phase does not exist as a dispersed phase. The proportion (Y value) is the proportion of the total amount with the W component, and if the atomic ratio is less than 0.3, the desired effect cannot be obtained in the above action, and the (W, Ti, Nb) C phase formed further. However, if the ratio (Y value) exceeds 0.5 , the strength of the (W, Ti, Nb) C phase itself formed after sintering is reduced. Since a tendency appears and it becomes easy for chipping and chipping to occur at the cutting edge due to this, the ratio (Y value) was determined to be 0.3 to 0.5 in terms of atomic ratio.
[0011]
(C) NbC
NbC combines with (W, Ti) C during sintering as described above to form a (W, Ti, Nb) C phase, thereby significantly improving the high-temperature hardness of the cemented carbide substrate. If the blending ratio is less than 5%, sufficient high-temperature hardness cannot be secured in the formed (W, Ti, Nb) C phase, while if the blending ratio exceeds 7% , (W, Ti, Nb) The proportion of the Nb component in the Ti, Nb) C phase becomes excessive, and a tendency to decrease in its own strength appears, and this causes the chip edge portion to be easily chipped and chipped. The percentage was set at 5-7 % .
[0012]
(2) X value of the hard coating layer Al in the (Ti, Al) N layer gives heat resistance to TiN having a high room temperature strength and dissolves in order to have excellent high temperature hardness. Therefore, if the X value of the composition formula: (Ti 1-X Al X ) N is less than 0.1 in atomic ratio, the desired excellent high-temperature hardness cannot be secured, while the value is the same as 0. If it exceeds .6, chipping and chipping are likely to occur in the cutting edge, so the X value was determined to be 0.1 to 0.6 in terms of atomic ratio.
[0013]
(3) constituting the average layer thickness hard layer of the hard coating layer (Ti, Al) the average layer thickness of the N layer, 1 was a ~6μm, in an average layer thickness of less than 1 [mu] m, hard layer This is because the desired high-temperature hardness cannot be stably imparted to the surface, and on the other hand, if the average layer thickness exceeds 6 μm, chipping and chipping are likely to occur on the cutting edge surface.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, the coated carbide drill of the present invention will be specifically described with reference to examples.
As the raw material powder, WC powder having an average particle diameter of 3.0 μm, (W 0.7 Ti 0.4 ) C powder of 1.8 μm, (W 0.5 Ti 0.5 ) C powder of 1.9 μm, 2.0 μm ( W 0.4 Ti 0.6 ) C powder, 1.2 μm NbC powder, and 1.8 μm Co powder are prepared, and the required raw material powders of these raw material powders are blended in the composition shown in Table 1, respectively. Further, wax was added and mixed in a ball mill for 24 hours in acetone, dried under reduced pressure, and then pressed into various green compacts having a predetermined shape at a pressure of 100 MPa. These green compacts were placed in a 6 Pa vacuum atmosphere. The temperature is increased to a predetermined temperature within a range of 1370 to 1470 ° C. at a temperature increase rate of 7 ° C./min, held at this temperature for 1 hour, sintered under furnace cooling conditions, and having a diameter of 8 mm, 13 mm, and Sintered round bars for forming three types of 26 mm carbide substrates Further, from the above-mentioned three kinds of round bar sintered bodies, the diameters and lengths of the groove forming portions are 6 mm × 13 mm, 10 mm × 22 mm, and 20 mm in the combinations shown in Table 1 by grinding. Carbide substrates a, b, g, h, and i having dimensions of 45 mm were manufactured, respectively.
[0015]
Next, these superhard substrates a, b, g, h, i are ultrasonically cleaned in acetone and dried, and each is loaded into a normal arc ion plating apparatus illustrated in FIG. On the other hand, a Ti-Al alloy having various component compositions was attached as a cathode electrode (evaporation source), and the inside of the apparatus was heated to 500 ° C. with a heater while evacuating the apparatus and maintaining a vacuum of 0.5 Pa. Then, Ar gas is introduced into the apparatus to form an Ar atmosphere of 10 Pa. In this state, a bias voltage of −800 V is applied to the cemented carbide substrate to clean the surface of the cemented carbide substrate with Ar gas bombardment, and then as a reaction gas in the apparatus. Nitrogen gas was introduced to make a reaction atmosphere of 6 Pa, and the bias voltage applied to the cemented carbide substrate was lowered to −200 V to generate an arc discharge between the cathode electrode and the anode electrode. The cemented carbide substrate a, b, g, h, on the respective surfaces of the i, to form the target composition shown in Table 3 (X value) and the target layer thickness of (Ti, Al) N layer as a hard coating layer Te Thus, the coated carbide drills 1 to 5 of the present invention having the shape shown in the schematic front view of FIG. 1A and the schematic cross-sectional view of the groove forming portion in FIG.
[0016]
For the purpose of comparison, as shown in Table 2 of the carbide substrate A'~l ', relates to the composition of the cemented carbide substrate, it affects the high-temperature hardness (W, Ti) composition and C, further wherein ( Comparative coated cemented carbide drills 1-12 as shown in Table 4 under the same conditions except that at least one of the blending ratios of W, Ti) C and NbC is a blending composition that is out of the scope of the present invention. Were manufactured respectively.
[0017]
In addition, about the present invention coated carbide drills 1 to 5 and comparative coated carbide drills 1 to 12, the structure of the carbide substrate was observed using a scanning electron microscope and an Auger spectroscopic analyzer. , (W, Ti, Nb) shows a structure composed of a dispersed phase of C phase and a binder phase of a Co—W alloy, and the composition (measured in the center in the thickness direction) and thickness ( When the cross-section measurement) was measured, all showed substantially the same values as the target composition and the target layer thickness.
[0018]
Next, among the present invention coated carbide drills 1 to 5 and the comparative coated carbide drills 1 to 12, the present invention coated carbide drills 1 and 2 and the comparative coated carbide drills 1 to 4,
Work material: Plane dimensions of 100 mm × 250, JIS / SCM440 plate material having a thickness of 50 mm,
Cutting speed: 140 m / min,
Feed: 0.2mm / rev,
About the wet high-speed drilling test of alloy steel under the conditions of the present invention, the present invention coated carbide drills 3 and 4 and the comparative coated carbide drills 5-8,
Work material: Plane dimensions of 100 mm × 250, JIS / SCM440 plate material having a thickness of 50 mm,
Cutting speed: 150 m / min,
Feed: 0.25mm / rev,
For the wet high speed drilling test of alloy steel under the conditions of the present invention, the coated carbide drill 5 of the present invention and the comparative coated carbide drills 9-12,
Work material: Plane dimensions of 100 mm × 250, JIS / SCM440 plate material having a thickness of 50 mm,
Cutting speed: 160 m / min,
Feed: 0.3mm / rev,
Wet high speed drilling test of alloy steel under the conditions of
In each wet (using water-soluble cutting oil) high-speed drilling test, the number of drilling processes until the flank wear width of the cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Tables 3 and 4, respectively.
[0019]
[Table 1]
Figure 0004510323
[0020]
[Table 2]
Figure 0004510323
[0021]
[Table 3]
Figure 0004510323
[0022]
[Table 4]
Figure 0004510323
[0023]
【The invention's effect】
From the results shown in Tables 1 to 4, since the coated carbide drills 1 to 5 of the present invention all have a high temperature hardness with which the cemented carbide substrate is excellent, it is compatible with the excellent high temperature hardness of the hard coating layer. Therefore, even if the drilling of steel is performed at high speed with high heat generation, it exhibits excellent wear resistance and exhibits excellent cutting performance over a long period of time. As shown in FIG. 12, at least one of the composition of (W, Ti) C, which is a blending component of the carbide substrate, and the blending ratio of (W, Ti) C and NbC is lower from the scope of the present invention. If removed, sufficient high-temperature hardness cannot be obtained, so wear progresses rapidly.On the other hand, if it is removed higher, chipping or chipping occurs in the cutting edge, and in any case, it can be used in a relatively short time. It is clear that it reaches the end of its life.
As described above, the coated carbide drill of the present invention exhibits excellent wear resistance not only in cutting processing under normal conditions such as various steels and cast iron, but also in high-speed drilling processing. Since the service life can be extended, it is possible to satisfactorily cope with labor saving and energy saving of drilling and cost reduction.
[Brief description of the drawings]
1A is a schematic front view of a coated carbide drill, and FIG. 1B is a schematic cross-sectional view of the groove forming portion.
FIG. 2 is a schematic explanatory diagram of an arc ion plating apparatus.

Claims (1)

質量%で、
Co:8〜10%、
組成式:(W1−YTi)C(ただし、原子比で、Yは0.3〜0.5を示す)を有するWとTiの複合炭化物:23〜30%、
炭化ニオブ:5〜%、
炭化タングステン:残り、
からなる配合組成を有する圧粉体の焼結体にして、走査型電子顕微鏡による組織観察で、分散相が、炭化タングステン相と、WとTiとNbの複合炭化物相とからなり、かつ結合相がCo−W系合金からなる組織を有する炭化タングステン基超硬合金で構成した基体の表面に、硬質被覆層として、アークイオンプレーティング装置を用いて
組成式:(Ti1−XAl)N(ただし、原子比で、Xは0.1〜0.6を示す)を有する平均層厚:〜6μmのTiとAlの複合窒化物層、
蒸着形成してなる、高速切削ですぐれた耐摩耗性を発揮する表面被覆超硬合金製切削ドリル。
% By mass
Co: 8-10%
Compound carbide of W and Ti having a composition formula: (W 1-Y Ti Y ) C (wherein Y represents 0.3 to 0.5 in atomic ratio): 23 to 30%,
Niobium carbide: 5-7%,
Tungsten carbide: the rest,
A sintered compact of a green compact having a composition composed of: a dispersed phase is composed of a tungsten carbide phase and a composite carbide phase of W, Ti, and Nb, and a bonded phase by a structure observation by a scanning electron microscope Using an arc ion plating apparatus as a hard coating layer on the surface of a substrate composed of a tungsten carbide base cemented carbide having a structure made of a Co-W alloy,
Average layer thickness having a composition formula: (Ti 1-X Al X ) N (wherein X represents 0.1 to 0.6 in atomic ratio): 1 to 6 μm of a composite nitride layer of Ti and Al,
Made by depositing form, surface-coated cemented carbide cutting drill exhibits wear resistance excellent in high-speed cutting.
JP2001133910A 2001-05-01 2001-05-01 Surface-coated cemented carbide cutting drill with excellent wear resistance in high-speed cutting Expired - Lifetime JP4510323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001133910A JP4510323B2 (en) 2001-05-01 2001-05-01 Surface-coated cemented carbide cutting drill with excellent wear resistance in high-speed cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001133910A JP4510323B2 (en) 2001-05-01 2001-05-01 Surface-coated cemented carbide cutting drill with excellent wear resistance in high-speed cutting

Publications (2)

Publication Number Publication Date
JP2002326107A JP2002326107A (en) 2002-11-12
JP4510323B2 true JP4510323B2 (en) 2010-07-21

Family

ID=18981690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001133910A Expired - Lifetime JP4510323B2 (en) 2001-05-01 2001-05-01 Surface-coated cemented carbide cutting drill with excellent wear resistance in high-speed cutting

Country Status (1)

Country Link
JP (1) JP4510323B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111101049A (en) * 2018-10-26 2020-05-05 青海民族大学 In-situ NbC particle and iron-based amorphous alloy synergistically reinforced manganese steel-based composite material and preparation method thereof

Also Published As

Publication number Publication date
JP2002326107A (en) 2002-11-12

Similar Documents

Publication Publication Date Title
WO2004000494A1 (en) Coated cutting tool member
JP2008254159A (en) Surface-coated cutting tool made of cubic boron nitride group ultrahigh-pressure sintered material
JP3931325B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2002263940A (en) Face milling cutter tool with throwaway tip showing superior chipping resistance in high-speed cutting
JP3695396B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials
JP4510323B2 (en) Surface-coated cemented carbide cutting drill with excellent wear resistance in high-speed cutting
JP3948013B2 (en) Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer
JP3849135B2 (en) Cutting tool made of surface-coated cemented carbide with a hard coating layer showing good biting properties against the work material under heavy cutting conditions
JP3847113B2 (en) Surface-coated cemented carbide end mill or drill with excellent surface lubricity against chips of highly viscous difficult-to-cut materials
JP3620456B2 (en) Surface coated cemented carbide drill with excellent wear resistance in high speed cutting
JP4883477B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed intermittent cutting of high-hardness steel
JP3948010B2 (en) Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer
JP2008302439A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material
JP4416960B2 (en) Slow-away cutting tip made of surface-coated cemented carbide that provides excellent wear resistance in high-speed cutting
JP2003236710A (en) Cutting tip made of cubic crystal boron nitride group ultrahigh pressure sintered material having excellent resistance to chipping
JP2001310212A (en) Surface covered cemented carbide made end mill on which head end surface cutting surface and outer peripheral blade display excellent heat resistant plastic deformation property
JP3693018B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials
JP3928487B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4770284B2 (en) Cutting tips made of surface-coated cubic boron nitride-based ultra-high pressure sintered material with excellent wear resistance in high-speed intermittent cutting of high-hardness steel
JP2002254228A (en) Drill made of surface-coated cemented carbide and excellent in wear resistance in high speed cutting
JP2002200508A (en) Surface coated cemented carbide cutting drill exerting excellent wear resistance by high speed cutting
JP2007136653A (en) Surface coated cutting tool made of cubic boron nitride-base ultra-high pressure sintered material having hard coated layer exhibiting chipping resistance in high-speed heavy cutting of high-hardness steel
JP2003236707A (en) Cutting tip made of cubic crystal boron nitride group ultrahigh pressure sintered material having excellent resistance to chipping
JP2002187008A (en) Cutting drill made of surface-coated cemented carbide excellent in wear resistance in high speed cutting
JP3620480B2 (en) Surface-coated cemented carbide end mill or drill with excellent wear-resistant coating layer for excellent chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4510323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

EXPY Cancellation because of completion of term