JP4508320B2 - 電磁コイル動作装置の故障判別装置 - Google Patents

電磁コイル動作装置の故障判別装置 Download PDF

Info

Publication number
JP4508320B2
JP4508320B2 JP28221499A JP28221499A JP4508320B2 JP 4508320 B2 JP4508320 B2 JP 4508320B2 JP 28221499 A JP28221499 A JP 28221499A JP 28221499 A JP28221499 A JP 28221499A JP 4508320 B2 JP4508320 B2 JP 4508320B2
Authority
JP
Japan
Prior art keywords
duty ratio
pulse
electromagnetic coil
drive
drive pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28221499A
Other languages
English (en)
Other versions
JP2001102233A (ja
Inventor
哲朗 連
伸太郎 竹中
幸則 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Priority to JP28221499A priority Critical patent/JP4508320B2/ja
Publication of JP2001102233A publication Critical patent/JP2001102233A/ja
Application granted granted Critical
Publication of JP4508320B2 publication Critical patent/JP4508320B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電磁コイル動作装置の故障判別装置に関する。
【0002】
【従来の技術】
例えば、電磁コイル動作装置における短絡故障の判別は、自動車用スロットル電子制御に用いられ、図5に示すようにHブリッジ回路に故障検出回路を設けたものが知られている。この電磁コイル動作装置は、図示しないスロットルバルブを励磁駆動するためのコイル1の両端を、それぞれ電源接続線及び接地線に接続し、各々の接続線にはFET9,10,11,12が設けられている。これらスイッチング動作を選択することにより、電源接続線16からコイル1へ供給する電流の方向及び給電の停止が制御される。例えばFET9及び12をオンし、FET10及び11をオフすれば図中の矢印方向に電流が流れ、逆のパターンを選択することでスロットルバルブの駆動方向も逆転されるようになっている。
【0003】
そして、FET9及びFET10は、抵抗17及び18の接続線において演算増幅素子19に接続され、供給電流検出回路20を構成する。この供給電流検出回路20により、抵抗17及び18により生ずる電圧降下からFET9及び10に供給される電流の値が検出される。また、FET11及びFET12は、抵抗21との接続線において演算増幅素子22に接続され、過電流検出回路23を構成する。この過電流検出回路23により、抵抗21により生ずる電圧降下からFET11及び12に供給される電流の値が検出される。
【0004】
しかし、上記Hブリッジ回路では、供給電流検出回路20及び過電流検出回路23よりなる2つの検出回路を必要とし、図示しないCPU等の演算手段では検出した電流値を基に短絡を判別する判別プログラムも複雑となるためコストが高くなっていた。また、抵抗17,18及び21からの発熱によりこの近傍のCPU、FET等の半導体素子の温度が上昇するといった問題もある。
【0005】
上述の点に鑑みて本願出願人は、図6に示すように1つの検出回路による低コストな且つ半導体素子の温度上昇を抑えた故障判別装置を出願している(特願平10−118219号)。また、この種の電磁コイル動作装置において、PWM制御によりFET9〜12をスイッチングさせ、より安定した微小制御が可能な駆動回路についても出願している(特願平10−118219号)。
【0006】
図6に示す装置は、上記PWM制御を行う電磁コイル動作装置の故障判別装置であり、この検出回路において、コイル1はマイナス側の接続点aと、プラス側との接続点bから得られるコイル両端電位をA/D変換器7によりデジタル信号に変換し、CPU等で構成される演算手段へ取り込む。この演算手段は、図示しない駆動回路によりFET9〜12をスイッチングし、スイッチング状態を任意に選択することでコイル1へPWM制御された駆動パルスを入力する。このスイッチング状態は微小時間間隔のパルス列で示すことができ、図7はこのパルス列を模式的に示したチャートである。
【0007】
図7中で示されるように、この駆動パルスと同期するようにA/D変換器7にてコイル両端電位の入力及び変換処理が開始される。この両端電位のデジタル信号は演算手段へ取り込まれ、演算手段では上記スイッチング状態に応じた両端電位であるか否かを判定するプログラムが実行される。例えば、図7に最初に現れた駆動パルスをFET9及び12のみがONする状態としたとき、FET9とFET12内の各抵抗値が等しい場合には、好ましい通電状態においてコイル1の両端電位が等しくなる。この状態において仮に接続点a側でGNDに短絡していたとするとコイル1の両端電位の和は電源電圧より小さくなる。このように駆動パルスと同期して所定時間分をA/D変換された電圧信号を電源電圧値と比較すれば、短絡故障を発見することができる。
【0008】
なお、このような短絡判定は定期的或いは任意のパルスについて行われる。ここではコイル1のオン状態の地絡判定を例に説明したが、パルス列のうち、コイル1のオフ状態のパルスをみれば電源供給線16と短絡して生じる天絡故障も判定可能である。以下において上記PWM制御によって変調される目標パルス中にオン時間が占める割合を駆動パルスのデューティ比(%)と称する。また、駆動ON処理等とA/D変換器7の入力処理に必要な時間をA/D変換器の入力処理等所要時間と称する。
【0009】
【発明が解決しようとする課題】
しかし、上記PWM制御方式の電磁コイル動作装置においては、1パルス中のオンオフ単位でA/D変換器7を介した電位信号を取り込むこととなるが、このA/D変換処理と、入力パルスのデューティ比との関係において判定精度に問題が出てきた。上記A/D変換器7は、例えば2重積分タイプではアナログ入力電圧を一定時間積分し、この積分器の放電時間をクロックパルスによりカウントする。したがって、上記A/D変換のための入力処理等所要時間或いはサンプリング時間に満たないデューティのパルスではアナログ入力電圧を正確に捕捉することができないのである。本願では、このような所要時間と同等なデューティを、所定のデューティ比と呼ぶこととする。
【0010】
具体的には、上記PWM制御方式ではソフトウエアによりデューティを計算でき、制御特性の改善のために小さなデューティで電磁コイル動作を制御することができるようになった。ところが、所定のデューティ比より検知対象の駆動パルスのデューティ比の方が小さくなると、A/D変換値が真値と限らない場合が出てくる。したがって、PWM駆動を行う際に所定のデューティ比を下回った駆動パルスのデューティ比のパルス入力の継続される領域では正確な短絡判定がなされず、また短絡故障の検知が遅れてしまうといった不具合が生じるおそれがある。これに対して、駆動パルスのデューティ比所定のデューティ比以上に維持するといった制限を設ければ、PWMによる制御性が犠牲となってしまう。
【0011】
そこで、本発明は、目標パルス列のデューティ比がA/D変換による電圧値の捕捉に必要な所定のデューティ比を下回る制御が行われる際に、正確な短絡判定を可能とするとともに、制御性の自由度が制限されない電磁コイル動作装置の短絡判定装置を提供することを目的としている。
【0012】
【課題を解決するための手段】
上記目的を達成するために本発明の電磁コイル動作装置の故障判別装置は、電磁コイルの両端各々を、スイッチ手段を介して電源供給線及び接地線に接続したHブリッジ回路と、上記スイッチ手段を選択的に駆動して上記電磁コイルに入力される駆動パルスをPWM制御する駆動手段と、上記駆動パルスのデューティ比を演算すると共に、上記駆動パルスのうち任意のパルスに同期してA/D変換器より取り込んだ上記電磁コイルの両端電位上記電源供給線の電源電位と比較結果と、上記同期したパルスで駆動される上記スイッチ手段の選択状態に基づいて短絡故障を判定する演算手段と、を有する電磁コイル動作装置の故障判別装置であって上記演算手段は、上記PWM制御された駆動パルスのデューティ比を、上記A/D変換器のA/D変換入力処理に要する時間と同時間をオン時間とする所定のデューティと比較し、上記駆動パルスに上記所定デューティに満たないデューティ比の駆動パルスが含まれるとき、上記駆動手段により上記電磁コイルへ上記所定デューティ比の駆動パルスを入力させるとともに、該所定デューティ比の駆動パルス入力時において上記短絡故障を判定することを特徴としている。
【0013】
また、上記演算手段において、上記PWM制御された駆動パルスのデューティ比を、上記A/D変換器のA/D変換入力処理に要する時間と同時間をオン時間とする所定のデューティと比較し、上記所定デューティに満たないパルス数をカウントし、該パルス数が所定値に達したとき、上記所定のデューティ比のパルスを含めた以降の各駆動パルスのデューティの合計値を変えないように各駆動パルスのデューティを加減することにより、上記駆動パルス中の任意のパルスに上記所定のデューティ比を設定可能とするとともに上記短絡故障を判定する構成としてもよい。
【0014】
また、上記演算手段は、任意のパルスに代えて上記所定デューティのパルスを入力させるとともに、上記任意のパルスから上記所定のデューティ比を減算して得た補正値を、その後に入力される駆動パルスのデューティに加える補正処理を行う構成にしてもよい。
【0015】
【発明の実施の形態】
以下、図面を用いて本発明の一実施例を説明する。図1は、本実施例の短絡判定装置の概略構成図である。この故障判別装置の構成の概略は上述したものと基本的に同様であり、コイル1へ通電させるためのHブリッジ回路と、このHブリッジ回路を介してアクチュエータとしてのコイル1を制御するスロットル制御部2とからなる。スロットル制御部2は、演算手段としてのCPU3と、ROM4及びRAM5と、コイル1をPWM制御するための駆動回路群6と、A/D変換器7とで構成され、上記入出力バス8によって例えば、CPU3へA/D変換器7からのデータ信号及びアドレス信号が入出力される。
【0016】
コイル1へPWMで変調した駆動パルスを入力する駆動手段は、Hブリッジ回路のスイッチ手段として4つのFET9,10,11,12と、各FET9〜12の有するスイッチング素子の制御入力端子に接続された駆動回路群6とによって構成される。そして、ROM4には駆動回路群6を駆動するためのプログラムが記録されており、このプログラムをCPU3に実行させることでコイル1をPWM制御するものである。さらに、このROM4には、図2から図4に示す後述のフローチャートに基づく処理を実行するためにCPU3が読み取り可能なプログラムを記録している。
【0017】
本実施例のA/D変換器7と、Hブリッジ回路とは次のように接続されている。コイル1のマイナス端側の接続点aと、そのプラス端側の接続点bとは、各々抵抗13、抵抗14を介して接続点cで接続され、この接続点cからは、所定の電圧値に変更するための抵抗15を介してA/D変換器7に接続されている。また、このA/D変換器7は、電源供給線16から引き出された接続線で接続され電源電位VBが入力される。上記A/D変換器7によって、接続点cからの入力電圧と、電源供給線16からの入力電圧とは、それぞれデジタル信号に変換された後、必要に応じてRAM5に格納される。また、CPU3は、これらのデジタル信号に基づいてROM4から短絡故障の判定用のプログラムを読み出して実行する。例えば、下記のようにHブリッジ回路の短絡故障を判定する。なお、A/D変換器7の入力抵抗値は大きく、A/D変換器7へ供給される電流値は無視できるものとする。
【0018】
各FET9〜12の各々はスイッチング素子9a〜12a及び抵抗9b〜12bを直列に接続したもので、各抵抗値は同じである。FET9のスイッチング素子9aとFET12スイッチング素子12aのみがONされたオンモード時では、電磁コイル動作装置が好ましい状態において接続点cにかかる電圧は次のような状態にある。接続点aの電圧値VPは、抵抗9bの両端間電圧だけ電源電圧VBより低くなり、接続点bの電圧値VNは、抵抗12bの両端間電圧だけ接地電位よりも高くなる。したがって抵抗9b及び12bを流れる電流は同じであるが故に、電圧値VPと電圧値VNとは等しくなる。そして、例えば接続点aの接続線がGNDと短路した地絡故障では、抵抗9bに流れる電流が大きくなるので、この両端間電圧が大きくなり、VPとVNとの和は電源電圧VBよりも小さくなる。この電圧値がA/D変換器7を介して検出され、CPU3ではVPとVNとの和がVBより小さいとき、地絡故障が発生したと判別することができるのである。
【0019】
また、スイッチング素子11aとスイッチング素子12aのみがONされたオフモード時では、コイル1のインダクタンスにより電流が流れ、この電流はGNDからFET11、コイル1及びFET12を経てGNDに至る回路を流れる。このときのVPは抵抗11bの両端電圧だけ接地電位よりも低くなり、VNは抵抗12bの両端電圧だけ接地電位よりも高くなる。電磁コイル動作装置が好ましい状態においては、抵抗11b及び12bを流れる電流は同じであるが故に、抵抗11b及び12bの各両端間電圧の絶対値は等しくなり、VPとVNとの和は0となるのである。そして、例えばコイル1の接続点bの接続線が電源接続線16と短絡し天絡故障を生じたとき、抵抗12bに流れる電流が大きくなるので、この両端間電圧が大きくなり、VPとVNとの和は0よりも大きくなる。このような電圧値が得られたときは天絡故障が発生したと判別することができる。
【0020】
上記CPU3では、コイル1に入力される駆動パルスのデューティ比を算出する処理、各駆動パルスのデューティ比を上記A/D変換器7に必要とされる所定のデューティ比と比較する処理、所定のデューティ比以下の駆動パルス数をカウントする処理、そしてカウントが所定MAX値に達したことを条件に、各駆動パルスのデューティ比の加減を行う処理とが実行される。
以下、上記所定のデューティ比をX%で示し、上記各駆動パルスのデューティ比を加減する処理をX%処理と称して、本実施例の短絡判定制御についてフローチャートを参照しながら説明する。
【0021】
図2は、X%処理を指示するフローチャートである。CPU3は、所定期間内において或いは定期的にX%に満たない駆動パルス数をカウントする。すなわち、演算された駆動パルスのデューティ比は、S105でX%と比較され、X%以上の駆動パルスのデューティ比が算出されるうちは、デューティ判定カウンタがクリアされ(S106)、X%フラグがセットされる(S107)。
【0022】
S105でX%に満たない駆動パルスのデューティ比が算出されると、S108においてデューティ判定カウンタがインクリメントされる。そしてX%フラグはリセットされ(S109)、補正値もクリアされる。このルーチンが継続され、上記インクリメントによってデューティ判定カウンタが所定のMAX値に達すると、X%処理のルーチンに入る(S103,S104)。
【0023】
図3に示すように、X%処理のルーチンでは、PWM制御に必要とされた本来の駆動パルスのデューティ比からX%を減算することにより差分を求め、これを補正値としてRAM5に格納する(S201)。ついで、上記算出された駆動パルスのデューティ比に替えてX%の駆動パルスのデューティ比を設定する(S202)。こうしてX%の駆動パルスのデューティ比をなかば強制的に設定することにより、駆動手段を介してX%デューティにてコイル1が駆動されることとなる。そしてデューティ判定カウンタをクリア(S203)した後、X%フラグをセットし(S204)、図1のルーチンに戻る。
【0024】
上記X%処理のルーチンで得られた補正値は、次回の駆動パルスのデューティ比の補正処理に用いられる。すなわち、PWM制御の上では過剰分となる補正値は、次回のパルス形成に先立って読み出され、図2で示したように、上記X%デューティの次に形成されるパルスの駆動パルスのデューティ比から差し引かれることとなる(図2、S102)。また、上記X%処理とともにデューティ判定カウンタがクリアされるので(図3、S203)、一度X%デューティが繰り出されると、再び所定のMAX値に達するまでX%処理は行われない。但し、入力パルス列がX%に満たないデューティを連続的に多数含むような制御を行う際は、デューティ判定カウンタで規定される一定期間毎にX%処理が行われる。このようにして、X%デューティと、補正された駆動パルスのデューティ比との合計値は変わらず、全体としては本来の操作量が確保される。なお、本実施例ではX%処理直後の駆動パルスのデューティ比を補正するが、X%処理後の何れのパルスを補正処理してもよい。
【0025】
図4に示すように上記X%のフラグが設定されていれば、故障判定処理を行う。すなわち、故障判定ルーチンではX%フラグのセットが確認され(S301)、真値を変換処理可能な状態でA/D変換器7によりサンプリングされ、故障判定が行われる。このようにして、X%フラグの確認を条件にX%デューティでコイル1を駆動し、このときのコイル両端電位がA/D変換器7を介してCPU3に取り込まれるので、信頼性のある短絡判定(S302)が可能となる。
【0026】
【発明の効果】
以上説明したように、本発明の電磁コイル動作装置の故障判別装置は、上記演算手段にて、上記パルス列の各駆動パルスのデューティ比を演算するとともに該各駆動パルスのデューティ比をA/D変換器の入力処理等所要時間と同等の所定のデューティ比と比較し、上記パルス列に所定のデューティ比に満たない駆動パルスが含まれるとき、電磁コイルへ所定のデューティ比のパルスを入力させるとともに、該所定のデューティ比のパルス入力時における上記短絡故障を判定する構成なので、駆動パルスのデューティ比所定のデューティ比を下回る制御が行われる際に、正確な短絡判定が可能である。
【0027】
さらに上記演算手段は、上記所定のデューティ比に満たないパルス数をカウントし、該パルス数が所定値に達したとき、上記所定のデューティ比のパルスを含めた以降の各駆動パルスのデューティ比の合計値を変えないように各駆動パルスのデューティ比を加減することにより、上記パルス列中の任意のパルスに所定のデューティ比を設定可能とした構成によれば、正確な短絡判定が可能であるとともに、本来の操作量が戻るので制御性が犠牲にならない。
【図面の簡単な説明】
【図1】本実施例の短絡判定装置の構成図である。
【図2】本実施例の制御を示すフローチャートである。
【図3】駆動デューティを加減する処理のフローチャートである。
【図4】短絡故障の判定を行うフローチャートである。
【図5】従来の電磁コイル作動装置の故障判別装置の構成図である。
【図6】PWM制御される電磁コイル作動装置の故障判別装置の構成図である。
【図7】PWM制御により駆動されるパルス列を示すチャートである。
【符号の説明】
1 電磁コイル
3 演算手段
6,9,10,11,12 駆動手段
9,10,11,12 スイッチ手段
16 電源供給線

Claims (3)

  1. 電磁コイルの両端各々を、スイッチ手段を介して電源供給線及び接地線に接続したHブリッジ回路と、上記スイッチ手段を選択的に駆動して上記電磁コイルに入力される駆動パルスをPWM制御する駆動手段と、上記駆動パルスのデューティ比を演算すると共に、上記駆動パルスのうち任意のパルスに同期してA/D変換器より取り込んだ上記電磁コイルの両端電位上記電源供給線の電源電位と比較結果と、上記同期したパルスで駆動される上記スイッチ手段の選択状態に基づいて短絡故障を判定する演算手段と、を有する電磁コイル動作装置の故障判別装置であって
    上記演算手段は、上記PWM制御された駆動パルスのデューティ比を、上記A/D変換器のA/D変換入力処理に要する時間と同時間をオン時間とする所定のデューティと比較し、上記駆動パルスに上記所定デューティに満たないデューティ比の駆動パルスが含まれるとき、上記駆動手段により上記電磁コイルへ上記所定デューティ比の駆動パルスを入力させるとともに、該所定デューティ比の駆動パルス入力時において上記短絡故障を判定することを特徴とする電磁コイル動作装置の故障判別装置。
  2. 電磁コイルの両端各々を、スイッチ手段を介して電源供給線及び接地線に接続したHブリッジ回路と、上記スイッチ手段を選択的に駆動して上記電磁コイルに入力される駆動パルスをPWM制御する駆動手段と、上記駆動パルスのデューティ比を演算すると共に、上記駆動パルスのうち任意のパルスに同期してA/D変換器より取り込んだ上記電磁コイルの両端電位上記電源供給線の電源電位と比較結果と、上記同期したパルスで駆動される上記スイッチ手段の選択状態に基づいて短絡故障を判定する演算手段と、を有する電磁コイル動作装置の故障判別装置であって
    上記演算手段は、上記PWM制御された駆動パルスのデューティ比を、上記A/D変換器のA/D変換入力処理に要する時間と同時間をオン時間とする所定のデューティと比較し、上記所定デューティに満たないパルス数をカウントし、該パルス数が所定値に達したとき、上記所定デューティのパルスを含めた以降の各駆動パルスのデューティの合計値を変えないように各駆動パルスのデューティを加減することにより、上記駆動パルス中の任意のパルスに上記所定デューティを設定可能とするとともに上記短絡故障を判定することを特徴とする電磁コイル動作装置の故障判別装置。
  3. 上記演算手段は、任意のパルスに代えて上記所定デューティのパルスを入力させるとともに、上記任意のパルスから上記所定デューティを減算して得た補正値を、その後に入力される駆動パルスのデューティに加える補正処理を行うことを特徴とする請求項2記載の電磁コイル動作装置の故障判別装置。
JP28221499A 1999-10-01 1999-10-01 電磁コイル動作装置の故障判別装置 Expired - Fee Related JP4508320B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28221499A JP4508320B2 (ja) 1999-10-01 1999-10-01 電磁コイル動作装置の故障判別装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28221499A JP4508320B2 (ja) 1999-10-01 1999-10-01 電磁コイル動作装置の故障判別装置

Publications (2)

Publication Number Publication Date
JP2001102233A JP2001102233A (ja) 2001-04-13
JP4508320B2 true JP4508320B2 (ja) 2010-07-21

Family

ID=17649555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28221499A Expired - Fee Related JP4508320B2 (ja) 1999-10-01 1999-10-01 電磁コイル動作装置の故障判別装置

Country Status (1)

Country Link
JP (1) JP4508320B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101354414B (zh) * 2007-07-26 2011-03-16 联华电子股份有限公司 具有多阶输出功能的缺陷检测***及方法
FR3037407B1 (fr) 2015-06-15 2017-06-09 Continental Automotive France Dispositif de detection de court-circuit d'un pont en h
CN108223143B (zh) * 2016-12-14 2020-04-07 中国航空工业集团公司西安航空计算技术研究所 一种辅助动力***电子控制器排气门组件控制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185937A (ja) * 1991-11-11 1993-07-27 Omron Corp 電動式パワーステアリング装置のモータ駆動装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115643B2 (ja) * 1988-04-28 1995-12-13 三菱電機株式会社 電動式パワーステアリング装置
JP2884183B2 (ja) * 1990-05-25 1999-04-19 光洋精工株式会社 電動式パワーステアリング装置
JPH07274580A (ja) * 1994-03-30 1995-10-20 Toshiba Corp インバータ装置の異常検出装置及び保護装置並びにエアコンデショナ
JP3274377B2 (ja) * 1996-12-25 2002-04-15 三菱電機株式会社 負荷短絡故障の検出方法及びその装置と電動パワーステアリング装置
US6332506B1 (en) * 1997-06-20 2001-12-25 Mitsubishi Denki Kabushiki Kaisha Motor driven power steering device
JPH11263240A (ja) * 1998-03-18 1999-09-28 Nippon Seiko Kk 電動パワーステアリング装置の制御装置
JPH11311651A (ja) * 1998-04-28 1999-11-09 Mikuni Corp 電磁コイル動作装置の故障判別装置
JP3292179B2 (ja) * 1999-09-07 2002-06-17 トヨタ自動車株式会社 モータ駆動装置のための異常検出装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185937A (ja) * 1991-11-11 1993-07-27 Omron Corp 電動式パワーステアリング装置のモータ駆動装置

Also Published As

Publication number Publication date
JP2001102233A (ja) 2001-04-13

Similar Documents

Publication Publication Date Title
US8315028B2 (en) Overcurrent protection apparatus
EP0883233A2 (en) Drive circuit for brushless motor
JP4565574B2 (ja) 異常検出装置
JP4991936B2 (ja) プルインコイルおよび/またはホールドコイルを備えた切換装置のための制御装置、および、コイルを流れる電流を制御する方法
JP2007006566A (ja) モータ制御装置
KR20010030316A (ko) 모터제어
JP3987953B2 (ja) ソレノイド駆動装置及び駆動方法
CN100334664C (zh) 螺线管驱动电路
JPS63266172A (ja) デイ−ゼルエンジンのグロ−プラグ制御装置
EP0315597B1 (en) Analog multiplex for sensing the magnitude and sense of the current through a h-bridge stage utilizing a single sensing resistance
JP4508320B2 (ja) 電磁コイル動作装置の故障判別装置
JP3773034B2 (ja) 電動車制御装置
JP2001216878A (ja) スイッチ状態監視回路及びスイッチ
US8836269B2 (en) Method for detecting blockages of electrically commutated electric motors
JP2010273445A (ja) 電流測定方法及び測定装置
US7521920B2 (en) Measuring device for measuring the output current of a clocked half-bridge circuit
JP2001500359A (ja) 発電機レギュレータ
JP2003189598A (ja) スイッチング電源装置
JPH08149804A (ja) スイッチングレギュレータ方式の電源回路
JPH10132868A (ja) インダクタンス内に流れる電流を検出する装置
EP0883042A1 (en) On-off controller
JP3180076U (ja) 少なくとも1つの放電灯を駆動する回路装置
JP2002231529A (ja) 電磁作動器駆動装置
JP7388885B2 (ja) 電流検出装置及びモータ駆動装置
JP2018073908A (ja) 誘導性負荷制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees