JP4508352B2 - Optical space transmission system - Google Patents

Optical space transmission system Download PDF

Info

Publication number
JP4508352B2
JP4508352B2 JP2000107514A JP2000107514A JP4508352B2 JP 4508352 B2 JP4508352 B2 JP 4508352B2 JP 2000107514 A JP2000107514 A JP 2000107514A JP 2000107514 A JP2000107514 A JP 2000107514A JP 4508352 B2 JP4508352 B2 JP 4508352B2
Authority
JP
Japan
Prior art keywords
light
distance
unit
optical
optical space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000107514A
Other languages
Japanese (ja)
Other versions
JP2001292105A5 (en
JP2001292105A (en
Inventor
潤二 重田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000107514A priority Critical patent/JP4508352B2/en
Publication of JP2001292105A publication Critical patent/JP2001292105A/en
Publication of JP2001292105A5 publication Critical patent/JP2001292105A5/ja
Application granted granted Critical
Publication of JP4508352B2 publication Critical patent/JP4508352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Optical Communication System (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、遠隔地に対して光無線により情報伝達を行う光空間伝送システムに関するものである。
【0002】
【従来の技術】
従来の光空間伝送装置は、送信側において送信信号を光信号に変調し、この光信号を受信側に向かって大気空間中を伝送し、受信側において送信側からの光信号を復調することにより、情報信号の伝達を大気空間を介して行っている。
【0003】
このとき、対向装置の移動や大気の揺らぎ又は移動時における振動により、光ビームの径路が変化するために、光ビームの出射方向が常に変動する。この送信側への外的要因による光ビームの出射方向の変動を少しでも解決するために、受信側での光ビーム径を大きくして、送信ビームが受信装置から外れないようにする必要がある。また、受信側に安定した光パワーを供給するために、送信側の光出力レベルを高く設定する必要がある。
【0004】
一方で、人体に対する悪影響を防ぐために出力レベルが規制されており、送信側で十分な光出力レベルを用意できるとは限らない。従って、遠隔地で十分な光パワーを受信できるように、受信側での光ビーム径をできるだけ小さくし、かつ送信光ビームが対向装置から外れないようにするために、送信光ビーム角度誤差を補正する機能を有する光空間伝送装置が実用されている。
【0005】
図5は従来例の光空間伝送装置の構成図を示し、主信号入力部1の出力はパイロット信号発生器2の出力と共に合波部3に接続され、合波部3の出力は電気−光変換部4に接続されている。電気−光変換部4の光路上にはレンズ5、ビームスプリッタ6、送信ビーム角度可変部7が順次に配列されている。ビームスプリッタ6の送信ビーム角度可変部7からの方向の光束の反射方向の光路上には、ビームスプリッタ8、主信号受光部9が配列され、主信号受光部9の出力は主信号出力部10に接続されている。また、ビームスプリッタ8の反射方向には送信ビーム角度誤差検出部11が配置され、送信ビーム角度誤差検出部11の出力は、光軸角度調整駆動制御部12を介して送信ビーム角度可変部7に接続されている。
【0006】
送信側で主信号入力部1から入力された対向配置の光空間伝送装置に伝送する主信号に、パイロット信号発生器2から出力された送信光ビーム角度誤差検出のための狭帯域信号、例えば正弦波のパイロット信号が合波部3において重畳され、受信側においては、送信ビーム角度誤差検出部11で検波され、その情報により光軸角度調整駆動制御部12が送信ビーム角度可変部7を駆動して、運転開始時や運転中の角度補正が行われる。
【0007】
従来例の光空間伝送装置では、予め自装置内において送信部と受信部の光軸を一致させておき、自装置の受信部の光軸と相手装置から伝送される受信光の光軸との角度誤差を検出して補正している。このような操作を対向するそれぞれの装置において行うことにより、予め装置内の送信部の光軸と受信部の光軸が一致するように調節されるので、相手側装置から伝送される受信光と同一光軸で送信光を投光することができ、常に安定した光空間伝送を行うことができる。
【0008】
このような送光部の光ビーム角度を補正する機能を備えた光空間伝送装置では、主信号にパイロット信号を送信側で重畳して送信するのが一般的である。このパイロット信号は主信号に比べて狭帯域なために、微弱信号でも高いSN比で検出することができる。従って、主信号が所要の品質で伝送できなくなった場合でも、制御機能が維持できる程度のレベルは必要であるが、通常は主信号に比べて遥かに低いレベルでパイロット信号を設定することができる。更に、直流光ではないパイロット信号を使用して角度誤差を検出するので、背景光による影響を低減することができる。
【0009】
【発明が解決しようとする課題】
しかしながら上述の従来例においては、ビーム拡がり角が通信時に一定であるために、対向する装置間の距離が遠い場合に合わせてビーム拡がり角を設定すると、対向する装置の両方又は片方が移動して対向する装置間距離が近くなったときに、受光径が小さくなって僅かな振動又は移動によって送信光ビームが対向装置から外れてしまう。また、対向装置が光軸に対して垂直方向に同じ速度で移動する場合には、装置間距離が近い方が遠い場合に比べて、光ビームの出射方向の変動が大きくなるために、近距離通信時の送信光ビーム角度補正が困難になるという問題点がある。
【0010】
更に、対向する装置間距離が近い場合に合わせてビーム拡がり角を設定すると、対向する装置の両方又は片方が移動して対向する装置間の距離が遠くなったときに、受光径が広がり過ぎてしまい、受信側で十分な光パワーを受信することができなくなるという問題点が生ずる。
【0011】
本発明の目的は、上述の問題点を解消し、対向する装置間距離が変更しても常に最適な受光径を維持することができる光空間伝送システムを提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するための本発明に係る光空間伝送システムは、光空間伝送装置と、該光空間伝送装置と距離を隔てて対向して配置した対向装置とから成り、情報を伝送を行う光空間伝送システムであって、前記光空間伝送装置は、第1直線偏光を発する光源と、前記対向装置からの反射光を受ける受光素子と、前記光源から発した前記第1直線偏光を送信光として前記対向装置に導き、前記対向装置からの前記第1直線偏光と偏光方向が直交する第2直線偏光である前記反射光を前記受光素子に導く偏光ビームスプリッタと、前記受光素子で前記反射光を受信し、該受光素子の出力から距離検出用信号を抽出することにより測定した前記光空間伝送装置と前記対向装置との距離に応じて、前記送信光のビーム拡がり角を自動的に変更するビーム拡がり角可変制御部とを備え、前記対向装置、前記送信光の少なくとも一部を前記光空間伝送装置に向けて反射光として反射する反射部と、前記送信光と前記反射光が通過する光路上に設けられ、前記第1直線偏光を前記第2直線偏光に変換する1/4波長板とを備えており、前記ビーム拡がり角可変制御部が、前記光空間伝送装置と前記対向装置との距離が遠い場合は、近い場合に比べて、前記ビーム拡がり角を狭くすることを特徴とする。
【0013】
【発明の実施の形態】
本発明を図1〜図4に図示の実施例に基づいて詳細に説明する。
図1は第1の実施例の光空間伝送システムの構成図である。光空間伝送装置である送信部においては、対向装置に伝送するデータを入力する主信号入力部20の出力は、角度誤差及び距離検出用信号発生部21の出力と共に、本信号と角度誤差検出用信号を合波する合波部22に接続されている。合波部22の出力は合波された電気信号を光信号に変更する電気−光変換部23に接続され、電気−光変換部23は例えばレーザー駆動回路24とレーザーダイオード光源25から構成されている。
【0014】
レーザーダイオード光源25の前方の光路上には、光軸方向に移動してビーム拡がり角を調整するビーム拡がり角調節用レンズ26、送信光と受信光を分離するための偏光ビームスプリッタ27が配列されており、偏光ビームスプリッタ27の左反射方向には、送信ビーム角可変部28、レンズ29、30が順次に配列されている。
【0015】
また、偏光ビームスプリッタ27の右方向には、レンズ31、送信ビーム方向のずれ量を検出するための位置検出用受光素子32が配列されている。位置検出用受光素子32の出力は、距離検出用信号を抽出するためのフィルタ部33を介して、角度誤差及び距離検出用信号発生部21で発生した信号と共に送り返されてきた距離検出用信号の位相差を検出するための例えばアナログ乗算機のような位相比較部34に接続されている。位相比較部34の出力は送信光のビーム拡がり角を可変するためのビーム拡がり角可変制御部35を介して、拡がり角調節用レンズ26に接続されている。また、位置検出用受光素子32の出力は、送信ビーム角度を制御するための光軸角調整駆動制御部36を介して、送信ビーム角可変部28に接続されている。
【0016】
対向装置である受信部においては、受信光の光路上にレンズ40、41、入射した光束を分離するためのハーフミラー42、紙面に垂直な方向に偏光された光束を紙面に水平方向に偏光して送信部に送り返すための1/4波長板43、レンズ44、送信部から送られてきた光束を反射して送り返すための反射部45が順次に配列されている。ハーフミラー42の反射方向には、レンズ46、受信光を電気信号に変換する光−電気変換部47が配列されており、この光−電気変換部47は受光素子48と受光回路49から構成されている。また、受光素子48の出力は、対向装置から送られてきた主信号成分を抽出するためのフィルタ部50を介して主信号出力部51に順次に接続されている。
【0017】
このような構成により、本実施例では送信している信号と対向装置から折り返してきた信号の位相差によって距離を検出する。送信している信号と対向装置から折り返してくる信号とは、装置間を往復してくる時間分ずれが発生する。このずれは装置間距離に比例するので、この位相のずれを検出することによって装置間距離を検出することができる。ここで、距離検出用の周波数を高くすると距離測定の分解能は上がるが、位相のずれが1波長分を越えてしまうために長距離の測定を行うことができない。逆に、周波数を低くすると長距離の測定を行うことができるが分解能は下がる。
【0018】
主信号入力部20に入力した主信号は、角度誤差及び距離検出用信号発生部21から出力された検出用信号と合波部22で合波される。ここで、角度誤差及び距離検出用信号発生部21から出力される信号は、角度誤差検出用信号と距離検出用信号が共通であるが、別の信号であっても支障はない。合波部22で合波された信号は電気−光変換部23で光信号に変換される。ここで、電気−光変換部23から出力された光信号は紙面に垂直に偏光されているために、ビーム拡がり角調節用レンズ26を通って偏光ビームスプリッタ27で反射されて送信ビーム角可変部28に出力される。更に、レンズ29、30を通って、対向装置に出力される。
【0019】
レンズ30から出力した光ビームは、対向する受信部のレンズ40、41を通り、ハーフミラー42により2分割され、一方はレンズ46を通り、光−電気変換部47に入力して電気信号に変換され、フィルタ部50で主信号成分が抽出されて主信号出力部51から外部に出力される。ハーフミラー42で分割された他方の光ビ−ムは、1/4波長板43を通りレンズ44で集光し反射部45で反射される。ここで、光ビームはレンズ44により集光し、その焦点で反射されるために、反射部45の表面が入射した光軸に完全に垂直でなくても、レンズ44から1/4波長板43に出力される光束は、対向する送信部から入射した光軸と平行になる。
【0020】
図2はこのときの様子を表しており、集光レンズ44で集光した光ビームは、反射部45に傾き角θで反射される。ここで、反射部45の代りに受光素子48の表面による反射を利用して距離検出用信号を送り返しても、装置間距離がそれほど離れていなければ同等の効果を得ることができる。また、レンズ44と反射部45の代りにコーナーキューブを使用してもよい。反射部45で反射された光束は、レンズ44、1/4波長板43、ハーフミラー42、レンズ41、40を戻って、対向する送信部に送信される。このとき、送信部に送信された光束は1/4波長板43を2回通過しているので、偏波面が紙面と垂直方向から紙面と水平方向に偏光されている。
【0021】
反射光は送信部のレンズ30、29を通り、送信ビーム角可変部28、偏光ビームスプリッタ27に至る。ここで、受信部から反射された光ビームは紙面と水平に偏向されているために、偏光ビームスプリッタ27を透過し、レンズ31を通って位置検出用受光素子32に入力する。位置検出用受光素子32から得られた光軸誤差情報は光軸角調整駆動制御部36に出力され、送信ビーム角可変部28を動かして光軸の補正が行われる。
【0022】
また、位置検出用受光素子32で電気変換された信号は、フィルタ部33において距離検出用信号が抽出されて位相比較部34に出力される。位相比較部34においてはフィルタ部33から入力した対向装置の受信部から送り返されてきた距離検出用信号と、角度誤差及び距離検出用信号発生部21で発生した距離検出用信号の位相差を電圧信号に変換して、ビーム拡がり角可変制御部35に出力する。ビーム拡がり角可変制御部35は、位相比較部34から入力した電圧情報と、予め入力されている距離検出用信号の周波数情報とを基に装置間距離を解析し、ビーム拡がり角調節用レンズ26を光軸方向に動かして、送信する光ビーム拡がり角を最適値に調節する。
【0023】
図3は第2の実施例の構成図を示し、距離測定用信号の反射部に受光素子を使用した場合である。対向装置に伝送するデータを入力する主信号入力部60の出力は、距離検出用信号発生部61の出力と共に、本信号と距離検出用信号を合波するための合波部62に接続されている。合波部62の出力は合成された電気信号を光信号に変換する電気−光変換部63に接続されており、電気−光変換部63は例えばレーザー駆動回路64とレーザーダイオード光源65から構成されている。レーザーダイオード光源65の前方の光路上には、ビーム拡がり角調節用レンズ66、送信光と受信光を分離するための偏光ビームスプリッタ67が配列され、偏光ビームスプリッタ67の左反射方向にレンズ68、69が配列されている。
【0024】
偏光ビームスプリッタ67の右方向には、レンズ70、受信光を電気信号に変換する光−電気変換部71が配列され、光−電気変換部71は例えば受光素子72と受光回路73から構成されている。受光回路73の出力は距離検出用信号を抽出するためのフィルタ部74、距離検出用信号発生部61で発生した信号と受信装置から送り返されてきた距離検出用信号の位相差を検出するための位相比較部75に順次に接続され、位相比較部75の出力は送信光のビーム拡がり角を可変するためのビーム拡がり角可変制御部76を介して、光軸方向に移動可能なビーム拡がり角調節用レンズ66に接続されている。
【0025】
対向する装置の受信部において、受信光が入射する光路上にレンズ80、81、紙面と垂直方向に偏光された光束を紙面と水平方向に偏光して送信部に送り返すための1/4波長板82、レンズ83、受信光を電気信号に変換する光−電気変換部84が順次に配列されており、光−電気変換部84は例えば受光素子85と受光回路86から構成されており、受光回路86の出力は対向装置から送られてきた主信号成分を抽出するためのフィルタ部87を介して主信号出力部88に順次に接続されている。
【0026】
このような構成により、主信号入力部60に入力された主信号は、距離検出用信号発生部61から出力された距離検出用信号と合波部62で合波される。合波部62で合波された信号は電気−光変換部63で光信号に変換される。電気−光変換部63から出力された光信号はビーム拡がり角調節用レンズ66を通り、紙面と垂直方向に偏光されているために偏光ビームスプリッタ67で反射され、レンズ68、69を通って対向装置に出力される。
【0027】
レンズ69から出力された光ビームは、対向する受信部のレンズ80、81、1/4波長板82を通り、レンズ83により受光素子85に集光し、一部の光ビームは光−電気変換部84で電気信号に変換され、フィルタ部87で主信号が抽出されて、主信号出力部88から外部に出力される。
【0028】
また、レンズ83で集光した光ビームの他の一部は、受光素子85の表面で反射され、この受光素子85で反射された光束は、レンズ83、1/4波長板82、レンズ81、80を通って、対向する送信部に送信される。ここで、送信部に送信された光束は1/4波長板82を2度通ってきたために、偏波面が紙面と垂直方向から紙面と水平方向に偏光されている。
【0029】
この受信部から反射されてきた反射光は、送信部のレンズ69、68を通り、偏光ビームスプリッタ67に至る。ここで、この光ビームは紙面に水平に偏光されているために、偏光ビームスプリッタ67を透過し、レンズ70を通って光−電気変換部71に入力する。光−電気変換部71で電気変換された信号は、フィルタ部74で距離検出用信号が抽出され、位相比較部75に出力される。位相比較部75はフィルタ部74から入力した対向装置の受信部から送り返された距離検出用信号と、距離検出用信号発生部61で発生した距離検出用信号の位相差を電圧信号に変換して、ビーム拡がり角可変制御部76に出力する。ビーム拡がり角可変制御部76は位相比較部75から入力した電圧情報と、予め入力されている距離検出用信号の周波数情報を基に装置間距離を解析し、ビーム拡がり角調節用レンズ66を光軸方向に動かして、送信する光ビーム拡がり角を最適値に調節する。
【0030】
図4は第3の実施例の構成図を示し、対向する装置間の距離に応じて距離検出用の信号の周波数を変更する機能を有している。距離検出用信号発生部90の出力は電気信号を光信号に変換する電気−光変換部91に接続され、電気−光変換部91はレーザー駆動回路92とレーザーダイオード光源93から構成されている。レーザーダイオード光源93の光路上には、送信ビーム拡がり角調節用レンズ94、送信光と受信光を分離するための偏光ビームスプリッタ95が配列され、偏光ビームスプリッタ95の右方向には、レンズ96、受信光を電気信号に変換する光−電気変換部97が配列され、光−電気変換部97は受光素子98と受光回路99から構成されている。
【0031】
受光回路99の出力は、距離測定用信号を抽出するためのフィルタ部100、送信している距離検出用信号と対向装置から送り返されてきた距離検出用信号の位相差を検出するための位相比較部101に順次に接続されている。位相比較部101の出力は、例えばPLLシンセサイザのような距離検出用信号可変部102及びビーム拡がり角可変制御部103に接続され、距離検出用信号可変部102の出力は距離検出用信号発生部90及びビーム拡がり角可変制御部103に接続されている。更に、ビーム拡がり角可変制御部103の出力は送信ビーム拡がり角調節用レンズ94に接続され、位相比較部101には距離検出用信号発生部90の出力が接続されている。
【0032】
このような構成により、距離検出用信号発生部90で発生した距離検出用信号は電気−光変換部91で光信号に変換され、ビーム拡がり角調節用レンズ94、偏光ビームスプリッタ95を通って対向装置に送信される。また、対向装置から折り返された光ビームは偏光ビームスプリッタ95、レンズ96を通り、光−電気変換部97で電気信号に変換されて、フィルタ部100に出力される。フィルタ部100に入力した電気信号は、距離検出用信号が抽出されて位相比較部101に出力される。位相比較部101は、フィルタ部100から入力した距離検出用信号と、距離検出用信号発生部90から、その入力した距離検出用信号から位相差を電圧信号として距離検出用信号可変部102及びビーム拡がり角可変制御部103に出力する。
【0033】
距離検出用信号可変部102は位相比較部101から入力した電圧信号を基に、位相差に1波長分のずれに対して十分に余裕があるときには、距離検出用信号発生部90から発生する距離検出用信号の周波数を上げ、また位相差に1波長分のずれに対して十分余裕がないときには、距離検出用信号発生部90から発生する距離検出用信号の周波数を下げる。そして、距離検出用信号の周波数はビーム拡がり角可変制御部103に出力され、ビーム拡がり角可変制御部103は位相比較部101から入力した位相差情報と距離検出用信号可変部102から入力した距離検出用信号の周波数情報とを基に装置間距離を解析し、ビーム拡がり角調節用レンズ94を光軸方向に動かして、送信する光ビーム拡がり角を最適値に調節する。
【0034】
【発明の効果】
以上説明したように本発明に係る光空間伝送システムは、距離測定手段により測定した距離に応じて、送信する光束のビーム拡がり角を自動的に変更するようにしたことにより装置間距離が可変しても適切な送信光ビーム拡がり角を維持することができ、自動的に受信径が最適の大きさになるために、装置間の距離が遠い場合は十分な光パワーを受信することができ、装置間の距離が近い場合は装置の移動等により送信ビームが対向装置から外れることを防ぐことができる。
【図面の簡単な説明】
【図1】第1の実施例の構成図である。
【図2】距離測定用信号の反射部に入射する光ビームの説明図である。
【図3】第2の実施例の構成図である。
【図4】第3の実施例の構成図である。
【図5】従来例の構成図である。
【符号の説明】
20、60 主信号入力部
21 角度誤差及び距離検出用信号発生部
22、62 合波部
23、63、91 電気−光変換部
26、66、94 ビーム拡がり角調節用レンズ
27、67、95 偏光ビームスプリッタ
28 送信ビーム角可変部
32 位置検出用受光素子
34、75、101 位相比較部
35、76、103 ビーム拡がり角可変制御部
36 光軸角調整駆動制御部
42 ハーフミラー
43、82 1/4波長板
45 反射部
47、71、84、97 光−電気変換部
51、88 主信号出力部
61,90 距離検出用信号発生部
102 距離検出用信号可変部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical space transmission system that transmits information to a remote place by optical radio.
[0002]
[Prior art]
A conventional optical space transmission device modulates a transmission signal into an optical signal on the transmission side, transmits the optical signal in the atmospheric space toward the reception side, and demodulates the optical signal from the transmission side on the reception side. Information signals are transmitted through the atmospheric space.
[0003]
At this time, since the path of the light beam changes due to the movement of the opposing device, the fluctuation of the atmosphere, or the vibration during the movement, the emission direction of the light beam always changes. In order to solve even a slight change in the direction of emission of the light beam due to an external factor on the transmission side, it is necessary to increase the diameter of the light beam on the reception side so that the transmission beam does not come off the receiving device. . Further, in order to supply stable optical power to the receiving side, it is necessary to set the optical output level on the transmitting side high.
[0004]
On the other hand, the output level is restricted in order to prevent adverse effects on the human body, and a sufficient light output level cannot always be prepared on the transmission side. Therefore, the transmit beam angle error is corrected to minimize the beam diameter on the receiving side and prevent the transmit beam from coming off the opposing device so that sufficient optical power can be received at a remote location. An optical space transmission device having a function to perform this function has been put into practical use.
[0005]
FIG. 5 shows a configuration diagram of a conventional optical space transmission apparatus, in which the output of the main signal input unit 1 is connected to the multiplexing unit 3 together with the output of the pilot signal generator 2, and the output of the multiplexing unit 3 is electro-optical. The converter 4 is connected. A lens 5, a beam splitter 6, and a transmission beam angle variable unit 7 are sequentially arranged on the optical path of the electro-optical conversion unit 4. A beam splitter 8 and a main signal light receiving unit 9 are arranged on the optical path in the reflection direction of the light beam from the transmission beam angle variable unit 7 of the beam splitter 6, and the output of the main signal light receiving unit 9 is the main signal output unit 10. It is connected to the. A transmission beam angle error detection unit 11 is arranged in the reflection direction of the beam splitter 8, and the output of the transmission beam angle error detection unit 11 is transmitted to the transmission beam angle variable unit 7 via the optical axis angle adjustment drive control unit 12. It is connected.
[0006]
A narrowband signal for detecting a transmission light beam angle error output from the pilot signal generator 2, for example, a sine signal, is transmitted to the main signal transmitted from the main signal input unit 1 to the oppositely arranged optical space transmission device on the transmission side. The pilot signal of the wave is superimposed in the multiplexing unit 3 and detected on the reception side by the transmission beam angle error detection unit 11, and the optical axis angle adjustment drive control unit 12 drives the transmission beam angle variable unit 7 based on the information. Thus, angle correction is performed at the start of operation or during operation.
[0007]
In the optical space transmission device of the conventional example, the optical axes of the transmission unit and the reception unit are matched in advance in the own device, and the optical axis of the reception unit of the own device and the optical axis of the received light transmitted from the counterpart device Angle error is detected and corrected. By performing such an operation on each of the opposing devices, the optical axis of the transmitting unit and the optical axis of the receiving unit in the device are adjusted in advance so that the received light transmitted from the counterpart device Transmitting light can be projected on the same optical axis, and stable optical space transmission can always be performed.
[0008]
In an optical space transmission apparatus having a function of correcting the light beam angle of such a light transmission unit, it is common to transmit a pilot signal superimposed on a main signal on the transmission side. Since this pilot signal is narrower than the main signal, even a weak signal can be detected with a high S / N ratio. Therefore, even when the main signal cannot be transmitted with the required quality, a level that can maintain the control function is necessary, but the pilot signal can be set at a level far lower than that of the main signal. . Furthermore, since the angle error is detected using a pilot signal that is not DC light, the influence of background light can be reduced.
[0009]
[Problems to be solved by the invention]
However, in the above-described conventional example, since the beam divergence angle is constant at the time of communication, if the beam divergence angle is set in accordance with the case where the distance between the opposing devices is long, both or one of the opposing devices move. When the distance between the opposing devices becomes short, the light receiving diameter becomes small, and the transmitted light beam deviates from the opposing device due to slight vibration or movement. In addition, when the opposing device moves at the same speed in the direction perpendicular to the optical axis, the variation in the light beam emission direction becomes larger compared to the case where the distance between the devices is longer, so that the near distance is shorter. There is a problem that it is difficult to correct the transmission light beam angle during communication.
[0010]
Furthermore, if the beam divergence angle is set according to the case where the distance between the opposing devices is close, when both or one of the opposing devices moves and the distance between the opposing devices becomes longer, the light receiving diameter becomes too wide. Therefore, there arises a problem that the receiving side cannot receive sufficient optical power.
[0011]
An object of the present invention is to provide an optical space transmission system that solves the above-described problems and can always maintain an optimum light receiving diameter even when the distance between opposing devices changes.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, an optical space transmission system according to the present invention comprises an optical space transmission device and an opposite device disposed opposite to the optical space transmission device at a distance, and transmits information. In the spatial transmission system, the optical spatial transmission device includes a light source that emits first linearly polarized light, a light receiving element that receives reflected light from the opposing device , and the first linearly polarized light emitted from the light source as transmission light. A polarization beam splitter that guides the reflected light, which is second linearly polarized light whose polarization direction is orthogonal to the first linearly polarized light from the opposing device, to the light receiving element, and the light reflected by the light receiving element. It received, in accordance with the distance between the optical atmospheric link system, measured by extracting the distance detecting signal from the output of the light receiving element and the opposing device, automatically change the beam divergence angle of the transmission light bi And a beam divergence angle controller, the counter device includes a reflecting portion for reflecting the reflected light toward at least a portion of the transmitted light to the optical atmospheric link system, the reflected light passes through said transmission light A quarter-wave plate provided on the optical path for converting the first linearly polarized light into the second linearly polarized light , wherein the beam divergence angle variable control unit includes the optical space transmission device and the opposing device. When the distance is long, the beam divergence angle is narrower than that when the distance is short.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail based on the embodiment shown in FIGS.
FIG. 1 is a block diagram of the optical space transmission system of the first embodiment . In the transmission unit, which is an optical space transmission device, the output of the main signal input unit 20 for inputting data to be transmitted to the opposite device is not only the output of the angle error and distance detection signal generation unit 21 but also this signal and the angle error detection. It is connected to a multiplexing unit 22 that multiplexes signals. The output of the combiner 22 is connected to an electro-optical converter 23 that changes the combined electric signal into an optical signal. The electro-optical converter 23 is composed of a laser drive circuit 24 and a laser diode light source 25, for example. Yes.
[0014]
On the optical path in front of the laser diode light source 25, there are arranged a beam divergence angle adjusting lens 26 that adjusts the beam divergence angle by moving in the optical axis direction, and a polarization beam splitter 27 for separating transmission light and reception light. In the left reflection direction of the polarization beam splitter 27, the transmission beam angle variable unit 28 and the lenses 29 and 30 are sequentially arranged.
[0015]
Further, a lens 31 and a position detection light receiving element 32 for detecting a shift amount in the transmission beam direction are arranged on the right side of the polarization beam splitter 27. The output of the position detection light-receiving element 32 is the distance detection signal sent back together with the signal generated by the angle error and distance detection signal generation unit 21 via the filter unit 33 for extracting the distance detection signal. It is connected to a phase comparator 34 such as an analog multiplier for detecting the phase difference. The output of the phase comparison unit 34 is connected to the divergence angle adjusting lens 26 via a beam divergence angle variable control unit 35 for changing the beam divergence angle of the transmission light. The output of the position detecting light receiving element 32 is connected to the transmission beam angle variable unit 28 via an optical axis angle adjustment drive control unit 36 for controlling the transmission beam angle.
[0016]
In the receiving unit, which is an opposing device, lenses 40 and 41 on the optical path of the received light, a half mirror 42 for separating the incident light beam, and a light beam polarized in a direction perpendicular to the paper surface is polarized in the horizontal direction on the paper surface. A quarter-wave plate 43 for returning the light to the transmission unit, a lens 44, and a reflection unit 45 for reflecting and transmitting the light beam transmitted from the transmission unit are sequentially arranged. In the reflection direction of the half mirror 42, a lens 46 and a light-electric conversion unit 47 that converts received light into an electric signal are arranged. The light-electric conversion unit 47 includes a light receiving element 48 and a light receiving circuit 49. ing. The output of the light receiving element 48 is sequentially connected to the main signal output unit 51 via the filter unit 50 for extracting the main signal component sent from the opposing device.
[0017]
With this configuration, in this embodiment, the distance is detected based on the phase difference between the signal being transmitted and the signal returned from the opposite device. There is a time lag between the signal being transmitted and the signal that is returned from the opposing device by the amount of time that travels back and forth between the devices. Since this deviation is proportional to the inter-device distance, the inter-device distance can be detected by detecting this phase deviation. Here, if the frequency for distance detection is increased, the resolution of distance measurement increases, but the phase shift exceeds one wavelength, so that long distance measurement cannot be performed. Conversely, if the frequency is lowered, long distance measurement can be performed, but the resolution is lowered.
[0018]
The main signal input to the main signal input unit 20 is combined with the detection signal output from the angle error and distance detection signal generation unit 21 by the combining unit 22. Here, the angle error detection signal and the distance detection signal are common to the signal output from the angle error and distance detection signal generator 21, but there is no problem even if they are different signals. The signal combined by the combiner 22 is converted into an optical signal by the electro-optical converter 23. Here, since the optical signal output from the electro-optical conversion unit 23 is polarized perpendicularly to the paper surface, it passes through the beam divergence angle adjusting lens 26 and is reflected by the polarization beam splitter 27 to be transmitted beam angle variable unit. 28 is output. Further, the light passes through the lenses 29 and 30 and is output to the opposing device.
[0019]
The light beam output from the lens 30 passes through the lenses 40 and 41 of the receiving unit facing each other, and is divided into two by the half mirror 42. The main signal component is extracted by the filter unit 50 and output from the main signal output unit 51 to the outside. The other optical beam divided by the half mirror 42 passes through the quarter-wave plate 43 and is collected by the lens 44 and reflected by the reflecting portion 45. Here, since the light beam is collected by the lens 44 and reflected at the focal point, the quarter-wave plate 43 from the lens 44 even if the surface of the reflecting portion 45 is not completely perpendicular to the incident optical axis. The light beam output to is parallel to the optical axis incident from the opposing transmitter.
[0020]
FIG. 2 shows the state at this time, and the light beam condensed by the condenser lens 44 is reflected by the reflecting portion 45 at the inclination angle θ. Here, even if the distance detection signal is sent back by using reflection by the surface of the light receiving element 48 instead of the reflection portion 45, the same effect can be obtained if the distance between the devices is not so far. Further, a corner cube may be used in place of the lens 44 and the reflecting portion 45. The light beam reflected by the reflection unit 45 returns to the lens 44, the quarter wavelength plate 43, the half mirror 42, and the lenses 41 and 40, and is transmitted to the opposing transmission unit. At this time, since the light beam transmitted to the transmission unit passes through the quarter-wave plate 43 twice, the polarization plane is polarized from the direction perpendicular to the paper surface to the paper surface and the horizontal direction.
[0021]
The reflected light passes through the lenses 30 and 29 of the transmission unit and reaches the transmission beam angle variable unit 28 and the polarization beam splitter 27. Here, since the light beam reflected from the receiving unit is deflected horizontally with respect to the paper surface, the light beam passes through the polarization beam splitter 27, passes through the lens 31, and is input to the position detection light receiving element 32. The optical axis error information obtained from the position detection light receiving element 32 is output to the optical axis angle adjustment drive control unit 36, and the transmission beam angle variable unit 28 is moved to correct the optical axis.
[0022]
Further, the signal that has been electrically converted by the position detecting light receiving element 32 is extracted by the filter unit 33 and output to the phase comparing unit 34. In the phase comparison unit 34, the phase difference between the distance detection signal sent back from the reception unit of the opposite device input from the filter unit 33 and the distance detection signal generated by the angle error and the distance detection signal generation unit 21 is a voltage. This is converted into a signal and output to the beam divergence angle variable control unit 35. The beam divergence angle variable control unit 35 analyzes the inter-device distance based on the voltage information input from the phase comparison unit 34 and the frequency information of the distance detection signal input in advance, and the beam divergence angle adjustment lens 26. Is adjusted in the direction of the optical axis to adjust the divergence angle of the transmitted light beam to an optimum value.
[0023]
FIG. 3 shows a configuration diagram of the second embodiment, in which a light receiving element is used for the reflection part of the distance measurement signal. The output of the main signal input unit 60 for inputting data to be transmitted to the opposite device is connected to the combining unit 62 for combining the main signal and the distance detecting signal together with the output of the distance detecting signal generating unit 61. Yes. The output of the multiplexing unit 62 is connected to an electro-optical conversion unit 63 that converts the combined electrical signal into an optical signal. The electro-optical conversion unit 63 includes, for example, a laser drive circuit 64 and a laser diode light source 65. ing. On the optical path in front of the laser diode light source 65, a beam divergence angle adjusting lens 66 and a polarizing beam splitter 67 for separating transmitted light and received light are arranged. A lens 68 in the left reflection direction of the polarizing beam splitter 67, 69 are arranged.
[0024]
In the right direction of the polarization beam splitter 67, a lens 70 and an optical-electric conversion unit 71 that converts received light into an electrical signal are arranged. The optical-electrical conversion unit 71 includes, for example, a light receiving element 72 and a light receiving circuit 73. Yes. The output of the light receiving circuit 73 is for detecting a phase difference between the filter 74 for extracting the distance detection signal, the signal generated by the distance detection signal generator 61 and the distance detection signal sent back from the receiving device. Sequentially connected to the phase comparator 75, the output of the phase comparator 75 adjusts the beam divergence angle that is movable in the optical axis direction via a beam divergence angle variable controller 76 for varying the beam divergence angle of the transmitted light. It is connected to the lens 66 for use.
[0025]
In the receiving unit of the opposite device, the quarter wavelength plate for polarizing the light beam polarized in the direction perpendicular to the paper surface on the optical path on which the received light is incident and polarizing it in the horizontal direction with respect to the paper surface and returning it to the transmitting unit. 82, a lens 83, and a light-electric conversion unit 84 that converts received light into an electric signal are sequentially arranged. The light-electric conversion unit 84 includes, for example, a light receiving element 85 and a light receiving circuit 86. The output of 86 is sequentially connected to the main signal output unit 88 through a filter unit 87 for extracting the main signal component sent from the opposing device.
[0026]
With such a configuration, the main signal input to the main signal input unit 60 is combined with the distance detection signal output from the distance detection signal generation unit 61 by the combining unit 62. The signal combined by the combiner 62 is converted into an optical signal by the electro-optical converter 63. The optical signal output from the electro-optical conversion unit 63 passes through the beam divergence angle adjusting lens 66 and is reflected by the polarization beam splitter 67 because it is polarized in the direction perpendicular to the paper surface. Output to the device.
[0027]
The light beam output from the lens 69 passes through the lenses 80 and 81 and the quarter-wave plate 82 of the receiving unit facing each other, and is condensed on the light receiving element 85 by the lens 83, and a part of the light beam is photoelectrically converted. The signal is converted into an electric signal by the unit 84, the main signal is extracted by the filter unit 87, and is output to the outside from the main signal output unit 88.
[0028]
Further, another part of the light beam collected by the lens 83 is reflected by the surface of the light receiving element 85, and the light beam reflected by the light receiving element 85 includes the lens 83, the quarter wavelength plate 82, the lens 81, Through 80, it is transmitted to the opposite transmitter. Here, since the light beam transmitted to the transmitter has passed through the quarter-wave plate 82 twice, the plane of polarization is polarized from the direction perpendicular to the paper surface to the paper surface and the horizontal direction.
[0029]
The reflected light reflected from the receiving unit passes through the lenses 69 and 68 of the transmitting unit and reaches the polarization beam splitter 67. Here, since the light beam is polarized horizontally on the paper surface, the light beam passes through the polarization beam splitter 67, passes through the lens 70, and is input to the photoelectric conversion unit 71. A signal for distance detection is extracted by the filter unit 74 from the signal electrically converted by the photoelectric conversion unit 71 and output to the phase comparison unit 75. The phase comparison unit 75 converts the phase difference between the distance detection signal sent back from the reception unit of the opposite device input from the filter unit 74 and the distance detection signal generated by the distance detection signal generation unit 61 into a voltage signal. , And output to the beam divergence angle variable control unit 76. The beam divergence angle variable control unit 76 analyzes the inter-device distance based on the voltage information input from the phase comparison unit 75 and the frequency information of the distance detection signal input in advance, and transmits the beam divergence angle adjustment lens 66 to the light. Move in the axial direction to adjust the divergence angle of the transmitted light beam to the optimum value.
[0030]
FIG. 4 shows a configuration diagram of the third embodiment, which has a function of changing the frequency of a distance detection signal in accordance with the distance between opposing devices. The output of the distance detection signal generator 90 is connected to an electro-optical converter 91 that converts an electrical signal into an optical signal. The electro-optical converter 91 includes a laser drive circuit 92 and a laser diode light source 93. On the optical path of the laser diode light source 93, a transmission beam divergence angle adjusting lens 94 and a polarization beam splitter 95 for separating transmission light and reception light are arranged. An optical-electrical converter 97 that converts received light into an electrical signal is arranged, and the optical-electrical converter 97 includes a light receiving element 98 and a light receiving circuit 99.
[0031]
The output of the light receiving circuit 99 is a filter unit 100 for extracting a distance measurement signal, and a phase comparison for detecting the phase difference between the transmitted distance detection signal and the distance detection signal sent back from the opposite device. The units 101 are sequentially connected. The output of the phase comparison unit 101 is connected to a distance detection signal variable unit 102 and a beam divergence angle variable control unit 103 such as a PLL synthesizer, and the output of the distance detection signal variable unit 102 is a distance detection signal generation unit 90. And a beam divergence angle variable control unit 103. Further, the output of the beam divergence angle variable control unit 103 is connected to the transmission beam divergence angle adjusting lens 94, and the output of the distance detection signal generation unit 90 is connected to the phase comparison unit 101.
[0032]
With such a configuration, the distance detection signal generated by the distance detection signal generation unit 90 is converted into an optical signal by the electro-optical conversion unit 91 and passes through the beam divergence angle adjusting lens 94 and the polarization beam splitter 95 to face each other. Sent to the device. In addition, the light beam returned from the opposing device passes through the polarization beam splitter 95 and the lens 96, is converted into an electric signal by the light-electric conversion unit 97, and is output to the filter unit 100. From the electrical signal input to the filter unit 100, a distance detection signal is extracted and output to the phase comparison unit 101. The phase comparison unit 101 receives the distance detection signal input from the filter unit 100 and the distance detection signal generation unit 90 from the distance detection signal input from the distance detection signal variable unit 102 and the beam using the phase difference as a voltage signal. Output to the divergence angle variable control unit 103.
[0033]
Based on the voltage signal input from the phase comparison unit 101, the distance detection signal variable unit 102 generates a distance generated from the distance detection signal generation unit 90 when the phase difference has a sufficient margin for a shift of one wavelength. The frequency of the detection signal is increased, and when the phase difference does not have a sufficient margin for the shift of one wavelength, the frequency of the distance detection signal generated from the distance detection signal generator 90 is decreased. The frequency of the distance detection signal is output to the beam divergence angle variable control unit 103, and the beam divergence angle variable control unit 103 receives the phase difference information input from the phase comparison unit 101 and the distance input from the distance detection signal variable unit 102. The distance between the devices is analyzed based on the frequency information of the detection signal, and the beam divergence angle adjusting lens 94 is moved in the optical axis direction to adjust the transmitted light beam divergence angle to the optimum value.
[0034]
【The invention's effect】
As described above, the optical space transmission system according to the present invention changes the inter-device distance by automatically changing the beam divergence angle of the transmitted light beam according to the distance measured by the distance measuring means. However, it is possible to maintain an appropriate transmission light beam divergence angle, and since the reception diameter automatically becomes the optimum size, sufficient optical power can be received when the distance between the devices is long, When the distance between the apparatuses is short, it is possible to prevent the transmission beam from being separated from the opposite apparatus due to the movement of the apparatus.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a first embodiment.
FIG. 2 is an explanatory diagram of a light beam incident on a reflection portion of a distance measurement signal.
FIG. 3 is a configuration diagram of a second embodiment.
FIG. 4 is a configuration diagram of a third embodiment.
FIG. 5 is a configuration diagram of a conventional example.
[Explanation of symbols]
20, 60 Main signal input unit 21 Angular error and distance detection signal generation unit 22, 62 Multiplexing unit 23, 63, 91 Electro-optical conversion unit 26, 66, 94 Beam divergence angle adjusting lens 27, 67, 95 Polarized light Beam splitter 28 Transmission beam angle variable section 32 Position detection light receiving elements 34, 75, 101 Phase comparison sections 35, 76, 103 Beam divergence variable control section 36 Optical axis angle adjustment drive control section 42 Half mirrors 43, 82 1/4 Wave plate 45 Reflectors 47, 71, 84, 97 Opto-electric converters 51, 88 Main signal output units 61, 90 Distance detection signal generator 102 Distance detection signal variable unit

Claims (4)

光空間伝送装置と、該光空間伝送装置と距離を隔てて対向して配置した対向装置とから成り、情報を伝送を行う光空間伝送システムであって、
前記光空間伝送装置は、第1直線偏光を発する光源と、前記対向装置からの反射光を受ける受光素子と、前記光源から発した前記第1直線偏光を送信光として前記対向装置に導き、前記対向装置からの前記第1直線偏光と偏光方向が直交する第2直線偏光である前記反射光を前記受光素子に導く偏光ビームスプリッタと、前記受光素子で前記反射光を受信し、該受光素子の出力から距離検出用信号を抽出することにより測定した前記光空間伝送装置と前記対向装置との距離に応じて、前記送信光のビーム拡がり角を自動的に変更するビーム拡がり角可変制御部とを備え、
前記対向装置、前記送信光の少なくとも一部を前記光空間伝送装置に向けて反射光として反射する反射部と、前記送信光と前記反射光が通過する光路上に設けられ、前記第1直線偏光を前記第2直線偏光に変換する1/4波長板とを備えており、
前記ビーム拡がり角可変制御部が、前記光空間伝送装置と前記対向装置との距離が遠い場合は、近い場合に比べて、前記ビーム拡がり角を狭くすることを特徴とする光空間伝送システム。
An optical space transmission system that includes an optical space transmission device and an opposite device that is disposed to face the space optical transmission device at a distance, and transmits information,
The optical space transmission device includes a light source that emits first linearly polarized light, a light receiving element that receives reflected light from the opposing device, and guides the first linearly polarized light emitted from the light source to the opposing device as transmitted light , A polarized beam splitter for guiding the reflected light, which is second linearly polarized light whose polarization direction is orthogonal to the first linearly polarized light from the opposing device, to the light receiving element; and the reflected light is received by the light receiving element; A beam divergence angle variable control unit that automatically changes a beam divergence angle of the transmission light according to a distance between the optical space transmission device measured by extracting a distance detection signal from an output and the counter device; Prepared,
The opposing device is provided on a reflection portion that reflects at least part of the transmission light as reflected light toward the optical space transmission device, and on an optical path through which the transmission light and the reflected light pass , and the first straight line A quarter wave plate for converting polarized light into the second linearly polarized light ,
An optical space transmission system in which the beam divergence angle variable control unit narrows the beam divergence angle when the distance between the optical space transmission device and the opposite device is long compared to when the distance is close.
前記光空間伝送装置は、伝送する主信号と別の距離測定用の距離検出用信号を発生する距離検出用信号発生部を備え、前記距離検出用信号を前記対向装置に送信し、前記距離検出用信号の前記対向装置からの反射光の位相差から前記光空間伝送装置と前記対向装置の間の距離を測定することを特徴とする請求項1に記載の光空間伝送システム。  The optical space transmission device includes a distance detection signal generator that generates a distance detection signal for distance measurement different from the main signal to be transmitted, and transmits the distance detection signal to the opposing device, and the distance detection 2. The optical space transmission system according to claim 1, wherein a distance between the optical space transmission device and the opposite device is measured from a phase difference of reflected light from the opposite device of a signal for use. 前記対向装置が、前記反射部上に、前記送信光を集光するレンズを備えていることを特徴とする請求項1に記載の光空間伝送システム。The optical space transmission system according to claim 1, wherein the opposing device includes a lens that condenses the transmission light on the reflection unit . 前記反射部はコーナーキューブであることを特徴とする請求項1に記載の光空間伝送システム。  The optical space transmission system according to claim 1, wherein the reflection part is a corner cube.
JP2000107514A 2000-04-10 2000-04-10 Optical space transmission system Expired - Fee Related JP4508352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000107514A JP4508352B2 (en) 2000-04-10 2000-04-10 Optical space transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000107514A JP4508352B2 (en) 2000-04-10 2000-04-10 Optical space transmission system

Publications (3)

Publication Number Publication Date
JP2001292105A JP2001292105A (en) 2001-10-19
JP2001292105A5 JP2001292105A5 (en) 2007-05-31
JP4508352B2 true JP4508352B2 (en) 2010-07-21

Family

ID=18620500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000107514A Expired - Fee Related JP4508352B2 (en) 2000-04-10 2000-04-10 Optical space transmission system

Country Status (1)

Country Link
JP (1) JP4508352B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20022211A1 (en) 2002-10-18 2004-04-19 Cit Alcatel ADJUSTING THE RADIATED POWER ON A TELESCOPE OF
JP4869608B2 (en) * 2005-02-28 2012-02-08 オリンパス株式会社 Ultrasonic flaw detector
US7657182B2 (en) 2005-08-04 2010-02-02 Panasonic Corporation Liquid lens optical transmitter system
JP2012021878A (en) * 2010-07-14 2012-02-02 Mitsubishi Electric Corp Distance change measuring device
EP3189602A4 (en) 2014-09-04 2018-05-02 Nokia Technology Oy Free space communication
WO2023181375A1 (en) * 2022-03-25 2023-09-28 株式会社ニコン Light emitting device and optical wireless communication system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357862A (en) * 1976-11-05 1978-05-25 Nippon Chemical Ind Long distance attenuating and correcting device for light wave distance measurement
JPS5866881A (en) * 1981-10-16 1983-04-21 Tohoku Richo Kk Surveying equipment by light wave
JPH0224590A (en) * 1988-07-13 1990-01-26 Fujitsu Ltd Amplitude-modulation-type apparatus for measuring distance
JPH05175912A (en) * 1991-12-25 1993-07-13 Mitsubishi Electric Corp Infrared ray radio equipment
JPH0763855A (en) * 1993-08-30 1995-03-10 Hamamatsu Photonics Kk Apparatus for optical measurement
JPH07312578A (en) * 1994-05-17 1995-11-28 Sony Corp Optical space transmitter
JPH08204644A (en) * 1995-01-25 1996-08-09 Sony Corp Optical space transmitter and its optical axis alignment method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0862334A (en) * 1994-08-25 1996-03-08 Sony Corp Optical space transmitting device
JP3661912B2 (en) * 1997-09-12 2005-06-22 株式会社リコー Optical access station and terminal device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357862A (en) * 1976-11-05 1978-05-25 Nippon Chemical Ind Long distance attenuating and correcting device for light wave distance measurement
JPS5866881A (en) * 1981-10-16 1983-04-21 Tohoku Richo Kk Surveying equipment by light wave
JPH0224590A (en) * 1988-07-13 1990-01-26 Fujitsu Ltd Amplitude-modulation-type apparatus for measuring distance
JPH05175912A (en) * 1991-12-25 1993-07-13 Mitsubishi Electric Corp Infrared ray radio equipment
JPH0763855A (en) * 1993-08-30 1995-03-10 Hamamatsu Photonics Kk Apparatus for optical measurement
JPH07312578A (en) * 1994-05-17 1995-11-28 Sony Corp Optical space transmitter
JPH08204644A (en) * 1995-01-25 1996-08-09 Sony Corp Optical space transmitter and its optical axis alignment method

Also Published As

Publication number Publication date
JP2001292105A (en) 2001-10-19

Similar Documents

Publication Publication Date Title
US5594580A (en) Optical space communication apparatus
US10439716B2 (en) Compact system for active co-boresight measurement in a laser communication system
US10612915B2 (en) System for active co-boresight measurement in a laser communication system
CN101430190B (en) Interferometer
US11405106B2 (en) Setup for receiving an optical data signal
WO2007108330A1 (en) Distance measuring system
JP4508352B2 (en) Optical space transmission system
JPH08265263A (en) Bidirectional optical spatial transmitter
EP3457592A1 (en) System for active co-boresight measurement in a laser communication system
US6542225B2 (en) Surveying machine automatically adjusting optical axis
CN109084884B (en) Homodyne laser vibration measurement device and vibration detection method thereof
CN111693257A (en) Array collimation laser parameter detection device
JP3507739B2 (en) Spatial optical transmission equipment
KR20130004633A (en) Device and method for optically scanning three dimensional object
JPH05133716A (en) Bi-directional spatial optical communication device
JPH08223117A (en) Optical space transmission equipment
JP3206993B2 (en) Bidirectional optical space transmission equipment
CN115987391A (en) Free space optical communication method and device
JPH08204644A (en) Optical space transmitter and its optical axis alignment method
KR20200038227A (en) Time of flight camera apparatus
JPH04283683A (en) Optoelectronic distance meter
EP3457593A1 (en) Compact system for active co-boresight measurement in a laser communication system
CN221406028U (en) Optical fiber optical path system of laser three-dimensional scanning measurement equipment
JP2552325Y2 (en) Lightwave ranging device
CN112236958B (en) Optical filter control

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees