JP4507386B2 - Printed wiring board - Google Patents

Printed wiring board Download PDF

Info

Publication number
JP4507386B2
JP4507386B2 JP2000333249A JP2000333249A JP4507386B2 JP 4507386 B2 JP4507386 B2 JP 4507386B2 JP 2000333249 A JP2000333249 A JP 2000333249A JP 2000333249 A JP2000333249 A JP 2000333249A JP 4507386 B2 JP4507386 B2 JP 4507386B2
Authority
JP
Japan
Prior art keywords
embedded
conductive material
vias
buried
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000333249A
Other languages
Japanese (ja)
Other versions
JP2002141665A (en
Inventor
輝代隆 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2000333249A priority Critical patent/JP4507386B2/en
Publication of JP2002141665A publication Critical patent/JP2002141665A/en
Application granted granted Critical
Publication of JP4507386B2 publication Critical patent/JP4507386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Description

【0001】
【技術分野】
本発明は,プリント配線板に関し,特に複数のビアを重ね合わせて形成される導通ビアに関する。
【0002】
【従来技術】
プリント配線板は,多数の導体層の層間の導通を行うために,導通ビアを設けている。導通ビアとしては,従来,ドリルにより穴をあけその内壁に金属めっきを施したものや,穴内に半田などの導体を充填したものなどがある。
また,近年,図7(a)に示すごとく,各絶縁基板97の同一箇所に導電材94を埋めこんだビアホール95を形成し,これらを重ね合わせ,加熱によりビアホール95内に充填した導電材94を融着させて,一連の導通ビア93を形成することも行われている。このようなビアホールの上にビアホールを積み重ねた構造は,ビアオンビア構造といわれている。
【0003】
【解決しようとする課題】
しかしながら,上記従来のビアオンビア構造においては,ビアホールを積み重ねるときに,位置合わせを行う必要がある。また,図7(b)に示すごとく,加熱によりビアホール95内の導電材94を融着させるときに,導電材94がビアホール95の外へ流れ出して絶縁基板97の隙間に流出し,隣接する導体回路92とショートするおそれがある。
【0004】
本発明はかかる従来の問題点に鑑み,ビアホールの位置あわせが容易で,ビアホール内の導電材の流出を防止することができるプリント配線板を提供しようとするものである。
【0005】
【課題の解決手段】
請求項1の発明は,2以上の絶縁基板を積層してなるとともに,第一埋込みビア及び第二埋込みビアを重ね合わせ互いに接合してなる導通ビアを有するプリント配線板において,
上記第一埋込みビア及び第二埋込みビアは,ビアホール内に導電材を埋め込んでなり,
上記第一埋込みビアにおける上記第二埋込みビアとの対向面側には,導電材の端部が基板表面から突出し,上記第二埋込みビアにおける上記第一埋込みビアとの対向面側には,上記導電材の端部が基板表面よりも窪んでおり,かつ
上記第一埋込みビアの直径は,上記第二埋込みビアの直径よりも小さいことを特徴とするプリント配線板である。
【0006】
本発明においては,基板表面から導電材を突出させた小径の第一埋込みビアと,基板表面より内部に導電材を窪ませた大径の第二埋込みビアとを重ね合わせて,一連の導通ビアを形成している。
第一埋込みビアは,小径であり,基板表面から導電材を突出させた突出部分を有している。一方,第二埋込みビアは,上記第一埋込みビアよりも大きい直径であり,基板表面よりも内方に導電材が窪んだ凹部を有している。
【0007】
このため,第一埋込みビアと第二埋込みビアとを重ね合わせたときに,第一埋込みビアの突出部分は,第二埋込みビアの凹部に嵌合する。このため,第一埋込みビアと第二埋込みビアとの位置あわせが容易である。また,加熱時に第一埋込みビアの導電材が溶融したときに,第二埋込みビアの凹部内に留まるため,導電材のビアホール周辺への流出を防止できる。
また,積層圧着時に,第一埋込みビアの突出部分に大きな圧力が加わるため,第一埋込みビアと第二埋込みビアとの接合強度が高くなる。
【0008】
本発明において,第二埋込みビアの直径Dに対する第一埋込みビアの直径dの比(d/D)は,0.3〜0.9であることが好ましい。0.3未満の場合には,電気抵抗が著しく変化することになりノイズを発生し易くなるおそれがあり,また接続面積が小さくなり,接続強度も小さくなって,接続信頼性が低下する恐れも有る。0.9を超える場合には,第一,第二埋込みビアの直径の差異がほとんどなくなり,第一埋込みビアの突出部分を第二埋込みビアの凹部に嵌め込むことが困難になるおそれがある。中でも0.6〜0.8がさらに良好な結果をもたらす。
【0009】
第一埋込みビアの導電材の,ビア開口部からの突出量Aはパターンの厚みより高くかつ第二埋め込みビアに挿入する必要が有り,少なくとも0.01であることが好ましい。0.01mm未満の場合には,第二埋込みビアへの嵌め込みがしにくくなる。一方,突出量は多いほうが効果は高いが絶縁基板の厚みの半分までとするほうが挿入し易く,強度も強い。
【0010】
第二埋込みビアの導電材の,ビア開口部からの窪み量Bは,少なくとも0.01mmであることが好ましい。0.01mm未満の場合には,第一埋込みビアの突出部分をはめ込むことが困難となる。深いほうが前記突出部分をはめ込むには効果があるが,逆に第二埋め込みビアの導体の絶縁基板に保持される強度が低下するため,抜け落ちたりすることがある。従って,窪み量Bは,絶縁基板厚みの半分までが効果的である。
【0011】
上記第一埋込みビアの突出量Aと上記第二埋込みビアの窪み量Bの差(A−B)は,±0.01mm以下であることが好ましい。この範囲よりも大きい場合には,両埋込みビアの間に空隙が生じるおそれがあるからである。
【0012】
第一埋込みビアと第二埋込みビアとは,積み重なる2つの埋込みビアの相対的な関係である。2つの埋込みビアのうち,直径が小さい方のものが第一埋込みビアであり,大きい方のものが第二埋込みビアである。埋込みビアが3以上積み重なる場合には,ある埋込みビアは,一方の開口部に重なりあう埋込みビアとの関係では第一埋込みビアとなるが,他方の開口部に重なり合う埋込みビアとの関係では第二埋込みビアとなることもある(図6参照)。
【0013】
請求項2の発明のように,上記ビアホールは,打抜き孔であり,その中には導電材の打抜き片が埋め込まれていることが好ましい。
接着用基材の上に導電性シートを積層し,埋込みビア形成部分に打ち抜き用パンチで打ち抜き,絶縁基板にビアホールを形成するとともに,その中に上記打ち抜き用パンチにより打ち抜かれた導電性シートの打ち抜き片を,埋め込み用パンチにより埋め込む。これにより,絶縁基板に,導電性シートの打ち抜き片からなる導電材を埋めこんだ埋込みビアを形成することができる。かかる方法によれば,簡易に埋込みビアを形成することができる。
【0014】
導電性シートとしては,銅箔,ハンダ箔,金属粉末が樹脂の中に分散した導電性フィルム,加圧によって導電性を発揮する異方性導電性フィルムなどを用いることができる。
【0015】
請求項3の発明のように,上記第一,第二埋込みビアの少なくとも一方の上記導電材は,重ね合わされる側の端部に低融点材料を有することが好ましい。これにより,第一埋込みビアと第二埋込みビアとが導電材の溶着によって強固に接合する。
上記低融点導電材料は,絶縁基板を加熱圧着するときの温度よりも低い温度を融点とする導電材料であり,例えば,半田,導電性接着材などがある。導電性接着材は,樹脂に金属粒子を添加したものである。
【0016】
導電材の端部にのみ低融点導電材料を設け,その他の部分(例えば中心部)は,低融点導電材料よりも高い融点を持つ高融点導電材料を設けていてもよい。高融点導電材料としては,たとえば,銅,アルミニウム,ニッケルなどがある。
【0017】
請求項4の発明のように,上記第一,第二埋込みビアの少なくとも一方の上記導電材は,低融点材料からなることが好ましい。これにより,第一,第二埋込みビアが,互いに強固に接合する。この場合,他方の導電材は高融点導電材料でもよく,また低融点導電材料であってもよい。
【0018】
【発明の実施の形態】
実施形態例1
本発明の実施形態に係るプリント配線板について,図1〜図5を用いて説明する。
本例のプリント配線板は,図1,図2に示すごとく,3つの絶縁基板71〜73を下から順に積層圧着してなるとともに,3つの埋込みビア61〜63を下から順に重ね合わせ互いに接合してなる導通ビア6を有する。
埋込みビア61〜63は,ビアホール57内に導電材56を埋め込んで形成されている。
これらの埋込みビア61〜63の直径は,下から順に,0.1mm,0.14mm,0.08mmである。
【0019】
埋込みビア61と埋込みビア62との関係を説明する。埋込みビア61は,埋込みビア62よりも小さい直径を有し,かつ埋込みビア62との対向面側に突出部分65を有する第一埋込みビアである。埋込みビア62は,埋込みビア61よりも大きい直径を有し,かつ埋込みビア61との対向面側に凹部66を有する第二埋込みビアである。埋込みビア61における埋込みビア62との対向面側には,導電材56の端部が絶縁基板71表面から突出しており,その突出量A1は0.015mmである。埋込みビア62における埋込みビア61との対向面側には,導電材56の端部が絶縁基板72表面よりも窪んでおり,その窪み量B1は0.015mmである。
【0020】
次に,埋込みビア62と埋込みビア63との関係を説明する。埋込みビア63は,埋込みビア62よりも小さい直径を有し,かつ埋込みビア62との対向面側に突出部分65を有する第一埋込みビアである。埋込みビア62は,埋込みビア63よりも大きい直径を有し,かつ埋込みビア63との対向面側に凹部66を有する第二埋込みビアである。埋込みビア63における埋込みビア62との対向面側には,導電材56の端部が絶縁基板73表面から突出しており,その突出量A2は0.02mmである。埋込みビア62における埋込みビア61との対向面側には,導電材56の端部が絶縁基板72表面よりも窪んでおり,その窪み量B2は0.010mmである。
【0021】
埋込みビア61,63の外側端部には,導電材56が突出しており,その突出量A3,A4はそれぞれ0.015mm,0.01mmである。
埋込みビア61,63の導電材56は高融点材料としての銅であり,埋込みビア62の導電材は低融点材料としての半田である。
【0022】
図2に示すごとく,プリント配線板8には,複数の埋込みビア61〜63を積み重ねて形成した導通ビア6だけでなく,積み重なっていない埋込みビア64によっても,各層間の電気導通を行っている。
プリント配線板8の内部及び表面には,導体回路51が設けられている。また,プリント配線板8の表面にはパッド52が設けられており,半田バンプ53を介して電子部品89が搭載されている。
【0023】
次に,本例のプリント配線板の製造方法について説明する。
まず,絶縁基板71〜73として,厚み0.1mmのガラスエポキシ基板を準備する。また,埋込みビア61〜63用の導電材56として導電性シートを準備し,そのうち埋込みビア61,63用のものは,厚みが0.13mmの銅箔であり,埋込みビア62用のものは,厚みが0.075mmの半田箔である。
【0024】
次に,図3(a)に示すごとく,打抜き用の上パンチ33と,埋め込み用の下パンチ34と,ガイド穴30を有するダイ31とを準備する。絶縁基板71の上に導電材56を積層し,これらをダイ31の上に載置する。
次に,図3(b)に示すごとく,上パンチ33を下方向にスライドさせて,導電材56及び絶縁基板71を打抜く。これにより,導電材56及び絶縁基板71に,打抜き片561,711を打抜いて,打抜き孔560,710を形成する。
打抜き片561,711は下パンチ34により受け止める。
【0025】
次いで,図3(c)に示すごとく,下パンチ34を上昇させ,導電材56の打抜き片561を絶縁基板71の打抜き孔710内に押し戻す。
以上により,埋込みビア61が形成される。
埋込みビア62,63についても,上記埋込みビア61と同様の方法により形成する。
【0026】
なお,下パンチ34を用いることなく,上パンチ33だけを用いて導電材56の打抜き片561を打抜き穴710の中に埋め込むこともできる。
【0027】
次に,図4に示すごとく,絶縁基板71〜73に導体回路51及びパッド52を形成する。次に,図5に示すごとく,絶縁基板71〜73を下から順に積層し,加熱圧着する。これにより,埋込みビア61内の低融点導電材料が溶融し,その上下の埋込みビア61,63内の高融点導電材料の銅と溶着する。以上により,埋込みビア61〜63からなるビアオンビア構造の導通ビア6が形成される。
以上により,本例のプリント配線板が得られる。
【0028】
本例においては,図1に示すごとく,埋込みビア62は,その上下に重なり合う埋込みビア61,63の直径よりも大きく,またその中に埋め込まれている導電材56は基板表面よりも窪んでいる。一方,埋込みビア61,63は,その間に配置されている埋込みビア62に対向する側に導電材56が突出している。
【0029】
そのため,図4に示すごとく,埋込みビア62の上下に埋込みビア61,63を重ね合わせ互いに接合したときに,上下の埋込みビア61,63の突出部分65は,中央の埋込みビア62の凹部66にかみ合い,位置決めされる。このため,本例によれば,埋込みビア61〜63の位置あわせが容易である。
【0030】
また,図4,図5に示すごとく,加熱時に埋込みビア62の導電材56が溶融したときに,その上下の埋込みビア61,63の凹部66内に留まる。このため,導電材56のビアホール周辺への流出を防止できる。
また,積層圧着時に,埋込みビア61,63の突出部分65に大きな圧力が加わるため,埋込みビア61〜63の接合強度が高くなる。
【0031】
実施形態例2
本例は,図6に示すごとく,埋込みビア67〜69の直径が下方から順に小さくなっている。また,上方に配置されている埋込みビア69は上下に突出部分65を有しているが,その下の埋込みビア68,67は上部に凹部66を,下部に突出部分65を有している。
【0032】
埋込みビア67〜69の直径は,下から順に0.25mm,0.2mm,0.15mmである。
埋込みビア67,68の突出部分65の突出量A5,A6は,0.02mm,0.02mmであり,凹部66の窪み量B3,B4は0.02mm,0.02mmである。
埋込みビア69の上部,下部の突出部分65の突出量A7,A8は,0.015mm,0.015mmである。
【0033】
埋込みビア67と埋込みビア68との関係では,埋込みビア68は,小さい直径で突出部分65を有する第一埋込みビアであり,埋込みビア67は,大きい直径で凹部66を有する第二埋込みビアである。
また,埋込みビア68と埋込みビア69との関係では,埋込みビア69は上記第一埋込みビアであり,埋込みビア68は上記第二埋込みビアである。
その他は,実施形態例1と同様である。
【0034】
本例においては,埋込みビア67の直径は埋込みビア68の直径よりも大きい。このため,積層圧着時に,埋込みビア68の突出部分65が,埋込みビア67の凹部66に嵌合する。
また,埋込みビア68と埋込みビア69との関係でも,小径で突出部分65を有する埋込みビア69が,大径で凹部66を有する埋込みビア68に嵌合する。
このため,積層圧着時に,埋込みビア67〜69は,互いに位置決めされ,位置合わせが容易となる。また,導電材が埋込みビア67〜69の周辺に流れ出さず,ショートの発生を防止することができる。
【0035】
【発明の効果】
本発明によれば,ビアホールの位置あわせが容易で,ビアホール内の導電材の流出を防止することができるプリント配線板を提供することができる。
【図面の簡単な説明】
【図1】実施形態例1における,埋込みビアを説明するためのプリント配線板の断面説明図。
【図2】実施形態例1のプリント配線板の断面図。
【図3】実施形態例1における,埋込みビアの形成方法を示す説明図(a)〜(c)。
【図4】実施形態例1における,積層した埋込みビアの断面図。
【図5】実施形態例1における,加熱圧着後の埋込みビアの断面図。
【図6】実施形態例2における,埋込みビアを説明するためのプリント配線板の断面説明図。
【図7】従来例における,ビアホールを説明するためのプリント配線板の断面説明図(a),及び積層圧着時の問題点の説明図(b)。
【符号の説明】
30...ガイド穴,
31...ダイ,
33...上パンチ,
34...下パンチ,
51...導体回路,
52...パッド,
56...導電材,
61〜63,67〜69...埋込みビア,
71〜73...絶縁基板,
8...プリント配線板,
[0001]
【Technical field】
The present invention relates to a printed wiring board, and more particularly to a conductive via formed by overlapping a plurality of vias.
[0002]
[Prior art]
The printed wiring board is provided with conductive vias in order to conduct electrical conduction between layers of a large number of conductor layers. Conventionally, there are conductive vias in which a hole is drilled and the inner wall is plated with metal, or a conductor such as solder is filled in the hole.
In recent years, as shown in FIG. 7A, via holes 95 in which a conductive material 94 is embedded in the same portion of each insulating substrate 97 are formed, and these are overlapped, and the conductive material 94 filled in the via hole 95 by heating. A series of conductive vias 93 are also formed by fusing these. Such a structure in which via holes are stacked on the via hole is called a via-on-via structure.
[0003]
[Problems to be solved]
However, in the conventional via-on-via structure, it is necessary to perform alignment when stacking via holes. Further, as shown in FIG. 7B, when the conductive material 94 in the via hole 95 is fused by heating, the conductive material 94 flows out of the via hole 95 and flows out into the gap of the insulating substrate 97, and adjacent conductors There is a risk of short circuit with the circuit 92.
[0004]
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a printed wiring board in which the alignment of via holes is easy and the outflow of the conductive material in the via holes can be prevented.
[0005]
[Means for solving problems]
The invention according to claim 1 is a printed wiring board having a conductive via formed by laminating two or more insulating substrates and superposing the first embedded via and the second embedded via and joining each other.
The first buried via and the second buried via are formed by embedding a conductive material in the via hole,
The end of the conductive material protrudes from the surface of the substrate facing the second embedded via in the first embedded via, and the end of the second embedded via facing the first embedded via The printed wiring board is characterized in that the end of the conductive material is recessed from the substrate surface, and the diameter of the first embedded via is smaller than the diameter of the second embedded via.
[0006]
In the present invention, a small-diameter first embedded via having a conductive material projecting from the substrate surface and a large-diameter second embedded via having a conductive material recessed from the substrate surface are overlapped to form a series of conductive vias. Is forming.
The first buried via has a small diameter and has a protruding portion in which a conductive material protrudes from the substrate surface. On the other hand, the second embedded via has a diameter larger than that of the first embedded via, and has a concave portion in which the conductive material is recessed inward from the substrate surface.
[0007]
For this reason, when the first embedded via and the second embedded via are overlapped, the protruding portion of the first embedded via fits into the recess of the second embedded via. For this reason, the first buried via and the second buried via can be easily aligned. Further, when the conductive material of the first embedded via is melted during heating, the conductive material stays in the recess of the second embedded via, so that the conductive material can be prevented from flowing out to the periphery of the via hole.
In addition, since a large pressure is applied to the protruding portion of the first embedded via during the lamination pressure bonding, the bonding strength between the first embedded via and the second embedded via is increased.
[0008]
In the present invention, the ratio (d / D) of the diameter d of the first buried via to the diameter D of the second buried via is preferably 0.3 to 0.9. If it is less than 0.3, the electrical resistance may change significantly, and noise may be easily generated. Also, the connection area may be reduced, connection strength may be reduced, and connection reliability may be reduced. Yes. If it exceeds 0.9, the difference between the diameters of the first and second embedded vias is almost eliminated, and it may be difficult to fit the protruding portion of the first embedded via into the concave portion of the second embedded via. Among these, 0.6 to 0.8 gives better results.
[0009]
The protrusion amount A of the conductive material of the first buried via from the via opening is higher than the thickness of the pattern and needs to be inserted into the second buried via, and is preferably at least 0.01. If it is less than 0.01 mm, it is difficult to fit into the second embedded via. On the other hand, the larger the amount of protrusion, the higher the effect, but the easier it is to insert up to half the thickness of the insulating substrate, and the higher the strength.
[0010]
The depression amount B from the via opening of the conductive material of the second embedded via is preferably at least 0.01 mm. If it is less than 0.01 mm, it is difficult to fit the protruding portion of the first buried via. The deeper one is more effective for fitting the protruding portion, but conversely, the strength of the second buried via conductor held by the insulating substrate is lowered, so that it may fall off. Therefore, the depression amount B is effective up to half the thickness of the insulating substrate.
[0011]
The difference (A−B) between the protrusion amount A of the first embedded via and the recess amount B of the second embedded via is preferably ± 0.01 mm or less. This is because if it is larger than this range, there is a possibility that a gap will be formed between both buried vias.
[0012]
The first embedded via and the second embedded via are the relative relationship between the two embedded vias that are stacked. Of the two embedded vias, the one with the smaller diameter is the first embedded via, and the larger one is the second embedded via. When three or more buried vias are stacked, one buried via becomes the first buried via in relation to the buried via that overlaps one opening, but second in the relation to the buried via that overlaps the other opening. It may be a buried via (see FIG. 6).
[0013]
According to a second aspect of the present invention, it is preferable that the via hole is a punched hole in which a punched piece of a conductive material is embedded.
A conductive sheet is laminated on the base material for bonding, punched with a punch for punching in the embedded via formation part, a via hole is formed in the insulating substrate, and the conductive sheet punched with the punch for punching is punched into the via hole. Embed the piece with an embedding punch. Thereby, an embedded via in which a conductive material made of a punched piece of a conductive sheet is embedded in the insulating substrate can be formed. According to such a method, a buried via can be easily formed.
[0014]
As the conductive sheet, a copper foil, a solder foil, a conductive film in which a metal powder is dispersed in a resin, an anisotropic conductive film that exhibits conductivity when pressed, and the like can be used.
[0015]
According to a third aspect of the present invention, it is preferable that at least one of the conductive materials of the first and second buried vias has a low melting point material at an end portion on a side to be overlapped. As a result, the first embedded via and the second embedded via are firmly bonded by welding the conductive material.
The low-melting-point conductive material is a conductive material having a melting point that is lower than the temperature at which the insulating substrate is hot-pressed, and includes, for example, solder and conductive adhesive. The conductive adhesive is obtained by adding metal particles to a resin.
[0016]
A low melting point conductive material may be provided only at the end of the conductive material, and a high melting point conductive material having a melting point higher than that of the low melting point conductive material may be provided at other portions (for example, the central portion). Examples of the high melting point conductive material include copper, aluminum, and nickel.
[0017]
Preferably, at least one of the conductive materials of the first and second buried vias is made of a low melting point material. Thereby, the first and second buried vias are firmly bonded to each other. In this case, the other conductive material may be a high melting point conductive material or a low melting point conductive material.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
A printed wiring board according to an embodiment of the present invention will be described with reference to FIGS.
As shown in FIGS. 1 and 2, the printed wiring board of this example is formed by laminating and bonding three insulating substrates 71 to 73 in order from the bottom, and superimposing three embedded vias 61 to 63 in order from the bottom and bonding them together. Conductive vias 6 are formed.
The buried vias 61 to 63 are formed by embedding a conductive material 56 in the via hole 57.
The diameters of these embedded vias 61 to 63 are 0.1 mm, 0.14 mm, and 0.08 mm in order from the bottom.
[0019]
The relationship between the buried via 61 and the buried via 62 will be described. The embedded via 61 is a first embedded via having a smaller diameter than the embedded via 62 and having a protruding portion 65 on the side facing the embedded via 62. The embedded via 62 is a second embedded via having a larger diameter than the embedded via 61 and having a recess 66 on the side facing the embedded via 61. On the side of the embedded via 61 facing the embedded via 62, the end of the conductive material 56 protrudes from the surface of the insulating substrate 71, and the protruding amount A1 is 0.015 mm. On the side of the embedded via 62 facing the embedded via 61, the end of the conductive material 56 is recessed from the surface of the insulating substrate 72, and the amount of depression B 1 is 0.015 mm.
[0020]
Next, the relationship between the embedded via 62 and the embedded via 63 will be described. The embedded via 63 is a first embedded via having a smaller diameter than the embedded via 62 and having a protruding portion 65 on the side facing the embedded via 62. The embedded via 62 is a second embedded via having a larger diameter than the embedded via 63 and having a recess 66 on the side facing the embedded via 63. On the side of the embedded via 63 facing the embedded via 62, the end of the conductive material 56 protrudes from the surface of the insulating substrate 73, and the protruding amount A2 is 0.02 mm. On the side of the embedded via 62 facing the embedded via 61, the end of the conductive material 56 is recessed from the surface of the insulating substrate 72, and the amount of depression B2 is 0.010 mm.
[0021]
The conductive material 56 protrudes from the outer end portions of the embedded vias 61 and 63, and the protruding amounts A3 and A4 are 0.015 mm and 0.01 mm, respectively.
The conductive material 56 of the embedded vias 61 and 63 is copper as a high melting point material, and the conductive material of the embedded via 62 is solder as a low melting point material.
[0022]
As shown in FIG. 2, the printed wiring board 8 is electrically connected not only by the conductive vias 6 formed by stacking a plurality of embedded vias 61 to 63 but also by the embedded vias 64 that are not stacked. .
Conductor circuits 51 are provided inside and on the surface of the printed wiring board 8. A pad 52 is provided on the surface of the printed wiring board 8, and an electronic component 89 is mounted via the solder bump 53.
[0023]
Next, the manufacturing method of the printed wiring board of this example is demonstrated.
First, a glass epoxy substrate having a thickness of 0.1 mm is prepared as the insulating substrates 71 to 73. In addition, a conductive sheet is prepared as the conductive material 56 for the embedded vias 61 to 63, of which the one for the embedded vias 61 and 63 is a copper foil having a thickness of 0.13 mm, and the one for the embedded via 62 is It is a solder foil having a thickness of 0.075 mm.
[0024]
Next, as shown in FIG. 3A, an upper punch 33 for punching, a lower punch 34 for embedding, and a die 31 having a guide hole 30 are prepared. A conductive material 56 is laminated on the insulating substrate 71, and these are placed on the die 31.
Next, as shown in FIG. 3B, the upper punch 33 is slid downward to punch out the conductive material 56 and the insulating substrate 71. Thereby, the punching pieces 561 and 711 are punched in the conductive material 56 and the insulating substrate 71 to form punching holes 560 and 710.
The punched pieces 561 and 711 are received by the lower punch 34.
[0025]
Next, as shown in FIG. 3C, the lower punch 34 is raised, and the punched piece 561 of the conductive material 56 is pushed back into the punched hole 710 of the insulating substrate 71.
Thus, the buried via 61 is formed.
The buried vias 62 and 63 are also formed by the same method as that for the buried via 61.
[0026]
The punched piece 561 of the conductive material 56 can be embedded in the punched hole 710 using only the upper punch 33 without using the lower punch 34.
[0027]
Next, as shown in FIG. 4, the conductor circuit 51 and the pad 52 are formed on the insulating substrates 71 to 73. Next, as shown in FIG. 5, the insulating substrates 71 to 73 are laminated in order from the bottom and are thermocompression bonded. As a result, the low melting point conductive material in the embedded via 61 is melted and welded to the high melting point conductive material copper in the upper and lower embedded vias 61 and 63. Thus, the conductive via 6 having the via-on-via structure including the embedded vias 61 to 63 is formed.
Thus, the printed wiring board of this example is obtained.
[0028]
In this example, as shown in FIG. 1, the buried via 62 is larger than the diameter of the buried vias 61 and 63 that overlap vertically, and the conductive material 56 buried therein is recessed from the substrate surface. . On the other hand, in the embedded vias 61 and 63, the conductive material 56 protrudes on the side facing the embedded via 62 disposed therebetween.
[0029]
Therefore, as shown in FIG. 4, when the embedded vias 61, 63 are overlapped and bonded to each other above and below the embedded via 62, the protruding portions 65 of the upper and lower embedded vias 61, 63 are formed in the recess 66 of the central embedded via 62. Engage and position. For this reason, according to this example, the alignment of the buried vias 61 to 63 is easy.
[0030]
As shown in FIGS. 4 and 5, when the conductive material 56 of the embedded via 62 is melted during heating, it remains in the recesses 66 of the upper and lower embedded vias 61 and 63. For this reason, the outflow of the conductive material 56 around the via hole can be prevented.
In addition, since a large pressure is applied to the protruding portions 65 of the embedded vias 61 and 63 during the lamination pressure bonding, the bonding strength of the embedded vias 61 to 63 is increased.
[0031]
Embodiment 2
In this example, as shown in FIG. 6, the diameters of the embedded vias 67 to 69 become smaller in order from the lower side. The embedded via 69 disposed above has a protruding portion 65 in the vertical direction, and the embedded vias 68 and 67 below the upper portion have a concave portion 66 in the upper portion and a protruding portion 65 in the lower portion.
[0032]
The diameters of the embedded vias 67 to 69 are 0.25 mm, 0.2 mm, and 0.15 mm in order from the bottom.
The protruding amounts A5 and A6 of the protruding portions 65 of the embedded vias 67 and 68 are 0.02 mm and 0.02 mm, and the recessed amounts B3 and B4 of the recessed portion 66 are 0.02 mm and 0.02 mm.
The protruding amounts A7 and A8 of the upper and lower protruding portions 65 of the embedded via 69 are 0.015 mm and 0.015 mm.
[0033]
In the relationship between the embedded via 67 and the embedded via 68, the embedded via 68 is a first embedded via having a small diameter and a protruding portion 65, and the embedded via 67 is a second embedded via having a large diameter and a recess 66. .
Further, regarding the relationship between the embedded via 68 and the embedded via 69, the embedded via 69 is the first embedded via, and the embedded via 68 is the second embedded via.
Others are the same as in the first embodiment.
[0034]
In this example, the diameter of the embedded via 67 is larger than the diameter of the embedded via 68. For this reason, the protruding portion 65 of the embedded via 68 fits into the recessed portion 66 of the embedded via 67 at the time of stacking and pressing.
Further, even in the relationship between the embedded via 68 and the embedded via 69, the embedded via 69 having the small diameter and the protruding portion 65 is fitted into the embedded via 68 having the large diameter and the recessed portion 66.
For this reason, the embedded vias 67 to 69 are positioned with respect to each other at the time of lamination and crimping, and the alignment becomes easy. In addition, the conductive material does not flow around the embedded vias 67 to 69, and the occurrence of a short circuit can be prevented.
[0035]
【The invention's effect】
According to the present invention, it is possible to provide a printed wiring board in which the alignment of the via hole is easy and the conductive material in the via hole can be prevented from flowing out.
[Brief description of the drawings]
FIG. 1 is a cross-sectional explanatory view of a printed wiring board for explaining embedded vias in Embodiment 1;
FIG. 2 is a cross-sectional view of a printed wiring board according to Embodiment 1;
3A to 3C are explanatory views showing a method for forming a buried via in the first embodiment.
4 is a cross-sectional view of stacked buried vias in Embodiment 1. FIG.
FIG. 5 is a cross-sectional view of a buried via after thermocompression bonding in the first embodiment.
FIG. 6 is a cross-sectional explanatory view of a printed wiring board for explaining a buried via in the second embodiment.
FIG. 7 is a cross-sectional explanatory view (a) of a printed wiring board for explaining a via hole and an explanatory view (b) of a problem at the time of laminated crimping in a conventional example.
[Explanation of symbols]
30. . . Guide holes,
31. . . Die,
33. . . Top punch,
34. . . Bottom punch,
51. . . Conductor circuit,
52. . . pad,
56. . . Conductive material,
61-63, 67-69. . . Buried vias,
71-73. . . Insulating substrate,
8). . . Printed wiring board,

Claims (4)

2以上の絶縁基板を積層してなるとともに,第一埋込みビア及び第二埋込みビアを重ね合わせ互いに接合してなる導通ビアを有するプリント配線板において,
上記第一埋込みビア及び第二埋込みビアは,ビアホール内に導電材を埋め込んでなり,
上記第一埋込みビアにおける上記第二埋込みビアとの対向面側には,導電材の端部が基板表面から突出し,上記第二埋込みビアにおける上記第一埋込みビアとの対向面側には,上記導電材の端部が基板表面よりも窪んでおり,かつ
上記第一埋込みビアの直径は,上記第二埋込みビアの直径よりも小さいことを特徴とするプリント配線板。
In a printed wiring board having a conductive via formed by laminating two or more insulating substrates and overlaying and bonding the first embedded via and the second embedded via,
The first buried via and the second buried via are formed by embedding a conductive material in the via hole,
The end of the conductive material protrudes from the surface of the substrate facing the second embedded via in the first embedded via, and the end of the second embedded via facing the first embedded via A printed wiring board, wherein an end portion of a conductive material is recessed from a substrate surface, and a diameter of the first embedded via is smaller than a diameter of the second embedded via.
請求項1において,上記ビアホールは,打抜き孔であり,その中には導電材の打抜き片が埋め込まれていることを特徴とするプリント配線板。2. The printed wiring board according to claim 1, wherein the via hole is a punched hole in which a punched piece of a conductive material is embedded. 請求項1において,上記第一,第二埋込みビアの少なくとも一方の上記導電材は,重ね合わされる側の端部に低融点材料を有することを特徴とするプリント配線板。2. The printed wiring board according to claim 1, wherein the conductive material of at least one of the first and second buried vias has a low melting point material at an end portion on a side to be overlaid. 請求項1において,上記第一,第二埋込みビアの少なくとも一方の上記導電材は,低融点材料からなることを特徴とするプリント配線板。2. The printed wiring board according to claim 1, wherein the conductive material of at least one of the first and second buried vias is made of a low melting point material.
JP2000333249A 2000-10-31 2000-10-31 Printed wiring board Expired - Fee Related JP4507386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000333249A JP4507386B2 (en) 2000-10-31 2000-10-31 Printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000333249A JP4507386B2 (en) 2000-10-31 2000-10-31 Printed wiring board

Publications (2)

Publication Number Publication Date
JP2002141665A JP2002141665A (en) 2002-05-17
JP4507386B2 true JP4507386B2 (en) 2010-07-21

Family

ID=18809359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000333249A Expired - Fee Related JP4507386B2 (en) 2000-10-31 2000-10-31 Printed wiring board

Country Status (1)

Country Link
JP (1) JP4507386B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4631566B1 (en) * 1968-04-10 1971-09-13
JPH05226509A (en) * 1992-02-14 1993-09-03 Hitachi Ltd Method of manufacturing multilayered circuit
JPH0621649A (en) * 1992-04-03 1994-01-28 Internatl Business Mach Corp <Ibm> Multilayer ultrasmall electronic-circuit module and its formation method
JPH07240582A (en) * 1994-02-28 1995-09-12 Hitachi Ltd Multilayer interconnection board and method and device for manufacturing multilayer interconnection board
JPH08274468A (en) * 1995-04-01 1996-10-18 Sumitomo Kinzoku Electro Device:Kk Manufacturing method of multilayer ceramic board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4631566B1 (en) * 1968-04-10 1971-09-13
JPH05226509A (en) * 1992-02-14 1993-09-03 Hitachi Ltd Method of manufacturing multilayered circuit
JPH0621649A (en) * 1992-04-03 1994-01-28 Internatl Business Mach Corp <Ibm> Multilayer ultrasmall electronic-circuit module and its formation method
JPH07240582A (en) * 1994-02-28 1995-09-12 Hitachi Ltd Multilayer interconnection board and method and device for manufacturing multilayer interconnection board
JPH08274468A (en) * 1995-04-01 1996-10-18 Sumitomo Kinzoku Electro Device:Kk Manufacturing method of multilayer ceramic board

Also Published As

Publication number Publication date
JP2002141665A (en) 2002-05-17

Similar Documents

Publication Publication Date Title
EP1267597B1 (en) Printed wiring board with embedded electric device and method for manufacturing printed wiring board with embedded electric device
US5438478A (en) Electronic component carriers and method of producing the same as well as electronic devices
JP2736042B2 (en) Circuit board
JP2831970B2 (en) Interlayer connection method for circuit boards
JP2006073763A (en) Manufacturing method for multilayer board
TW200810626A (en) Method for manufacturing multilayer wiring board
US10362672B2 (en) Resin multilayer substrate and method of manufacturing the same
JP2008091874A (en) Ceramic circuit substrate and method for manufacturing the same
JP5742936B2 (en) Wiring board and method of manufacturing wiring board
KR100628418B1 (en) Semiconductor device and semiconductor device manufacturing method
JP4507386B2 (en) Printed wiring board
JP2002290028A (en) Connection structure and method for printed wiring board
JP5170570B2 (en) Resin multilayer module and method for manufacturing resin multilayer module
JP5641072B2 (en) Circuit board
JP2002033579A (en) Multilayer printed wiring board and producing method therefor
JP4002117B2 (en) Multilayer substrate and manufacturing method thereof
JP4655300B2 (en) Lead frame
JP4483069B2 (en) Printed wiring board and manufacturing method thereof
US6518672B2 (en) Multi-layer wiring board substrate and semiconductor device using the multi-layer wiring substrate
JP4543544B2 (en) Flip chip mounting substrate and manufacturing method thereof
JP3816038B2 (en) Multilayer flexible wiring board and manufacturing method thereof
JP2005294496A (en) Connecting structure of wiring board and its manufacturing method
JP3936540B2 (en) Method for manufacturing flexible multilayer printed circuit board
JP2009054929A (en) Junction structure of multiple boards, and junction method of multiple boards
JP2002185142A (en) Multilayer printed wiring board and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4507386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees